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Zusammenfassung

In unserem täglichen Leben begegnen wir Tropfen oft in physikalischen
Systems, beispielsweise als Öltropfen in Salatsoße. Diese Tropfen sind meist
chemisch inaktiv. In biologischen Zellen bilden Proteine und RNA zusammen
Tropfen. Zellen sind chemisch aktiv, so dass die Tropfenkomponenten neu ge-
bildet, abgebaut und modifiziert werden können.

In dieser Doktorarbeit wird das dynamische Verhalten von chemisch akti-
ven Tropfen mit analytischen und numerischen Methoden untersucht. Um das
dynamische Verhalten von solchen aktiven Tropfen zu untersuchen, benutzen
wir ein Minimalmodell mit zwei Komponenten, die zwei Phasen bilden und
durch chemische Reaktionen ineinander umgewandelt werden.Die chemischen
Reaktionen werden durch das Brechen von Detailed Balance aus dem Gleich-
gewicht gehalten, so dass die Tropfen chemisch aktiv sind. Wir konzentrieren
uns auf den Fall, in dem Tropfenmaterial im Tropfen in die äußere Komponente
umgewandelt wird, und in der äußeren Phase erzeugt wird.

Wir finden ein vielfältiges dynamisches Phasendiagramm mit Regionen, in
denen Tropfen schrumpfen und verschwinden, Regionen, in denen Tropfen ei-
ne stabile stationäre Größe besitzen, und Regionen, in denen eine Forminstabi-
lität zu komplexer Tropfen-Dynamik führt. In der letzten Region deformieren
sich Tropfen typischenweise prolat, verformen sich zu einer Hantel, und tei-
len sich in zwei Tochtertropfen, die wieder anwachsen. Dies kann zu Zyklen
von Wachstum und Teilung von Tropfen führen, bis die Tropfen das gesamte
Volumen füllen. Während spherische Tropfen durch die chemischen Reaktio-
nen entgegen ihrer Oberflächenspannung deformiert werden, können Tropfen-
Zylinder und Platten durch chemische Reaktionen stabilisiert werden.

Generell ist die Dynamik von Tropfen ein hydrodynamisches Problem, da
die Oberflächenspannung von deformierten Tropfen hydrodynamische Flüsse
erzeugt.Wir finden, dass chemische Reaktionen entgegen dieOberflächenspan-
nung Arbeit verrichten können, so dass die Tropfenteilung auch unter Berück-
sichtigung hydrodynamischer Flüsse möglich ist.

Diese Doktorarbeit zeigt, dass die Kombination von chemische Reaktio-
nen und Phasenseparation unter Nichtgleichgewichtsbedingungen zu neuem
dynamischen Verhalten führen kann. Die Ergebnisse zeigen die Relevanz von
chemischen Reaktionen zum Verständnis von Phasenseparation in biologischen
Systemen auf, und können bei der Umsetzung der diskutierten Phänomene in
experimentellen Systemen helfen. Die Tropfenteilung, die in dieser Doktorar-
beit diskutiert wird, erinnert an die Teilung von biologischen Zellen. Davonmo-
tiviert schlagen wir vor, dass die Teilung von chemisch aktiven Tropfen ein Me-
chanismus für die Replikation von Tropfen-artigen Protozellen am Ursprung
des Lebens gewesen sein könnte.
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Abstract

In our everyday environment, we regularly encounter liquid-liquid phase
separation in physical systems such as oil droplets in vinegar. These droplets
tend to be chemically inert. In biological cells, protein and RNA may together
form liquid droplets. Cells are chemically active, so that droplet components
can be created, degraded and modified.

In this thesis we study the influence of nonequilibrium chemical reactions
on the shape dynamics of a droplet theoretically, using analytical and numerical
methods. To discuss the dynamical behavior that results from combining phase
separation and chemical reactions in sustained nonequilibrium conditions, we
introduce a minimal model with only two components that separate into dis-
tinct phases. These two components are converted into each other by chemical
reactions. The reactions are kept out of equilibrium by breaking of detailed bal-
ance, so that the droplet becomes active. We concentrate on the case where the
reaction inside the droplet degrades droplet material into the outer component,
and where the reaction outside creates new droplet material.

We find that chemically active droplets have a rich dynamic phase space,
with regions where droplets shrink and vanish, regions where droplets have a
stable stationary size, and regions where the flux-driven instability leads to com-
plex dynamic behavior of droplets. In the latter, droplets typically elongate into
a dumbbell shape and then split into two symmetrical daughter droplets. These
droplets then grow until they have the same size as the initial droplet. This
can lead to cycles of growth and division, so that an initial droplet divides until
droplets fill the simulation volume. We analyze the stationary spherical state of
the droplet, which is created by a balance of the fluxes driven by the chemical
reactions. We find that stationary droplets may have a shape instability, which
is driven by the continuous fluxes across the droplet interface and which may
trigger the division. We also find that while reactions may destabilize spherical
droplet shapes despite the surface tension of the droplet, they can have stabiliz-
ing effects on cylindrical droplets and droplet plates.

Generally, the shape dynamics of droplets is a hydrodynamic problem be-
cause surface tension in non-spherical droplets drives hydrodynamic flows that
redistributematerial and deform the droplet shape. We therefore study the influ-
ence of hydrodynamic flows on the shape changes of chemically active droplets.
We find that chemical reactions in active droplets can perform work against
surface tension and flows, so that the droplet division is possible even in the
presence of hydrodynamic flows.

The present thesis highlights how the combination of basic physical behav-
iors – phase separation and chemical reactions – may create novel dynamic be-
havior under sustained nonequilibrium conditions. The results demonstrate the
importance of considering chemical reactions for understanding the dynamics
of droplets in biological systems, as well as proposes a minimalist model for
experimentalists that are interested in creating a system of dividing droplets. Fi-
nally, the division of chemically active droplets is reminiscent of the division of
biological cells, and it motivates us to propose that chemically active droplets
could have provided a simple mechanism for the self-replication of droplet-like
protocells at the origin of life.
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Introduction 1

In this thesis, we consider the combination of phase separation and chemical reactions.
Phase separation, such as the separation of water and oil in vinaigrette, is a well-
studied physical phenomena. Chemical reactions, the conversion of molecules into
other molecules, is a common behavior as well, for example the burning of wood in
a camp fire. The combination of both effects seems rare, judging by our everyday
environment. However, both phase separation and chemical reactions occur together
in biological systems, inside living cells. Nonequilibrium conditions are common in
our world, but they are especially important in living systems, which are alive only
as long as they are out of equilibrium. This motivates the theoretical study of the
dynamical shape changes a droplet can undergo if it is driven out of equilibrium by
chemical reactions.

In this chapter the background concepts are introduced. We start with phase
separation which leads to liquid droplets, including different models to describe it.
We briefly introduce the basic concepts of chemical reactions. After that, we discuss
the existence of droplets in living cells, where chemical reactions are prevalent. We
also introduce the creation of life as another example where droplets and chemical
reactions might have been important. Then we outline the wide range of behaviors
that are unlike that of associated equilibrium states that have been found in other
nonequilibrium driven systems. We conclude the chapter with a brief overview of
previous results of phase separating systems with driven chemical reactions.

1.1 Phase separation and droplets

Almost every day we see droplets around us, water droplets in air from rain or con-
densation in the shower, oil droplets in water from preparing vinaigrette, or the small
droplets in an emulsion, such as hand creme or mayonnaise or ouzo. Such droplets
often can be described by equilibrium properties of the materials involved: A droplet
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. Introduction

is created because the energy of the system is lower as a phase-separated state than
in the mixed state, due to the molecular interactions between the components. Min-
imization of the surface energy creates a round shape of the droplet.

There are different models that are used to describe liquid phase separating sys-
tems. Here, three models are briefly introduced. One is a microscopic lattice model
based on Ising model which gives a good intuitive picture. We also introduce a free-
energy based model with a continuous concentration field, and one where the inter-
face is described explicitly by a discontinuous concentration jump, both of which are
used throughout the thesis. Additional information can be found in Safran (1994);
Bray (1994); Taylor (1998); Cates (2012).

1.1.1 A microscopic picture of phase separation

A simple molecule-based picture for phase separation is provided by the Ising model,
see Safran (1994). In this picture, molecules of two species have equal sizes and sit
on points of a lattice, where the spin σi ∈ {0, 1} encodes whether an A or B particle
is on lattice site i. We consider a dense, incompressible liquid, which corresponds to
a lattice where every spot is filled with a particle. The Hamiltonian H consists of the
internal energies of the molecules and interactions between particles Jij . For short-
range interactions, we can assume nearest-neighbor interactions (Jij = 0 if i and j
are not neighboring lattice sites). The Hamiltonian can thus be written as

H =
1

2

∑
<i,j>

[JAA + JBB − 2JAB]σi(1− σj) (1.1)

where < i, j > counts over nearest neighbors i, j and JAA encodes interactions be-
tween two neighboring A particles, JBB encodes interactions between B particles,
and JAB describes interactions between different particles. We omitted linear terms
in σi, as rearrangements of particles do not change the contribution from the term
and it is thus not relevant for phase separation. We can thus see that if attractive
interactions between the same particles are stronger than different ones, the energy
becomes lower for particle configurations with two regions, one rich in A and one
rich in B particles.

1.1.2 Mean field description

The Ising model for a liquid phase-separating system can be converted into a mean
field theory by defining the local volume fraction of B particles ϕ =< si >, compare
Safran (1994). The amount of droplet-forming material is conserved, so that the
mean volume fraction

ϕ̄ =
1

Vsys

∫
d3rϕ(r) (1.2)

remains constant over time. We can find the free energy F of the system

F [ϕ] =

∫
d3r

[
f(ϕ) +

κ

2
(∇ϕ)2

]
(1.3)

2



1.1. Phase separation and droplets

0.0 0.2 0.4 0.6 0.8 1.0
−0.25

−0.20

−0.15

−0.10

−0.05

0.00 χ = 1.8
χ = 2
χ = 2.1
χ = 2.2
χ = 2.4

Volume fractionVolume fraction Fr
ee

 e
ne

rg
y 

de
ns

ity

Fr
ee

 e
ne

rg
y 

de
ns

ity

A B

Figure .: Phase separating free energy. (A) Flory-Huggins free energy density f0
for different values of χa3/kBT . For χ ≤ 2, the free energy density is convex, so that
the homogeneous system has the smallest energy. For χ > 2, f0 has regions (between
the minima marked by gray stars) where the system has a lower energy in a phase-
separated state. (B) Cahn-Hilliard free energy (black) with Maxwell construction
of coexisting phases (red). For an average concentration ϕ̄ with ϕ

(0)
+ < ϕ̄ < ϕ

(0)
+ ,

the system can phase separate into two phases with concentrations ϕ+ ≈ ϕ
(0)
+ (blue

region) and ϕ− ≈ ϕ
(0)
− (green region). The equilibrium concentrations are given by a

Maxwell construction (red lines) given by equal chemical potential of the phases, and
the Laplace pressure of the droplet phase (red arrow).

with the Flory-Huggins free energy density f = fFH , see Huggins (1942); Flory
(1942), with

fFH(ϕ)

kBT
=

ϕ

vB
lnϕ+

1− ϕ

vA
ln(1− ϕ) +

χ

vA
ϕ(1− ϕ) . (1.4)

Here the gradient term is created by the neighbor interaction, and the constants κ,
χ, and the molecular volumes vA and vB of both molecules are related to the lattice
distance vA = vB = a3 and the interaction strength of the Ising model J = JAA +
JBB − 2JAB . Temperature is denoted with T and kB is the Boltzmann constant.
Both the free energy density and the gradient term are direct results from the Ising
model. A term linear in ϕ was omitted, because it represents a constant in the case of
conserved droplet material in the system.

The free energy contains terms related to mixing entropy density, s = ϕ/vB lnϕ+
(1− ϕ)/vA ln(1− ϕ) as well as the energetic interaction term χϕ(1− ϕ), which en-
codes the effective repulsion between different particles. This free energy can also
be derived as a simple expansion of the short-range, mean-field interactions to low-
est (quadratic) order. The gradient term is necessary to stabilize the concentration
field for χ > 2 with respect to small-wavelength perturbations, where mean field the-
ory would break down. The free energy density is shown for different values of χ in

3



. Introduction

Fig. 1.1A. For small χ, the entropic terms dominate, leading to a convex free energy
density. In this regime, local concentration differences increase the free energy of
the system. Thus the homogeneous state is stable. For χ > χc, with χc = 2, the
free energy density has a double-well shape with a concave region for intermediate
concentrations. In the concave region, small local deviations from the mean concen-
tration lower the energy of the system, so that the homogeneous state is unstable and
the system tends to spontaneously demix into two regions with different concentra-
tions ϕ+ and ϕ−. This process is called spinodal decomposition. The gradient term
for κ ̸= 0 establishes a smooth transition between the regions. For concentrations
with convex free energy density between the two minima of the free energy density,
(or, more generally, with a free energy density above the convex envelope of the free
energy density), the free energy of the system can be reduced by the formation of
two phases, but the homogeneous state is stable. In this region, droplets are typically
created by nucleation of a small initial droplet.

1.1.3 Equilibrium profile and surface tension

The equilibrium profile of the concentration can be found by minimizing the energy
with respect to the concentration profile,

δF

δϕ(r)
= 0 , (1.5)

under the constraint ϕ̄ = const. The free energy density can be expanded around the
critical point χc and its extremum at concentration ϕmin = 0.5 to yield the Cahn-
Hilliard free energy

fCH(ϕ) =
b

2∆ϕ2
(ϕ− ϕ−)

2(ϕ− ϕ+)
2 . (1.6)

with ∆ϕ = ϕ− − ϕ+. The parameter b and the concentrations ϕ± depend on χ.
At χc both concentrations are equal, ϕ± = 0.5, for χ > χc they diverge to larger
and smaller values, respectively. With the Cahn-Hilliard free energy, it is possible to
analytically find the equilibrium profile in 1d (corresponding to a flat interface in a
higher-dimensional system),

ϕ(x) =
ϕ− − ϕ+

2
tanh(x/w) + ϕ− + ϕ+

2
(1.7)

with interface width w = 2(κ/b)1/2. The interfacial tension (also called surface ten-
sion)

γ = F [ϕ(x)]− 1

2
(F [ϕ+] + F [ϕ−]) (1.8)

is the energy per unit interfacial area that is contained in the interface between the
phases. For the Cahn-Hilliard free energy, this can be calculated as γ = (ϕ− −
ϕ+)

2/6
√
κb.
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1.1. Phase separation and droplets

1.1.4 Sharp interface assumption

We have seen in the previous section that we can find the concentration profile and
surface tension from the free energy of a system. In many systems, the interfacial
width w has values of 10-100 nm, and thus is often small in comparison to the struc-
tures studied, compare Safran (1994). It is therefore useful to use a course-grained
theory that treats the interface as infinitely small, with a concentration jump between
the phases. For a system with volume Vsys with a spherical droplet of volume V and
areaA with density ϕ− inside, and a density ϕ+ outside, the energy of the system can
be written as

F = V f(ϕ−) + (Vsys − V )f(ϕ+) + γA (1.9)

with local free energy density f0 (which, depending on the model chosen, could be
the Flory-Huggins free energy or the Cahn-Hilliard free energy, or a different one).
Additionally, the total amount of droplet-forming material is conserved,

Vsysϕ̄ = V ϕ− + (Vsys − V )ϕ+ . (1.10)

Therefore, of the set V , ϕ− and ϕ+, only two quantities need to be determined bymin-
imizing the free energy. The third is determined by the conservation equation. For a
spherical shape of the volume with radiusR, the equilibrium conditions dF/dϕ− = 0
and dF/dV = 0 with ϕ+(ϕ−, V ) can be written as

µ+ = µ− (1.11)
p− = p+ − 2γH (1.12)

where H = 1/R is the mean curvature of the surface. We introduced the chem-
ical potentials of the bulk phases µ± = f ′(ϕ±), and the Laplace pressure p± =
ϕ±µ± − f(ϕ±). These relations can be interpreted geometrically via a Maxwell con-
struction, see Fig. 1.1. The concentrations ϕ± of the phases need to fulfill the above
equations. Therefore, the slope of the free energy density has to be the same at both
concentrations (shown here as parallel red lines with red dots at the respective con-
centrations). The equation for the Laplace pressure describes the y-axis offset of both
red lines (red arrow).

The concentrations in both phases depend on the droplet size, but often it is as-
sumed that the change of the concentrations is small. After finding the concentrations
ϕ
(0)
± for a flat interface, we can expand the free energy to quadratic order around

these points to find simpler expressions for the changes in concentration for a smaller
droplet with a curved interface. We find

ϕ+(R) = ϕ
(0)
+ + β+γH(R) (1.13)

ϕ−(R) = ϕ
(0)
− + β−γH(R) (1.14)

where β± = 2/f ′′(ϕ
(0)
± ) describes the influence of the difference of Laplace pressures

in both phases on the concentrations.
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. Introduction

1.1.5 Dynamical behavior of phase separating systems

We will introduce the dynamical behavior of phase separating systems here from a
purely energetic point of view. A system tends to evolve towards a macro-state with
minimal (free) energy. For an initial homogeneous concentration in the region of
spinodal decomposition, an initial homogeneous state is unstable, compare subsection
1.1.2, so that perturbations grow, where the initial wavelength is given by the stability
properties of the system. The resulting two-phase system then evolves by coalescence
of regions of the same phase and material exchange between them, until only two
bulk phases remain. This minimizes the free energy by minimizing the surface area,
highlighted by Eq. (1.9). In the droplet region where the homogeneous state is locally
stable, an initial deviation of sufficient size is needed to nucleate a droplet. If a droplet
is created that is larger than the nucleation size, it grows by taking up material. The
growth is first characterized by coalescence of droplets, and later, when droplet are
further apart, by the diffusive exchange of droplet material between droplets. This
Ostwald ripening leads to a competition of droplets where the smaller droplets vanish
and the larger droplets grow, until only one droplet remains, see Ostwald (1897);
Lifshitz and Slyozov (1961).

1.2 Chemical reactions
The spatial ordering of components is only one way by which the energy of a system
can be lowered. Chemical reactions, the conversion of one molecule into another (or
several others), is another way, see Atkins and de Paula (2010). Let us consider a
chemical reaction between two components A and B,

A s→−−⇀↽−−
s←

B . (1.15)

In this case, the number of A and B molecules are not conserved in the system sep-
arately, but only the sum of both molecules is conserved. The free energy F can
therefore be minimized without constraints. The (number) density of component B
changes over time due to the production and degradation rates of B in the reaction,
∂tnB = s→ − s←. In equilibrium, no net reaction occurs, s→ = s←.

For concentrations close to the equilibrium concentrations, chemical reactions are
often described by mass action kinetics, for a reaction A + B −−⇀↽−− C this is

s→ = k→cAcB (1.16)
s← = k←cC (1.17)

with constants k→ and k←. Here, the interpretation is that the reaction rate s→ is
dominated by the time it takes of components A and B to meet, and the backward
rate s← can be interpreted that every C molecule has a certain probability to react in
a time window, so that the total rate is proportional to the number of C molecules. In
equilibrium, both rates are equal, s→ = s←, so that the free energy determines the
ratio k→/k←.

6



1.3. Droplets in biological systems

1.3 Droplets in biological systems

To understand the relevance of the simple models of phase separation and chemical
reactions we will discuss in this thesis, it is helpful to have an idea of the structures
and mechanisms of a cell. This will help us to discuss common grounds, but also the
large amount of differences between such simple models and life-like structures. Here
we will give a brief overview of biological cells, concentrating on the metabolism and
liquid phase separation.

1.3.1 Cellular structure of life

Life as we know it today is diverse and complex, Alberts et al. (2013). It consists of
three principal kingdoms, bacteria, archaea, and eukaryotes. Bacteria and archaea are
unicellular lifeforms that adapt and evolve by imperfect division (either due to muta-
tions or asymmetric divisions), and by the exchange of genetic material via horizontal
gene transfer. Eukaryotes exist as unicellular and multi-cellular life forms, and they
evolve by mutations during divisions and by the recombination of genetic material in
sexual reproduction. Compared to bacteria and archaea, eukaryotic cells are typically
larger with a more complex structure. All life-forms on Earth today have a number of
things in common: They all are composed of cells, enclosed by a cellular membrane
that controls the import and export of molecules. They have a number of structural
elements and classes of molecules in common, as well as certain metabolic pathways.
Their proteins all consist of the same 22 amino acids, and they all have RNA and
DNA, which are each built out of the same four nucleic acids. Another unifying fea-
ture is their complexity: All cells today have thousands of different components, with
a huge metabolic network, which creates an interplay of different regulatory control
systems.

Cells are often considered to be the smallest independent unit of life, Alberts et al.
(2013). The structure of a cell consists of a membrane-enclosed space, the cytosol, in
which various membrane-bound organelles are. The cytosol itself is a complex mix-
ture of many components. The creation of new molecules is controlled by the DNA.
The DNA which transcribed into RNA, some of which is translated into proteins.
This process is regulated by feedback processes. In eukaryotic cells, the DNA is con-
tained inside the nucleus. Outside the nucleus are RNA, proteins and various smaller
substances such as ions. There are a large number of elements that help structuring
the cells and fulfill various functions. One class of them are polymer fibers that harden
the cell, where molecular motors move along the fibers, transporting cargo or displac-
ing the fibers, which can be used for cell movements. Vesicles – small membrane
spheres – transport material to different places. And generally, all theses functions
are regulated by complex reaction networks, which can be modified by other parts of
the cell.

Chemical reactions are the main driving force and organizing principle of a cell.
The reaction network of a cell is called the metabolism. This metabolism of the
cell is often grouped into two different functions: Catabolic reactions break down
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compounds to release energy, while anabolic reactions consume energy to create new
molecules. Both parts are heavily interlinked and immensely complex and also differ-
ent for different species (and at different times in the same organism), although some
reaction cycles such as the Krebs cycle are conserved across species. The metabolism
is an intrinsically out-of-equilibrium reaction network and even in a stationary state
of the cell (between divisions etc), there are constantly chemical reactions.

1.3.2 Droplets in cells

Recently, droplets have been found to occur inside living cells, which are enriched
in a number of specific proteins and RNA, Brangwynne et al. (2009); Weber and
Brangwynne (2012); Elbaum-Garfinkle et al. (2015); Lin et al. (2015); Patel et al.
(2015); Feric et al. (2016). While many proteins have a precise folded structure with
a globular shape, phase separation tends to be driven by unfolded disordered regions
along the protein sequence. These droplets can be considered as membrane-less or-
ganelles and are associated with a variety of functions in the cell, Banani et al. (2017).
Examples are spatial ordering of molecules, Zwicker (2013); Zwicker et al. (2014);
Saha et al. (2016), signaling, Li et al. (2012), stress response, Molliex et al. (2015),
and epigenetic regulation, Wan et al. (2018).

Protein droplets are also observed to form in vitro by phase separation in physi-
ological buffer, Sokolova et al. (2013); Aumiller and Keating (2016); Frankel et al.
(2016); Saha et al. (2016); Nakashima et al. (2018). It has been found that reaction
rates in both phases can be quite different from a well-mixed system, Sokolova et al.
(2013), and that chemical reactions can be used to control phase separation and dis-
solution Aumiller and Keating (2016); Nakashima et al. (2018).

1.4 Origin and evolution of life
Droplets do not only exist in cells today, they are also one of the oldest models for
protocells. Oparin argued in 1924 that while today life is complicated and not cre-
ated de novo, life must have started somewhere. He highlighted that many nonliving
physical systems show properties considered central to life: Living organisms grow,
but so do crystals; cells and organisms have a well-defined structure that forms spon-
taneously, but so do snowflakes; all life needs energy input, similar to engines, Oparin
(1924). He proposed droplets (termed complex coacervates then) as a model for the
origin of life, and their equilibrium properties and some active ones were well studied
during the next decades, Oparin (1952); Fox (1976). We will now briefly highlight
some aspects of research to understand the origin of life on Earth.

Today, the relationship and evolution of different organisms can be studied by
comparing their DNA. It is hypothesized that all cells today have one last unified
common ancestor (LUCA), which already had the cellular properties discussed above,
Weiss et al. (2016). For the evolution of life before LUCA, no traces remain in to-
day’s genetic setup, compare Woese et al. (1990); Lanier and Williams (2017). Three
principal avenues to study the origin of life remain.
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The first such avenue is the extrapolation back from modern organisms. This can
be done by making and studying simplified organisms, such as finding the shortest
self-replicatingDNAby cutting out pieces of modernDNA, or by asking how specific
features of life today could have formed, such as the set of amino acids or nucleic
acids Brooks et al. (2002); Doi et al. (2005), or by analyzing patterns and functions in
modern systems, such as finding the minimal functional core of important organelles,
such as the ribosome (which translates DNA into RNA), Lanier andWilliams (2017).

Another avenue to study the origin of life is to study the geological history of
Earth and other planets, to find evidence for the existence of life at different stages,
Knoll and Nowak (2017). This gives evidence on the existence of multicellular life
forms 2.1 billion years ago, the evolution of eukaryotic unicellular life-forms 2.7 bil-
lion years ago and the origin and spreading of photosynthesis 3.4 and 2.4 billion years
ago, respectively. Good evidence of unicellular life forms forming biofilms have been
found 3.7 billion years ago, Nutman et al. (2016), and probable finds go as far back as
4.25 billion years ago. This puts the origin of life very close (on geological timescales)
to the formation and cooling down of Earth 4.5-4.4 billion years ago, and even coin-
cides with the Late Heavy Bombardment 4.1-3.8 billion years ago. The evidence for
the first life on Earth can be expected to be a lower limit, because not much unper-
turbed rock older than 3.8 billion years remains, so that the sign of life rather coincide
with findings of old stone formations, Marchi et al. (2014).

The third avenue is the study of the formation of life de novo, by studying scenar-
ios by which life-like structures and the relevant molecules could have been created in
a physical/chemical system, Oparin (1924); Haldane (1929). This avenue is strength-
ened by the geological findings, which place the first life forms very closely after the
existence of liquid water on Earth, so that a ’random stroke of luck’ seems unreason-
able, and the formation of life as a physically driven mechanism seems more likely,
Oparin (1924). It has been found that the chemical creation of amino acids and nu-
cleic acids might have been possible on an early Earth, and possible pathways have
been recreated experimentally, Fedor and Williamson (2005); Powner et al. (2009);
Xu et al. (2019). For the formation of these building blocks into polymers, a nonequi-
librium scenario with the cycling of components in a temperature gradient has been
proposed, in a system similar to hydrothermal vents that today exist on the bottom
of oceans Haldane (1929); Baross and Hoffman (1985); Martin (2012); Mast et al.
(2013); Martin et al. (2014); Kreysing et al. (2015). Furthermore, many hypothetical
scenarios have been worked out, by which molecules could have formed metabolic
reaction networks, or by which membranes could have organized, Gilbert (1986);
Unrau and Bartel (1998); Fedor and Williamson (2005); Higgs and Lehman (2015);
Morasch et al. (2016); Pearce et al. (2017). However, currently no complete pathway
from a physical/chemical world towards cellular life is known, Hanczyc and Szostak
(2004); Macía and Solé (2007); Murtas (2013); Lanier and Williams (2017).

For the evolution of cells, two main theories have been proposed. The first model
considers the origin of cells to be similar to vesicles, membrane bound organelles,
Bachmann et al. (1992); Szostak et al. (2001); Hanczyc and Szostak (2004); Browne
et al. (2010). These have been shown to divide, either by rupturing and forming
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smaller vesicles if more membrane molecules are inserted into the system over time,
Döbereiner et al. (1993), or by using a mixture of lipids that demix into two mem-
brane phases, which can drive a separation of a vesicle into two with different lipids,
Döbereiner et al. (1993); Chen et al. (1997); Baumgart et al. (2003); Andes-Koback
and Keating (2011). It has been shown for vesicles that chemical reactions can occur
confined inside them, Song et al. (2006).

The secondmodel states that cells evolved from simple coacervate droplets, Oparin
(1924, 1952); Fox (1976); Koga et al. (2011); Sokolova et al. (2013); Hyman et al.
(2014); Morasch et al. (2016); Zwicker et al. (2017). Coacervates are water-rich
phases of charged polymers, which form due to entropy-driven phase separation. By
bringing the charged regions of the polymers together, they neutralize each other and
free the ions that originally bind to them, thus increasing the entropy. Both the versa-
tility of function of liquid droplets in cells, as well as the simple protein structure hint
towards an early origin of the use of phase separation in cells, Shin and Brangwynne
(2017). Additionally, only simple physical interactions are needed for phase separa-
tion, and random polymers have a tendency to phase separate, so that liquid droplets
of biological (or prebiotic) material might well have existed at the origin of life Frankel
et al. (2016). It has been shown for coacervate droplets that chemical reactions can oc-
cur confined inside them. One principal problem of coacervate droplets as the origin
of cells is the lack of an intrinsic mechanism for division. The possibility that droplets
may spontaneously divide has been discussed in the context of either negative surface
tension Browne et al. (2010); Patashinski et al. (2012) or in active nematic droplets
Giomi and DeSimone (2014). The transition from coacervate droplets to the acqui-
sition of a membrane around these droplets seems like a natural step towards more
complex life-like systems, and combinations of both systems, coacervate droplets com-
posed of organic molecules and enclosed by a membrane, have been studied Hanczyc
and Szostak (2004); Browne et al. (2010); Murtas (2013); Li et al. (2014); Tang et al.
(2014); Frankel et al. (2016); Lach et al. (2016).

1.5 Dynamical behavior of active systems
We have seen in the previous two sections that phase separation and chemical reac-
tions occur simultaneously in biological systems and that they might be relevant for
the origin of life as well. In both cases, nonequilibrium conditions play an important
role, since life itself is out of equilibrium. We now consider the effect of sustained
nonequilibrium conditions on the dynamical behavior of systems, that is, we now
consider active systems.

1.5.1 Behavior of nonequilibrium systems

Nonequilibrium aspects of different systems are a current active field of research in
physics. Turing introduced in 1952 a simple mechanism of chemical reaction and dif-
fusion with constant energy input that can lead to pattern formation, Turing (1952).
Turing systems and other models have been used extensively in recent decades to
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A B

Figure .: Examples of the nonlinear shape changes for the dendritic growth of
solid structures in a supersaturated liquid. A) Solid shapes during growth at differ-
ent time points in a 2d simulation. Small initial deformations result in self-similar
outgrowths of the solid, called dendrites. Adapted with permission from Kobayashi
(1993). B) Three-dimensional shapes in a simulation of a growing solid. Adapted
with permission from Cristini and Lowengrub (2004).

explain pattern formation in biological systems, Meinhardt (1992); Karsenti (2008);
Green and Sharpe (2015). The influence of nonequilibrium on a variety of physical
systems was intensely studied, Cross and Greenside (2009). The Mullins-Sekerka
instability that describes the shape instability of a solid precipitate growing in an su-
persaturated environment is a classical example for a flux-driven shape instability, see
Mullins and Sekerka (1963); Langer (1980). This instability is well-studied theoret-
ically and experimentally, and typically leads to dendritic growth of solids, forming
tongue-like fractal(ish) shapes, see Fig. 1.2. The consideration of active systems in
biological context lead to the study of active matter inspired by moving flocks and
Janus particles, Toner et al. (2005). Additionally, it was found that activity can lead
to novel behavior of matter, by considering hydrodynamic models for biological tis-
sues, where cells can die and divide, networks of polymers with active driving, and
active surfaces, such as membranes in cells, Kruse et al. (2004); Jülicher et al. (2018).

1.5.2 Combining phase separation and chemical reactions

The interplay of nonequilibrium chemical reactions on phase separation dynamics was
studied in a number of works. It was found that chemical reactions lead to a charac-
teristic size of phases in the case of spinodal decomposition Glotzer et al. (1994); Puri
and Frisch (1994); Christensen et al. (1996); Carati and Lefever (1997); Patashinski
et al. (2012); Giomi and DeSimone (2014), and that reactions can create and stabilize
a characteristic size of droplets, so that Ostwald ripening is suppressed and multiple
droplets may stably coexist, Zwicker (2013); Zwicker et al. (2014, 2015). Interactions
of chemical gradients with phase separation dynamics has been studied, Weber et al.
(2017). Experimentally, the influence of phase separation on chemical reaction rates
has been quantified in a number of systems, Song et al. (2006); Crosby et al. (2012);
Sokolova et al. (2013); Tang et al. (2015); Frankel et al. (2016); Saha et al. (2016);
Drobot et al. (2018). Additionally, systems where chemical reactions can switch be-
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tween a phase separating and a homogeneous state has been developed Aumiller and
Keating (2016); Nakashima et al. (2018); Rieß et al. (2018). Tread-milling ofmaterial
can lead to the spontaneous motion of droplets, Tjhung et al. (2012), as can surfac-
tants due to the Marangoni effect, Herminghaus et al. (2014); Maass et al. (2016);
Lach et al. (2016). Lastly, it has been found that nematic ordering and membranes or
surfactants can have a strong influence on the droplet shape and stability, Yang et al.
(2018), allowing for a control of the droplet size, and can lead to a deformation of the
droplet (nematic) into an elongated shape or a faceted shape, Guttman et al. (2016),
or lead to a split of the droplet into smaller droplets, Derényi and Lagzi (2014).

1.6 Overview of the thesis
In this thesis, we will study the dynamics of chemically active droplets. As we have
seen in this introductory chapter, driven chemical reactions and phase separation both
are found in biological cells. Because both are simple physical/chemical behaviors,
they might have played a role at the onset of life. In this thesis, we will explore some
aspects of the combination of both effects. In chapter 2, we will extend the theo-
retical descriptions introduced here for phase separation and chemical reactions into
a combined hydrodynamic theory for a multi-component system. In chapter 3, we
will introduce a minimal model of chemically active droplets with two components
which phase separate into two phases and have active (nonequilibrium) chemical re-
actions converting them into each other. In the remainder of this thesis, we will
discuss the behavior of the minimal model. We start in chapter 4 by considering
spherically symmetric droplets. We perform a linear stability analysis to find whether
they are stable with respect to shape deformations. We show that chemically active
droplets can be unstable with respect to shape deformations, especially elongations
of the droplet. Additionally, we discuss the mechanism of this instability and com-
pare it to the droplet instability with the Mullins-Sekerka instability that governs the
dendritic growth of solids. In chapter 5 we investigate the dynamical behavior of
chemically active droplets numerically. We find that the shape instability of chemi-
cally active droplets can lead to growth of a droplet and its elongation and division
into two daughter droplets which may grow and divide again. The influence of chem-
ical reactions on other stationary shapes, such as cylindrical droplets, is discussed in
chapter 6. In chapter 7, we discuss the effect of hydrodynamic flows on the droplet di-
vision. Such flows are important for the rounding up of deformed droplets, and might
counteract the instability and division. We will discuss chemically active droplets as
a model for protocells at the origin of life in chapter 8. We also discuss the possibil-
ity of experimental realizations of chemically active droplets by estimating parameter
values for representative systems. Finally, we conclude the thesis by discussing open
questions of chemically active droplets in the final chapter 9.

12



Theory of multi-component phase-separating
systems with chemical reactions 2

In biological systems, chemical reactions occur frequently in connection with spatial
organization of material, such as membranes or phase-separated droplets, see Saha
et al. (2016); Banani et al. (2017); Shin and Brangwynne (2017). Similarly, spatial
organization of chemical reactions might have played an important role for prebiotic
systems at the origin of life, Hanczyc (2011); Crosby et al. (2012); Mast et al. (2013).
While membranes have been the subject of experimental and theoretical studies for
a long time, the importance of liquid-liquid phase separation in biological systems
has become the subject of active research only recently. Therefore, the influence of
liquid-liquid phase-separation on chemical reactions, and vice versa, the influence of
chemical reactions on the phase separation dynamics, has not been studied in detail.
Biological systems are generally out of equilibrium, so that a theoretical description
of the dynamic behavior that includes nonequilibrium conditions such as a chemical
energy input (such as ATP/ADP) might be worthwhile.

Here we present a theory that describes both phase-separation dynamics and
chemical reactions by the same free energy, and employs nonequilibrium thermo-
dynamic theory to derive dynamic equations1.

The description is based on irreversible thermodynamics, which is discussed in
De Groot and Mazur (2011). The concepts in this chapter can be found also in
Jülicher et al. (2018), where irreversible thermodynamics is discussed in a more gen-
eral framework. Detailed balance of chemical reactions in diffusive environments are
also discussed in Kondepudi and Prigogine (2014); Rao and Esposito (2016).

1The content of this chapter was done in interaction with Christoph Weber.
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. Theory of multi-component phase-separating systems with chemical
reactions

2.1 Dynamic description with linear response

Linear response theory is one of the most successful approaches from thermodynam-
ics to describe the dynamical behavior of nonequilibrium systems. It describes fluxes
of thermodynamic variables by a linear expansion in the thermodynamic forces of
the system around equilibrium. The resulting relations are not a linear theory in the
original thermodynamic variables, and can therefore describe complex dynamical sit-
uations. We will consider a multi-component system where the number densities of
the components can vary in space, with fluxes of particles between volume elements,
and chemical reactions between the different components. We concentrate on liquid-
like systems, where the liquid can be considered incompressible and space-filling, and
where temperature gradients are equalized on faster timescales than the number den-
sities, so that we can consider the temperature as constant.

2.1.1 Description of reaction and fluxes by conservation/balance equations

Here we introduce a thermodynamic description of a multi-component system with
interactions and reactions between the components, based on a free energy. We study
an N +1 component system with local number densities ni(r, t) = N

(k)
i /V (k) for a

local subvolume V (k) at position r with Ni molecules of species i in the subvolume,
with i = 0, . . . , N . The number densities are space and time dependent fields where
r is the spatial position and t the time. We denote molecular volumes vi, molecular
masses mi for component i.

We study the case of Ns chemical reactions (J = 0 . . . Ns − 1) between compo-
nents Ci

N∑
i=0

xiJ Ci −−⇀↽−−
N∑
i=0

yiJ Ci . (2.1)

with the forward and backward reactions rates s→J and s←J . For this we introduce the
stoechiometric matrix siJ = yiJ − xiJ . This matrix describes how many particles of
speciesCi are created by reaction J , which is positive ifCi is a product of the reaction,
negative if it is a reactant and zero ifCi is a catalyst or not participating in the reaction
at all. We study mass-conserving reactions,

∑N
i=0 siJmi = 0.

Due to mass conservation in the system, we can describe the time evolution of
the mass density ρ =

∑
mini by exchange of material between different volume

elements,
∂tρ+∇ · (ρv) = 0 . (2.2)

The hydrodynamic center-of-mass velocity field v needs to obey momentum conser-
vation,

∂tg +∇ · σ = 0 , (2.3)

with (local center-of-mass) momentum g = ρv and stress tensor σ. For systems
with a small Reynolds number, momentum relaxation is fast, Dtg = 0 with advected

14
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derivative Dt = ∂t + vβ∂β , and we find an equation for stress balance which gener-
alizes the Stokes equation, ∇ · σad = 0, with σadαβ = σαβ + gαvβ . Here α and β
number Cartesian coordinates x, y, z and Einstein summation is used.

The dynamic equations for the number densities are

∂tni +∇ · J i = si . (2.4)

Here si =
∑Ns

J=0 siJ(s
→
J − s←J ) describes the net effect of the chemical reactions on

component Ci. The flux J i can be split into advected and diffusive parts,

J i = niv + ji (2.5)

where
∑

imiji = 0, thus, adding all equations together to calculate the mass density,
we recover Eq. (2.2).

2.1.2 Thermodynamic relations

Equations (2.2)-(2.4) describe the dynamical behavior of our system, with as yet un-
known fluxes sJ , ji and σ. We will use energy conservation and entropy production
to find a linear response description for these fluxes. Here we present the thermody-
namic relations we will use for this.

Energy conservation can be written as

∂tu+∇ · Ju = 0 . (2.6)

for energy density u and energy flux Ju. Entropy is not conserved,

∂ts+∇ · Js = θ , (2.7)

with entropy density s, entropy flux Js and local entropy production θ. The free
energy density can be written as f = u − Ts, so that we find for the free energy
density of an isothermal system

∂tf +∇ · (Ju − TJs) = θ . (2.8)

Thus integrating over the whole system, we find the total entropy change over time,
Ṡ =

∫
dV θ, and Ḟ = −T Ṡ, with free energy F =

∫
dV f .

For a free energy F ({ni}, T, V )we can split the free energy density into different
terms, with free energy density

f =
1

2
ρv2 + f0({ni}, T ) +

∑
i,j

κij
2
(∇ni)(∇nj) (2.9)

with kinetic contribution ρv2/2 and local part of the free energy density f0. Energetic
interactions between different volume elements are to lowest order represented by
gradient terms of second order, with coefficients κij . This form can be seen as a
generalization of Flory-Huggins free energy to multiple components, or as a lowest
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reactions

order expansion in the gradient terms. For local stability and validity of the mean
field description, the matrix κij needs to be positive definite. The free energy is a
functional with respect to the number densities ni.

We define chemical potentials and pressure as

µi =
δF

δni
=

1

2
miv

2 + µloci − κii∆ni −
∑
j,j ̸=i

κij
2
∆nj (2.10)

P = −∂F

∂V
=
∑
i

niµi − f (2.11)

with µloci = ∂f0({ni},T )
∂ni

. We can split the chemical potential in the kinetic and the
advected part, µkini = 1

2miv
2 and µadi = µi − µkini . Pressure and advected chemical

potential are related by a Gibbs-Duhem relationship,
∑

i nidµ
ad
i = V dP .

We are interested in the dynamics of the mass density ρ and the number densities
of all components except the solvent, which we denote as componentCN . Transform-
ing to a descriptionF [T, {ni}N−1i=0 , ρ], we can defineN independent relative chemical
potentials

µ̄i =
δF [T, {ni}N−1i=0 , ρ]

δni
, (2.12)

which are related to the (absolute) chemical potentials via µ̄i = µi − mi
mN

µN . For
these relative chemical potentials, the kinetic contributions from the center of mass
movement cancel. Additionally, δFδρ = µN/mN . While µi is associated to the energy
change when more particles of component i are added to the system, µ̄i describes the
case where a number of solvent molecules are replaced by a number of molecules of
component i with the same mass.

2.1.3 Linear response theory

Let us quickly sketch the idea of linear response theory in nonequilibrium thermody-
namics: We will try to find a description of the free energy change Ḟ =

∑
iXiYi in

terms of the unknown quantities (fluxes) Yi paired with other thermodynamic quan-
tities (forces) Xi, which should be zero at equilibrium. In equilibrium, entropy pro-
duction is zero, and out of equilibrium, it is positive, thus the entropy production
has a minimum at equilibrium, and thus, the free energy production has a maximum.
Thus a Taylor expansion of the free energy production in terms of the thermodynamic
forces cannot contain constant or linear terms. Therefore we can to lowest order write
the fluxes as Yi =

∑
j MijXi, with a mobility matrix Mij . Thereby, some couplings

might not exist, because the quantities cannot couple if they have different dimensions
(scalar vs vector vs matrix). Considering time reversal symmetries leads to additional
relationships between the coefficients (Onsager relations).
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Calculating the time derivative of our free energy, we find

Ḟ =

∫
dV

∂t 1
2
ρv2 + ∂tf0({ni}, T ) + ∂t

∑
i,j

κij
2
(∇ni)

2

 (2.13)

=

∫
dV

[
vα∂tgα − 1

2
v2∂tρ+

∑
i

µloci ∂tni

−
∑
i

κii(∆ni) +
∑
j,j ̸=i

κij
2
(∆nj)

 ∂tni

 ,

(2.14)

with index notation vα, σαβ for the Cartesian coordinates of vectors and matrices
with Einstein summation. For the last term we used integration by parts, and we
neglected surface terms from the boundary of our integration volume. Now we insert
the conservation equations (2.2), (2.3) and (2.4),

Ḟ =

∫
dV

[
vα∂βσαβ +

1

2
v2∂βgβ +

∑
i

µadi (si − ∂αJi,α)

]
(2.15)

=

∫
dV

[
(∂βvα)σαβ − gβ∂βvα + vα

∑
i

ni∂αµ
ad
i +

∑
i

∂αµ
ad
i ji,α +

∑
i

µadi si

]
.

(2.16)

Using Gibbs-Duhem relationship,
∑

i nidµ
ad
i = V dP , we can transform the third

term to−δαβ∂βvαP (this can also be verified using the explicit expressions in Eq. (2.11)),
and collect the first three terms together, to define the dissipative stress tensor

σdαβ = σαβ − ρvαvβ − δαβP . (2.17)

Further, we define reactive forces, called activities,

AJ =
∑
i

siJµ
ad
i (2.18)

for every reaction J = 0, . . . Ns, which, using mass conservation of the chemical
reactions, can also be written as AJ =

∑
i siJ µ̄i,

N−1∑
i=0

siJ µ̄i =
N−1∑
i=0

siJ

(
µi −

mi

mN
µN

)
=

N−1∑
i=0

siJµi −
µN
mN

N−1∑
i=0

siJvi =
N∑
i=0

siJµi .

(2.19)
We thus find

Ḟ =

∫
dV

[
−(∂βvα)σ

d
αβ +

N−1∑
i=0

(∂αµ̄i)ji,α +

Ns−1∑
J=0

AJ(s
→
J − s←J )

]
. (2.20)
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This splits the free energy production in force-flux pairs, where the first term contains
matrices, the second vectors and the third scalars.

We can thus write linear response equations,

σdαβ = 2η

(
vαβ −

1

3
vγγδαβ

)
+ η′vγγδαβ +

∑
J

bJAJδαβ (2.21)

ji,α = −
N−1∑
j=0

mij∂αµ̄j (2.22)

s→J − s←J =

Ns−1∑
K=0

aJKAK + bJvγγ (2.23)

with symmetric strain tensor vαβ = (∂βvα + ∂αvβ)/2, shear viscosity η and com-
pression coefficient η′ and mobility coefficients mij and aJK , with mij = mji and
aJK = aKJ . The compression is coupled to the chemical reactions with coupling co-
efficients bJ . In the dissipative stress tensor only the symmetric strain tensor (instead
of ∂βvα enters, due to rotational invariance, also see Jülicher et al. (2018). The coeffi-
cients can depend on the equilibrium concentrations, and can thus be concentration
dependent.

Equations (2.21)-(2.23), together with Eq. (2.17), give the relations for the fluxes
we need to solve the dynamic equations (2.2)-(2.4) starting from a free energy. In the
next section we present a suitable free energy for an incompressible system.

2.1.4 Incompressible system

We are interested in the description of liquid systems, which can usually be considered
as incompressible, so that the volume density ϕ =

∑
i vini is constant everywhere,

ϕ = ϕ0. In an incompressible system the pressure takes the form of a Lagrange
multiplier to ensure the constant density.

One way to describe the dynamical behavior of an incompressible system is to con-
sider starting conditions with ϕ = ϕ0, and then consider the conservation equation
for the volume density,

∂tϕ+∇ · u = 0 , (2.24)

with volume flow u =
∑

i viJ i. Since the volume density is conserved, u has to be
divergence free,

∇ · u = 0 . (2.25)

This then determines the pressure field P , instead of Eq. (2.11).
We can relate the volume flow u to the mass flow v, u = ϕv +

∑
i viji, where

viji are relative volume fluxes. If the molecular mass/volume ratio is equal for all
components, mi/vi = mj/vj , the expression simplifies due to mass conservation∑

imiji = 0. In this case, the volume density and flow is proportional to the mass
density and flow, u = ϕv.
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2.1. Dynamic description with linear response

2.1.5 Multi-component Flory Huggins free energy

An explicit choice for the local free energy density of an incompressible system could
be a generalization of Flory-Huggins free energy for a multi-component system,

f0
kBT

=

N∑
i=0

ni ln(vini) +
N∑
i=0

Aini +

N∑
i,j=0

ϵijninj . (2.26)

We can identify the first term in Eq. (2.26) as a mixing entropy. The second term
describes the energy of each component separately, while the last term encodes in-
teractions between components. The internal energy includes internal entropic terms
ASi and enthalpic termsAUi , withAi = ASi +AUi /(kBT ), and ϵij = ϵSij+ϵUij/(kBT ).
The entropic terms are created by the internal entropy of molecules, for example due
to deformations of the molecule.

For the generalized Flory-Huggins free energy, we find the local part of the chem-
ical potentials

µloci
kBT

= ln(vini) + 1 + Ai +
N∑
j=0

(ϵij + ϵji)nj . (2.27)

The local part of the N independent relative potentials µ̄i = µi − mi
mN

µN is

µ̄loci
kBT

= ln vini
(vNnN )m̂i

+ Âi +

N∑
j=0

ϵ̂ijnj (2.28)

with constants m̂i = mi/mN , Âi = 1−m̂i+Ai−m̂iAN , ϵ̂ij = ϵij+ϵji−m̂i(ϵNj+
ϵjN ).

2.1.6 Discussion of the linear response equations

In this section, we have discussed a complete set of equations within the framework
of linear response theory that describes an incompressible, spatially inhomogeneous
system with many components and with chemical reactions between the components.
It can describe passive systems relaxing to equilibrium with multiple different (liquid)
phases, as well as the dynamical behavior of systems that are kept out of equilibrium
via boundary conditions.

Let us briefly discuss the limits of the equations derived here. We only consider
isotropic fluids (not nematic or polar ones), and we did not consider temperature as a
field variable. Extensions to include polar/nematic and temperature fields would re-
quire additional balance equations, with additional couplings to the other variables
Jülicher et al. (2018). Electric charges are another aspect that can be relevant in
phase-separation of biological systems. They enter through charges of the biological
molecules, via the partial charges of water, via additional salts in the system, and via
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the splitting of water in hydrogen and hydroxide. Unbalanced charges exhibit long-
ranged interactions, and therefore difficult to treat analytically. Due to strong inter-
actions, charges are often balanced locally. They can then be included in the present
equations by considering not individual molecules, but combinations of molecules
that together are neutral. In this case, the concentration fields of the neutral com-
binations of molecules should be considered, and an exchange of charged partners
corresponds to a reaction between these effective components. Flory-Huggins free
energy might still be used for the effective components, albeit with effective interac-
tion parameters, see Johansson et al. (1998).

In biological systems, membrane-bound organelles are an important part of struc-
tural organization. Liquid phase separation is often discussed in the form of non-
membrane bound organelles, Banani et al. (2017), and we will follow that idea, and
study the case without surfactants. Generally, though, membranes, and generally, sur-
factants may influence phase separation dynamics of systems. Membranes are charac-
terized typically by mono- or bilayer formation, which has a nematic ordering, and a
thickness of only one or two molecular layers. The underlying physics is therefore not
included in the present presentation. Molecules that act as weak surfactant, however,
can be described by the equations presented here if they are soluble in both phases
and form an interfacial layer of sufficient width. The aggregation of weakly interact-
ing components at interfaces is rather typical. Consider a three-component system
where two components have repulsive interactions (ϵ01 > 0), while all other interac-
tions are zero, ϵij = 0 (i ̸= 0, j ̸= 1). If the repulsive interactions are strong enough,
two phases may exist, each with a high concentration of one of the two components.
The third components will mix in both phases due to mixing entropy, but it will also
be enriched in the region between the two phases, thus separating the two repulsive
components.

An underlying question of this chapter is: How many different components are
needed to describe a multi-component system? Especially in biological systems, thou-
sands of components coexist in the cytosol, and often a number of (related) compo-
nents form a droplet together, Sear and Cuesta (2003); Jacobs and Frenkel (2017);
Banani et al. (2017). It might therefore be often possible to group similar compo-
nents together, so that effects of the system can be understood with a two-component
description, with effective interactions and reactions between these effective compo-
nents, Sear and Cuesta (2003); Jacobs and Frenkel (2017).

A problem of the approach introduced in this section is that chemical reactions
rarely can be described well by linear response. An intuitive argument for this was
given by Kondepudi and Prigogine (2014). Linear response in our formulation for
fields is a description for system that are close to (local) equilibrium, so that equilib-
rium conditions can be assumed within each sub-volume, but long-range gradients
exist, leading to fluxes between volume elements. All effects discussed here, except
chemical reactions, have a spatial driving – the thermodynamic forces all have spa-
tial derivatives in their definition. If the spatial derivatives are zero, no force exists,
because all these processes are related to spatial imbalances, such as different stresses
and velocities or chemical potentials and fluxes in different regions. If we make the
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2.2. Detailed balance of chemical reactions

volume elements that we compare smaller and smaller, the differences between vol-
ume elements will become small, so that there is a length-scale l where linear response
holds. If this length-scale is still larger than the size of molecules so that our mean
field assumption holds, linear response is a well-justified approach. This is different
for chemical reactions. They are a purely local imbalance, which is often visualized
as an imbalance along the reaction coordinate. Therefore, the length-scale associated
with reactions is zero, l = 0. Thus, linear response cannot be justified – and also is
often found not to describe systems well.

In the next section, we will therefore use a different approach to describe chemical
reactions.

2.2 Detailed balance of chemical reactions

In equilibrium, concentrations fluctuate over time, with Boltzmann-distributed fluc-
tuations where the mean is given by the minimum of the free energy. The probability
of a transition from one state to another is the same as for the backward transition,
so that the distribution of states is time-independent and so that no circular fluxes in
phase space exist - this is called detailed balance. The multi-component description
via coarse grained concentration fields introduced in the previous section corresponds
to the mean concentration within each volume element. In equilibrium, every chem-
ical reaction is balanced separately, with s→J = s←J . The corresponding concentra-
tion is the minimum of the free energy with respect to changes due to the reactions,
AJ = 0. Here, the activity AJ is defined in Eq. (2.18).

We can write a generalized detailed balance condition for the forward and back-
ward reactions rates s→J and s←J in nonequilibrium conditions,

s→J
s←J

= exp
(
− AJ

kBT

)
. (2.29)

This generalized detailed balance condition allows us to determine the sign of the net
reaction s→J − s←J , while it does not allow to determine the reaction speed. In equi-
librium (with ∆µJ = 0), all reactions are balanced separately, the original definition
of detailed balance, s→J = s←J .

2.2.1 Motivation of generalized detailed balance via equilibrium
fluctuations

Generalized detailed balance Eq. (2.29) can be derived by considering fluctuations
in an equilibrium system. Let us concentrate on two components A and B in a
small homogeneous volume element. Since all processes need to be balanced inde-
pendently, we can ignore fluxes between neighboring volume elements and consider
the case where the total number of molecules N = NA + NB in the system is con-
served. Molecules can be converted by a chemical reaction between type A and B.
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The probability of the number of B molecules is Boltzmann distributed,

P (NB) =
1

Z
e−βF (NB) , (2.30)

where F (NB) is the free energy of the state of NB molecules of type B, and the
partition function Z normalizes the distribution,

∫ N
0 P (NB) = 1. Additionally, β =

1/kBT . The probability to go from state NB to NB + 1 and the reverse transition
can be given as

s+(NB) = r+(NB) P (NB) (2.31)
s−(NB + 1) = r−(NB + 1) P (NB + 1) , (2.32)

where r± is the transition rate to a higher (+) or lower (−) state due to the chem-
ical reaction. In equilibrium, s+(NB) = s−(NB + 1). Inserting the Boltzmann-
distribution we can thus write

r+(NB + 1)

r−(NB)
= e−β[F (NB+1)−F (NB)] . (2.33)

In the thermodynamic limit of large N , NB/V = cB and (N −NB)/V = cA, and
F (NB + 1) − F (NB) ∼= µB − µA = A . Furthermore, r+(NB + 1) ≈ r+(NB).
Therefore we find

r+(cB)

r−(cB)
= e−βA . (2.34)

We can now interpret a nonequilibrium state with concentration cB as a random
fluctuation in an equilibrium system, so that Eq. (2.34) holds. Additionally, we start
the system in a well-defined state, so that P (cB) = 1. Therefore, we find the gener-
alized detailed balance Eq. (2.29) for the reaction rates (where s→J ∼= s+(cB)).

2.2.2 The ’equilibrium constant’ in phase-separating systems

In discussions of the mass action law of chemical reactions an equilibrium constant
is defined, Kondepudi and Prigogine (2014); Atkins (1994). We briefly show in this
part that this concept is limited to dilute solutions, and somewhat misleading when
phase-separating multi-component systems are considered.

We can formally write the reaction rates introduced in Eq. (2.1) as

s→J = k→J
∏
i

cxiJi (2.35)

s←J = k←J
∏
i

cyiJi , (2.36)

where all nontrivial kinetics is captured by the terms k→J and k←J . For lack of a better
name and to follow the generally used nomenclature, we will call k→J and k←J reaction
constants, even though they are not generally constants, and explicitly not in the case
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2.2. Detailed balance of chemical reactions

of interacting molecules. For constant k→J and k←J , above equation corresponds to
the law of mass action. If the law of mass action is to hold for small concentrations
of all participating molecules, k→J and k←J should therefore become constants in this
limit.

The generalized detailed balance condition determines the ratio of the two reac-
tion constants k→J and k←J ,

k→J
k←J

= exp
[
− AJ

kBT
+
∑
i

siJ ln(vici)
]

. (2.37)

Often this is used to define ’equilibrium constants’,

KJ =
k→J
k←J

, (2.38)

so that the equilibrium concentrations n̂i have to fulfill∏
i

ĉyiJi
ĉxiJi

= KJ . (2.39)

We can write KJ explicitly for the multi-component Flory Huggins free energy,

KJ =
∏
i

exp [−siJ(1 +Ai)]
∏
i,j

exp [−siJ(ϵij + ϵji)cj ] . (2.40)

We find that in non-interacting systems with ϵij = 0 for all indices, the KJ are in-
deed constants that depends on the internal energies of the reactants and the change
in entropy due to the reaction. Therefore the equilibrium concentrations n̂i are well-
defined. For ϵij ̸= 0 the equilibrium ’constants’ becomes dependent on the concen-
trations of the components in the system. If the KJ only depend on components
that do not participate in the reactions and the system is homogeneous, it can still
be considered constant with respect to the reaction dynamics of the specific system.
Generally, the situation is more complex: In a phase-separating system, Eq. (2.39)
may have more than one solution that is relevant for the dynamical behavior of the
system due to different concentrations in the phases. Additionally, during the course
of the reaction, components may move between the phases, so that KJ can change
over time even within the phases.

As an example, we consider a phase-separated system in equilibrium with respect
to phase-separation. Chemical reactions between components take place, which fulfill
the generalized detailed balance condition. We can define a partition coefficient for
components i as

pi =
c−i
c+i

(2.41)

where we denote the droplet phase with− (minority phase), and the outer phase with
+ (majority phase). The concentrations are given by local equilibrium µ̂−i = µ̂+

i . In
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Flory-Huggins model, this can be written as

pi = exp

 mi

mN
(µ−N − µ+

N )−
N∑
j=0

(ϵij + ϵji)(c
−
j − c+j )

 . (2.42)

Using the Flory-Huggins model, we can write the ratio of the equilibrium constant
of reaction J in the phases as

K−J
K+
J

=
∏
i,j

exp
[
−siJ(ϵij + ϵji)(c

−
j − c+j )

]
(2.43)

which simplifies to

K−J
K+
J

=
∏
i

psiJi
∏
i

exp
[
−siJ

mi

mN
(µ−N − µ+

N )

]
(2.44)

where the last term is zero because
∑

i siJmi = 0 due to mass conservation in the
reaction, so that

K−J
K+
J

=
∏
i

psiJi . (2.45)

Therefore, we find that when chemical reactions occur between components A and B
that have different partition ratios, the equilibrium constants will be different in both
phases, and be given by the ratio of the partition ratios of the products and substrates
of the reaction. This results does not depend on the Flory-Huggins free energy, but
is general. It is due to the fact that both exchange of material between phases, as
well as reaction between components are governed by the same free energy, and that
equilibrium cannot have circular fluxes: It is a reformulation of the statement that the
partition ratio of a component A can change by two ways: A molecule of A can leave
the droplet, or it can be exchanged locally by a reactionA → B by a Bmolecule, which
can leave the droplet, and react back into A outside. In equilibrium, both of these
paths should be balanced. Here we show that a similar statement holds in nonequilib-
rium for reactions that fulfill our generalized detailed balance condition. This simple
statement demonstrates that the description of chemical reactions in phase separating
systems is inherently connected with the phase separation, and that a simple limit of
small concentrations does not generally hold - not even for the equilibrium constants
of reactions between components that partition into the phases, but do not form them
themselves.

2.3 Summary
In this chapter we have presented a dynamic description of a multi-component system
that includes phase separating behavior due to interactions and chemical reactions
between the components. We can describe the spatial dynamics of the system by
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2.3. Summary

linear response theory based on a multi-component Flory-Huggins free energy. For
the chemical reactions, we discussed generalized detailed balance as an alternative
basis for a description.
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Minimal model for chemically active droplets in two
formulations 3

In the next chapters of this thesis, we will study the dynamical behavior of phase-
separating systems with nonequilibrium chemical reactions, that is, of chemically ac-
tive droplets. To facilitate this, we introduce in this chapter a minimal model with two
phase-separating components with chemical reactions between them. By decoupling
the chemical reaction from the free energy that drives the phase-separation dynam-
ics, the model becomes active, in the sense that the system is permanently kept in a
nonequilibrium state by an implicit energy supply via the chemical reaction. We dis-
cuss two formulations of such a two-component model of chemically active droplets.
The continuum model follows the description based on a free energy introduced in
the previous chapter. The effective droplet model describes the droplet interface as
much smaller than the spatial dynamics. Local equilibrium across the interface then
yields jump conditions of the fields in the two the phase. The interface moves due
to the flow of droplet material to the interface. We motivate the minimal model as
a limit of a multi-component system with additional reservoir components. These
components are converted in the reaction, and thus produce an (effective) breaking
of detailed balance of the two component description. Finally, we will give a small
outlook on the behavior of chemically active droplets to motivate the study of the
dynamics of active droplets in the following chapters.

3.1 Continuum model for chemically active droplets

To study the dynamical behavior of chemically active droplets, we introduce here a
minimal model with two components using the irreversible thermodynamics descrip-
tion introduced in the previous chapter.
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Figure .: Simple model, with droplet material B and soluble component A. The
system is driven by a chemical fuel C that is transformed to the reaction product C ′.

3.1.1 Definition of the continuum model

We now describe the dynamic equations of a chemically active droplet. We consider
an incompressible, isothermal fluid composed of two components A and B, with
number concentration fields cA(r, t) and c = cB(r, t) that depend on position r and
time t, and with molecular masses mA and mB and molecular volumes vA and vB .
We are interested in the case where component A forms the background fluid and B
is a droplet material that forms droplets by phase separation. Additionally, chemical
reactions convert the two components into each other, A ⇌ B. We consider these
two components to have equal molecular masses to volume ratios mA/vA = mB/vB .
Mass and volume conserving reactions together with incompressibility imply that the
mass density ρ = mAcA + mBcB is constant, so that we only need to consider the
concentration field of droplet material B.

Using the irreversible thermodynamic description of the last chapter, the dynam-
ics of the concentration field is described by

∂tc = −∇ · j + s(c) (3.1)
j = −m∇µ̄+ vc . (3.2)

Here, m is a mobility coefficient of the droplet material and v is the hydrodynamic
velocity. The source term s(c) describes chemical reactions. The chemical potential
µ̄ = δF [c]/δc governs demixing, with the free energy

F [c] =

∫
d3r f(c) , (3.3)

where the integral is over the system volume. We use the following double-well free
energy density, Cahn and Hilliard (1958)

f(c) =
b

2(∆c)2

(
c− c

(0)
−

)2(
c− c

(0)
+

)2
+

κ

2

(
∇c
)2

, (3.4)
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with ∆c =
∣∣c(0)− − c

(0)
+

∣∣. The coefficient κ is related to surface tension and the inter-
face width, the positive parameter b characterizes molecular interactions and entropic
contributions, Cahn and Hilliard (1958). This free energy describes the segregation
of the fluid in two coexisting phases: one phase rich in droplet material with c ≈ c

(0)
−

and a dilute phase with c ≈ c
(0)
+ , compare Desai and Kapral (2009).

The chemical potential µ̄ is evaluated as

µ̄ = µ̄0 − κ∇2c (3.5)

with
µ̄0 =

b

(∆c)2
(
c− c

(0)
+

)(
c− c

(0)
−
)(
2c− c

(0)
− − c

(0)
+

)
. (3.6)

The hydrodynamic velocity v can be calculated using momentum conservation,

∂t(ρvα) = ∂βσαβ , (3.7)

with momentum ρvα and stress tensor σαβ , where α and β number Cartesian coor-
dinates x, y, z, compare chapter 2. We can decompose the stress tensor σαβ as

σαβ = −(ρvα)vβ + σeqαβ + σdαβ , (3.8)

where the first term describes advection of the stress tensor, σeqαβ and σdαβ denote the
equilibrium and dissipative stress tensors. The equilibrium stress tensor is given by

σeqαβ = −(µ̄c− f)δαβ −
∂f

∂(∂αc)
∂βc− P0δαβ . (3.9)

Here, µ̄c − f is the osmotic pressure of the droplet material, and δαβ denotes the
Kronecker delta. Incompressibility is enforced by an additional partial pressure P0.
The deviatory stress tensor is

σdαβ = 2ηṽαβ + η′vγγδαβ , (3.10)

where η and η′ denote viscosities, vαβ = (∂αvβ + ∂βvα)/2 is the symmetric strain
rate tensor, and ṽαβ = vαβ − vγγδαβ/3 is the traceless symmetric strain tensor.

In the Stokes limit, the inertial terms are neglected, Dt(ρvα) = 0, with advected
derivative Dt = ∂t + vβ∂β , leaving 0 = ∂β(σ

eq
αβ + σdαβ). This yields, Cates (2012),

η∂2
βvα = 3µ̄0∂αc− κc∇2(∂αc) + ∂αP0 . (3.11)

The pressure is determined by incompressibility

∂αvα = 0 . (3.12)

We consider the case where the reaction can be described by a linear form within
each phase and has a smooth behavior across the interface,

s(c) =


ν+ − k+(c− c

(0)
+ ) for c ≤ c+c

p(c) for c+c < c < c−c

−ν− − k−(c− c
(0)
− ) for c ≥ c−c

, (3.13)
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Figure .: Chemical reaction flux s as a function of concentration (black). The lin-
earized fluxes inside (green) and outside the droplet (blue) are indicated as dashed
lines. Outside the droplet, the reaction flux is zero for concentration c∞, inside
the droplet, the reaction flux is negative with value −ν− for the concentration c

(0)
− .

Parameter values: k±τ0 = 10−2, ν−/ν0 = 1.2, ν+/ν0 = 0.1, c(0)+ = 0 with
ν0 = 10−2∆c/τ0.

shown in Fig. 3.2. Here, c+c and c−c are two characteristic concentrations and p(c) =
a0 + a1c + a2c

2 + a3c
3 is a cubic polynomial that interpolates between the linear

regimes. The coefficients ai are determined uniquely by the conditions that s(c) and
its derivative are continuous functions:

p(c+c ) = s(c+c ) p′(c+c ) = −k+

p(c−c ) = s(c−c ) p′(c−c ) = −k− .
(3.14)

We concentrate on the case of ν± > 0, which describes the case of reaction B → A
inside and A → B outside the droplet. In the other cases, the dynamics of a single
droplet can be qualitatively described: For ν± < 0, droplet material is created in
the droplet, and outer material outside. This tends to create a competition between
the growth of both phases where the phases with stronger reaction and larger initial
volume wins and the system becomes homogeneous with a concentration c0 set by
the chemical reaction with s(c0) = 0, with c0 < c

(0)
+ or c0 > c

(0)
− . For different

sign of ν±, the reaction either creates or destroys droplet material in both phases, so
that the system again becomes homogeneous with concentration c0 set by s(c0) =
0. Therefore in all cases except the first, the stable stationary state of the system (if
one exists) tends to be a homogeneous system with concentration set by the reaction.
Therefore the case ν± > 0 is the most intriguing. Additionally, we concentrate on
the case with k± > 0, which leads to smooth concentration profiles in both phases,
instead of additional Turing-like pattern formation.

The equations for the concentration field (3.1) with fluxes (3.2), the chemical po-
tential (3.5) with (3.6), stress balance (3.11) with incompressibility (3.12) and the
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Figure .: Reaction rates and energy supply. Schematic representation of the
reaction cycle involving the two pathways A ⇌ B (1) and A+C ′ ⇌ B+C (2). The
differences of the chemical potentials µ determine the directions of the spontaneous
reactions: Coupling to the chemical fuel C with reaction product C ′ drives reaction
pathway (2) in the directionA → B outside the droplet. Inside the droplet, where the
concentration ofC is smaller, reaction pathway (1) in the directionB → A dominates.
See Appendix A for details.

chemical reaction (3.13) with (3.14) define the continuum model of chemically active
droplets. Note that the model may also be used to describe a three component sys-
tem with reactions A ⇌ B and phase-separation between droplet material B and a
mixture of solvent S and reactant A occurs, as long as the components A and S can
be considered well-mixed due to similar interactions and fast mobility of A compared
to droplet material B.

3.1.2 Effective breaking of detailed balance

To highlight the non-equilibrium nature of the reaction scheme inEq. (3.13), we keep
the system out of equilibrium explicitly by introducing reservoir components C and
C’, which are held at a constant chemical potentials with difference ∆µ = µC′ −µC .
Due to interactions of C and C’ with the droplet material, the concentrations of both
componentsmay be different in both phases. We consider a systemwhere themobility
of C and C’ is much larger than that of the droplet material, so that we do not need
to consider dynamical equations for the two components. We have two chemical
reactions,

A ⇌ B (3.15)

without energy input, and
A+ C ′ ⇌ B + C (3.16)

where the reservoir components participate. The total reaction rate is then given by

s(c) = s(1)→ − s(1)← + s(2)→ − s(2)← , (3.17)
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where s(1)→ denotes the production of B due to the forward direction of reaction (3.15),
and s

(1)
← denotes the degradation of B due to the reverse direction, and equivalently

for reaction (3.16). We use generalized detailed balance equations for the chemical
reactions. For a reaction A → B we find

s
(1)
→

s
(1)
←

= e
− µ̄

kBT (3.18)

This equation does not determine the reaction speed, but the direction of the reaction
given by s

(1)
→ /s

(1)
← > 1 or s(1)→ /s

(1)
← < 1, and thus ensures that the reaction always

proceeds downhill. The second reaction is described by

s
(2)
→

s
(2)
←

= e
− µ̄+∆µ

kBT (3.19)

Note that we can add a linear term uc with constant u to the free energy density
without influencing the phase-separation dynamics. This term corresponds to a free
energy difference between components B and A and may influence the direction of
the reactions according to Eq. (3.18) and (3.19).

We can consider the reaction in a phase-separated system with reaction rates so
small that the concentrations are not changed. In a phase-separated system in equilib-
rium, the chemical potential µ̄ is the same in both phases, µ̄− = µ̄+ where ’-’ denotes
the minority phase, the droplet, while ’+’ denotes the outer majority phase. Therefore,
the direction of reaction 1 is the same in both phases, as is the direction of reaction
2. To create different directions of the combined reaction rate in the different phases,
we therefore require that both reactions proceed in opposite directions, and that one
of the reactions is faster in one phase, while the other is faster in the other. This is
shown diagrammatically in Fig. 3.3.

A discussion that explicitly relates the free energy of all four components with the
reaction rates can be found in Appendix A.

3.2 Effective droplet model for chemically active droplets
In the previous chapter and in section 3.1 we considered a model with a continuous
description of the droplet interface. This approach can describe nucleation of new
droplets and topological shape changes of droplets, such as division. However, the
nonlinear description is unsuitable for analytical treatment.

In most experimental systems, interfacial widths are on the order of few molecular
lengths, and thus much smaller than typical reaction-diffusion lengthscales found in
experimental systems, Safran (1994). Here we introduce a description that treats the
droplet interface as infinitely thin, where the properties on both sides of the interface
are in local equilibrium across the interface. Within both phases, we consider diffu-
sive dynamics for the concentration. The interface can move due to fluxes of droplet
material towards the droplet interface. This results in the so-called Stefan problem
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3.2. Effective droplet model for chemically active droplets

of partial differential equations for fields with a moving boundary condition (at the
droplet interface), Stefan (1891); Crank (1987). Such approaches are commonly used
in literature to study growth and deformation of phases, Lifshitz and Slyozov (1961);
Mullins and Sekerka (1963), and to study hydrodynamic flows in phase-separated
systems, Batchelor (2000). It has been used previously to study the effect of chemical
reactions on droplet dynamics, Zwicker (2013); Zwicker et al. (2015). The effec-
tive droplet model we introduce in the section includes all physical aspects that were
present in the continuum model, namely phase-separation, hydrodynamic flows and
nonequilibrium chemical reactions.

3.2.1 Definition of the effective droplet model

As in the previous section, we consider an incompressible, phase-separating liquid
consisting of droplet material B and solvent component A with a volume preserving
chemical reaction A ⇌ B with constant mass density. The local composition is
characterized by the concentration field c(x) of component B. We consider a single
droplet characterized by high concentration c ≈ c

(0)
− of component B coexisting with

the surrounding fluid that mainly consists of A and contains B at low concentration
c ≈ c

(0)
+ , see Fig. 3.1. We denote the droplet phase with index− (for minority phase)

and the outer phase with + (majority phase). Both phases are separated by a sharp
interface. Within both phases, the concentration of B satisfies a balance equation,
where the chemical reaction provide a source or sink term s±(c),

∂tc+∇ · j = s±(c) (3.20)
j = −D±∇c+ vc . (3.21)

The flux j consists of advection by the fluid velocity v and a diffusion flux, where D±
denotes the diffusion constant of the droplet material in the two phases.

We linearize the chemical reaction rates s±(c) in the vicinity of reference concen-
trations c(0)± in each phase:

s±(c) ≃ −k±(c− c
(0)
± )± ν± , (3.22)

with reaction rate ν± = s(c
(0)
± ) and reaction constants k± = ds(c

(0)
± )/dc. The con-

centration field varies over the characteristic length scales l± = (D±/k±)
1/2 inside

and outside the droplet, respectively.
The hydrodynamic flow velocity v obeys Stokes equation of an incompressible

fluid in both phases,

η±∇2v = ∇P (3.23)
∇ · v = 0 . (3.24)

Here, Eq. (3.23) accounts for stress balance ∂ασαβ = 0, where the stress tensor is
given by σαβ = η±(∂αvβ + ∂βvα)− Pδαβ . Here η± denotes the fluid shear viscosi-
ties inside and outside of the droplet. The pressure P plays the role of a Lagrange
multiplier to ensure incompressibility, Eq. (3.24).
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. Minimal model for chemically active droplets in two formulations

The bulk equations (3.20-3.24) are connected by boundary conditions at the droplet
interfaceR(s1, s2)where s1 and s2 are coordinates of a parametrization of the droplet
interface. The stress boundary condition reads

σ+
nn(R)− σ−nn(R) = 2γH(R) (3.25)
σ+
nt(R)− σ−nt(R) = 0 , (3.26)

where H(R) is the local mean curvature of the interface and γ is the droplet surface
tension. The stresses at the interface on the inner and outer side of the droplet are
denoted by σ±αβ(R). The tensor indices n and t refer to tensor components normal
and tangential to the interface, respectively. Eq. (3.26) is valid for all tangent vectors.
Using no-slip boundary conditions, the velocity field is continuous at the interface,

v+(R) = v−(R) . (3.27)

The concentration field c is discontinuous across the interface,

c−(R) = c
(0)
− + β−γH(R) (3.28)

c+(R) = c
(0)
+ + β+γH(R) (3.29)

where the concentrations are set by the physics of phase coexistence and a local equilib-
rium assumption, compare section 1.1 and Appendix B. The coefficients β± describe
the effects of the Laplace pressure on the equilibrium concentrations at phase coexis-
tence.

The droplet grows by the addition of droplet material to the interface. The normal
velocity of the droplet interface is

vn(R) = n · j
−(R)− j+(R)

c−(R)− c+(R)
, (3.30)

where n denotes the surface normal, Bray (1994). Eq. (3.30) captures both convec-
tion of the interface by flows, and droplet growth and shrinkage by addition or removal
of material.

For a system that consists of one almost spherical droplet, we can use spheri-
cal coordinates r, θ, ϕ centered on the droplet. The interface defining the droplet
surface is positioned at radial distance r = R(θ, ϕ), so that the droplet inside is at
r < R(θ, ϕ), and the outside at r > R(θ, ϕ). In a radial description of the droplet
interface,R(θ, ϕ) = R(θ, ϕ)er, the radial velocity is

∂R

∂t
=

vn
er · n

. (3.31)

Eq. (3.20) to (3.31) define the effective droplet model. Due to the explicit de-
scription of the interface, topological transitions of the droplet are not described in
the model. This includes a large number of typical dynamical behaviors of phase-
separating systems, such as nucleation of new droplets, dissolution of droplets, coa-
lescence of two droplets, or the split-up of a cylindrical jet into droplets. However,
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3.2. Effective droplet model for chemically active droplets

the effective droplet model is very useful for an intuitive understanding of the system
and for analytical calculations due to its (mostly) linear equations and the explicit
description of the droplet size and shape, as we will see in the next chapter.

3.2.2 Effective droplet model as a limit of the continuum model

Description Continuum model Effective droplet model

Chemical reaction in droplet ν−t0/∆c ν−t0/∆c
k−t0 k−t0

Chemical reaction outside droplet ν+t0/∆c ν+t0/∆c
k+t0 k+t0

Chemical reaction across interface c+c /∆c -
c−c /∆c -

Viscosity η−w
3/(e0t0) η−w

3/(e0t0)
1 η+/η−

Diffusion in droplet 1 D−/D+

Interfacial parameter 1 β−/β+

Concentration outside droplet c
(0)
+ /∆c c

(0)
+ /∆c

Concentration difference of phases ∆c = c
(0)
− − c

(0)
+ ∆c = c

(0)
− − c

(0)
+

Interfacial width w = 2(κ/b)1/2 w = 6β+γ/∆c
Diffusion-time across interface t0 = w2/(mb) t0 = w2/D+

Interfacial energy e0 = κw(∆c)2/3 e0 = γw2

Table 3.1: Dimensionless parameters of the continuum model and the corresponding
parameters in the effective droplet model, together with the characteristic concentra-
tion, length, time and energy used for normalization (bottom 4 rows).

It is possible to recover all dynamical equations of the effective droplet model from
the continuum model based on irreversible thermodynamics, see Appendix B. For
this, we consider the case where the interface widthw is small compared to the droplet
size,R/w ≫ 1, and the chemical diffusion length, l±/w ≫ 1. Additionally, we focus
on the case where the concentrations in the phases are similar to the concentrations
in equilibrium and have small concentration gradients. This allows us to relate the
parameters b, κ, and m of the continuum model to the parameters γ, β±, and D± of
the effective droplet model, compare Appendix B. We use this to define equivalent
parameters for both models.

In Table 3.1 we list these parameters of both models. We use the properties of
the interface to normalize concentration, length, time and energy (bottom four rows
in the table). These correspond to the difference of the reference concentrations ∆c,
the interfacial width w or ŵ, the timescale related to diffusion across the interface t0
or τ0 and an energy related to surface tension e0 or ê0. The specific choice of the free
energy in the continuum model leads to specific relations between parameters of the
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. Minimal model for chemically active droplets in two formulations

effective model, β+ = β− with β+ = 2/(b∆c), and D+ = D− with D+ = mb.
Additionally, we have chosen the viscosity as constant, η+ = η−. The surface tension
of the effective model is given by γ = (∆c)2/6

√
κb. The parameters c±c /∆c of the

continuum model capture properties of chemical reactions inside the interface and
therefore do not exist in the effective droplet model. The dimensionless parameter
c
(0)
+ /∆c is unimportant for the dynamical behavior of the system and only leads to a

constant shift of the concentration profiles. We therefore set c(0)+ /∆c = 0 throughout
this thesis.

The conditions for which the models describe similar physical effects are not ful-
filled in all systems. Most importantly, the chemical reactions can drive concentra-
tions far away from the equilibrium phase concentrations c(0)± . The concentration in
the outer phase can be considered homogeneous if the concentration far from the
droplet c∞ set by s(c∞) = 0 is close to the reference concentration c

(0)
+ . The inside

of the droplet is homogeneous if the droplet is much smaller than l−, or if the concen-
tration c−0 set by the reaction inside the droplet s(c−0 ) = 0 is close to c

(0)
− . In regimes

where the concentration in a phases instead permits the formation of new interfaces
associated with instabilities of the spinodal decomposition regime, the effective model
discussed here cannot capture these behaviors, and thus may yield unphysical results.

3.3 Outlook

In this chapter we have introduced a minimal model of chemically active droplets,
with two formulations: The continuum droplet model is based on a free energy and
can describe a wide range of dynamical behaviors including droplet division and nu-
cleation. The effective droplet model explicitly describes the droplet interface, and
is easily accessible for analytic calculations. We showed that the chemical reaction
does not satisfy equilibrium properties and is thus active, and can be constructed via
additional reservoir components that keep the system permanently out of equilibrium.

In the remainder of this thesis, we will discuss the behavior of the minimal model
introduced here. We start in chapter 4 by considering spherically symmetric droplets
using the effective droplet model. For this we concentrate on the influence of the
chemical reaction on the dynamics, in the absence of hydrodynamic flows. We ana-
lyze stationary states with a stationary radius R̄. We perform a linear stability analysis
around such stationary states to find whether they are stable with respect to changes
in volume and with respect to shape deformations. We will find that chemically active
droplets can be unstable with respect to shape deformations, especially elongations of
the droplet. Additionally, we discuss the mechanism of this instability and compare
it to the droplet instability with the Mullins-Sekerka instability that governs the den-
dritic growth of solids. In chapter 5 we investigate the dynamics of the continuum
model in the absence of hydrodynamic flows. We will find that the shape instability
of chemically active droplets can lead to growth of a droplet and its elongation and
division into two daughter droplets which may grow and divide again. The influence
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of chemical reactions on other stationary shapes, such as cylindrical droplets, is dis-
cussed in chapter 6. In chapter 7, we include hydrodynamic flows. Such flows are
important for the rounding up of deformed droplets, and might counteract the insta-
bility and division. In chapter 8, we briefly consider chemically active droplets as a
model for protocells at the origin of life, where the division might have been a simple
mechanism for replication that could have enabled droplets to multiply and evolve
into more complex structures. We also discuss the possibility of experimental realiza-
tions of chemically active droplets by estimating parameter values for representative
systems. We conclude the thesis by discussing open questions of chemically active
droplets in the final chapter 9.
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Shape instability of spherical droplets with chemical
reactions 4

In the previous chapter we introduced a model of chemically active droplets. We
will now consider the dynamic behavior of such a system, starting with considering
stationary states and their linear dynamics. In this chapter we use the effective droplet
model to consider the case of large viscosity, where hydrodynamic flows vanish. We
first discuss stationary states of spherically symmetric droplets. Then we perform a
stability analysis of such states with respect to shape perturbations. We find a stability
diagram with regimes of vanishing droplets, stable stationary droplets and stationary
droplets that are unstable with respect to elongational deformations. We then discuss
the physical mechanism of the observed shape instability. We compare the dynamic
behavior with the Mullins-Sekerka instability that leads to dendritic growth of solids
in a supersaturated fluid. Finally, we discuss the shape instability of chemically active
droplets in the limit of small reaction fluxes, where a scaling approach leads to simple
equations for the onset of the instability.

A large part of the content of this chapter has been published in Zwicker et al.
(2017).

4.1 Stability of spherical droplets with chemical reactions

We will now analyze the dynamical behavior of spherical droplets using the effective
droplet model introduced in section 3.2. We consider the case without hydrodynamic
flows, v = 0, which corresponds to the limit of infinite viscosity, which can be ex-
pressed as F → ∞, where F = η−w

3/(e0t0) is the dimensionless viscosity inside
the droplet, together with η+/η− > 0.

The concentration field is given by Eq. (3.20) with fluxes (3.21) with v = 0 and
active chemical reaction (3.22). Boundary conditions at the droplet interface are given

39



. Shape instability of spherical droplets with chemical reactions

0 5 10 15 20
− 0.10

− 0.05

0.00

0.05

0.10

Radius

R
ad

ia
l g

ro
w

th

Figure .: Size dependence of droplet growth rates. Rate of droplet growth dR/dt
as a function of droplet radius R in a quasistatic limit without reaction inside the
droplet, ν− = 0 (blue line), and with reaction ν− > 0 inside the droplet (red line),
corresponding to a sink of droplet material. The zeros of dR/dt correspond to station-
ary radii. An unstable critical radius (white circle) and a stable droplet radius (black
circle) are indicated. Parameter values: ν−/ν0 = 1 (red line) or ν−/ν0 = 0 (blue
line), ν+/ν0 = 0.2 , with ν0 = 10−2∆c/t0, k±t0 = 10−2, c(0)+ = 0, β− = β+,
D− = D+.

by Eq. (3.28) and (3.29), and the interface moves due to fluxes, Eq. (3.30), with the
radial movement in spherical coordinates given by Eq. (3.31).

First we consider the volume changes of spherical droplets to find stationary radii.
Then we perform a linear stability analysis of such stationary states to find the stability
with respect to shape perturbations.

4.1.1 Stationary states of spherical droplets

We now consider stationary spherical droplets with radius R̄ and spherically symmet-
ric stationary concentration fields c̄±(r) inside and outside the droplet.

First we calculate the stationary concentration fields c̄±(r) for a droplet of radius
R, which fulfill Eq. (3.20) with ∂tc̄±(r) = 0 with boundary conditions (3.28) and
(3.29). For the solution outside the droplet we consider the case where the concen-
tration far from the droplet reaches a constant value c∞ = ν+/k+ + c

(0)
+ set by the

chemical reaction, s(c∞) = 0. Inside the droplet, the solution has to be regular at
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Figure .: Stationary concentration profile of the droplet material B (black) and
stationary flux j = −D±∂rc (brown, axis on the right). Shaded regions correspond
to concentration ranges inside (green) and outside the droplet (blue). The droplet
radius R̄s, the equilibrium concentrations c(0)± , and the concentration far from the
droplet c∞ are indicated. Parameter values are: ν−/ν0 = 1.2, ν+/ν0 = 0.1 with
ν0 = 10−2∆c/t0, k±t0 = 10−2, c(0)+ = 0, β− = β+, D− = D+.

r = 0. This yields

c̄+(r) =
ν+
k+

+ c
(0)
+ +

(
γβ+
R

− ν+
k+

)
R

exp(−R/l+)

exp(−r/l+)

r
(4.1)

c̄−(r) = −ν−
k−

+ c
(0)
− +

(
γβ−
R

+
ν−
k−

)
R

sinh(R/l−)

sinh(r/l−)
r

, (4.2)

with characteristic length scales l± = (D±/k±)
1/2. See Appendix C.1 for additional

details.
We can use the stationary concentration fields to calculate the interface dynamics,

Eq. (3.30) and (3.31). Due to spherical symmetry, dR/dt = vn. Inserting the radial
fluxes of the stationary concentration fields into Eq. (3.30) we find

dR
dt =

j−(R)− j+(R)

c̄−(R)− c̄+(R)
, (4.3)

with stationary fluxes j±(r) = −D±c̄
′
±(r), where ′ denotes the derivative with re-

spect to r. Using Eq. (4.3) for the dynamics for arbitrary radii R with the station-
ary concentration field given by Eq. (4.1) describes the droplet dynamics in the limit
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. Shape instability of spherical droplets with chemical reactions

where the interfacial dynamics of the droplet is much slower than the relaxation of
the concentration field to a stationary value. We call this the quasistatic approxima-
tion. Steady state droplets exist for radii R = R̄ for which dR/dt vanishes. These
stationary radii thus obey

j+(R̄) = j−(R̄) . (4.4)

Fig. 4.1 shows an example of dR/dt as a function of R in the presence (red line)
and absence (blue line) of chemical reactions inside the droplet for the quasistatic
approximation. In both cases, the chemical reaction outside the droplet creates a
supersaturation c∞ > c

(0)
+ far from the droplet. Without chemical reactions inside

the droplet, droplets have one stationary radius. Droplets with a radius smaller than
this critical nucleation radius shrink and vanish, while droplets with a larger radius
grow. If chemical reactions inside are present, two steady state radii exist, denoted R̄c

(white circle) and R̄s (black circle). The smaller radius R̄c is unstable with respect to
changes in droplet volume while the larger radius R̄s is stable. This means droplets
smaller than R̄c will shrink and vanish, while larger ones will grow towards the larger
radius R̄s. Droplets larger than R̄s will shrink towards the stationary size.

The concentration field and fluxes corresponding to the larger stationary radius
R̄s are shown in Fig. 4.2. Inside the droplet, the concentration is much larger than
outside. In the middle of the droplet, the concentration is lower than at the interface,
indicating the sink of droplet material inside due to the chemical reaction. Far from
the droplet, the concentration outside reaches the stationary value c∞ set by s(c∞) =
0, and decreases towards the droplet interface. The flux profile shows stationary fluxes
of droplet material towards the droplet center – and, due to incompressibility, fluxes
of the outer material A in the reverse direction. At the interface, the flux inside and
outside is equal, showing that the radius is indeed stationary.

The critical radius R̄c is closely related to the classical expression for the critical
nucleation radius of passive droplets. The critical nucleation radius depends on the
supersaturation ϵ = (c∞ − c

(0)
+ )/∆c, which, in the case of active droplets, is de-

termined by chemical reactions instead of the amount of material provided, compare
Lifshitz and Slyozov (1961). The stationary droplet radius R̄s describes an inherently
non-equilibrium stationary state that is maintained by opposing fluxes – due to the
chemically generated supersaturation outside, the droplet takes up material to grow,
while the chemical reaction inside the droplet converts droplet material B to outer
material A which leaves the droplet, leading to an effective loss of droplet material.
The balance of both fluxes creates the stationary radius, Zwicker (2013); Zwicker et al.
(2015).

4.1.2 Stability of chemically active droplets

We will now consider whether these stationary droplets are stable with respect to
shape perturbations.

We linearize the dynamic equations (3.20)–(3.31) of the effective droplet model
without hydrodynamic flows around a stationary solution c̄(r), given by Eqs. (4.1)–
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4.1. Stability of spherical droplets with chemical reactions

(4.4). Additional details of the derivation can be found in Appendix C.2. We consider
small perturbations δc and δR of the concentration field and the droplet shape,

c(r, θ, φ, t) = c̄(r) + δc(r, θ, φ, t) , (4.5)
R(θ, φ, t) = R̄+ δR(θ, φ, t) , (4.6)

where the stationary concentration profile c̄ is given by c̄− inside, and c̄+ outside the
droplet. We denote the derivative of c̄(r) evaluated at the interface position r = R̄
inside and outside the droplet, respectively, by c̄′(R̄±).

The linear droplet dynamics can be decomposed in eigenmodes with amplitude ϵnlm,
where the spherically symmetric reference state leads to a decomposition with radial
and angular indices i = (n,m, l) as(

δc
δR

)
=
∑
nlm

ϵnlm

(
cnl(r)
R̄

)
Ylm(θ, ϕ)e

µnlt , (4.7)

where Ylm are spherical harmonics and the corresponding eigenvalues will be denoted
µnl. Here we already indicate that the eigenvalue is independent of mode m, with
−l ≤ m ≤ l. For µnl < 0, the values −µnl are relaxation rates. The steady state is
stable if all µnl < 0. To determine the stability of the droplet, we thus want to find
out if any mode can be marginal, corresponding to µnl = 0, or unstable, µnl > 0.

The radial part of the eigenfunctions obeys(
1

r2
∂

∂r
r2

∂

∂r
− (λ±nl)

2 − l(l + 1)

r2

)
cnl(r) = 0 , (4.8)

where
(λ±nl)

2 =
k± + µnl

D±
. (4.9)

Eq. (4.8) is solved by the modified spherical Bessel functions kl(λ±r) and il(λ±r),
defined in Abramowitz et al. (1965). For real variables, the functions kl(x) are mono-
tonously decaying towards zero, while il(x) are monotonously growing for increasing
x. For imaginary variables corresponding to (λ±nl)

2 < 0, they are related to the spher-
ical Bessel functions jl(x) and yl(x) with a real variable x, which oscillate with de-
creasing amplitude for increasing x. See Appendix C.2 for additional details, where
Fig. C.1 shows the respective Bessel functions.

The boundary conditions (3.28)-(3.29) at r = R̄ can be written to linear order as

cnl(R̄+) = γβ+
hl
R̄

− c̄′(R̄+)R̄ (4.10)

cnl(R̄−) = γβ−
hl
R̄

− c̄′(R̄−)R̄ (4.11)

where hl = (l2+ l−2)/2 encodes the effect of the interfacial curvature of the respec-
tive mode, see Zhong-can and Helfrich (1987). The derivatives ′ are explicitly written
as c̄′(R̄+) = dc̄+(r)/dr|r=R̄. This boundary condition determines the coefficients of
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the solutions to Eq. (4.8) inside and outside the droplet, together with convergence
for r → 0 and r → ∞. Using the description of the interfacial dynamics, Eq. (3.31),
we obtain an equation for the eigenvalue µnl,

µnl =
D+

∆c
c̄′′(R̄+)−

D−
∆c

c̄′′(R̄−) +
D+

∆c

c′nl(R̄+)

R̄
− D−

∆c

c′nl(R̄−)

R̄
. (4.12)

Note that this is an implicit equation forµnl, because the right-hand side of Eq. (4.12)
depends on the eigenvalue via the length-scales λ±nl in the functions cnl.

Let us now discuss the shape of the solutions to Eqs. (4.9)-(4.12). We can differ-
entiate between two main cases by the sign of (λ+

nl)
2.

The case (λ+
nl)

2 < 0 corresponds to small eigenvalues µnl < −k+. We find a con-
tinuous spectrum of eigenvalues in this region. In Appendix C.2 the detailed solution
is presented, but we briefly sketch the main points here: We consider a solution in
terms of spherical Bessel functions jl(x) and yl(x). For large x, both functions van-
ish, so that both can be used for the concentration field outside the droplet. This
leads to an undetermined constant in the description of the concentration field, and
thus in Eq. (4.12). We find that with this constant, we can fulfill Eq. (4.12) for any
eigenvalue with µnl < −k+, yielding a continuous spectrum of eigenvalues in this
regime.

For (λ+
nl)

2 > 0, the concentration mode is completely determined by the bound-
ary conditions and the inverse length-scales λ±nl. The equation for the eigenvalue
(4.12) then only gives a discrete number of solutions for eigenvalues µnl > −k+.
For k± > 0, marginal and unstable modes are found for λ±nl > 0, corresponding to
µnl > −k±. We can write the equation explicitly as

µnl =D+c̄
′′(R̄+)−D−c̄

′′(R̄−)

+
D+cnl(R̄+)

R̄
2 fk(λ

+
nlR̄)− D−cnl(R̄−)

R̄
2 fi(λ

−
nlR̄) ,

(4.13)

with fk(x) = xk′l(x)/kl(x) and fi(x) = xi′l(x)/il(x), where ′ denotes the derivative
f ′(x) = df/dx, shown in the Appendix in Fig. C.1. The terms cnl(R̄±) are given by
Eq. (4.10) and (4.11). We find that this equation has a finite number of solutions for
a mode l, typically we find either no or one solution. We distinguish the solutions by
index n, whereby n = 1 denotes the solution with the largest eigenvalues for a given
l. These solutions correspond to different radial concentration profiles, with inverse
length-scales λ±nl.

The dependency of solutions to Eq. (4.13) on the parameters and the mode l
generally is nontrivial. However, we can find analytically that the l = 1 mode always
has a solution µn1 = 0 where all terms on the right-hand side of Eq. (4.13) cancel,
using the properties of Bessel functions and of the stationary concentration field. This
corresponds to a mode where the whole droplet including the concentration field is
displaced by a small distance. Due to translational symmetry in an infinite system,
the droplet will simply stay at its new position.

Using the quasistatic assumption introduced in the previous section, where the
concentration profile for a growing droplet is described by the stationary field c̄±(r),
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Figure .: A) Stationary radii of active droplets. The droplet radius R̄ of spherical
droplets is shown as a function of supersaturation ϵ for different reaction rates inside
the droplet ν−/ν0 = 0, 1, 3 (from left to right). Radii of stable droplets are shown as
solid black lines. Dotted lines indicate states where droplets are unstable with respect
to size (black) or shape (red). B) Largest eigenvalues µ1l of modes l = 0, 1, 2, 3 as
a function of supersaturation ϵ along the larger stationary radius R̄s for ν−/ν0 = 1.
At the onset of the instability (red dot) the second mode becomes unstable, leading
to droplet deformation. For larger values of ϵ, higher modes become unstable as well.
Parameter values: ν0 = 10−2∆c/t0, k±t0 = 10−2, c(0)+ = 0, β− = β+, D− = D+.

Eq. (4.12) for l ̸= 0 describes the shape instability of a growing droplet, with R̄
denoting the radius of the growing droplet.

4.1.3 Stability diagram of chemically active droplets

We now discuss results of the shape instability of stationary droplet of radius R̄s for
different modes and parameters. We concentrate on two parameters that drive the
fluxes in the two phases and capture the effects we discussed for the stationary radii in
subsection 4.1.1: The chemically generated supersaturation ϵ = (c∞−c

(0)
+ )/∆c char-

acterizes the reaction outside the droplet, where the concentration c∞ far from the
droplet is created by the chemical reactions c∞ = c

(0)
+ +ν+/k+. This supersaturation

drives the diffusion flux j+ toward the droplet interface – if the supersaturated con-
centration c∞ is larger than the concentration at the droplet interface c+(R), droplet
material flows towards the droplet. Inside the droplet, droplet material is degraded
with dimensionless turnover ν−t0/∆c. This reaction leads to a concentration pro-
file inside the droplet with a minimum in the droplet center for ν− > 0, causing a
diffusion flux j− towards the center, see Fig. 4.2.

Fig. 4.3A shows the behavior of the stationary droplet radius as a function of
the supersaturation ϵ for different turnovers ν−, while keeping all other parameters
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. Shape instability of spherical droplets with chemical reactions

constant. Without chemical reactions inside the droplet, ν− = 0, the only stationary
radius is the critical nucleation radius R̄c. The intuitive explanation for the stationary
radius is that at this radius the concentration far from the droplet and at the interface
are equal, c∞ = c+(R), so that the flux j+(R) vanishes. With chemical reactions,
ν− = ν0 and ν0t0/∆c = 10−2, the reaction inside the droplet acts against the growth
of the droplet due to the flux outside. For supersaturations below a threshold value
ϵ0, droplets of all initial sizes shrink and vanish. Above this threshold value a second
stationary radius R̄s exists, so that droplets smaller than R̄c vanish, and droplets larger
than R̄c grow or shrink towards R̄s. For a larger turnover ν−/ν0 = 2, the threshold
value ϵ0 is larger, and the stationary radius R̄s smaller as compared to ν−/ν0 = 1.

In Fig. 4.3B the largest eigenvalue µ1l of shape instabilities of different modes l
are shown for the larger stationary radius R̄s with ν−/ν0 = 1 shown in Fig. 4.3A. The
mode l = 0 corresponding to changes in volume is zero at the threshold ϵ0, where
both stationary solutions R̄c and R̄s are the same. For supersaturations above ϵ0, the
mode is stable, µ10 < 0, as we already found from analyzing the growth rate Ṙ in the
quasistatic limit. For the translational mode l = 1 we find that the largest solution is
the meta-stable solution µ11 = 0 that can also be derived analytically, corresponding
to a translation of the droplet and concentration field. The mode l = 2 corresponds
to an elliptical deformation, either prolate for positive initial deformation amplitude
ϵnlm > 0, or oblate (’smartie-shaped’) with a negative initial deformation. It becomes
unstable above a supersaturation ϵ2 and corresponding radius R2. Additional modes
may become unstable for larger supersaturations. The third mode l = 3 becomes
unstable above a supersaturation ϵ3 > ϵ2, and may have a larger growth rate than the
second mode. Higher modes may become unstable for even larger supersaturation.
We thus find that the elongational mode l = 2 marks the onset of instability, marked
by a red dot in Fig. 4.3A and B.

For a larger turnover, the onset of instability is at a larger supersaturation, compare
the red dots in Fig. 4.3A for ν−/ν0 = 1 and ν−/ν0 = 2.

In Fig. 4.4A, the influence of the turnover inside the droplet on the existence of
a stationary radius and on the instability of the l = 2 mode is shown as a stability
diagram. We show the existence of the stationary radius ϵ0 (blue line) and the onset
of instability ϵ2 (red line). These supersaturations separate three regions – a region
where all droplets vanish (white), one where stable stationary droplet radii exist (blue),
and a region where the stationary droplet is unstable with respect to deformations of
the elongational mode (red). In the unstable region, a small initial deformation of the
l = 2 mode grows, which may lead to a deformation of the droplet into a dumbbell
shape. We may hypothesize that such droplets with a dumbbell shape may divide into
two daughter droplets, due to the surface tension of the droplet phase.

In a passive system without chemical reactions, surface tension would typically
lead to a round stable droplet shape. Therefore, the shape instability we find here
is an interesting new feature of chemically active droplets. We will now discuss the
physical mechanism that creates the instability. Subsequently, we will analyze the
equations in the limit of vanishing reactions to derive simple analytic expressions.
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Figure .: Stability diagram of active droplets as a function of supersaturation
ϵ = ν+/(k+∆c) and turnover ν−/ν0 of droplet material. Droplets either dissolve and
disappear (white region), are spherical and stable (blue region), or undergo a shape
instability into a dumbbell shape, which may lead to division (red region). Parameter
values: ν0 = 10−2∆c/t0, k±t0 = 10−2, c(0)+ = 0, β− = β+, D− = D+.

4.2 Physical mechanism driving the shape instability

In this section we will briefly discuss the physical interpretation of the shape instabil-
ity of chemically active droplets. This shape instability is a new example for a larger
class of flux-driven instabilities where a stationary shape in a sustained nonequilibrium
situation may become unstable due to stationary fluxes. For this we consider shape
deformations and the resulting dynamics for a passive droplet without chemical re-
actions and a droplet with chemical reactions. We will concentrate on a qualitative
description that highlights the physical effects – the quantitative description is already
captured by the stability analysis. As in the whole chapter, we ignore hydrodynamics
flows, v = 0, which will be considered in chapter 7, and only consider diffusive fluxes.

4.2.1 Shape relaxation of passive droplets

We first consider the fluxes that lead to the shape relaxation of a passive droplet to-
wards its round shape. In a finite system with a spherical droplet in equilibrium, the
droplet radiusR0 is set by the amount of droplet material in the system, and the shape
of the droplet is round, stabilized by surface tension. In both phases, concentrations
are constant, c± = c

(0)
± + β±γH0 with mean curvature H0 = 1/R0.

We now consider a small elongational deformation R = R0 + δR(θ, ϕ) of such
a droplet. The concentration at the interface c±(θ, ϕ) = c

(0)
± + β±γH(θ, ϕ) is in
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Figure .: Sketch of the concentration profile for a flux-driven shape instability.
Shown is the concentration outside the droplet in radial direction at the tip of the
deformation of a spherical droplet without surface tension, γ = 0. In the unper-
turbed state, the concentration at the droplet interface at position R̄ is c(0)+ , and far
from the droplet, the concentration is supersaturated with concentration c∞. The
concentration profile c̄ has a gradient (dotted red line), which implies a nonzero flux
j = −D+∇c. After deformation of the droplet interface to R̄ + δR, the concentra-
tion profile is given by c̄+ δc. The slope at the droplet interface is significantly larger
than in the unperturbed case, so that the droplet tip might move further outwards.

both phases larger at the tip of the deformed droplet, where the mean curvature H
is larger than for the unperturbed droplet, while at the inward-deformed sides of the
droplet, the concentration is smaller due to a smaller mean curvature. For a local
perturbation of the concentration field, the concentration is unperturbed far from the
droplet. Fluxes are driven by gradients in concentration, j = −D±∇c, so that mate-
rial flows from the regions with high concentrations towards the regions with lower
concentration. Therefore, for a passive droplet with smooth concentration gradients,
droplet material flows away from the tip of the droplet in all directions, and from all
directions towards the sides. According to Eq. (3.30), the interface then also moves
so that the droplet will relax towards its spherical shape.

4.2.2 Shape deformation of chemically active droplets

We next consider a stationary droplet with chemical reactions. Inside the droplet, re-
actions degrade the droplet material, while outside they create a supersaturation with
c∞ > c+(R̄). Material is constantly transported from the supersaturated region out-
side the droplet towards the center of the droplet due to gradients in the concentration
field j = −D+∇c, compare Fig. 4.2.

We now consider the fluxes in a droplet with a small elongational shape perturba-
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4.3. Relationship to Mullins-Sekerka instability

tion. The boundary conditions at the droplet interface behave as for a passive droplet,
with larger concentrations at the tip of the deformed droplet, and smaller at the sides.
Thus material flows along the droplet interface from the tip to the sides due to the
different boundary conditions. The shape instability is created by the interaction of
the perturbation gradient with the stationary gradient in radial direction.

To demonstrate this, we ignore the concentration change at the boundary, β±γ =
0. If the length-scale of the perturbation of the concentration field is smaller than
the length-scale of the stationary field, the concentration field is perturbed only lo-
cally due to the droplet deformation. In this case, the droplet tip with concentration
c+(R) < c∞ is pushed into the stationary gradient outside the droplet, and the per-
turbation field mediates between the boundary value and the stationary concentration
field far from the droplet. Since the perturbation is short ranged, the gradient at the
interface thus has to be stronger than for the stationary field. This is sketched in
Fig. 4.5. This stronger gradient means that more droplet material is transported to-
wards the interface. At the sides, the opposite happens: the interface is moved away
from the gradient, so that the local perturbation makes the gradient more shallow,
leading to less influx of droplet material. Inside the droplet, the same effects take
place, but with reversed sign, so that the instability is enhanced there as well.

With surface tension, different effects compete. The concentration at the tip
of the perturbed droplet c±(R̄ + δR) may be larger than the stationary profile at
this position was, c̄±(R̄ + δR), compare Fig. 4.5. In this case, the flux towards the
interface outside the tip would be decreased, stabilizing the spherical droplet - the
corresponding holds for the inside and the sides of the droplet. Additionally, there
is a competition between the radial fluxes and the stabilizing fluxes tangential to the
interface, and the different geometry inside and outside the droplet may additionally
influence the resulting dynamical behavior. The combination of these different effects
is captured by the linear stability analysis.

The instability is created by the existence of stationary fluxes in the spherical un-
perturbed droplet, and thus requires a nonequilibrium stationary state.

4.3 Relationship to Mullins-Sekerka instability

A classical example for such a flux-driven shape instability is the Mullins-Sekerka
instability that describes the shape instability of a solid precipitate growing in an su-
persaturated environment, see Mullins and Sekerka (1963). This instability is well-
studied theoretically and experimentally, and typically leads to dendritic growth of
solids, forming tongue-like fractal(ish) shapes, see Fig. 1.2. In this section we will
compare the instability and dynamic behavior of active droplets with the Mullins-
Sekerka instability.

Consider a spherical particle or droplet perturbed by a small shape deformation.
Using a decomposition of infinitesimal shape changes by spherical harmonics, the
mode with l = 0 corresponds to a changing radius R0(t), the modes with l = 1
generate pure translations, and the modes with l = 2 are the shape deformation
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. Shape instability of spherical droplets with chemical reactions

modes that become unstable first. We can thus ignore the modes with l = 1 and
focus here on the radius change and the dynamics of the modes with l = 2, which
are most relevant for the droplet division problem. Without loss of generality, we
consider the case m = 0. Following the arguments of Mullins and Sekerka (1963),
we express the shape of a droplet as a function of the azimuthal and polar angles for
a small deformation by a mode with l = 2:

R(θ, ϕ; t) ≃ R0(t) + ϵ2(t)Ŷ 20(θ, ϕ) , (4.14)

where ϵ2 ≪ R0, Ŷ 20(θ, ϕ) = Y20(θ, ϕ)/Y20(0, 0) and we have neglected modes with
l > 2. For such a perturbation, the interface moves locally with a radial velocity
v = ∂R/∂t, which reads

v(θ, ϕ) ≃ dR0

dt
+

dϵ2
dt

Ŷ 20(θ, ϕ) . (4.15)

4.3.0.1 Droplet with chemical reaction

In our model of chemically active droplets, we consider a droplet in the vicinity of the
stationary radius R̄s. We can express the droplet radius as R0(t) = R̄s + ϵ0(t). For
small perturbations of the stationary state, ϵ0, ϵ2 ≪ R̄s, the growth rates are given by
dR0/dt = µ10ϵ0(t) and dϵ2/dt = µ12ϵ2(t), see Eq. (4.7). At the stationary radius
R0 = R̄s, the volume growth is zero, dR0/dt = 0, so that the l = 2mode determines
the radial velocity,

v(θ, ϕ) ≃ µ12ϵ2(t)Ŷ 20(θ, ϕ) . (4.16)

If the mode l = 2 is unstable, µ12 > 0, we find for ϵ2 > 0 that v(0, ϕ) > 0
and v(π/2, ϕ) < 0. The droplet thus elongates along the long axis, and constricts
along the waistline, see Fig. 4.6A. If we start sufficiently close to the stationary radius,
R0 ≈ R̄s, contributions from the dynamics ofR0(t) can be neglected as µ10 < 0 and
R0(t) thus approaches the stationary value.

4.3.0.2 Mullins-Sekerka model

In the case of the Mullins-Sekerka model, droplets grow with dR0/dt > 0 if R0 >
Rc, where Rc denotes the critical nucleation radius, see Mullins and Sekerka (1963).
These growing droplets may undergo a shape instability corresponding to mode l
when the radius reaches the value

Rms
l = γ

(4 + 3l + l2)D+β+ + l(l + 2)D−β−

2D+(c∞ − c
(0)
+ )

. (4.17)

When modes with l > 2 become unstable they lead to shape deformations that grow
into dendritic structures, compare Davis (2001), while the modes with l = 2 are in-
sufficient to generate complex shape changes. To show this, we follow the arguments
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time

A B

Figure .: Shape deformations resulting from an instability of the deformation
mode with l = 2 for a chemically active droplet (A) and a growing droplet in the
Mullins-Sekerka model (B). The l = 2 mode corresponds to an ellipsoidal deforma-
tion. The black arrows indicate the direction of interfacial motion. (A) In the model
of chemically active droplets, a stationary droplet constricts around the waistline as
the amplitude of the perturbation increases. (B) In the Mullins-Sekerka model, an
unstable l = 2 mode gives rise to an ellipsoidal shape with an aspect ratio that ap-
proaches 1 as the droplet grows. This implies that the shape is not unstable with
respect to the l = 2 mode even if this mode is linearly unstable, Mullins and Sekerka
(1963). The shape deformations shown in A and B correspond to the linear regime
valid if amplitudes are small. They are shown with finite amplitude for clarity.

outlined in Mullins and Sekerka (1963) and consider an instability of a mode with
l = 2, which grows with the rate

µ12 =
1

R0

R0 −Rms
2

R0 −Rc

dR0

dt
. (4.18)

Here, Rms
2 with Rms

2 > Rc is the radius for which the l = 2 mode becomes unstable
in the Mullins-Sekerka model, see Eq. (4.17). The interfacial velocity behaves in the
Mullins-Sekerka model as

v(θ, ϕ) ≃
(
1 +

R0 −Rms

R0 −Rc

ϵ2
R0

Ŷ 20(θ, ϕ)

)
dR0

dt
. (4.19)

Thus, for sufficiently small amplitudes ϵ2 of the l = 2 mode, the droplet radius R
increases in all spatial directions, v(θ, ϕ) > 0 for all angles θ, ϕ. This corresponds to a
weak ellipsoidal deformation of the growing spherical droplet. As the droplet grows,
the aspect ratio of this ellipsoid stays constant or approaches 1, see also Fig. 4.6B.
Therefore, an unstable l = 2 mode does not trigger a shape instability of an initially
spherical object in theMullins-Sekerkamodel. Thus, instabilities ofmodes with l > 2
are required for the Mullins-Sekerka instability to take effect.

51



. Shape instability of spherical droplets with chemical reactions

4.3.0.3 Comparison of both instabilities

These arguments show that there are interesting differences between the instability
in our model and in the Mullins-Sekerka model. In the Mullins-Sekerka model an
instability of a mode with l = 2 does not directly trigger a shape instability because
the droplet grows at the same time as the instability develops. Conversely, for the
chemically active droplets discussed in this thesis, the instability of the modes with
l = 2 generates to linear order a shape change that leads to a dumbbell shape.

In the present description where only diffusive fluxes are considered, the dynamic
equations of both models are similar – the surface tension of the liquid droplet cor-
responds to the capillarity of solid precipitates, and the supersaturation created by
chemical reactions is similar to an externally generated supersaturation. Small differ-
ences exist: Often, the concentration field inside the solid precipitates is considered
constant, while this is not justified for liquid droplets. Additionally, in our system the
chemical reaction rates together with the diffusion coefficients introduce the length
scales l±, which do not exist in the Mullins-Sekerka case. Therefore, the instability
condition of droplet shape, obtained by solving Eq. (4.13), is generally different from
the Mullins-Sekerka case. However, extensions of both models may differ due to the
different physics described. For the Mullins-Sekerka instability, temperature profiles
and asymmetries due to the crystalline order may be included. In our case, we will
consider the effect of hydrodynamic flows in chapter 7. The main difference in the
present description, though, is the existence of the stationary radius of chemically ac-
tive droplets. In the next chapter, we will study the effect the stationary radius has on
the dynamical behavior of chemically active droplets.

The different waistline dynamics between our model and in the Mullins-Sekerka
model might also lead to different behaviors in the nonlinear regime. In the case
of the Mullins-Sekerka model, modes with smaller wavelengths become unstable as
the volume increases. In the nonlinear regime, this leads to large dendritic structures.
In our model of chemically active droplets, the droplet does not grow and modes
with shorter wavelength thus remain stable. The chemically active droplet instead
constricts at the waistline, which may subsequently lead to droplet division.

4.4 Droplet shape stability in the limit of a small reaction
amplitude

Both the stationary radius R̄ and its eigenmodes µnlm are described by implicit equa-
tions, see Eq. (4.4) and (4.13), that cannot be readily written in an explicit form that
shows the dependency of the radius and the eigenvalues on the parameters. In this
section we consider the limit of small chemical reaction fluxes s± to find scaling be-
havior for both quantities, which lead to simple explicit expressions.
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Figure .: (A) Stationary radius as function of supersaturation for several reaction
amplitudes. For larger reaction amplitudes, the the stationary radius for fixed supersat-
uration diverges. (B) Scaling of the stationary radius forR ≪ l±, in red the analytical
prediction Eq. (4.21) (line) and Eq. (4.22)-(4.23) (dot). (C) Scaling of the stationary
radius for R ≫ R̄0, in red the analytical prediction Eq. (4.26). (D) Growth rates
of perturbations of spherical harmonics according to Eq. (4.13) with modes l = 0
to l = 4 along the upper branch of the stationary radius. For ϵ ≈ ϵ0 and ϵ ≈ ϵ∞,
occasionally no numerical solution of the eigenvalue equation was found, leading to
sudden cutoffs of the lines. (E) Scaling of the growth modes for small radii: Onset of
instability and maximal value. (Parameter: ν−/(k−∆c) = 1, k+ = k−, D+ = D−) 53



. Shape instability of spherical droplets with chemical reactions

4.4.1 Stationary radius

Here we discuss the stationary radius in the limit of small chemical reaction ampli-
tude A = ν−τ/∆c while keeping the ratios ν−/(k−∆c) and k+/k− of reaction pa-
rameters fixed. This corresponds to the introduction of a prefactor in the reaction,
s(c) = A · s(c;A = 1) so that the reaction rate varies with A in both phases but the
supersaturation ϵ remains constant. For A = 0, this yields the Mullins-Sekerka case
without chemical reactions and externally generated supersaturation, so that the limit
is well-defined.

In Fig. 4.7A, the stationary radius R̄(ϵ) is shown as function of the supersatura-
tion for different values of A on a log-log scale. The lower stationary radii R̄c col-
lapse for the different reaction rates onto a straight line, the larger solutions R̄s show
scaling behavior, but with different values for different reaction rates. Close to super-
saturation ϵ0, a continuous ’bend’ connects both solutions R̄c and R̄s. For a critical
supersaturation ϵ∞, which is independent of the reaction amplitude, the stationary
radius R̄s diverges.

We can identify two crossover regimes between the different scaling behaviors in
the figure. The first is the region of small ϵ, ϵ ∼ ϵ0, which corresponds to the min-
imum of ϵ(R̄). The second is the region of ϵ∞ where the stationary radius diverges.
For A → 0, we see that ϵ0 goes to zero while ϵ∞ stays constant, and both are con-
nected by a straight line that indicates scaling behavior of R̄ = R̄s. This increasing
separation between ϵ0 and ϵ∞ (and the corresponding stationary radii) in the limit of
small A means that we can analyze the behavior of the stationary radius in these two
regimes separately. For this we consider Eq. (4.1) for the concentration field and (4.4)
for the stationary radius. We can rewrite Eq. (4.4) to obtain an expression relating
the supersaturation to the stationary radius,

ϵ =
β+γ

∆cR̄
+

(
β−γ

∆cR̄
+

ν−
k−∆c

)
D−
D+

R̄
l−

coth R̄
l−

− 1

1 + R̄
l+

. (4.20)

In this limit of small A, the characteristic length-scales of the concentration field
become large with l± ∝ A−1/2. To find scaling regimes in Eq. (4.20), we change
variables in Eq. (4.20) from (A, R̄) to (A, R̂)with scaling ansatz R̂ = R̄Aa/w, where
a is an exponent. Additional information can be found in Appendix C.3.

For a = 1/3 we find the behavior of ϵ(R) close to ϵ0 and R̄0,

ϵ̂ =
1

6
R̂
−1

+
1

3
R̂

2
+O(A1/6) (4.21)

where ϵ̂ = ϵA−1/3 becomes independent of A for small A. This function describes
the supersaturation as a function of radius around the threshold value ϵ0. Due to the
inverted presentation ϵ(R̄) instead of R̄(ϵ) the function captures both the nucleation
radius R̄c and the larger radius R̄s. The threshold value ϵ0 can be obtained from
Eq. (4.21) by minimizing ϵ̂ for fixed A as ∂ϵ̂/∂R̂ = 0. It behave as

ϵ0 = 4−2/3A1/3 +O(A1/2) , (4.22)
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with radius
R̄0 = w(4A)−1/3 +O(A−1/2) . (4.23)

For large and small R̂, Eq. (4.21) describes the steady radii R̄s and R̄c, respectively,
for which ϵ ≥ ϵ0. For large ϵ, the critical radius obeys

R̄c ≃
w

6ϵ
, (4.24)

while the larger stationary radius is

R̄s ≃ w(3ϵ/A)1/2 . (4.25)

In Fig. 4.7B, the stationary solutions of Fig. 4.7A are shown rescaled, together with
the scaling functionEq. (4.21). The scaling behaviors given byEq. (4.25) andEq. (4.24)
are the two straight lines of the red curve for large supersaturation. The threshold
value ϵ0 and R0 is indicated as red dot. We see that the threshold values and R̄c are
described accurately already for A = 0.001. The approximation for R̄s deviates from
the full solution as R̄ increases, but becomes more accurate for decreasing A.

The scaling exponent a = 1/2 captures the behavior of Eq. (4.20) for larger radii
with R̄ ≈ l± and R̄ > l±. In this regime, R̄/l± becomes independent of A and the
supersaturation is related to the radius by

ϵ =
D−
D+

ν−
k−∆c

R̄
l−

coth
(
R̄
l−

)
− 1

1 + R̄
l+

+O(A1/2) (4.26)

For R̄/l± ≪ 1, we recover Eq. (4.25) which describes the larger stationary radius R̄s.
For R̄/l± ≫ 1, we obtain the divergence of R̄s as ϵ approaches ϵ∞ with

ϵ∞ =

√
D−k−
D+k+

ν−
k−∆c

. (4.27)

In Fig. 4.7C, the stationary solutions are shown rescaled for this scaling regime, to-
gether with the scaling function Eq. (4.26). We find that it describes the stationary ra-
dius well for radii sufficiently larger than R0, and captures the divergence for ϵ → ϵ∞
well (ϵ∞ = 1 for the parameters shown).

Note that forR ≈ l±, spontaneous nucleation inside the droplet may play a role in
real systems, such as the bubbles we discussed in chapter 5 in the continuum model.
Such behavior is not described in the effective droplet model, which can limit the
predictive power of Eq. (4.26). Since the stationary radius is not a model parameter,
Eq. (4.27) can be useful to estimate the supersaturation where R ≥ l±. Therefore,
equations (4.21)-(4.25) describing the scaling for R̄ < l± are more relevant for the
description of real systems.
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4.4.2 Shape instability

We now discuss scaling relations for the shape instability of chemically active droplets,
Eq. (4.13), in the limit of smallA. Additional information can be found in Appendix
C.3. Fig. 4.7D shows the largest eigenvalues µl = µ1lm of modes l = 0, 1, . . . 4 along
the upper solution of the stationary radius in Fig. 4.7A.We see that for a fixed reaction
amplitude A (lines of one color), the deformation eigenvalues become unstable (µl =
0) at supersaturation ϵl that increases with increasing mode l. For supersaturations
ϵ > ϵl the eigenvalue shows a mode-dependent plateau, and decays towards zero for
ϵ → ϵ∞, where the stationary radius diverges. For decreasing reaction amplitudes, the
supersaturation ϵl at which modes become unstable first decreases, so that the plateau
is stretched, while the plateau value decreases (note that the y-axis shows µlt0A−1).
To find the onset of instability and the plateau value, we concentrate on the scaling
regime R̄ ≪ l± of the stationary radius with rescaled parameters R̂ = R̄A1/3/w,
ϵ̂ = ϵA−1/3 and l̂± = l±A

1/2. We find the rescaled eigenvalue µ̂l = µlτA
−1 given

by

µ̂l ≈ (l − 1)

(
−1 + gl

6R̂
3 +

ϵ̂

R̂
2 +

1

3

)
. (4.28)

with

gl =
hl(l + 1) + D−

D+

β−
β+

hll

l − 1
(4.29)

and hl = (l2 + l − 2)/2.
The stationary radius R̂ is related to ϵ̂ by Eq. (4.21). Inserting this relation in

Eq. (4.29) yields a simple equation for the eigenvalue as a function of the stationary
radius,

µ̂l = (l − 1)

(
2

3
− gl

6R̂
3

)
+O(A1/6) . (4.30)

which depends only on the mode l, the (rescaled) stationary radius and the ratio
D+β+/(D−β−). For mode l = 0 corresponding to changes in volume, the eigen-
value changes sign atR0, so that the larger stationary radial solution R̄s is stable, while
the smaller one R̄c is unstable. For the translational mode l = 1, we find µ̂1 = 0 for
all stationary radii. For deformational modes l ≥ 2, the eigenvalue changes sign for

R̂l ≃
(gl
4

)1/3
(4.31)

with corresponding supersaturation

ϵ̂l ≃
1

6

(
1 +

1

2
gl

)
R̂
−1
l . (4.32)

Stationary radii smaller than R̂l are stable, while larger radii are unstable. For large
radii R̂ ≪ R̂l, the eigenvalue approaches a constant plateau value

µpl = 2(l − 1)/3 . (4.33)
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Figure .: Stationary radii and onset of shape instability. A: Stationary
radius as a function of supersaturation for different reaction amplitudes A =
10−8, 10−7, . . . , 101. The blue line colors mark stable, the red ones unstable station-
ary radii with respect to the elongational l = 2 mode. In panel B the scaling behavior
of the nucleation radius R̄c and the stationary radius R̄s are indicated. B: Stability
diagram of stationary droplets of size R̄s, as a function of reaction amplitude A and
supersaturation ϵ. For small supersaturation and large reaction amplitudes, no sta-
tionary radius exists (white). For large supersaturation, the stationary radius diverges
(gray). In the region between these regimes, the stationary solution can be stable
(blue) or unstable (red) with respect to shape perturbations of the l = 2 mode. The
scaling relations (dashed lines) for the regime of stable droplets and the onset of in-
stability are indicated. (Parameters: k+/k− = 1, ν−/(k−∆c) = 1, D+/D− = 1,
β− = β+, c(0)+ = 0)

Fig. 4.7E shows µ̂l as a function of the rescaled supersaturation ϵ̂ together with the
scaling function Eq. (4.30) for different modes l. The scaling function describes the
onset of the instability and the plateau well for small reaction amplitudes. Eq. (4.32)
captures the scaling behavior of the onset of instability for different parameters in the
R̄− ϵ plane, corresponding to the red dotted line in Fig. 4.8A for l = 2.

Using Eq. (4.32), we find for µl = 0 as relation between A and ϵ

A ≃ 54
gl(

1 + 1
2gl
)3 ϵ3 . (4.34)

In Fig. 4.8, the dashed line indicates this scaling solution in the limit A → 0 for
l = 2, which we find to be the first mode to become unstable. For small reaction rates,
the scaling relations for the stationary state and the instability capture the behavior
of the stability diagram very well. For larger reaction rates, the supersaturation ϵ0
characterizing the existence of the stationary droplet state is a bit overestimated. For
the onset of the instability, the deviations between the full solution and the scaling
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. Shape instability of spherical droplets with chemical reactions

equation becomes larger, overestimating the supersaturation where droplets become
unstable by a factor of 2.

Eq. (4.28) is valid also for growing droplets in the appropriate scaling regime if
the stationary concentration profiles for a radiusR describe the concentration profiles
of the growing droplet (quasistatic assumption). This can be written in an unscaled
version as

µl τ ≈ (l − 1)

[
−1

6
(1 + gl)

(
R

w

)−3
+

(
R

w

)−2
ϵ+

1

4
A

]
. (4.35)

Using this equation, we see that for finite radii and vanishing reaction amplitude A
the onset of instability µl = 0 leads to a simple expression

Rl ≈ w
1 + gl
6ϵ

. (4.36)

This expression was reported previously by Mullins and Sekerka for the shape insta-
bilities of growing solids, compare Eq. (4.17) with w = 6β+γ/∆c. For nonzero
reaction amplitudes, we find that chemical reactions modify the equation, increasing
the instability. For vanishing supersaturation, the radius Rl where droplets become
unstable would diverge in the classical case of Mullins and Sekerka. In the present
case of active droplets, we find for ϵ → 0 instead a finite value

R∗l ≈
(
1 + gl
2A

)1/3

. (4.37)

We can use Eq. (4.36) to consider in which order different deformation modes be-
come unstable for a droplet that grows towards its stationary size R̄s. We see that
the eigenvalue depends on the mode l only via two terms. The factor (l − 1) indi-
cates that if several modes are unstable, larger modes tend to have a larger eigenvalue.
Inside the bracket that determines the sign of the eigenvalue, the stabilizing term mo-
notonously grows with the mode, while all other terms are independent of the mode.
Therefore, we find that the deformation modes become unstable consecutively as the
droplet grows, starting with the elongational mode l = 2. This indicates that the
dynamic behavior of chemically active droplets might be dominated by this mode, as
it can grow and thus have a large amplitude before the other modes become unstable,
even though they may have larger eigenvalues at the stationary size.

4.5 Summary
In this chapter we discussed the behavior of chemical active droplets in the effective
droplet model in the limit of large viscosity where hydrodynamic flows can be ne-
glected. We showed that chemical reactions create a stationary droplet size, which
is stable with respect to changes in volume, which was reported before in Zwicker
(2013); Zwicker et al. (2014, 2015). We then analyzed the stability of stationary
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spherical droplets with respect to shape deformations in a basis of spherical harmon-
ics and corresponding radial functions for the concentration field. We found that
spherical droplets may become unstable with respect to different shape deformations.
The mode that becomes unstable first is the elongational mode l = 2. This shape
instability is contrary to expectations based on the typical behavior of droplets we
observe in daily life. Droplets in equilibrium systems are stable due to their surface
tension, which minimizes the surface area. In our daily life, we see mostly spherical
droplets as a result. Many results indicate that nonequilibrium driving can destabilize
the preferred state of equilibrium systems, such as the Mullins-Sekerka instability for
growing solid phases in supersaturated liquid or gas, which creates dendritic shapes.
However, a shape instability of simple liquid droplets due to chemical reactions has,
to our knowledge not been discussed theoretically or experimentally.

To gain a better understanding of this new effect, we then discussed the physical
origin of the instability and its relationship to other instabilities. We discussed the
physical origin of the shape instability as a flux-driven instability. Small perturbations
of the droplet shape and the concentration field can be increased because the interface
moves into the gradient of the stationary concentration profile, thus increasing the
gradient and creating stronger fluxes. These fluxes then ’feed’ the deformation, leading
to the instability. The surface tension of the droplet counteracts this instability, so that
regimes exist where spherical droplets are stable, and regimes where they are unstable.

We compared the instability with Mullins-Sekerka instability, which describes
a flux-driven instability of growing solids in a supersaturated liquid, which leads to
dendritic shapes. We find that a major difference of our model is the existence of
the stationary droplet size, created by the reaction inside the droplet. This leads to
qualitatively different behavior - to linear order, volume conservation of our droplets
lead to a thinning in of the droplet around the waistline of the deformation, while in
the Mullins-Sekerka model, the solid grows in all directions (though with different
speed). We find that due to this, the unstable elongational l = 2 mode can lead to
deformation of the droplet into a dumbbell shape, while the mode does not lead to a
deformation in the Mullins-Sekerka model.

In the last section of this chapter, we discussed the properties of the stationary
droplet radius and the instability in the limit of vanishing chemical reactions, A → 0.
This leads to simple equations for the existence and size of stationary droplets and
for the shape instability. We find that these relations are a good estimation of the
full solution. More importantly, the scaling equations allow for the prediction of
the stationary size and the instability for parameters not discussed explicitly. Our
model has 6 parameters (A, ϵ, k+/k−, ν−/(k−∆c), D+/D− and β−/β+). Here
we discussed the dependence of system on two of them, A and ϵ, while keeping the
other parameters constant and equal to one, corresponding to equal conditions in both
phases. The scaling analysis predicts that different properties of both phases will not
qualitatively change the stability diagram, and in which way quantitative differences
will appear.

We therefore now have a good understanding of the origin of the shape instability,
and a simple description that shows the dependency on the parameters of the system.
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Dynamical behavior of chemically active droplets 5

We will now consider the nonlinear shape dynamics of chemically active droplets
using the continuum model introduced in chapter 3. We want to study how the
out-of-equilibrium chemical reactions influence the droplet dynamics. For this, we
consider the case of large viscosity where hydrodynamic flows can be neglected. The
influence of hydrodynamic flows is discussed in chapter 7.

We have shown in chapter 4 using the effective droplet model that chemically
active droplets have two stationary sizes, a critical nucleation radius R̄c and a larger
stationary radius R̄s. Droplets smaller than R̄c tend to shrink and vanish, while larger
droplets grow towards the stationary radius R̄s if they are smaller than R̄s, and shrink
towards it if they are larger. We found that the shape of stationary spherical droplets
can become unstable due to the continuous fluxes of the stationary state which coun-
teract surface tension. The first mode to become unstable is the elongational mode
l = 2.

In this chapter, we investigate the nonlinear dynamical behavior of chemically
active droplets using numerical solutions of the continuum droplet model. A special
focus lies on the droplet dynamics in the unstable regime, to determine the dynamic
shape changes of the instability.

A large part of the content of this chapter has been published in Zwicker et al.
(2017).

5.1 Numerical solution of droplet dynamics in the continuum
model

We consider an incompressible system that consists of droplet material B and outer
material A, so that the system is described by the concentration field c of B, compare
the introduction of the continuum model in section 3.1. We use the properties of
the interface to normalize concentration, length, time and energy, see table 3.1. The
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. Dynamical behavior of chemically active droplets

Cahn-Hilliard free energy with minima at c(0)+ and c
(0)
− favors a phase separated state

for systems with intermediate mean concentrations c̄ with c
(0)
+ < c̄ < c

(0)
− with a

smooth interface separating the phases. Nonequilibrium chemical reactions convert
A to B and vice versa, with a net reactionB → A for large concentrations, so that the
concentration field has a sink inside a droplet with turnover ν− t0/∆c at reference
concentration c

(0)
− . For small concentrations corresponding to the outer phase, the

reaction leads to a net reactions A → B, which creates a concentration c∞ = c
(0)
+ +

ϵ∆c outside the droplet, with a (dimensionless) supersaturation ϵ = ν+/(k+∆c) of
droplet material. Therefore, the droplet material is not conserved in the system, and
can change dynamically due to the chemical reaction. We will now consider the effect
that this chemical reaction has on the dynamics of the system, and explicitly on the
dynamics of a droplet.

We here consider the case without hydrodynamic flows, corresponding to the
limit of infinite viscosity, F → ∞ with dimensionless viscosity F = ηw3/(e0t0) –
we will discuss the case of finite viscosity in chapter 7. We solve the time evolution
of the concentration field, Eq. (3.1) with v = 0, using a semi-implicit Runge-Kutta
method for the time step, with a spectral method for the spatial operators, whereby
the gradient terms are evaluated in Fourier space, with no-flux boundary conditions.
This yields the concentration field at discrete time steps on a three-dimensional rect-
angular lattice. The numerical details are given in Appendix D.2. This method is
specifically chosen to deal with the difficulties of solving the Cahn-Hilliard equation,
which contain fourth order spatial derivatives κm∇4c that arise from the gradient
term of the free energy. This enables us to consider long-time dynamics of a droplet,
in a three-dimensional box that is large enough to have a dynamics that is (reasonably)
independent of the boundaries of the box. See Appendix D.2 for details.

To study the dynamics of a chemically active droplet, we start with an initial
droplet of radius R with a small initial perturbation of the droplet shape in the center
of the simulation box, with a concentration c

(0)
− inside the droplet, and concentration

c∞ outside, set by the chemical reaction parameters. A small shape deformation can
be incorporated via R(θ, ϕ) = R0(1 + ϵ2Ŷ 20(θ, ϕ)), where the droplet interface at
position R is given in spherical coordinates. Here, ϵ2 is the deformation amplitude,
Ŷ 20(θ, ϕ) = Y20(θ, ϕ)/Y20(0, 0) denotes the normalized spherical harmonic with
mode l = 2 and m = 0, corresponding to an elongation of the droplet, and θ and ϕ
denote the polar and azimuthal angles, where θ = 0 coincides with the axis of the de-
formation. We can study the droplet dynamics visually by plotting the concentration
field. To analyze the size and shape changes of a droplet, we fit a droplet shape with
large concentration inside and small concentration outside to the concentration field,
see Appendix D.3.
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5.2. Dynamics of the homogeneous state

5.2 Dynamics of the homogeneous state
Let us now quickly review the basic dynamics of the system. First, let us start with the
dynamics of a homogeneous systemwith concentration c0. If no fluctuations exist, the
system remains homogeneous, with a concentration that changes over time due to the
chemical reactions, ∂tc0 = s(c0), and reaches a steady state with concentration c∞.
Along the way, small spatial fluctuations (for example due to noise in the initialization)
can lead to spinodal decomposition into two phases. Without chemical reactions, the
concentration regime where such phase separation is found is given by the region of
negative curvature of the free energy density with f ′′0 (c0) < 0, where f0 is defined
by Eq. (3.4) with κ = 0 (or equivalently µ̄′0(c0) < 0, with the definition of the local
chemical potential in Eq. (3.6)). With chemical reactions, a linear stability analysis
yields as eigenvalue for a perturbation with wavevector q

η(q) = −
[
k(c0) + f ′′0 (c0)q

2 +mκq4
]
. (5.1)

where k(c0) is given by k(c) = ds/dc. Details can be found inAppendixD.1. Within
the regime of a linear reaction rate around c

(0)
+ , we find k = k+. For k(c0) > 0, the

chemical reaction thus stabilizes the homogeneous state. For large wavelengths, the
homogeneous state is thus stable (q → 0) due to the chemical reaction, and for small
wavelengths, the surface tension term mκq4 stabilizes the homogeneous state. For
an intermediate regime, η(q) has a local maximum for f ′′0 (c0) < 0, given by

q∗ =
√

−f ′′0 (c0)/(2mκ) (5.2)

η(q∗) =
f ′′0 (c0)

2

4mκ
− k(c0) . (5.3)

For η(q∗) > 0, the homogeneous state with concentration c0 is thus unstable. For
the parameters used in this chapter with k±t0 = 10−2, we find that concentrations
c0 = c

(0)
+ +δ∆c are unstable for ϵc < δ < 1−ϵc with ϵc ≈ 0.24. Numerical solutions

of the homogeneous state with some initial noise agree with this result.
The behavior of the homogeneous system is relevant for the study of droplet dy-

namics for two reasons. First, the concentration far from the droplet may be unstable
for ϵ ≥ ϵc, so that droplets may nucleate around the initial droplet and influence
the dynamics of the initial droplet. This may occur also for supersaturations slightly
smaller than ϵc, due to nonlinear effects, and because the initial dynamics of the sys-
tem may show a concentration increase around the droplet before the stationary pro-
file is reached. Second, the concentration inside the droplet becomes inhomogeneous
due to the chemical reaction inside the droplet, which leads to a lowering of the con-
centration in the droplet center, compare Fig. 4.2 in the effective droplet model. Our
calculation of the stability of the homogeneous state indicates that the center of the
droplet may become unstable for a concentration c0 with δ < 1−ϵc, which might lead
to a nucleation of a droplet of the outer phase inside the droplet, creating a droplet
bubble. The results from the effective model further indicate that this would happen
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forR ≳ l−, where the concentration field inside the droplet deviates sufficiently from
the boundary value.

This section highlights that the effective droplet model and the continuum model
are related, but may feature quite different scenarios, since the nucleation of new
phases is not included in the effective droplet model, but may be quite prominent in
the continuum model we study in this chapter.

5.3 Volume growth of chemically active droplets

We now consider the dynamic growth of an active droplet in the continuum model.
Let us briefly discuss the volume growth and droplet dynamics for different su-

persaturations and initial droplet sizes. Starting with an initial droplet, we find small
initial changes in droplet size when a quasi-stationary concentration field is estab-
lished. The quasi-stationary concentration field in both phases resembles the fields
that we found for the effective droplet model, compare Fig. 4.2. After this initial
dynamics, the droplet shows the types of dynamics predicted by the effective droplet
model: For small supersaturations, the droplet vanishes, independent of its initial
size. For larger supersaturations, the droplet vanishes for small initial sizes (R < R̄c),
and grows towards a larger stationary size. Droplets that are slightly larger than the
stationary size shrink towards this size. We find the numerically observed stationary
radius to be close to the radius R̄s from the effective droplet model (with differences of
≤ 20%), large deviations were observed only in regimes where the stationary droplet
diameter together with the size of the depletion region, estimated to be approximately
l+ =

√
(mb)/k+, exceeded the size of the simulation box. For droplets with a ra-

dius similar to or larger than the reaction-diffusion length scale l− =
√
(mb)/k−

inside the droplet, the nucleation of a droplet of the outer phase is possible inside
the droplet phase, so that the droplet becomes a bubble. Such a bubble consists of
a spherical shell of constant width with high concentration, while the concentration
inside this shell is similar to the outer phase, see Fig. 5.3A. Beyond a critical super-
saturation and initial radius, a spherical droplet may become unstable with respect
to shape deformations and deform. This will be discussed in the next section. For
large supersaturations ϵ ≳ ϵc, additional droplets nucleate in the outer phase. Both
the formation of bubbles and the nucleation of new droplets can be understood by
considering the stability of the homogeneous state, as discussed in the previous sec-
tion. For droplets with a radius that is similar or larger than the reaction-diffusion
length scale, the droplet becomes inhomogeneous, with a concentration minimum in
the droplet center. If the concentration in the center drops enough, the concentration
allows the nucleation of a droplet of the outer phase. Similar, nucleation is possible
if the concentrations outside the droplet is larger than the critical concentration for
nucleation.

Fig. 5.2 shows a stability diagram of droplets as a function of the supersaturation ϵ
and the reaction rate ν−. Droplets were initiated with a size of 0.8R̄s, where R̄s is the
larger stationary radius of the effective droplet model with equivalent parameters. We
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0 4 18 25 25.6 25.8 27 30

Figure .: Division of chemically active droplets. A droplet with small initial de-
formation elongates and splits into two symmetrical daughter droplets. The droplet
shapes are shown as equal concentration contours (green). The concentration field
outside the droplet (blue) has small values c ≈ c

(0)
+ (violet blue) close to the droplet

and concentrations close to c∞ (transparent) far from the droplet, set by the chem-
ical reaction s(c∞) = 0. The dynamic equations of the continuum model were
solved numerically in 3d, see Appendix D.2. Parameters: ν−t0/∆c = 1.3 · 10−3,
ν+t0/∆c = 1.9 · 10−3, k±t0 = 10−2, and F → ∞. Indicated times are given in
units of 102 t0.

find regimes where droplets vanish (dots), where stable spherical droplets exist (blue
spheres), and where a small initial shape perturbation grows (red shapes). For the
regime of vanishing droplets, larger initial sizes were tested as well. A comparison
with the corresponding diagram of the effective droplet model Fig. 4.4 shows that
the regimes in both models show the same trends. For small turnover ν−/ν0, the
stationary droplet radius diverges in the effective droplet model, while it is limited by
the size of the simulation box for the continuum model. The numerical results were
tested in a larger box, but may still contain finite size effects.

5.4 Division of chemically active droplets

We now concentrate on the shape dynamics of chemically active droplets. We ini-
tialize the system with a droplet with a small prolate deformation of the spherical
harmonic mode l = 2, m = 0. Fitting deformed droplet shapes to the concentration
field, we find that the amplitude of the deformation mode shrinks over time for some
parameters, indicating a stable spherical droplet with respect to this mode, while the
deformation grows for others, indicating an unstable mode. In the stability diagram
Fig. 5.2, the stability of spherical droplets with initial radii close to the predicted sta-
tionary size, growing towards the stationary size, is indicated for the elongational
mode. Stable droplets are marked in blue, unstable ones in red. We find that for
fixed turnover ν−, droplets become unstable for supersaturations beyond a critical su-
persaturation. For increasing turnover ν−, this critical supersaturation increases. This
agrees well with the stability analysis of the effective droplet model, compare Fig. 4.4.
For vanishing turnover rates, the results of both models differ to some extent. This
is likely due to the divergence of the chemically set stationary droplet radius which is
limited in the continuum model by the box size.

We find that typically, an unstable initial deformation leads to a division of the
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Figure .: Stability diagram of active droplets as a function of supersaturation
ϵ = ν+/(k+∆c) and turnover ν−/ν0 of droplet material using the continuum model.
Droplets either dissolve and disappear (white region), are spherical and stable (blue
region), or undergo a shape instability and typically divide (red region). The behavior
of droplets is indicated by symbols for different values of ν− and ϵ. Parameter values
are: k±t0 = 10−2, F → ∞, and ν0 = 10−2∆c/τ0.

droplet into two symmetric daughter droplets. Fig. 5.1 shows 3d graphical represen-
tations, where the droplet interface is shown as equal concentration contours (green)
and the concentration field around it as semi-transparent volume elements (shades
of blue). We start with an initial droplet with a size close to the stationary size of
the droplet, with a small initial deformation (panel 1). The concentration outside is
initially set to c∞, the fix-point of the chemical reaction s(c∞) = 0. In a fast initial dy-
namics, aminimumof the concentration field (blue) develops around the droplet, with
c ≈ c

(0)
+ (violet blue) close to the droplet and c ≈ c∞ (transparent/white) far from

the droplet (panel 2). Within the same time-window, the droplet volume changes
towards its stationary size – for the parameter value shown, the volume dynamics is
much faster than the shape deformations. Over time, the droplet elongates (panel 2)
and forms a dumbbell shape (panel 3), which then thins in around the waistline of
the droplet (panel 4). This waistline pinches off (panel 5 to 6), and the two daughter
droplets round up into approximately spherical shapes (panel 6-8). During this divi-
sion, the total droplet volume increases, so that the daughter droplets have volumes
similar to the initial droplet, so that they again might be able to deform and divide.
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Figure .: Dynamical behavior of droplets with different supersaturations. To
demonstrate the diversity of the dynamics of chemically active droplets, we show here
results for small turnover ν−/ν0 = 0.7. A) For a large initial droplet, R0 = 15w, a
droplet of the outer phase can nucleate in its center, leading to a bubble. (Parameter:
ϵ = 0.15) B) For supersaturations close to the onset of instability, ϵ = 0.13, the
droplet elongates into a long cylindrical structure. C) For ϵ = 0.15, the droplet
divides into a chain of three droplets. D) For ϵ = 0.16, the droplet divides into
two daughters, which then deform into oblate shapes and finally become tori E) For
ϵ = 0.21, the droplet divides into two daughters, which deform into two parallel
plates. Shown are droplet contours (green) for concentration (c− c

(0)
+ )/∆c = 0.5 for

time steps t = n ·10t0 with index n indicated on the panels. Parameters: ν−t0/∆c =
7 · 10−3, k±t0 = 10−2, and F → ∞. The initial shape deformation is ϵ2 = 0.1. For
panels B-E, the initial radius is R0 = 5w.
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For increasing supersaturation, the division is accompanied by deformations due to
the deformations of modes with higher order. These higher modes typically don’t
influence the division, only in one set of parameters (ϵ = 0.2, ν−/ν0 = 0.3) did the
deformations lead to a division into three droplets instead.

We can find additional dynamic behavior in the unstable regime, shown as red
squares and triangles in Fig. 5.2. For a small turnover and small supersaturations
close to the onset of instability, the shape elongates, but does not become thin at
the waistline but instead grows into a cylinder-like form, connecting two spheres
that move with seemingly constant speed apart, elongating the cylinder during the
simulation time, see Fig. 5.3B. For intermediate supersaturations, droplets elongate
and divide into a chain of 3 droplets, Fig. 5.3C. However, the droplet division shown
in Fig. 5.1 is the typical shape dynamics of unstable chemically active droplets for the
parameters investigated, shown as red circles in Fig. 5.2.

The droplet division discussed here shows that active reactions can not only sup-
press Ostwald ripening against surface tension, but can lead to a deformation of a
spherical droplet that increases the surface area, eventually leading to a division of the
droplet into two. This new effect is completely different from our everyday experi-
ences, where droplets do not spontaneously split, but instead coalesce and ripen over
time.

5.5 Cycles of growth and division

We now discuss the dynamics of the two daughter droplets after the first division.
We find that occasionally, the droplets do not divide again after the first division, but
deform into oblate (’smarty-like’) shapes, which then grow outward into two plates
with a fixed width, or open in the center of the flattened shape to form tori, Fig. 5.3D
and E. Both of these shapes typically grow outward until they reach the limits of the
box.

However, our numerical calculations reveal that droplets typically undergo mul-
tiple rounds of divisions, see Fig. 5.4A. After a first division, the smaller daughters
grow until they divide again when they reach the radius Rdiv. Interestingly, the divi-
sion axes are not independent of each other, see Fig. 5.4A. In the absence of system
boundaries, the division axes of both daughters are perpendicular to the first division
axis, see Fig. 5.4B. Similarly, when the four granddaughters divide, their division axes
are perpendicular to both the division axes of the first and the second division. The di-
vision axes in subsequent droplet divisions are determined by droplet interactions via
the concentration fields surrounding the droplets. The two growing daughter droplets
effectively compete for droplet material, leading to the depletion of droplet material
in the space between them. Therefore, diffusion fluxes and growth rates are larger
along axes perpendicular to the previous division axis, see Fig. 5.4C. This bias due
to droplet interactions determines the division axes. In our numerical calculations,
boundary conditions also influence the droplet divisions and slightly modify the divi-
sion axes, see Fig. 5.4A.
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Figure .: Cycles of growth and divisions. A) Sequence of droplet divisions at
different times as indicated in units of 102t0. Droplet configurations obtained from
numerical solutions to the continuum model are represented as three dimensional
shapes (green), the outside concentration field is shown in blue (low concentration,
c ≈ c

(0)
+ ) to transparent white (supersaturated outside concentration c ≈ c∞). Param-

eters: ν−t0/∆c = 1.3 · 10−2, ν+t0/∆c = 2 · 10−3, k±t0 = 10−2, and F → ∞. B)
Schematic representation of the orientation of subsequent division axes. C) Droplet
division is oriented along the axis for which diffusion fluxes (green arrows) are maxi-
mal.

5.6 Summary

We have shown in this chapter that the shape instability of chemically active droplets
that we found in the effective droplet model indeed leads to a deformation of droplets
in the continuum model. In the majority of cases, this leads to cycles of growth and
division of droplets. For a small number of parameter values, for small supersatu-
rations and small turnover ν−, droplets show a tendency to form cylindrical shapes.
Occasionally, other shapes such as droplet tori and plates are observed as well. We
will consider the existence of stationary cylindrical droplets and their stability in the
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next chapter.
It has been reported previously that chemically active systems show new behaviors.

Nonequilibrium chemical reactions can lead to a suppression of Ostwald ripening,
whereby the size of phases does not increase over time, but a fixed length-scale is
created. This has been shown for spinodal decomposition, see Puri and Frisch (1994);
Glotzer et al. (1994), and for droplets, whereby a number of droplets with a stationary
size set by the chemical reactions can stably coexist in a system, Zwicker et al. (2015).
The instability and division of chemically active droplets has not been reported before.
Droplet division is especially interesting because it demonstrates a simple physical
mechanism of self-replication. Both daughter droplets have the same properties and
behavior as the original droplet, and they can divide again. In the finite simulation
box, droplets divide until they reach a critical density. In an infinite system, no such
limit exists. Therefore, we expect that droplets would keep dividing, leading to an
increase in the droplet population, as long as enough droplet material exists in the
outside environment - implemented here via the constant supersaturation. This self-
replication can be interpreted as life-like behavior. We will return to this point in
chapter 8 to discuss chemically active droplets as a model for protocells at the origin
of life.
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6

Passive cylindrical droplets (usually called jets) appear often in daily life, usually in
the context of liquid-air phase separation, for example water flowing out of a tab or
a fountain. The water jet usually quickly splits up into separate droplets due to the
surface tension. The formation of width-oscillations along the cylinder is described by
the Plateau-Rayleigh instability. The effect is driven by minimizing the surface area,
and the most unstable deformation with wavelength q∗ is set by purely geometric
arguments, q∗R ≈ 0.7, and all unstable modes satisfy qR < 1.

Here we study the shape dynamics of chemically active droplets. We consider
a two components system with components A and B with active chemical reactions
A → B between the components. The species phase separate into a phase with a low
concentration of B, where the reaction produces new droplet material B,A → B, and
a phase with a high concentration of B, where B is degraded into the outer component,
B → A. See chapter 3 for details. We have seen in chapter 5 that a deformed
spherical droplet in such an active system has a stationary size, which can be unstable
so that the droplet can divide into two daughter droplets, which may grow and divide
again. We also found that such droplets can form other shapes, such as dumbbell
shapes with growing length and tori with a growing major radius, see Fig. 5.3. In
both of theses cases, the dynamic behavior seems to lead towards an infinitely long
cylinder with a finite radius. We also saw examples of flat disk/plate like structures
and bubbles, see Fig. 5.3, both of which resemble a flat plate with finite width in one
direction and that is extended in the other two directions.

In this chapter, we discuss stationary shapes with different geometries and in dif-
ferent spatial dimensions, and analyze their stability with the effective droplet model
in the limit of large viscosity, see 3. As in chapter 4, the droplet material B is converted
into the outer material A with reaction amplitude A, and outside droplet material is
created from the bulk material which creates a supersaturation ϵ. We again ignore hy-
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drodynamic flows by considering the limit of large viscosity. The interface movement
for small deformations of the stationary state is generally described by Eq. (3.31) with
normal vector n of the deformed interface and normalization factor an = 1/(er ·n),
where er now is the normal unit vector of the undeformed stationary interface. Ad-
ditionally, we compare our analytical predictions with numerical solutions of the dy-
namical behavior using the continuum model. We consider droplet shapes with a
flat interface in different dimensions, as well as droplet disks in 2d systems and cylin-
drical droplet shapes in 3d. In our case, the droplet volume is not constrained as in
the passive case, but set by the chemical reactions. Additionally, our system is out of
equilibrium, so that the minimization of energy is not necessarily the driving dynamic
force. Therefore it will be interesting to study the effect of active chemical reactions
on the stability of cylindrical and other shapes.

6.1 Droplet shapes with a flat interface in 1d, 2d and 3d:
Line-segments, bands and plates

In this section we consider droplet shapes with flat interfaces. A stationary system
with a flat interface has a concentration profile with gradients perpendicular to the
interface, and is constant in the other directions. The stationary state itself can there-
fore be understood by considering the 1d system perpendicular to the interface. We
consider this to be the x direction. The deformation of such a flat system deforms the
interface and concentration field in the x directions but also in the directions along the
interface, so that the deformation modes and their stability depend on the dimension
of the system. We will consider the stability of flat interfaces in 1, 2 and 3 dimensions.
The most simple example is a line segment in 1d with stationary concentration field
and fluxes. Systems in higher dimensions are created by extending the interface into
the other dimension, creating a droplet band in 2d and a droplet plate in 3d. See
Fig. 6.1 for a sketch of the systems.

We find that the stationary state in 1d is a line segment with width 2L, where the
half-width L is given by

tanh(L/l−) =
l+ν+
l−ν−

(6.1)

which has one solution for −1 < l+ν+
l−ν−

< 1, and none otherwise. See Appendix E
for the calculation and the stationary concentration field. In Fig. 6.2A, the length L
of stationary line segments are shown in comparison to the stationary droplet radius
in 3d. The stationary size has a different dependence on the supersaturation, there is
only one solution, with slope L ∝ ϵ for L/l− ≪ 1. Similar to the larger solution in
3d, it has a divergence at ν+ = ν−l−/l+, above which no finite stationary solution
exists. In a passive system, we typically find solutions with two bulk phases with
concentrations c

(0)
± , separated by a flat interface. In the case of chemically active

droplets, the chemical reactions create concentrations c±∞ in the bulk phases with
s±(c

±
∞) = 0. Such bulk phases are found for ν+ ≥ ν−l−/l+. In Fig. 6.2A, we
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6.1. Droplet shapes with a flat interface in 1d, 2d and 3d: Line-segments, bands and plates

stationary line segment (1d) symmetric perturbation antisymmetric perturbation
A

stationary band (2d) symmetric perturbation antisymmetric perturbationB

stationary plate (3d) symmetric perturbation antisymmetric perturbationC

Figure .: Stationary droplet states with a flat interface and their deformation
modes. The stationary states are: (A) line segment in 1d, (B) band in 2d, and (C)
plate in 3d. The stationary droplet phase (green) has a width 2L in one direction and is
extended in the other directions for 2d and 3d (left panels). Symmetric perturbations
are mirror symmetric around x = 0 and change the width of the droplet (center
panels), while antisymmetric perturbations displace the droplet center around x = 0
while keeping the width constant (right panels). Perturbations are periodic in one
extended direction with wave-vector q.
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Figure .: Characteristics of stationary droplet states with a flat interface. (A)
Half-width L of flat stationary droplets as a function of supersaturation ϵ for differ-
ent reaction rates inside the droplet (lines). Valid for 1d line segments, 2d bands and
3d plates. As a comparison, the stationary droplet radius in 3d is shown (dashed lines).
(B) Eigenvalues of symmetric (lines) and antisymmetric deformations (dashed lines)
of 2d bands as function of the deformation wavelength q for A = 10−4 for different
supersaturations (line color). Depending on parameter values, stationary bands can
be stable (ϵ = 0.01) or unstable (ϵ = 0.2) with respect to shape deformations. (C)
Stability diagram of droplet bands in 2d as function of the supersaturation and reac-
tion amplitude. Blue color denotes stable stationary bands, the largest eigenvalues of
unstable bands, corresponding to antisymmetric deformations are shown in red (see
color bar). A red line marks the onset of instability with respect to antisymmetric per-
turbations, a darker red line the onset with respect to symmetric perturbations. For
comparison, the existence of stationary droplets (blue dotted line) and their instabil-
ity (red dotted line) for spherical droplets in 3d is shown. (D) Stability diagram of
droplet plates in 3d as function of the supersaturation and reaction amplitude. See (C)
for description. (Parameters: k+/k− = 1, ν−/(k−∆c) = 1,D+/D− = 1, β− = β+,
c
(0)
+ = 0)
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6.1. Droplet shapes with a flat interface in 1d, 2d and 3d: Line-segments, bands and plates

consider strong chemical reactions inside the droplet, with a value of c−∞ = c
(0)
+ , so

that we only find realistic solutions with a finite droplet phase, and no solutions with
a bulk droplet phase. The critical nucleation radius that we find in 3d is due to the
Laplace pressure 2γH(R) of the droplet, where the mean curvature depends on the
radius, H(R) = 1/R. In 1d, the mean curvature is always zero, and thus no critical
nucleation radius exists. In both cases, we find a stationary radius where the influx
of droplet material into the droplet is balanced by the conversion and outflow of A-
material that is created inside the droplet by chemical reactions. For droplets smaller
than the reaction-diffusion length scale inside the droplet l−, the droplet is roughly
homogeneous, so that the outflux scales with the droplet volume (line-segment length
in 1d), leading to the observed scaling behaviors. For L ≈ l−, the droplet becomes
inhomogeneous, and the reaction only occurs at the boundary of the droplet up to a
depth of length l−. Thus an increase in droplet size does not lead to an increase in
outflow of A-material, leading to the observed divergence of the stationary size for a
critical inflow value (set here by ϵ).

In 1d, we can perturb the stationary line segment in two ways: A symmetric
perturbation where the interface is moved outwards on both sides so that the width
of the line segment changes and by an antisymmetric perturbation, which moves the
interface on both sides in the same direction, so that the position of the line segment
changes, see Fig. 6.1A. We find that the symmetric mode is stable for ν− ̸= 0, while
the antisymmetric mode is marginal. See Appendix E for the calculation.

We now consider the stability of stationary droplet bands in 2d. We can describe
perturbations in the 2d system as

(δc, δL1, δL2) =
∑

n ϵs,n cos(qy)(ρs,n(x), L, L)eµs,nt (6.2)
+
∑

n ϵa,n cos(qy)(ρa,n(x), L,−L)eµa,nt (6.3)

where we again can find a split into symmetric and antisymmetric modes with wave-
vector q, amplitudes ϵs/a,n and eigenvalues µs/a,n. Symmetric modes describe a vari-
ation in the droplet width along the y axis, while antisymmetric modes describe a
displacement of the droplet center in x direction which oscillates when moving along
the y axis, while the droplet width stays constant. See Appendix E for details. Station-
ary band and deformations can be seen in Fig. 6.1B. Some typical results are shown in
Fig. 6.2B. In the limit q → 0, we find the same results as in the 1d case, with a stable
symmetric and a marginal antisymmetric mode. For small ϵ, both curves decrease for
q > 0, so that all deformation modes are stable. For larger ϵ, both the antisymmetric
mode and the symmetric one reach a maximum at a very similar wavelength q, where
the deformation modes are unstable. In Fig. 6.2C, the stability diagram of station-
ary bands is shown. It shows a region of stable bands for large reaction amplitude
and small supersaturation, and a region of instability. For a fixed reaction amplitude,
symmetric modes become unstable for larger supersaturation with ϵsym ≈ 2ϵasym.

The stability of stationary droplet plates in 3d is described by the same modes
as the 2d system, which are constant in the third dimension, compare Fig. 6.1C and
Appendix E. In Fig. 6.2D, the stability diagram of stationary plates is shown. It is
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. Shape instability of droplets with various geometries

t=0 1 2

543

Figure .: Numerical solution of the continuum droplet model of a droplet band
with initial half-width L = 20w and shape perturbation of the antisymmetric mode
with q = 2π/L0 with L0 = 160w. Time between snapshots ∆t = 8 ·103t0. (Param-
eters: A = 2.5 · 10−4, ϵ = 0.3, k+/k− = 1, ν−/(k−∆c) = 1, c(0)+ = 0)

similar to the stability diagram of stationary bands, but with a larger unstable region,
compare Fig. 6.2C.

We now compare the analytical results of the effective droplet model with numer-
ical solutions of the continuum model. We consider the behavior of droplet bands in
2d for a reaction amplitudeA = 2.5·10−4 in a box of lengthL0 = 160w with no-flux
boundary conditions. We considered initial conditions with a band of (half-) width
L = 20w with small initial deformations of symmetric and antisymmetric modes
with different wave-vectors q with q = nπ/L0 with integer n. We find no stationary
bands for ϵ ≤ 0.1. For most initial conditions and values of ϵ, initial bands vanish.
For ϵ = 0.1 for initial perturbations with a long wave-length, bands shrink and divide
into stable stationary droplet disks. The stationary width predicted by the effective
droplet model for ϵ = 0.1 is L < 10w, and therefore close to the interfacial width of
the continuum model - therefore, it is not surprising that the models deviate there. A
comparison with stationary disks, see section E.6, shows that stationary disks are pre-
dicted to exist for ϵ > 0.07, which corresponds well with the stationary droplets found.
For ϵ ≤ 0.2, we all modes we investigated are stable. For ϵ = 0.25, the antisymmet-
ric mode with wavelength λ = L0, with λ = 2π/q, is unstable. All other modes are
stable. For ϵ = 0.3, the antisymmetric modes with wavelengths λ = L0/2, L0 and
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6.2. Stationary droplet disks in 2d

3L/0/2 are unstable. In Fig. 6.3, the dynamic behavior of mode λ = L0 is shown.
We find a stationary (half-)width of approx. L ≈ 0.7, close to the value predicted
by the effective droplet model. The initial deformation increases, leading to a bend-
ing band with constant width. Comparison with Fig. 6.2C shows that the droplet
bands in the continuum model are slightly more stable than predicted by the effective
droplet model, but that the qualitative behavior matches well. In a simulation with
larger box size L0 = 512w and correspondingly also modes with smaller wave-vector
q, we find similar results. In this case, we find stationary bands for ϵ ≥ 0.12 and
the mode with n = 2 becomes unstable already for ϵ ≈ 0.15. Nucleation is found
for ϵ ≥ 0.23. This fits the analytical results, compare Fig. 6.2B, where antisymmetric
modes with long wavelengths become unstable for smaller supersaturation.

6.2 Stationary droplet disks in 2d

We now consider stationary disks in 2d, the equivalent of a spherical droplet in 3d. A
sketch of a stationary disk and its deformations can be seen in Fig. 6.4. The calcula-
tion of stationary state and its stability can be found in Appendix E. In Fig. 6.4B, the
stationary radii of droplet disks in 2d are shown in comparison to spheres. The lower
solution of the nucleation radius R̄c is virtually the same as for spheres, since they
have the same mean curvature. The larger stationary radius R̄s is approximately half
the radius compared to the spherical case, with a logarithmic correction. The thresh-
old supersaturation ϵ0 below which no stationary solution exists, is larger than for the
spherical case. The mode m describes deformations of the droplet disk, equivalent to
mode l in spherical droplets. The eigenvalues of different deformation modes with
m = 0 to 3 are shown in Fig. 6.4C for the larger stationary radius as a function of
the supersaturation for A = 10−4. Their functional behavior is similar to the modes
of the spherical droplet, which are shown in comparison. The m = 0 mode describes
changes in volume and is stable, the translationalm = 1mode is marginal, and defor-
mation modes become unstable consecutively for increasing supersaturation, starting
with the elongational modem = 2. The stability diagram of droplet disks with respect
to supersaturation and reaction amplitude is shown in Fig. 6.4D. It shows regions of
vanishing disks, stable stationary disks and unstable disks. Qualitatively, the results
are quite similar to spherical droplets, but shifted towards larger supersaturations and
smaller reaction amplitudes.

Numerical studies of 2d disks in the continuum model correspond well with the
analytical predictions of the effective droplet model. For A = 2.5 · 10−4, droplet
disks vanish for ϵ ≤ 0.05, stationary disks are seen for ϵ ≥ 0.1. The disks shape is
unstable for ϵ ≥ 0.2 with respect to the m = 2 mode, corresponding to an elliptical
deformation, while other modes remain stable. For ϵ ≥ 0.25, nucleation occurs. In
Fig. 6.5, snapshots are shown for ϵ = 0.22. We find that the droplet elongates into a
long band-like structure with two disk-like structures at both ends which move apart,
extending the band. For larger reaction amplitude A = 2.510−3, stable stationary
droplet with size of only a few times the interfacial width exist for ϵ ≥ 0.22, a larger
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Figure .: Stability of droplet disks in 2d. (A) Stationary droplet disk and its
deformation modes in 2 dimensions. A stationary disk in 2d (left) can be perturbed
with modes m, corresponding to a change in area (m = 0), a translation (m = 1),
an elliptical deformation m = 2 or higher order deformations. (B) Stationary disk
radius as function of the supersaturation for different reaction amplitudes. Dashed
lines show the equivalent results for spherical droplets in 3d. (C) Eigenvalues of
modes m = 0, 1, 2, 3 as function of the supersaturation for A = 10−4. Dashed lines
show the equivalent results of modes l = 0, 1, 2, 3 for spherical droplets in 3d. (D)
Stability diagram of droplet disks in 2d as function of the supersaturation and reaction
amplitude for elongational mode l = 2. Blue color denotes stable stationary disks,
the largest eigenvalue of unstable elongational deformations are shown in red (see
color bar). For comparison, the existence of stationary droplets (blue dotted line) and
their instability (red dotted line) for spherical droplets in 3d is shown. (Parameters:
k+/k− = 1, ν−/(k−∆c) = 1, D+/D− = 1, c(0)+ = 0)
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t=0 1 2

543

Figure .: Numerical solution of the continuum droplet model of a droplet disk
with initial shape perturbation. Time between snapshots∆t = 4·104t0. (Parameters:
A = 2.5 · 10−4, ϵ = 0.22, k+/k− = 1, ν−/(k−∆c) = 1, c(0)+ = 0. Simulation
parameters: box length L0 = 320w, initial radius R = 40w)

supersaturation compared to the case of a smaller reaction amplitude. For ϵ ≥ 0.3,
nucleation of new droplets occurs. The dependency of the existence and stability of
stationary disks on the supersaturation and the reaction amplitude thus agrees well
with the prediction of the effective droplet model. For the parameters of Fig. 6.5, our
simulations of stationary bands show that the band would be unstable with respect
to antisymmetric deformations, so that it eventually might deform, leading to shapes
similar to the ones shown in Fig. 6.3. For A = 2.5 · 10−4, no divisions seem to
occur, but for smaller reaction amplitudes disks might divide. The simulation time
increases strongly with lower reaction amplitudes – the dynamics becomes slower,
and the stationary size increases, so that a larger simulation box is necessary (compare
scaling analysis in chapter 3). Therefore, we did not test whether disks can divide for
smaller reaction amplitudes.

6.3 Stationary droplet cylinders in 3d

In chapter 5, we have seen that spherical droplets may elongate and then form cylin-
drical shapes instead of dividing. Here we will investigate the stability of cylindrical
droplets. In Fig. 6.6 the stationary state and different deformation modes are shown.
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. Shape instability of droplets with various geometries

Figure .: Cylinder with deformations of different modes. From left to right:
undeformed cylinder, modes m = 0, 1, 2, 3 (with constant wave-vector q).

The stationary solution of the cylindrical droplet and its concentration field share
features with the droplet disk in 2d. The functional form of the concentration field
resembles that of a disk, but with a different mean curvature of the cylinder, H(R̄) =
1/(2R̄). In Fig. 6.7A, stationary droplet radii for the spherical and the cylindrical
case are shown. The stationary solutions and their dependence on the parameters are
very similar to the spherical case, except that the stationary cylindrical solutions are
smaller by a factor of two. We can approximate the nucleation radius in the limit
R ≪ l± as

R =
β+γ

2ν+/k+
(6.4)

which is half the size of a spherical droplet. For the larger solution we find approxi-
mately (

R

l+

)2

ln R

l+
= −2

ν+
ν−

(6.5)

which, if the slowly varying logarithm is set to a constant, ln(R/l+) = −C, gives a
square-root behavior, with

R = l+

√
2C

ν+
ν−

. (6.6)

This is similar to the stationary radius found for spherical droplets, R̄ ≈ l+
√
3 ν+ν− ,

compare section 4.4.
We now consider the stability of stationary cylindrical droplets. The eigenfunc-

tions can be chosen as(
δc
δR

)
=
∑
nlm

ϵnlm

(
Pnmq(r)Φm(φ)Zq(z)
R̄ · Φm(φ)Zq(z)

)
eµnmqt . (6.7)

Here, the functions Φ and Z can be expressed as

Φm(φ) =

{
sin(mφ)

cos(mφ)
, Zq(z) =

{
sin(qz)
cos(qz)

(6.8)
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6.3. Stationary droplet cylinders in 3d

with m ∈ Z and q ∈ R, as the angle φ lies between 0 and 2π and cylinder in our
discussion is infinite in the z-direction. This describes all possible deformations in one
plane. Additional modes can be constructed by rotation φ′ = φ−φ0 and translation
z′ = z − z0. Due to the symmetry of the stationary shape, these do not give rise to
different dynamical behavior. In Fig. 6.6, some deformation modes are shown. For
q = 0, the modes change the cylinder cross-section with the perturbation modes m
of a droplet disk, compare Fig. 6.4A. For q = 0, the mode m = 0 corresponds to
a constant change in the cylinder radius. A perturbation of the m = 0 mode with
q > 0 is shown in the first panel of Fig. 6.6, showing variations of the cylinder radius
with a spherical cylinder cross-section. The m = 1 mode for q = 0 corresponds
to a translation of the cylinder, and for q > 0 it has a constant cross-section, but the
cylinder shape oscillates in one spatial direction, similar to a winding snake. For l = 2
and q = 0, the cylinder is deformed in one direction, so that the cross-section has
an elliptic shape. For q > 0, this deformation varies along the cylinder, so that the
cross-section is deformed in one spatial direction, then the cross-section is spherical,
then the cross-section is deformed in the orthogonal direction. For higher modes,
the pattern of the l = 2 mode continues, but instead of elliptic shapes, the shape of
the cross-section shows more variations.

We can calculate the stability of these modes, see Appendix E. In Fig. 6.7B-D
the stability diagrams of a stationary cylinder as a function of supersaturation and re-
action amplitude are shown for different modes m. The maximal eigenvalue µ(qmax)
of a mode m is shown (red color). The existence of stationary cylinders (blue line) is
almost equal to the existence of spherical droplets (dotted blue line). For modem = 0
(panel B), we find that stationary cylinders with small supersaturations are unstable
(red color). For increasing supersaturation, cylinders become stable with respect to
deformations of mode m = 0 (blue color), and then become unstable again. We find
that the intermittent region of stability includes the parameter region where spheri-
cal droplets become unstable (dotted red line). The mode m = 1 (panel C) is stable
for small supersaturations, and becomes unstable at a supersaturation that is slightly
smaller than the instability of spherical droplets. Larger modes become unstable con-
secutively for larger supersaturation, as demonstrated for mode m = 2 (panel D).
Additional detail is found in Appendix E. Considering all modes together, explicitly
the m = 0 and m = 1 modes, we find that almost everywhere, cylindrical droplets
are unstable, except for a small region for supersaturations smaller than ϵ2, the value
where spherical droplets become unstable (dotted red line), where the m = 0 and the
m = 1 modes both are stable.

In Fig. 6.8, the dynamic behavior of cylindrical droplets in the continuum model
are shown. We consider a set of parameters where several modes are unstable, with
initial conditions of a droplet cylinder with a small shape perturbation of mode m
and wave-vector q = nπ/L0, where L0 is the length of the simulation box in the
direction along the cylinder. A selection of unstable modes are shown in the figure.
We find different dynamic behavior of the cylindrical droplets depending on the ini-
tial conditions. For changes of the droplet radius along the cylinder length, mode
m = 0, the cylinder deforms and divides into separate droplets, which flatten and
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Figure .: (A) Stationary radius R̄ of stationary spherical droplets (dashed) and
stationary cylinders (lines) as function of the supersaturation ϵ for different reaction
amplitudes A. (B-D) Stability diagrams for different modes m = 0, 1, 2 as function
of the supersaturation ϵ and reaction amplitude A. The blue line shows the thresh-
old value above which stationary cylinders exist. The red line shows the onset of
instability for the given mode m with any wavelength q. The dotted lines show the
existence (blue) and stability (red) for spherical droplets. (Parameters: k+/k− = 1,
ν−/(k−∆c) = 1, D+/D− = 1, c(0)+ = 0)
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Figure .: Snapshots of the dynamics of a droplet cylinder in the continuum
model. The panels A-G show the time evolution of a droplet cylinder with initial
shape perturbation of mode m and wave-vector q = nπ/L0. Time is given in units
of ∆t = 50t0. Different initial conditions lead to different dynamical behavior. We
find that cylinders can divide into smaller substructures (panel A, C and D), they
can form connected elongated structures (panel A, B, F and G) and plates (panel E).
(Parameters: A = 8 · 10−3, ϵ = 0.2, k+/k− = 1, ν−/(k−∆c) = 0.8, c(0)+ = 0.
Simulation parameters: box length L0 = 100w, box width W = 40w, initial radius
R = 5.)
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become tori (panel A). The size of tori is set by the box, and we find that the radius
along the tori is unequal. The snake-like deformation modes with m = 1 have differ-
ent dynamical behavior for different wave-vectors. We find connected bent shapes,
with a variation of the cylinder radius along the shape (panel B), , or a division of
the deformed cylinder into separate droplet-like shapes (panel C and D), which may
deform and divide again (panel C). A larger wave-vector with corresponding smaller
deformation wavelength leads to denser droplets after the first division, so that no sec-
ond division occurs (panel D). The mode m = 2 with no variation along the cylinder,
q = 0, develops into a plate-like structure, where the finite box-size sets the width
of the plate. For finite wave-vector q, we find that the cylinder deforms into round
flat shapes which are connected by thinner segments, which may either open in the
center, forming a connected structure with rings (panel F), or a straight cylindrical
structure with round structures branching off (panel G).

We therefore find a rich dynamical behavior of unstable stationary cylinders. The
dynamics shows two typical features: Formation of connected structures with vari-
ations of the radius of the cross-section along the structure, and a division of such
structures into droplet-like shapes. Occasionally, also the formation of flat plate-like
regions is observed.

6.4 Summary

We found in this chapter that stationary states of chemically active droplets with dif-
ferent geometries exist in 1, 2 and 3 dimensions. These stationary shapes in 2 and 3
dimensions may, depending on parameter values, be stable or unstable with respect to
shape deformations. We find that active chemical reactions tend to stabilize a finite
size of droplets in the direction perpendicular to the interface not just for spherical
droplets, but for all shapes considered here.

Let us now try to sum up the qualitative similarities and differences between the
different geometries we considered in this chapter.

First, we find that stationary shapes without mean curvature do not have a critical
nucleation radius in the effective droplet model. This holds of stationary line segments
in 1d, bands in 2d and plates in 3d. In this model, flat stationary droplet shapes with
decreasing width exist for vanishing supersaturation, while an upper cutoff ϵ∞ is set
for larger supersaturations by R ≈ l−. In the continuum model where droplets have
a finite interfacial width w, we find that droplet with predicted stationary sizes of a
few w vanish instead.

Second, we find that a lower dimension tends to lead to more stable stationary
structures, which become unstable only for larger supersaturation or smaller reaction
amplitude. Comparing flat stationary droplet shapes, we find that line segments in
1d are always stable (meta-stable for the translational mode), and bands in 2d are
more stable compared to plates in 3d, becoming unstable only for larger supersatu-
ration. Equally, we find that disks in 2d become unstable only for larger values of
supersaturation than spherical droplets.
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6.4. Summary

Finally, let us comment on the qualitative behavior of unstable systems. We found
that the antisymmetric modes become unstable first, and often dominate the observed
dynamics for many of the stationary structures we discussed here. For these antisym-
metric modes, the width of the structure remains constant, and the structure is only
deformed, such as antisymmetric modes in bands and plates, and m = 1 modes in
cylinders. Such modes do not exist for disks and spheres, where instead elongational
modes dominate the dynamical behavior. We have seen for stationary cylinders that
the resulting dynamics is characterized by a competition between droplet division and
the creation of elongated connected structures.

We have demonstrated in this chapter that the dynamic behavior of the station-
ary states of chemically active droplets is quite different from the behavior of passive
droplet shapes. Passive droplet shapes, such as droplet cylinders (also called jets) are
always unstable with respect to certain deformations variations of the cylinder radius
along its length, corresponding to the m = 0 mode we discussed for cylinders, see
Rayleigh (1878); Eggers (1997). We found for chemically active cylinder droplets that
the m = 0 mode is not generally the most unstable one. For intermediate supersat-
urations only the m = 1 mode corresponding to snake-like deformations is unstable,
and other modes become unstable for large supersaturations. We even find regimes
where the cylindrical shape is stable with respect to all shape deformations, where the
Plateau-Rayleigh instability is suppressed by the active chemical reactions in our sys-
tem. This is due to the fact that the instability of chemically active droplet shapes is
a flux-driven instability as for spherical active droplets, and not driven by the surface
tension as in the passive case. We therefore again see in this chapter that chemically
active droplets may behave in novel ways that demonstrate their out-of-equilibrium
nature.
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Role of hydrodynamic flows in chemically driven
droplet division 7

In the previous chapters, we considered the dynamics of chemically active droplets
with a minimal model of two components which phase separate, and are converted
into each other by nonequilibrium chemical reactions so that inside the droplet the
outer material is created, and a supersaturation of droplet material is maintained out-
side. We found that in the limit of large viscosity such droplets have a stationary size
that can be unstable with respect to shape changes so that droplet can divide. Gen-
erally, such droplet dynamics is a hydrodynamic problem because surface tension in
non-spherical droplets drives hydrodynamic flows that redistribute material and de-
form the droplet shape, see Rayleigh (1892); Chandrasekhar (1981); Constantin et al.
(1993); Paulsen et al. (2014). In this chapter, we study the influence of hydrodynamic
flows on the shape changes of chemically active droplets. We show that chemical re-
actions in active droplets can perform work against surface tension and flows, giving
rise to a shape instability that can result in droplet division even in the presence of
hydrodynamic flows.

The content of this chapter has been published in Seyboldt and Jülicher (2018).

7.1 Stability of droplets with hydrodynamic flows

Until now, we ignored the contribution of hydrodynamic flows in the shape dynamics
of deformed droplets by considering the limit of infinite viscosity, F → ∞ with
normalized viscosity F = wη−/(γτ) inside the droplet, and a finite ratio η+/η− of
the viscosities in both phases.

Here we consider stationary droplets and their stability with the inclusion of hy-
drodynamic flows, for the full set of equation, Equations (3.20)-(3.31), of the ef-
fective droplet model. For this, we solve the Stokes equation of an incompressible
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. Role of hydrodynamic flows in chemically driven droplet division

diffusive flux:

convective flux:

B-droplet

A B

Figure .: Chemically active droplet described by an effective droplet model. (A)
Sketch to illustrate diffusive and convective fluxes (in 1d). In a diffusive flux, parti-
cles (colored spheres) exchange positions, leading to a transport of material without
net momentum which decreases concentration differences between volume elements,
described by diffusive flux j = −D∇c. In a convective flux, all particles move in
one direction (in 1d) so that a net momentum exists, and the particle movement is
independent of the concentration within the phases, with a convective flux j = vc.
(B) Concentration field c of the droplet material B (blue and green color) of a station-
ary droplet (interface in black). Chemical reactions B → A create a sink of droplet
material B in the droplet, and reactions A → B create a supersaturation ϵ of droplet
material in the A-rich phase outside. This creates concentration gradients of B, which
drive diffusion fluxes of droplet material, while A flows in the opposite direction. The
stationary droplet size results from the balance of the fluxes across the interface. (Pa-
rameters: ϵ = 0.176, A = 10−2, η+/η− = 1, k+/k− = 1, ν−/(k−∆c) = 1,
D+/D− = 1, β− = β+, c(0)+ = 0)

fluid for both phases separately, with jump conditions across the interface. The fluid
flow is driven by stress differences at different positions at the droplet interface. The
flux of the concentration field in both phases then has two contributions, a diffusive
and a convective one. These are sketched in Fig. 7.1B. The diffusive flux is driven
by gradients in concentration, and is created by an exchange of molecules between
neighboring volume elements, without any net momentum. The convective flux is
created by the fluid moving with hydrodynamic velocity v, so that the concentration
field gets advected and thus moves along the flow, so that the concentration within a
volume element changes. The hydrodynamic velocity in the effective droplet model is
independent of the concentration field and only depends on the shape of the droplet.

First, we find that hydrodynamic flows do not influence the stationary state of a
spherical droplet. We find nonequilibrium steady state solutions to Equations (3.20)-
(3.31) with a spherical droplet of stationary radius R̄ and stationary concentration
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7.1. Stability of droplets with hydrodynamic flows

field c̄(r), where r is the radial coordinate, see Appendix F.1. The stationary pressure
p̄ exhibits a jump 2γ/R̄ across the interface and no hydrodynamic flows exist, v̄ = 0.
An example for a stable non-equilibrium steady state with steady state concentration
profile inside and outside the droplet of radius R̄ is shown in Fig. 7.1.

As in the previous chapters, we discuss the properties of the system as a func-
tion of external supersaturation ϵ = ν+/(k+∆c) and the dimensionless reaction rate
A = ν−τ/∆c inside the droplet. The supersaturation is in our system generated
by reactions outside the droplet and in steady state corresponds to the concentration
for which s+ = 0. Here, ∆c = c

(0)
− − c

(0)
+ and we have introduced the time scale

τ = w2/D+, where w = 6β+γ/∆c is a characteristic length scale. Let us briefly
recap the properties of the stationary solutions. The stationary radii as a function of
supersaturation ϵ are shown in Fig. 7.2A-C as solid lines for different values of A.
For values of ϵ smaller than a threshold value ϵ0, no stationary radius exists. For val-
ues ϵ > ϵ0 two steady state radii R̄c and R̄s exist, which become equal at ϵ0 where
they approach a value R̄0. The smaller steady state radius R̄c is a critical nucleation
radius similar to the critical droplet radii found in passive systems. The larger ra-
dius denoted R̄s stems from the interplay of phase separation and chemical reactions,
Zwicker (2013); Zwicker et al. (2015, 2017). As the supersaturation reaches a value
ϵ∞ =

√
(D−k−)/(D+k+)ν−/(k−∆c), the stationary radius R̄s diverges.

We discussed in 4 simple expressions for the stationary radii in the limit of small
A while keeping the ratios ν−/(k−∆c) and k+/k− of reaction parameters fixed. In
this limit, the chemical reactions fluxes vanish as s± ∝ A and the threshold value ϵ0
vanishes as ϵ0 ∝ A1/3. The critical nucleation radius then behaves as R̄c ≃ w/(6ϵ)
and the larger steady state radius R̄s ≃ w(3ϵA)1/2 where ϵ0 ≪ ϵ ≪ ϵ∞, see Fig. 7.2B
and Appendix F.2.

The steady state solutions are independent on the fluid viscosity, however the
droplet dynamics is affected by hydrodynamic effects. We now investigate the role
of hydrodynamic flows on chemically driven shape instabilities that can give rise to
droplet division. We perform a linear stability analysis at the stationary state given
by X̄ = (c̄, R̄, p̄, v̄) for small perturbations δX = (δc, δR, δp, δv). The dynamics of
these perturbations can be represented using eigenmodes

δX =
∑
n,l,m

ϵnlmXnlme
µnlmt , (7.1)

with Xnlm = (cnlYlm, R̄Ylm, plYlm,vlm), where Ylm(θ, ϕ) are spherical harmon-
ics with angular mode indices with l = 0, 1, . . . and m = −l, . . . , l. The index
n = 0, 1, . . . denotes radial modes. The eigenmodes exhibit an exponential time de-
pendence with a relaxation rate given by the eigenvalue µnlm. The mode amplitudes
are denoted ϵnlm. The concentration modes are characterized by the radial functions
cnl(r). The pressure modes are described by pl(r) and the velocity modes vlm(r, θ, φ)
can be expressed as

vlm = vrlmY lm + v
(1)
lmΨlm + v

(2)
lmΦlm . (7.2)
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. Role of hydrodynamic flows in chemically driven droplet division
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no stationary
droplets

shape instability

stable droplets

no stationary
droplets

no stationary
droplets

stable droplets

stable droplets

shape instability

shape instability

Figure .: Stationary radii and onset of shape instability. A–C: Stationary
radius as a function of supersaturation for different reaction amplitudes A =
10−8, 10−7, . . . , 101. The stationary radii (lines) are independent of the dimension-
less viscosity F = wη−/(γτ), while the onset of instability (red dots, connected by
dotted red line) for the different curves varies in the three figures, which show dimen-
sionless viscosities F = ∞, 1000, 10 (left to right). The blue line colors mark stable,
the red ones unstable stationary radii with respect to the elongational l = 2 mode. In
panel B the scaling behavior of the nucleation radius R̄c and the stationary radius R̄s

are indicated. D–F: Stability diagram of stationary droplets of size R̄s, as a function
of reaction amplitude A and supersaturation ϵ for different dimensionless viscosities
F = ∞, 1000, 10 (left to right). For small supersaturation and large reaction am-
plitudes, no stationary radius exists (white). For large supersaturation, the stationary
radius diverges (gray). In the region between these regimes, the stationary solution
can be stable (blue) or unstable (red) with respect to shape perturbations of the l = 2
mode. For decreasing F , the stable regime grows, and the minimal supersaturation
ϵ∗ at which an instability can be found increases, as well as the corresponding reaction
amplitude A∗. The scaling relations (dashed lines) for the regime of stable droplets
and the onset of instability are indicated, with prefactors according to F.2. (Parame-
ters: η+/η− = 1, k+/k− = 1, ν−/(k−∆c) = 1, D+/D− = 1, β− = β+, c(0)+ = 0)
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7.1. Stability of droplets with hydrodynamic flows

whereY lm(θ, φ) = erYlm,Ψlm(θ, φ) = r∇Ylm andΦlm(θ, φ) = er×Ψlm are vec-
tor spherical harmonics Barrera et al. (1985) and the radial functions vrlm(r), v

(1)
lm (r)

and v
(2)
lm (r) characterize the velocity field. The radial functions can be obtained by

solving the linearized dynamic equations using the corresponding boundary condi-
tions, see Appendix F.1. The Stokes equation can be solved for a given shape pertur-
bation independent of the concentration field so that the velocity field and pressure
field is independent of the radial mode n. The radial part of the concentration field
obeys a Helmholtz equation with an inhomogeneity that stems from hydrodynamic
flows. The homogeneous part is solved by modified spherical Bessel functions and the
inhomogeneous solution can be found using Greens functions. Using the dynamic
equation for the shape changes of the droplet Eq. (3.31), we obtain an equation for
the eigenvalue µnlm,

µnlm =
vrl (R̄)

R̄
+

D+

∆c

(
c̄′′(R̄+) +

c′nl(R̄+)

R̄

)
−D−
∆c

(
c̄′′(R̄−) +

c′nl(R̄−)

R̄

)
.

(7.3)

Here, the primes denote radial derivatives. Note that Eq. (7.3) is an implicit equa-
tion for the eigenvalues µnlm because the radial concentration modes cnl(r) depend
on µnlm, see Appendix F.1. Eq. (7.3) is independent of the index m, therefore the
degeneracy of an eigenvalue µnl is at least 2l+ 1. The description of the shape is the
same as in the previous chapters: When all µnl are negative, the spherical shape is sta-
ble. The modes with l = 0 correspond to changes in droplet size without flows. They
are always stable for R̄ = R̄s and unstable for R̄ = R̄c. Thus droplet smaller than
R̄c will vanish and droplets larger will grow towards the size R̄s. Thus we consider
the stability of R̄ = R̄s in the following. The modes with l = 1 do not involve shape
deformations of the droplet and are thus not associated with flows. There always ex-
ists a marginal mode with µl=1 = 0 corresponding to overall translations where the
droplet and all concentration fields are displaced and then stay in the new position.
Here we consider shape instabilities for which a mode with l > 1 becomes unstable.
Because shape deformations induce flows, this instability depends on the dimension-
less viscosity F = wη−/(γτ), as well as the ratio of viscosities in the two phases,
η+/η−.

The hydrodynamic flows influence the solution in two ways. First, they contribute
a term to the concentration field, which has a different spatial form due to the con-
vection. Numerically, we find that this term tends to be rather small in the cases
discussed here. Second, the hydrodynamic flows advect the droplet interface, so that
the flows directly influence the shape dynamics. This is reflected by the first term in
Eq. (7.3). For the passive flows we consider, the hydrodynamic flows always oppose
the droplet deformation. The modes of the flow field depends on only a few quantities
in our linear description: The normalized viscosities, represented by F = wη−/(γτ)
and η+/η−, the deformation mode l and the relative distance from the droplet inter-
face, via r/R̄. The inverse of the normalized viscosity F can also be interpreted as a

91



. Role of hydrodynamic flows in chemically driven droplet division
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Figure .: Pressure and velocity profiles for droplets with different size but equal
deformation of mode l = 2 within the linear analysis of the effective droplet model.
Different pressure profiles (red: increase in pressure, blue: decrease) lead to equal
velocities (arrows) at the interfaces in both examples. The undeformed droplets are
shown in gray, the deformed in red. (Parameters: Deformation ϵ020 = 0.1)

characteristic velocity, with v ∝ 1/F . The perturbation modes of the pressure and
hydrodynamic flow for the l = 2 mode are shown in Fig. 7.3 for two droplets of dif-
ferent sizes, but the same relative deformation (red shapes) in an infinite system. Due
to the linear analysis, the fields are evaluated in the regions of the undeformed droplet
(gray). We see that the pressure modes of the deformation are stronger in the smaller
droplet. The Laplace pressure at the tips of the deformed droplet is larger inside, and
smaller outside, while the reverse is true at the sides of the droplet. The flow field has
the same amplitude in both examples (compare the lengths of the arrows), and points
against the deformation, flowing inward at the tips and outward at the sides.

We now discuss the influence of hydrodynamic flows on the stability diagram
with respect to ϵ and A. If we increase the supersaturation ϵ while keeping the other
parameters fixed, the steady state can become unstable with respect to the mode l = 2
for a critical value ϵ = ϵc. In Fig. 7.2A-C, the onset of instability µ = 0 for the
largest eigenvalue µ of the stationary radius is shown as a red dot, and unstable radii
are indicated by red lines. Different lines correspond to different supersaturations,
and the panels show different values ofF . In Fig. 7.2D-E, the corresponding stability
diagrams of stationary droplets are shown as a function of the supersaturation and the
reaction amplitude for different values of F . For large A and small ϵ, no stationary
radius exists (white regions), so that any droplet would shrink and disappear. For
large ϵ, the stationary state diverges (gray regions). Spherical droplets are stable in
the blue regions. Stationary spherical droplets are unstable inside the red region, the
surrounding black line marks the shape instability with respect to the l=2 mode. The
region where spherical droplets undergo a shape instability exists for ϵ ≥ ϵ∗, which
depends on F . The value of A for which the shape instability occurs at ϵ = ϵ∗ is
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7.2. Scaling of the hydrodynamic stability diagram

A B

Figure .: Droplet deformation due to hydrodynamic flows (A) and diffusive fluxes
(B). (A) Flow and pressure profile of a droplet of stationary radiusR/w = 10with de-
formation of the l = 2, m = 0mode within the linear analysis of the effective droplet
model. The profiles are symmetric around the deformation axis. The pressure inside
and outside is shown in red/blue (see legend), while streamlines show the normalized
flow vF , where the thickness of the streamlines indicates regions of stronger/weaker
flow. (B) Perturbation of the concentration field (color) and associated radial diffusive
flow (black arrows) without hydrodynamic flows, F → ∞. The interface movement
due to the diffusive flows (gray) shows that the droplet is unstable. For small reaction
amplitude A, the hydrodynamic and diffusive flows can simply be added to yield the
interface movement (compare scaling analysis). (Parameters: ϵ = 0.176, A = 10−2,
η+/η− = 1, k+/k− = 1, ν−/(k−∆c) = 1, D+/D− = 1, β− = β+, c(0)+ = 0)

denoted A∗, see Fig. 7.2. Comparing Fig. 7.2E-F with D, we see that hydrodynamic
flows introduce a lower cutoff for the instability with respect to the reaction rate A
which increases for an increasing influence of hydrodynamic flows, corresponding
to decreasing value of F and also depends on supersaturation ϵ, . For larger reaction
rates,A > A∗, the stability diagram is mostly independent of the hydrodynamic flows.
Both the reaction rate A and the supersaturation ϵ are quantities that are intrinsically
nonequilibrium and are driven by an energy input. We can thus interpret the results as
a competition between nonequilibrium drivingwhich creates the shape instability, and
hydrodynamic flows which tend to bring the system towards equilibrium. For strong
nonequilibrium driving, withA and/or ϵ large enough, and small hydrodynamic flows,
we therefore find the instability even in the presence of hydrodynamic flows.

7.2 Scaling of the hydrodynamic stability diagram
For small A, the onset of instability can be describes by simple scaling behaviors that
capture the competition between flows and nonequilibrium reactions. We find that
in this limit the contribution of the advection to the concentration field vanishes,
so that only the advection of the interface enters. Therefore, the dynamics of the
droplet interface is a simple sum of its advection with the hydrodynamic flows and
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. Role of hydrodynamic flows in chemically driven droplet division

the contribution of the flux-driven instability of the concentration field, see Fig. 7.4.
For the scaling of the stationary radius R̄ with R̂ = R̄A1/3/w, ϵ̂ = ϵA−1/3 and
l̂± = l±A

1/2, we find for the eigenvalue

µ̂nlm = −dl

R̂

A−2/3

F
+

2

3
(l − 1)− D+

D−

(l − 1)gl

R̂
3 +O(A1/6) . (7.4)

The first term describes the influence of hydrodynamic flows on the instability. The
remaining two terms describe the instability without hydrodynamic flows. The su-
persaturation is hidden in parameter R̂, via Eq. (4.21). For the larger solution R̄s, a
larger supersaturation corresponds to a larger stationary radius, with approximately
R̂ ≃

√
3ϵ̂. The last two terms capture the competition of surface tension and the flux-

driven instability for the concentration field, where larger supersaturation increases
the instability. The first term that describes the hydrodynamic flows is negative (for
dl > 0), implying a stabilizing influence. The term decreases in amplitude for increas-
ing supersaturation, increasing reaction amplitude, or increasing normalized viscosity.

We can analyze Eq. (7.4) in detail, see Appendix F.2. We find ϵ∗ ∝ F−1/2 and
A = A∗ with A∗ ∼ F−3/2 (compare Fig. 2E-F). For A < A∗, hydrodynamic
flows govern the onset of instability which occurs at a value of A which behaves as
A ∝ ϵ−1F−2. For A > A∗, hydrodynamic flows can be neglected as compared to
diffusion fluxes and the onset of instability occurs for A ∝ ϵ3. These two scaling
regimes are indicated in in Fig. 7.2D-F by dashed lines. A derivation of these results
including prefactors is given in F.2.

7.3 Droplet division with hydrodynamic flows
We next address the question whether the shape instability found in the linear stabil-
ity analysis can indeed give rise to droplet divisions in the presence of hydrodynamic
flows in the nonlinear regime of the dynamics. We use the continuum model in-
troduced in Chapter 3, which is based on the Cahn-Hilliard model, see Cahn and
Hilliard (1958), for phase separation dynamics, extended to include chemical reac-
tions and hydrodynamic flows, that can capture topological changes of the interface.
We include chemical reactions via a source term linear in the concentration as well as
advection by the hydrodynamic flow which is described by the incompressible Stokes
equation. Using a semi-spectral method, Chen and Shen (1998), we obtain numerical
solutions in a cubic box with no-flux boundary conditions, see Appendix D.2.2.

Starting from a weakly deformed spherical droplet, we find regimes where the
droplet disappears, where it relaxes to a stable spherical shape and where it undergoes
a shape instability, consistent with the linear stability analysis of the effective droplet
model. The transitions between these regimes occur for parameter values close to
those predicted by the linear stability analysis, compare Appendix D.3. In the unsta-
ble regime, droplets typically divide. This shows that the droplet division reported
previously can also occur in the presence of hydrodynamic flows. Fig. 7.5 shows snap-
shots of the droplet shape together with corresponding hydrodynamic flow fields on
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7.3. Droplet division with hydrodynamic flows

A B

C D

Figure .: Numerical solution in 3d of an extended Cahn-Hilliard model with
chemical reactions and hydrodynamic flows reveals that droplets can divide despite
the presence of hydrodynamic flows. Panels A-D correspond to time points t/τ =
100, 2100, 2700, 2800, respectively, where τ = w2/D is a diffusion time, with dif-
fusion constant D and interfacial width w. The dynamic equations were solved nu-
merically in a three-dimensional box. Shown are two-dimensional cross-sections of
the droplet shape (black) together with streamlines (gray). Arrows (colored) indicate
the direction and magnitude of the flow (normalized by respective maximal veloci-
ties vmax · w/D = 0.0016(in A), 0.0048(B), 0.0034(C) and 0.0047(D) ). (Param-
eters: F = 24, A = 8 · 10−3, ϵ = 0.2, η−/η+ = 1, c(0)+ /∆c = 0, k+/k− = 1,
ν−/(k−∆c) = 0.8)
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the symmetry plane of a dividing droplet at different times. At early times when the
droplet deformation is weak, the flow field is similar to the l = 2mode obtained from
the linear theory, Fig. 7.5 A. As the droplet elongates and its waistline shrinks, the
flow field becomes more complex, see Fig. 7.5 B,C. The flow field shown in Fig. 7.5
C exhibits two additional vortex lines that form rings around the axis of rotational
symmetry. Similarly, after division, two further vortex rings occur, see Fig. 7.5 D.
Interestingly, for small deformations the hydrodynamic flow direction opposes the
directions of interface motion at the main droplet axes, see Fig. 7.5 A,B. For larger
deformations at later times the flow switches its direction along the long droplet axis
where it assists interface motion. At the waistline, the flow velocity becomes small,
see Fig. 7.5 C. After division, the flow field between the daughter droplets has very
small magnitude, while strong flows at the outer sides move the droplets apart Fig. 7.5
D.

This example shows that division of active droplets can occur even if hydrody-
namic flows that oppose division are taken into account. Because flows act in op-
position to the initial deformation of the sphere, the linear stability analysis already
provides the key information of whether droplet division can occur for a given value
of dimensionless viscosity F , see Fig. 7.2.

7.4 Summary
We have shown that the spontaneous division of chemically active droplets involves
mechanical work against surface tension as droplets deform. Active droplets thus
can transduce chemical energy to mechanical work and droplet division is therefore
a mechano-chemical process. The surface tension of the droplet creates pressure gra-
dients as the droplet becomes non-spherical that lead to hydrodynamic flows. Be-
cause the flows generated act against the shape deformation, droplets divide only for
sufficiently large viscosity or sufficiently small surface tension and sufficiently large
reaction rates. We show that the dependence of the onset of stability on parameters
is captured for small reaction fluxes by simple scaling relations.
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Chemically active droplets as a model for protocells
at the origin of life 8

We will now discuss the minimal model presented in this thesis and its dynamic be-
havior in the context of the origin of life. For this we present a list of properties that
might constitute a protocell. Then we discuss chemically active droplets as a model
for such a protocell. Finally, we estimate parameter values of the model for realistic
systems to assess in which regimes the droplet division might be observable. We close
with a short discussion of possible realizations.

Parts of this chapter has been published in Zwicker et al. (2017) and Seyboldt
and Jülicher (2018).

8.1 Protocells – simple precursors of biological cells
Living systems today consist of cells that can grow and divide. Cells take up mat-
ter from the outside world to grow, they release waste products, and they are able
to divide, creating more cells. All of these processes are organized, performed and
regulated by a large network of chemical reactions with the participation of a great
number of different biological molecules such as proteins, RNA and DNA.

We might imagine that during the evolution of life, precursors of cells (called pro-
tocells) formed, which had already some of the properties of cells, but with a simpler
structure and reaction network, and with less precise control over the processes occur-
ring inside. Since we do not know which property of a cell evolved at which point
in time, we propose instead the following list of minimal properties that make cells
alive:

• The protocell should be a distinct chemical environment. Inside the protocell
should be different molecules than outside – these could be thought of as or-
ganic molecules or precursors thereof – and different chemical reactions than
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. Chemically active droplets as a model for protocells at the origin of life

outside (the ’metabolism’ of the protocell). Cells today are homeostatic, that
is, they can regulate themselves to have constant conditions for the reactions
inside. Therefore a controlled or regulated environment would be a useful prop-
erty for a protocell to have as well.

• The protocell should consume food and produce waste. All cells today need
food in the form of energy and certain materials, and the reactions inside them
(theirmetabolism) convert food into energy carriers such as ATP and into build-
ing blocks for the cell, and produce a low-energetic waste that leaves the cell.
If cells don’t metabolize food, they are dead or in stasis. Therefore the steady
supply of food and the metabolic reactions in the cell can be considered as one
of the most important properties of living systems.

• The system of protocell and environment should be a non-equilibrium system.
As the protocell consumes the food, new food should be created outside it, and
the waste should dissipate. Living systems in a closed system, such as bacteria
in a Petri dish, die after using up all food.

• The protocell should be able to divide. If a protocell could not divide, local
fluctuations might destroy it. A dividing cell however, can multiply, change
on the way (thus providing a simple mechanism for evolution) and conquer
new territories. Therefore, to have a transition from a protocell to cells today,
division is a necessary property.

This short list neglects many properties of cells that are important today, such as
a membrane or DNA, but concentrates instead on the most abstract properties of life.
The list of properties also does not specify what or how complex the participating
molecules should be, and therefore the order of the formation of life is left open, so
that protocells could have formed from simple inorganic material, or after a long time
of chemical evolution of complexmolecules in an RNAworld or out of proteins, RNA
and DNA.

8.2 Discussion of chemically active droplets as protocells

We will now consider droplets with chemical reactions as a simple model system for
such protocells.

8.2.1 Model of chemically active droplets as protocells

We propose a simple model for a protocell that consists of a droplet of organic ma-
terial. We describe the material of the droplet by an effective component D that
phase separates from the surrounding solvent S (typically water) and forms a droplet.
Chemical reactions create droplet material from nutrientN , N → D, predominantly
inside the droplet. Over time, the droplet material decays into low energy waste W ,
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Figure .: Chemically active droplet as model for a protocell. A) Schematic rep-
resentation of an active droplet as a simple model of a protocell. The droplet (green)
consists of a droplet material D. Nutrients N of high chemical energy can diffuse
into the droplet. Inside the droplet, N is transformed to D by chemical reactions.
Droplet material D is degraded chemically into low energy waste W that leaves the
droplet. B) Simple model, with droplet material B and soluble component A. The
system is driven by a chemical fuel C that is transformed to the reaction product C ′.

D → W . Thus the protocell droplet consumes food and produces waste. Both re-
actions should occur spontaneously, so that the energy of the nutrient is higher than
the droplet material, which has a higher energy than the waste. Both reactions to-
gether form a minimal description of the metabolism of the droplet while leaving the
concrete realization open. Such a system would over time decay into an equilibrium
system containing large amounts of waste. The same thing would happen with cells
in a closed environment - they would eat all food and then die. This can be remedied
by considering an open system with a reservoir of nutrients, and one of waste, so that
the concentrations of both remain constant over time. We can also consider a system
where the waste is recycled into the nutrient using an external energy input, W → N .

To animate the possible existence of such a system, let us consider a droplet
formed of polymers. Typically polymers D decay over time into monomers W , due
to the entropic difference, which disperse in water, modeling reaction D → W . The
addition of activated monomers N extend the polymers, or form new ones, yielding
reactionN → D. Both processes might be controlled by catalysts that predominantly
partition into the droplet.

The simple model for a protocell consisting of a droplet with chemical reaction
is shown in Fig. 8.1A. The model thus fulfills the first three conditions for a proto-
cell presented in the previous section - the protocell droplet forms a distinct chemical
environment, it consumes nutrient and produces waste, and the system is out of equi-
librium due to the external energy input in the backward reaction. Combining water
and waste into an effective component A and to combine nutrient and droplet ma-
terial into an effective component B yields the minimal model studied throughout
this thesis. This reduced system is shown in Fig. 8.1B. Mathematically, this reduced
model corresponds to a systemwhere water and waste are always well mixed (for exam-
ple due to a large mobility of waste in water), and where the same applies to nutrient
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. Chemically active droplets as a model for protocells at the origin of life

and droplet material.

8.2.2 Droplet division in the context of protocells

We showed in this thesis that chemically active droplets such as described here have
stationary spherical states, which can become unstable with respect to shape deforma-
tions, and divide. We therefore find a simple division mechanism of droplets that is
driven by nonequilibrium chemical reactions, which model the protocell metabolism
and nutrients.

The stability diagram of chemically active droplets, compare Fig. 7.2E, can be in-
terpreted in the context of droplets as protocells: the supersaturation ϵ corresponds
to the amount of nutrients available for the protocell droplet, while the reaction rate
A characterizes the metabolism of the protocell. If a protocell operates at a metabolic
rate A near or below A∗, which is set by the droplet viscosity and surface tension, it
can control the division via the metabolic rate – a faster metabolism (larger A) may
lead to a division of the droplet due to the shape instability, while a slower metabolism
would lead to a stable, stationary size of the protocell. For larger amounts of nutrients,
the metabolic rate necessary for division would decrease. Additionally, the amount
of nutrients available control the stationary size of the protocell, and below a critical
amount of nutrients, protocells would ’starve to death’, in the region without station-
ary droplets. In a noisy system where the nutrients vary over time, a metabolic rate
below A∗ would ensure a wide regime of possible supersaturations where stationary
protocells may exist, while divisions might be triggered in times with ample amounts
of nutrients. Comparing the phase diagrams for different parameters (for example
the dimensionless viscosity F as in Fig. 7.2D-F), we see that the physical parameters
of the droplet influence the operation of the system. This poses a route for protocells
to adapt and evolve by varying their physical properties due to the use of enzymes
for the reactions or due to changes in the droplet composition, which might change
viscosity or surface tension.

It also poses a possibility to test the usefulness of chemically active droplets as a
model for protocells. We will estimate realistic parameters in the next section.

8.2.3 Are chemically active droplets alive?

We will now briefly discuss a rather philosophical question: Are chemically active
droplets alive?

We introduced chemically active droplets as a physical nonequilibrium system,
and our minimal model is much simpler than a biological cell. Therefore, intuitively,
the answer should be a clear no. On the other hand, life has occasionally been de-
fined as ’an open system which makes use of gradients in its surroundings to create
imperfect copies of itself ’, see Prigogine et al. (1972). We have not shown that the
droplets are ’imperfect copies’, but considering division in the context of a noisy sys-
tem, this seems a reasonable extension. Therefore, according to this simple physicist’s
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8.2. Discussion of chemically active droplets as protocells

definition, dividing droplets might be considered alive. Similar definitions, such as
via self-organization and reproduction, could similarly be considered.

However, these are rather abstract definitions. Let us now consider a more bio-
logical definition, according to which life needs to have the following characteristics:
Homeostasis, Organization, Metabolism, Growth, Adaptation, Response to stimuli
and Reproduction, Alberts et al. (2013).

• Homeostasis, the regulation of the internal environment to maintain a constant
state, is, at least in part, provided by the phase separation. The phase separation
can be perturbed by some changes in the environment, but the same is true for
cells.

• Life needs to be composed of one or more cells (Organization). Naturally,
chemically active droplets do not fulfill this point. However, this points seems
rather restrictive, especially without a proper definition of ’cell’, and will likely
not work for early life on Earth, but also not for life on other planets. We might
therefore replace it by the requirement of certain molecules, such as polymers
composed of amino acids (proteins) and of nucleic acids (RNA, DNA), chem-
ical reactions such as translation and transcription, and possibly a membrane.
Because we did not assume particular molecules in our model, droplets might
be composed of proteins and RNA, which have been shown to phase separate
together. However, a membrane would constitute a major barrier to the divi-
sion discussed in this thesis. Additionally, our minimal model is quite different
from the complex structure and chemical network of a cell. Therefore, wemight
judge that chemically active droplets do not fulfill this point.

• Life needs a metabolism, which converts energy and chemicals into cellular
components and decomposing them. Our chemical reactions provide a simple
model for this.

• Life needs to be able to grow. We have shown that our droplets grow towards
a stationary size.

• Adaptation is another necessity of life - by changing over time in response to
the environment, evolution may take place. This point is not fulfilled by our
current model of chemically active droplets.

• Response to stimuli, such as plants turning towards the sun, is a difficult point
to discuss, because it conflicts with homeostasis. However, droplets inside a
gradient of food (locally varied supersaturation) may move into the gradient
due to a net growth in that direction. Since a droplet is an open system, other
responses can be considered possible as well. Finally, the reproduction of life
sexually or asexually into two organisms has been described via droplet division,
and therefore is possible for chemically active droplets.

To conclude, chemically active droplets fulfill a number of the characteristics of
life, all except the organization in cells and adaptation. Considering adaptation and
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. Chemically active droplets as a model for protocells at the origin of life

evolution as one of the main traits of life, we would be led to conclude that chemically
active droplets are not alive, at least not using the minimal model discussed in this
thesis.

8.2.4 Open questions

We have shown that chemically active droplets have properties that can be associated
with protocells at the origin of life. Also, we have argued that they do not fulfill
all points of the definition of being live. If we assume that life might have started
as protocell droplets as explained in this section, a number of questions arise. Open
questions are: What kind of molecules could have formed protocell droplets? A num-
ber of experiments on the basis of protein/RNA-droplets and/or complex coacervates
exist, Aumiller and Keating (2016); Nakashima et al. (2018); Rieß et al. (2018). These
might be suitable starting points to consider. We will estimate parameters for droplet
division of such systems in the next section. This leads us to the next question: How
would the droplet behavior change if a large number of different components are
present? The current theory uses a binary system, so a study of phase separation and
droplet division in multi-component systems would be helpful to understand how the
behavior differs in complex systems. We might assume that the dynamic behavior can
be similar to the binary system if the components can be split into groups with simi-
lar behavior. However, we generally expect additional effects, such as the formation
of different droplet phases, the possibility of surface changes due to surfactants and
additional spatial dynamics, Lach et al. (2016). Such a multi-component mixture
could provide solutions for additional questions. The most intriguing one is that they
could open a path from chemically active droplets towards living cells, by providing
ways of adaptation and growing complexity. One major obstacle of droplets evolving
into cells is the acquisition of a membrane: The attraction of a membrane (or gener-
ally, surfactants) to droplet interfaces is a natural occurrence. However, the division
mechanism of droplet protocells would likely need to change with the acquisition of
a membrane.

Finally, we might ask if droplets were precursors to life on Earth. Sadly, it will
likely not be possible to answer this question. The origin of life is a historical event,
which would need to be studied with geological measures where it seems highly un-
likely to find remnants of chemically active droplets and following their historical
evolution. The only way to understand the origin of life today therefore seems to be
understanding the different avenues that this process could have followed, and provid-
ing scenarios in which they would have been more or less likely. It will be interesting
to see which further contributions nonequilibrium physics and chemistry may hold.

8.3 Examples of parameter values for dividing droplets

Could the shape instability and division discussed in this thesis occur in experiments
and what conditions are needed? In order to address this question, we provide in
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8.3. Examples of parameter values for dividing droplets

D±[µm2
/s] w[nm] γ[mN/m] c

(0)
− [mM] c

(0)
+ [mM] ν−[mM/s] l±[mm] ϵ tR[s] Rdiv[µm]

Case I 10 10 10−3 100 1 1 0.1 2 · 10−3 100 3
Case II 10 1 10 103 10−3 10 5 8 · 10−4 100 1

Table 8.1: Examples of parameter values for dividing droplets. Parameters are defined
in the Methods. For these parameters, the resulting supersaturation ϵ, the turnover
time tR = c

(0)
− /ν−, and the radius Rdiv where the stationary droplet shape becomes

unstable in the absence of hydrodynamic flows are given. Case I is motivated by
colloidal droplets or liquid protein phases with low surface tension. For Case II we
chose properties of typical water/oil droplets.

Table 8.1 two examples of parameter sets for which droplets would have a shape in-
stability according to the model, in the limit of infinite viscosity F → ∞. Case I is
based on the properties of colloidal droplets or liquid protein phases with low interfa-
cial tension, Brangwynne et al. (2009); Li et al. (2012); Safran (1994). We find that
the shape instability could be realized experimentally for droplets with sizes of several
micrometers. In case I the radius where droplets become unstable is Rdiv ≈ 3µm.
Case II is based on the properties of water/oil interfaces, Safran (1994); Peters and
Arabali (2013); Page et al. (2000); Atkins and de Paula (2010). This example shows
that even for these larger interfacial tensions as compared to case I, droplets can still
have a stationary radius of the order of micrometers at the instability. These examples
show that small droplets that could be observable under the microscope could indeed
have a shape instability for plausible rates of chemical reactions and realistic interfa-
cial tensions. However, as shown in Appendix G, droplet division for macroscopic
droplets of millimeter or centimeter size will be difficult to achieve.

To address the influence of hydrodynamic flows, we have to estimate the dimen-
sionless viscosity F = wη−/(γτ) ≃ kBT/(6πγwa), where we have used τ = w2/D
and D ≃ kBT/(6πηa) with molecular radius a. Thus, F is an equilibrium prop-
erty of the phase separating fluid. For an oil-water system, we estimate F ≈ 0.1,
see Appendix G. For soft colloidal liquids or p-granules, we estimate values between
F ≈ 10 − 104. We can discuss these values using the stability diagrams in Fig. 7.2.
Oil-water like droplets with F ≈ 0.1 are unlikely to divide, as the unstable region in
the stability diagram is very narrow. For soft colloidal systems with F ≈ 10 − 104,
droplet division might be experimentally observable. We can estimate typical reac-
tion rates required for division to occur based on the reaction rate A∗ for which the
range of supersaturation is maximal. The value of A∗ corresponds to a reaction rate
in the droplet of the order of ν− = 10−4mM/s. A comparison with reported enzy-
matic reaction rates suggests that such values can be achieved in real systems, Stenesh
(2013).
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. Chemically active droplets as a model for protocells at the origin of life

8.4 Summary
We have proposed in this chapter that the chemically active droplets discussed in this
thesis can be seen as a model for protocells at the origin of life. We have argued that
they have a number of properties that can be associated with life-like behavior: The
droplet itself constitutes an environment that is separate and different from the sur-
rounding, the chemical reaction inside the droplet models a metabolism, the reaction
outside the droplet represents a non-equilibrium environment with replenishment
of nutrients out of waste. The dynamical behavior of the droplet shows a stationary
droplet size, which can be unstable, and the resulting division into two droplets might
then constitute a mechanism for replication of protocells.

We have argued that using the model studied throughout this thesis, chemically
active droplets would not be considered alive. This is partially due to the simplicity
of the current (minimal) model, which does not contain the complexity of modern
cells with the different biological molecules and intricate reaction network. The main
difference, however, is that the chemically active droplets discussed here are missing a
mechanism to adapt and evolve. We have argued that a multi-component treatment
might provide pathways to adaptation. This might then provide a route from simple
chemically active droplets towards more complex evolving (proto-) life-forms.

To estimate whether dividing chemically active droplets can be relevant for pro-
tocell models and whether they can be implemented experimentally, we estimated
parameter sets for the case of droplets of organic material inside cells today, which
are characterized by a large viscosity and small surface tension, and for oil droplets
in water, with a large surface tension. We find that division would be strongly sup-
pressed by hydrodynamic flows in oil droplets. For organic droplets, we find that
chemically active droplets might divide for stationary sizes of a few micrometers for
realistic reaction rates. This indicates that the dynamic behavior of chemically active
droplets discussed in this thesis can be relevant for biologic and prebiotic system.
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Conclusion 9

In this thesis we have introduced a simple model to show that chemically active
droplet can undergo cycles of growth and division reminiscent of cells. Our model
combines the set of features that are minimally required for droplet division: (i) two
different chemical components undergoing reactions; (ii) phase separation; (iii) ex-
ternal energy input which maintains the system away from thermodynamic equilib-
rium. Our work shows that such droplet division would be expected to occur in
phase-separating systems with small surface tension for small droplets of a few mi-
crometers or less. The fact that active droplets tend to become unstable and divide is
an unusual behavior of droplets because surface tension usually opposes such shape
changes. An instability of the droplet shape requires non-equilibrium conditions. In
our model, these non-equilibrium conditions are provided by the energy input of a
chemical fuel. The resulting chemical reactions drive diffusive fluxes across charac-
teristic length-scales as known for reaction diffusion systems, Turing (1952); Gierer
and Meinhardt (1972). In the presence of droplet interfaces, these fluxes can induce
a shape instability of stationary droplets. In the absence of chemical reactions and the
resulting fluxes, the shape instability does not occur. The shape instability leading to
droplet division introduced here can be compared to the Mullins-Sekerka instability
often discussed in the context of crystal growth, Mullins and Sekerka (1963). Both
instabilities require a diffusion flux toward the interface. In the case of the Mullins-
Sekerka instability the shape of a growing aggregate becomes unstable. For example,
an interface can become unstable with respect to growing spikes called dendrites be-
yond a critical interface velocity. In contrast, the chemical reaction induced shape
instability discussed here can occur for a stationary, non-growing droplet. This differ-
ence is important because in the case of a Mullins-Sekerka instability, the instability
of a droplet does not lead to a shrinking waistline and fission but rather to the for-
mation of a growing dendritic structure, Langer (1980). Only for the instability of a
steady state droplet found here does the instability generate a narrowing of the waist-
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. Conclusion

line of the initial droplet shape leading to fission in two droplets. The droplet division
is a simple mechanism of self-replication that is reminiscent of the division of living
cells. It is therefore an interesting question whether protocells at the origin of life
could have resembled droplets, and replicated via chemically controlled divisions.

This thesis only touches on or completely ignores many aspects of chemically ac-
tive droplets that would merit future work. It would be intriguing to consider the
effect of noisy dynamics on the division, especially in the limit of small systems with
a finite number of participating molecules. This is of particular relevance for biolog-
ical systems, where often only a small number of specific molecules exist, and noise
plays an important role, Rao et al. (2002). A further extension for which we have laid
some of the groundwork in this thesis in chapter 2 is the study of multi-component
systems. Many possible extensions towards more components are both needed to
capture experimental systems in more detail, and to find and describe additional ef-
fects. One possible extension is the inclusion of Waste and Nutrient, as discussed in
chapter 8 as motivation of chemically active droplets as protocells. An even simpler
extension is the study of a nonequilibrium reaction A → B in a three component
system with an additional solvent S. Beyond these simple extensions, the study of
polymerization reactions in such an active phase-separating system might be relevant
for many applications. Another idea could be to consider interactions and reactions
between multiple phase-separating components, which form different droplets, so
that a network of interacting droplets is created. Then, the question of network sta-
bility can be considered. In an origin of life scenario, such a system might correspond
to an ecosystem of different protocells. Finally, in an origin of life context, it is inter-
esting to ask whether chemically active droplets can support the chemical evolution
of participating molecules into molecules more suited to tasks relevant for a protocell.
Last, most multi-component systems include surfactants. It could be interesting to
study whether droplet division is still possible for droplets with strong or weak sur-
factant molecules, and whether the division can be combined with additional effects
such as the Marangoni effect, which leads to a spontaneous movement of a droplet
with surfactant, see Maass et al. (2016).

As we have pointed out here, many interesting theoretical avenues exist, by which
novel behavior of chemically active droplets can be studied. Additionally, it will be
an important challenge to observe this droplet division in future experiments. We
have provided in chapter 8 examples of parameter values for which micrometer sized
droplets would divide. These parameter values could in principle be achieved in arti-
ficial droplets or in in vitro studies of protein droplets.

Let us now briefly consider possible applications of such a droplet division. The
creation of emulsions has been intensely studied, because of the many uses in material
design, for building materials, cosmetic products and food, Taylor (1998); Zarzar
et al. (2015). If multiple divisions of chemically active droplets are possible, this
would create an emulsion with a well-controlled droplet size. It would be interesting
to consider whether a injection of the reservoir components instead of a continuous
supply could create cycles of division, so that an emulsion of the material can be
created when needed. Phase-separation and chemical reactions typically occur within
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cells. This poses the question whether the combination of both is employed by cells
to control droplet size and dynamics. In such a biological example, the reservoir
components could represent ATP and ADP, which are much smaller than many other
biological molecules, with faster diffusion, and extensively participate in chemical
reactions within the cell. It will be interesting to see whether dividing droplets exist
in biological systems, and whether they can be created in experimental systems of
synthetic biology.
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Appendix A
Reaction rates with broken detailed balance

In our models, chemical reaction rates and diffusion fluxes are maintained in a non-
equilibrium steady state. They are driven by the free energy supplied by the chemical
potential difference of a higher energy chemical fuel C and a lower energy waste
product C ′, which are maintained by external reservoirs. We illustrate these non-
equilibrium conditions in a simple model based on four components A,B,C,C ′ in a
system that exhibits phase separation of the two components A and B.

The chemical potentials of components n = A,B,C,C ′ can be expressed as

µn = kBT ln(vncn) + wn , (A.1)

where vn denote molecular volumes. The first term describes the entropy of molecular
rearrangements. The contribution wn captures internal free energies of molecules as
well as effects of interactions between molecules Cahn and Hilliard (1958). Therefore,
wn depends on composition. For simplicity, we only consider here the dependence
on the concentrations of A and B, wn(cA, cB). For a phase-separated system at
thermodynamic equilibrium, the chemical potentials of all components n are equal
in both phases,

µ+
n = µ−n , (A.2)

where ”+” and ”-” refer to the phases outside and inside the droplet, respectively. Be-
cause of the dependence of wn on cA and cB , the concentrations of all molecular
species differ in both phases, c+n ̸= c−n , with

c+n
c−n

= exp
(
w−n − w+

n

kBT

)
. (A.3)

This difference implies that molecules of a given species typically have a higher affinity
to one phase as compared to the other as a result of interactions with other molecules.
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Figure A.: Concentration profiles and reaction rates in a four-component model
including fuel and waste. Radial profiles of concentrations (A) and chemical poten-
tials (B) of molecular species A, B, C and C ′ for an equilibrium droplet without
chemical reactions. The differences in chemical potentials∆µ(1) and∆µ(2) can drive
chemical reactions. In the presence of chemical reactions, radial concentration pro-
files change slightly (C). The corresponding reaction fluxes are shown in (D). The
active droplet shown in (C) correspond to the stationary unstable spherical droplet
shown in Fig. 5.1 which undergoes a division. Parameter values for (A) and (B) are
c
(0)
− /∆c = 1.1, c(0)+ /∆c = 0.1, vA∆c = 0.87, c+C/∆c = 0.15, c+C′/∆c = 0.05,

(w−C − w+
C )/kBT = 2, (w−C′ − w+

C′)/kBT = −0.3, ∆w
(1)
+ /kBT = −6.17, and

∆w
(2)
+ /kBT = 0.135. In (C) and (D) the same parameters are used together with

the reaction parameters k(1)t0 = 0.0065, k(2)t0∆c = 0.017, ϵ(1)± = 0, and ϵ
(2)
± = 0.

The case of a B-rich droplet at equilibrium (without chemical reactions) is illus-
trated in Fig. A.1. Here we consider the case where the concentrations cC and cC′

are higher outside the droplet than inside, corresponding to a smaller affinity to the
droplet phase.

We choose a system where the chemical potential µB is larger than µA, such that
∆µ(1) = µB − µA > 0, and where the chemical potential µC is large enough that
∆µ(2) = µB − µA − µC + µC′ < 0, see Fig. A.1B. Note that the value of µC can be
set by varying the concentration in the external reservoir.

The system can be driven away from equilibrium by the chemical reactions (1) and
(2), which are driven by the chemical potential differences∆µ(1) and∆µ(2). The flux
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of the reaction (1), B ⇌ A, can be written as (see Methods section in the main text)

s(1) = s(1)←

[
exp
(
−∆µ(1)

kBT

)
− 1

]
, (A.4)

which obeys a local detailed balance condition. Here, the reaction amplitude s(1)← is
in general concentration dependent. Similarly, for the reaction (2), A+C ⇌ B+C ′,
the reaction flux is

s(2) = s(2)→

[
1− exp

(
∆µ(2)

kBT

)]
. (A.5)

Considering these expressions, we find for the situation illustrated in Fig. A.1B that
s(1) < 0 and s(2) > 0 in both phases, so that reaction (1) producesAmolecules, while
reaction (2) producesB molecules, both inside and outside the droplet. However, the
reaction amplitudes s(1)← and s

(2)
→ can vary strongly with concentration and therefore

the magnitudes of the fluxes s(1) and s(2) differ inside and outside the droplet, see
Fig. A.1C. The total reaction flux

s = s(1) + s(2) (A.6)

does not obey a local detailed balance condition. The sign of s depends not only
on the chemical potential differences, but also on the reaction amplitudes s(1)← and
s
(2)
→ , which depend on local concentrations. For example, the reaction amplitude
s
(1)
← is in general a function of concentrations. For vanishing concentration of B,

reaction (1) cannot proceed in backward direction and s
(1)
← = 0. we therefore write

s
(1)
← = cBf(cA, cB, cC , cC′). In the simplest case f is constant. We thus consider

s(1)← ≈ cBk
(1) , (A.7)

where k(1) is a concentration-independent reaction constant. Using a similar argu-
ment for reaction (2), we consider

s(2)→ ≈ cC cA · k(2) , (A.8)

with reaction constant k(2).
We can now discuss a typical scenario that corresponds to production ofAmolecules

inside the droplet and production of B molecules outside (see Fig. A.1). The ampli-
tude s(2)→ is smaller inside the droplet where the concentrations cC and cA are small,
as compared to outside. Furthermore s

(1)
← is smaller outside the droplet, where the

concentration cB is small compared to inside. The total reaction flux s then is typically
negative inside the droplet and positive outside (see Fig. A.1).

We can relate this detailed description of the chemical reactions to the simplified
representation of the chemical reactions given in Eq. (3.13). First, using (A.4) and
(A.5), we have

s(1) ≃ k(1)
(
cA exp

[
wA − wB

kBT

]
− cB

)
(A.9)
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and

s(2) ≃ k(2)
(
cCcA − cC′cB exp

[
wB − wA − wC + wC′

kBT

])
, (A.10)

where we have considered the simple case where molecular volumes do not change
during chemical reactions, vA = vB and vC = vC′ .

We neglect for simplicity the contributions of the moleculesC andC ′ to the total
volume,

cA ≃ 1

vA
− cB . (A.11)

The concentration c in Eq. (3.13) is c = cB , and the variables c(0)± in Eq. (3.4) cor-
respond to the equilibrium concentrations c±B of B molecules inside and outside the
interface. We can now identify

ν± =± k(1)
[(

1

vA
− c

(0)
±

)
exp
[
w±A − w±B

kBT

]
− c

(0)
±

]
± k(2)

[
c±C

(
1

vA
− c

(0)
±

)
− c±C′c

(0)
± exp

[
w±B − w±A − w±C + w±C′

kBT

]]
(A.12)

and

k± =k(1)
[
exp
[
w±A − w±B

kBT

]
+ 1

]
+ k(2)

[
c±C + c±C′ exp

[
w±B − w±A − w±C + w±C′

kBT

]]
− k(1)

(
1

vA
− c

(0)
±

)
exp
[
w±A − w±B

kBT

]
1

kBT

d(wA − wB)

dc

∣∣∣∣
c
(0)
±

(A.13)

+ k(2)c±C′c
(0)
± exp

[
w±B − w±A − w±C + w±C′

kBT

]
1

kBT

d(wB − wA − wC + wC′)

dc

∣∣∣∣
c
(0)
±

These expressions show that the parameters ν± and k± depend explicitly on the fuel
concentration cC and the concentration cC′ of the waste product. Furthermore, they
depend on molecular interactions described by the energies w±n .

Thus, the active droplet system defined in the Methods section in the main text
results from the more detailed model of chemical reactions described here. The
dimensionless parameters that need to be specified are: c

(0)
− /∆c, c(0)+ /∆c, vA∆c,

c+C/∆c, c+C′/∆c, exp[(w−C − w+
C )/kBT ], exp[(w−C′ − w+

C′)/kBT ], exp[∆w
(1)
+ /kBT ],

exp[∆w
(2)
+ /kBT ], k(1)t0, k(2)t0∆c, and ϵ

(1)
± , ϵ(2)± , and we consider for simplicity the

limit of large diffusion coefficients of C and C ′, for which cC and cC′ are constant
inside and outside of the droplet. Here, we denoted internal energy differences of
reactions (1) and (2) as ∆w

(1)
± = w±A − w±B , ∆w

(2)
± = w±B − w±A − w±C + w±C′ , and

derivatives of the internal energy with respect to the concentration of B as ϵ(1)± =
∆c
kBT

d(wA−wB)
dc

∣∣∣
c
(0)
±

and ϵ
(2)
± = ∆c

kBT
d(wB−wA−wC+wC′ )

dc

∣∣∣
c
(0)
±

. We can calculate the
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concentrations c−C , c−C′ and cA using Eq. (A.3) and Eq. (A.11). Thus the simplified
models of chemical reactions discussed in the main text can be related to a more de-
tailed description of the reactions including explicit concentrations of fuel and waste.
An example of a stationary droplet is shown in Fig. A.1.
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Appendix B
Relation between the continuum model and the
effective droplet model

We now discuss the relationship between the effective droplet model and the contin-
uum model. To relate the two models, we first use the continuum model to derive
jump conditions for the concentration in the effective droplet model in equilibrium.
We then consider stress balance across this interface and derive stress boundary con-
ditions in the effective droplet model. Finally we discuss the dynamical equations in
the bulk and at the interface in non-equilibrium situations.

B.1 Derivation of jump conditions for equilibrium phase
separation

First we consider the phase separation in equilibrium without chemical reactions in
the continuum model.

In a one-dimensional system with a mean concentration c̄ with c
(0)
+ < c̄ < c

(0)
− ,

the free energy of the system in Eq. (3.3) is minimized by the concentration profile

c∗(x) =
c
(0)
− + c

(0)
+

2
+

c
(0)
− − c

(0)
+

2
tanh x

w
, (B.1)

where w = 2(κ/b)1/2 denotes the interfacial width and x is the normal distance to
the interface. The concentration profile describes two phases of concentration c

(0)
−

and c
(0)
+ separated by a flat interface of width w. The surface tension can be defined

as
γ =

∫ ∞
−∞

F [c∗(x)]− 1

2
(F [c

(0)
− ] + F [c

(0)
+ ])dx . (B.2)
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B. Relation between the continuum model and the effective droplet model

For the free energy Eq. (3.3) with the concentration profile Eq. (B.1), this can be
written as γ =

∫∞
−∞ κ(∇c∗)2dx which yields γ = (∆c)2/6

√
κb, Safran (1994).

This interfacial tension governs the concentration jump condition in the effective
droplet model, which can be derived as follows. To describe a curved interface, we
consider two homogeneous phases with concentrations c±. For a finite volume Vs
with a droplet of size V and areaA the concentrations c± can be found by minimizing
the free energy F = f(c−)V + f(c+)(Vs − V ) + γA with ∂F/∂c−|V = 0 and
∂F/∂V |c− = 0, where the concentration of both phases are related by Vsc̄ = V c−+
(Vs − V )c+ where c̄ denotes the average concentration in the system. Thus for two
phases to be in equilibrium, their chemical potential µ̄ and osmotic pressure Π =
cµ̄− f need to obey

0 = µ̄(c−)− µ̄(c+) (B.3)
0 = Π(c+)−Π(c−)− 2γH , (B.4)

where H the mean curvature of the droplet and 2γH is the Laplace pressure. These
equations determine the concentrations in the phases c± of coexisting phases, Safran
(1994).

For small Laplace pressures, we can express the equilibrium concentrations c± of a
curved interface by the concentrations of a flat interface c(0)± plus a small perturbation,

c− = c
(0)
− + β−γH (B.5)

c+ = c
(0)
+ + β+γH (B.6)

where β± = 2/(f ′′(c
(0)
± )∆c). For the free energy Eq. (3.3), we find β± = 2/(b∆c),

which is related to the interfacial width as w = 6γβ+/∆c.

B.2 Stress balance across the interface

We now consider stress balance of the continuum model across the droplet interface
to derive stress jump conditions at the interface in the effective droplet model. We
discuss the mechanical equilibrium in a small volume across a curved interface with
a local mean curvature H corresponding to a (local) effective radius R̃ = 1/H . We
focus on the case where the interface is rotationally symmetric around the considered
pointR, and where the curvature does not change along the interface. We use spher-
ical coordinates, where the radial vector er is aligned with the (outward pointing )
normal vectorn and the tangential vectors t and s are aligned with eθ and eϕ, respec-
tively (with the vector directions for ϕ = 0 in the limit θ = 0). We consider a small
box enclosing R where the outer and inner surfaces Aout and Ain have a constant
distance of δ to the interface, and the lateral surface Alat is at a constant angle θ0
with respect to the symmetry axis. The geometry is shown in Fig. B.1.
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B.2. Stress balance across the interface

Figure B.: Geometry for the force balance. We consider a spherical cap of the
droplet interface, with a box with constant distance δ to the interface inside and out-
side. The normal and tangential vectors n, t and s of the interface are shown, as well
as the normal vector ñ of the box. The origin of the spherical coordinate system is
the center of the sphere that describes the interfacial curvature, with radius R̃, while
θ0 gives the polar angle of the cap.

Now let us consider the balance of the stress tensor Eq. (3.7) across the box, taking
into account the curved geometry. The stress balance ∂βσαβ can be written as

0 =

∮
dA ñβσαβ (B.7)

where α and β are Cartesian coordinates and ñ the (local, outward pointing) normal
vector of the box-surface. We can split this in three terms,

0 =

∫
dAoutσαn −

∫
dAinσαn +

∫
dAlatσαt , (B.8)

where we used that the orientation of the normal vectors of the box coincides with
the normal/tangential vector of the interface.

On the inner and outer areasAin andAout, the stress tensor presented in Eq. (3.8)
with equilibrium stress tensor in Eq. (3.9) reduces to the form of the effective droplet
model given after Eq. (3.24) in the main text, as the gradient terms are negligible for
δ ≫ w. We now consider the limit of a sharp interface w → 0 with finite surface
tension γ, and consider the case of a small box of thickness δ, which remains larger
than the interfacial width. The componentsα = x, y of Eq. (B.8) vanish by symmetry.
For α = z we find

0 = πR̃
2 sin2 θ0 σ+

nn − πR̃
2 sin2 θ0 σ−nn − 2πR̃ sin2 θ0 γ , (B.9)

where σ±nn are the stress tensor components of the effective model, Eq. (3.23), inside
and outside the interface atR. Integration over the lateral box surface Alat yields the
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B. Relation between the continuum model and the effective droplet model

last term,
∫
dAlatσαt ∼= 2πR̃ sin2 θ0 γ. We thus find that themechanical equilibrium

of a curved interface introduces a Laplace pressure 2γH ,

0 = σ+
nn − σ−nn − 2γH . (B.10)

We therefore recover the stress jump condition of the effective dropletmodel, Eq. (3.25).
Additionally, (B.10) together with (B.4) implies that the partial pressure needed to
satisfy incompressibility is continuous across the interface, P+

0 = P−0 .

B.3 Dynamics of the effective droplet model
We now consider the dynamics of a non-equilibrium system with a droplet. We show
how the continuum model is related to the bulk equations and jump conditions of the
effective droplet model. For this we consider a droplet with a interface that is thin
compared to the dynamical length scales l±, so that we can describe the interface by
local equilibrium. In the bulk phases we focus on the case where deviations from the
equilibrium concentrations are small.

In the bulk phases, we expand the chemical potential Eq. (3.5) around the ref-
erence concentrations c(0)± . The gradient term −κ∇2c in the chemical potential is
important within the interface, but can be ignored in the bulk phases, where the
length-scales on which the concentration field varies are much larger than the inter-
facial width. Thus we can describe the chemical potential by

µ̄±(c) ≈
dµ̄0

dc

∣∣∣∣
c
(0)
±

(c− c
(0)
± ) , (B.11)

which is µ̄±(c) ≈ b(c − c
(0)
± ) for our specific free energy. With this simplification,

Eqns. (3.1) and (3.2) become the reaction-diffusion-convection equations (3.20) and
(3.21) with diffusion constants D± = M (dµ̄0/dc)|c(0)±

or D± = Mb. Similarly we
linearize the chemical reaction rate Eq. (3.13) in both phases. As we already chose a
linear rate for the continuum model, we only need to relate the parameters k and ν
with the constants k± and ν± of the effective model, with k± = k, ν+ = ν and ν− =
k∆c− ν. Inserting the linearized chemical potential Eq. (B.11) into the equilibrium
stress tensor (3.9) we find that momentum conservation in the bulk phases is given by
the Stokes equation (3.23) with viscosities η± = η, where the pressure p is determined
by the incompressibility condition ∂αvα = 0.

We consider the droplet interface to be in local equilibrium. We therefore obtain
Eq. (3.28) for the jump of the concentration field in the effective model. The incom-
pressibility condition ∂αvα = 0 implies v−n (R) = v+n (R) at a sharp interface, and
we consider an interface without slip length, so that v−(R) = v+(R). We thus find
Eq. (3.30) of the effective model. The normal stress balance in Eq. (3.25) is derived
in B.2.

As a last point we need to find Eq. (3.31) for the interface movement. We con-
sider the concentration change in a box of width δ around the interface, see Fig. B.1.
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B.3. Dynamics of the effective droplet model

We consider a box enclosing a pointR on the interface at the time t aligned with the
normal and tangential directions of the interface atR. The interface may move with
normal movement ∂tR̂(t), with R̂(t) = R(t) ·n and normal vector n, while the box
stays at a fixed position. The total change of material in the volume is given by

∂t

∫
V
dV c = −

∫
A
dA ñ · j +

∫
V
dV s(c) (B.12)

where V denotes the volume and A the area of the box. For small w and finite δ the
concentration field c makes a jump from the surface Ain to Aout given by conditions
(3.28) and (3.29) at R̂. Within each phase, we can express the field by the boundary
values at the interface Eq. (B.6) and a linear expansion,

c(r, t) ≃

{
c−(R(t)) +∇c−(r, t) · (r −R(t)) inside droplet
c+(R(t)) +∇c+(r, t) · (r −R(t)) outside droplet

(B.13)

The chemical reaction is given in both phases by Eq. (3.13). For small δ and θ0, we
find for the left-hand side of Eq. (B.12) that δc vanishes to lowest order and

∂t

∫
V
dV c = AR(c−(R(t))− c+(R(t)))∂tR̂+O(ϵ) +O(θ0) (B.14)

where AR is the area of the droplet interface enclosed by the box. For a spherical
cap, AR = 2π(1 − cos θ0)R̂

2. We further find that the source term due to the
chemical reaction scales with the volume of the box, and thus vanishes for a small
box,

∫
V dV s(c) = 0 +O(ϵ) +O(θ0). The flux across the box can be expressed as

−
∫
A
dA ñ · j = ARn · (j−(R(t))− j+(R(t))) +O(ϵ) +O(θ0) (B.15)

where j±(R(t)) denotes the flux at R inside/outside the droplet. We thus find the
normal movement of the interface,

∂tR̂ = n ·
j−(R(t))− j+(R(t))

c−(R(t))− c+(R(t))
. (B.16)

In the main text we use spherical coordinates centered at the droplet center. For
a spherical droplet, the normal and radial movement would thus be the same. For
a deformed droplet, we need to consider the relation between the normal interface
movement, R̂(t) = R(t) · n and the radial movement R(t) = R(t) · er. At fixed
angles θ and ϕ, the interface movement is given by ∂tR = ∂tR er. Using ∂tR̂ =
∂tR(t) · n, we find a relation between the radial and normal movement, ∂tR =
∂tR̂/(n ·er). This relation, together with Eq. (B.16), yields the interfacial movement
Eq. (3.31) presented in the main text.

We thus recover all dynamical equations of the effective droplet model from the
continuummodel based on irreversible thermodynamics. Note that the specific choice
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B. Relation between the continuum model and the effective droplet model

of the free energy leads to specific relations between parameters of the effective model
such as D+ = D−. Our derivation shows the relation between both models in the
case where the interface width w is small compared to the droplet size, R/w ≫ 1,
and the chemical diffusion length, l±/w ≫ 1. Additionally, we focused on the case
where the concentrations in the phases are similar to the concentrations in equilibrium
and have small concentration gradients. These conditions are not valid in all systems.
Most importantly, the chemical reactions can drive concentrations far away from the
equilibrium phase concentrations c(0)± . The resulting behaviors, such as the formation
of new interfaces associated with instabilities of the spinodal decomposition regime,
are not captured in the effective droplet model.
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Appendix C
Details on the effective droplet model

C.1 Stationary states of spherical droplets
Stationary solutions to Eq. (3.20) with spherically symmetric concentration field can
be expressed as

c̄(r) = A± +B±
er/l±

r
+ C±

e−r/l±

r
, (C.1)

where l± = (D±/k±)
1/2 are characteristic length scales. Here, the coefficients A±

are set by the chemical reactions,

A± = ±ν±
k±

+ c
(0)
± . (C.2)

Regular behavior at r = 0 implies C− = −B−. For an infinite system, the concen-
tration far from the droplet reaches a constant value. This impliesB+ = 0. Using the
boundary conditions (3.28) and (3.29) at the interface of a spherical droplet of radius
R we obtain the remaining coefficients

C+ =

(
γβ+
R

− ν+
k+

)
R exp(R/l+) (C.3a)

B− =

(
γβ−
R

+
ν−
k−

)
R

2 sinh(R/l−)
. (C.3b)

The normal fluxes at the droplet interface are

j+(R) =
D+

R

(
γβ+
R

− ν+
k+

)(
1 +

R

l+

)
(C.4a)

j−(R) =
D−
R

(
γβ−
R

+
ν−
k−

)(
1− R

l−
coth R

l−

)
. (C.4b)
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C. Details on the effective droplet model

Using these steady state fluxes in Eq. (3.31) with Eq. (3.30) provides a relation be-
tween dR/dt = vn and the droplet radius R in a quasi-static limit. Steady state
droplets exist for radii R = R̄ for which dR/dt vanishes. These stationary radii thus
obey

j+(R̄) = j−(R̄) . (C.5)

C.2 Stability analysis of a spherical droplet without
hydrodynamic flows

In the previous subsection, we discussed spherically symmetric stationary droplet
states in the presence of chemical reactions. We saw that reactions can introduce
a stationary droplet that is stable with respect to perturbations of the droplet volume.
Next we will consider whether such stationary droplets are stable with respect to shape
perturbations.

C.2.0.1 Linearization at the stationary solution

We linearize the dynamic equations (3.20)–(3.31) of the effective droplet model with-
out hydrodynamic flows around a stationary solution c̄(r), given by Eqs. (4.1)–(4.4).
We consider small perturbations δc and δR of the concentration field and the droplet
shape,

c(r, θ, φ, t) = c̄(r) + δc(r, θ, φ, t) , (C.6)
R(θ, φ, t) = R̄+ δR(θ, φ, t) , (C.7)

where the stationary concentration profile c̄ is given by c̄− inside, and c̄+ outside the
droplet. The concentration perturbation then obeys

∂tδc = D±∇2δc− k±δc . (C.8)

The boundary conditions (3.28) and (3.29) become

δc(R̄±) = β±γδH − c̄′(R̄±)δR , (C.9)

where δH = H(R̄ + δR) − H(R̄). We denote the derivative of c̄(r) evaluated at
the interface position r = R̄ inside and outside the droplet, respectively, by c̄′(R̄±).
Using Eq. (3.31), the time dependence of the droplet shape perturbation is described
to linear order by

(c
(0)
− −c

(0)
+ )∂tδR = D+∂rδc(R̄+)−D−∂rδc(R̄−)+

[
D+c̄

′′(R̄+)−D−c̄
′′(R̄−)

]
δR .

(C.10)
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C.2. Stability analysis of a spherical droplet without hydrodynamic flows

C.2.0.2 Dynamic modes and relaxation spectrum

The linearized dynamics of droplet perturbations near the steady state defines a linear
operator L by

∂t

(
δc
δR

)
= L

(
δc
δR

)
. (C.11)

An eigenfunctions (ci, Ri)
⊺ of the operator L obeys

L

(
ci
Ri

)
= µi

(
ci
Ri

)
, (C.12)

where µi is the corresponding eigenvalues, and i is the mode index. The linear droplet
dynamics can be decomposed in eigenmodes with amplitude Ai as(

δc
δR

)
=
∑
i

Ai

(
ci
Ri

)
eµit , (C.13)

where the sum is over all eigenmodes. Thus, the eigenfunctions of L correspond to
dynamic modes of the system. For µi < 0, the values −µi are relaxation rates. The
steady state is stable if all µi < 0. To determine the stability of the droplet, we thus
want to find out if any mode can be marginal, corresponding to µi = 0, or unstable,
µi > 0.

C.2.0.3 Determination of eigenmodes

We determine the eigenmodes and the spectrum of relaxation rates of a stationary
droplet with radius R̄. Because of the spherically symmetric reference state, we intro-
duce radial and angular indices i = (n,m, l) and use the ansatz(

cnlm(r, θ, ϕ)
Rnlm(θ, ϕ)

)
=

(
cnl(r)
ϵnlR̄

)
Ylm(θ, ϕ) , (C.14)

where Ylm are spherical harmonics and the corresponding eigenvalues will be denoted
µnl. Here we already indicate that the eigenvalue is independent of mode m, with
−l ≤ m ≤ l. Using Eq. (C.8) with r2∇2Ylm = l(l + 1)Ylm, the radial part of the
eigenfunctions obeys(

1

r2
∂

∂r
r2

∂

∂r
− (λ±nl)

2 − l(l + 1)

r2

)
cnl(r) = 0 , (C.15)

where
(λ±nl)

2 =
k± + µnl

D±
. (C.16)

Eq. (C.15) is solved by the modified spherical Bessel functions kl(λ±r) and il(λ±r),
which are shown in Fig. C.1. To avoid the imaginary parts arising for (λ±nl)2 < 0,
the spherical Bessel functions jl(λ̂±r) and yl(λ̂±r) can be used instead in this regime,
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C. Details on the effective droplet model
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Figure C.: top: modified Bessel functions, middle: spherical modified Bessel
functions, bottom: functions fi and fk that arise in the stability analysis.

with (λ̂
±
nl)

2 = −(λ±nl)
2. Both sets of functions are related by il(x) = i−njl(ix) and

kl(x) = −i−n(jl(ix) + iyl(ix)).
The boundary conditions (C.9) at r = R̄ can be written as

cnl(R̄+) = a+l ϵnl (C.17a)
cnl(R̄−) = a−l ϵnl (C.17b)

with

a±l = γβ±
hl
R̄

− c̄′(R̄±)R̄ , (C.18)

where hl = (l2 + l − 2)/2, see Zhong-can and Helfrich (1987). From Eqs. (C.17)
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C.2. Stability analysis of a spherical droplet without hydrodynamic flows

we obtain a boundary condition at r = R̄:

cnl(R̄+)

cnl(R̄−)
=

a+l
a−l

. (C.19)

This boundary condition determines the relation between coefficients of the solutions
to Eq. (C.15) inside and outside the droplet. The total amplitude of the eigenfunction
is undetermined and can be chosen freely. Using Eq. (C.10), we obtain an equation
for the eigenvalue µnl,

(
c
(0)
− − c

(0)
+

)
µnl = D+c̄

′′(R̄+)−D−c̄
′′(R̄−)+

D+a
+
l

R̄

c′nl(R̄+)

cnl(R̄+)
−
D−a

−
l

R̄

c′nl(R̄−)

cnl(R̄−)
.

(C.20)
Note that the right-hand side of Eq. (C.20) depends on the eigenvalue via the length-
scales λ±nl in the functions cnl. We order different solutions for the same l andm using
the index n with µnl > µn+1,l. Using the quasistatic assumption, that is, that the
concentration profile around a growing droplet with radius R is given by c̄±(r) with
jump conditions at r = R, Eq. (C.20) for l ̸= 0 describes the shape instability of a
growing droplet.

C.2.0.4 Radial profiles and relaxation rates of dynamic modes

Let us now discuss the shape of the solutions to Eqs. (C.14)-(C.20). We can differ-
entiate between two main cases by the sign of (λ+

nl)
2. Thereby, positive values cor-

respond to large eigenvalues µnl > −k+, while negative values correspond to small
eigenvalues µnl < −k+.

Large eigenvalues: discrete spectrum First we discuss (λ±nl)2 > 0 in both phases.
For the concentration field we find

cnl(r) =

{
kl(λ

+
nlr) for r > R̄

Cnl il(λ
−
nlr) for r < R̄

, (C.21)

where we only considered solutions that are finite at r = 0 and which do not diverge
for large r. Any coefficient in front of kl(λ+

nlr) outside the droplet may be set to one
without loss of generality. The coefficient Cnl is determined by boundary conditions
(C.19) as

Cnl =
a−l kl(λ

+
nlR̄)

a+l il(λ
−
nlR̄)

. (C.22)

The equation for the eigenvalue (C.20) becomes(
c
(0)
− − c

(0)
+

)
µnl =D+c̄

′′(R̄+)−D−c̄
′′(R̄−)

+
D+a

+
l

R̄
2 fk,l(λ

+
nlR̄)−

D−a
−
l

R̄
2 fi,l(λ

−
nlR̄) ,

(C.23)

127



C. Details on the effective droplet model

with fk,l(x) = xk′l(x)/kl(x) and fi,l(x) = xi′l(x)/il(x), shown in Fig. C.1. We find
that Eq. (C.23) has a finite number of solutions, typically we find either no or one
solution. The finite number of solutions can be seen by considering the asymptotic be-
havior λ+

nl → ∞ for the right-hand and left-hand side. The dependency of solutions
to Eq. (C.23) on the parameters and the mode l generally is nontrivial. However,
we can find analytically that the l = 1 mode always has a solution µn1 = 0 where
all terms on the right-hand side of Eq. (C.23) cancel, using the properties of Bessel
functions and of the stationary concentration field. This corresponds to a mode where
the whole droplet including the concentration field is displaced by a small distance.
Due to translational symmetry in an infinite system, the droplet will simply stay at its
new position.

In the case (λ+
nl)

2 > 0 and (λ−nl)
2 < 0, we find for the concentration Eq. (C.21),

but with fy,l(λ̂
−
nlR̄) instead of fi,l(λ−nlR̄), with fy,l(x) = xy′l(x)/yl(x). This case

also yields a finite number of solutions with eigenvalues −k− > µnl > −k+.
We therefore find a discrete, finite number of eigenvalues for µnl > −k+ for every

l, m. We distinguish the solutions by index n, whereby n = 1 denotes the solution
with the largest eigenvalues for a given l. These solutions correspond to different
radial concentration profiles, with inverse length-scales λ±nl.

Small eigenvalues: continuous spectrum We now discuss the regime (λ+
nl)

2 < 0.
The spherical Bessel functions jl and yl vanish for large x as jl(x) ∼ x−1 sin(x −
lπ/2) and yl(x) ∼ x−1 cos(x − lπ/2). Therefore, both may be used as ansatz for
the concentration field perturbation outside the droplet. This leads to a continuous
spectrum of eigenvalues in this regime, for µnl < −k+ for every l, m. We discuss
this for the case (λ−nl)2 < 0. The concentration field is given by

cnl(r) =

{
Anljl(λ̂

+

nlr) +Bnlyl(λ̂
+

nlr) for r > R̄

Cnl jl(λ̂
−
nlr) for r < R̄

. (C.24)

Without loss of generality, we may normalize the concentration eigenfunction, for
example by c+nl(R̄) = 1. The coefficient Cnl is determined by the boundary condition
at the interface (C.19),

Cnl =
a−l
a+l

1

jl(λ̂
−
nlR̄)

. (C.25)

The equation for the eigenvalue (C.20) becomes in this case(
c
(0)
− − c

(0)
+

)
µnl =D+c̄

′′(R̄+)−D−c̄
′′(R̄−)−

D−a
−
l

R̄
2 λ̂

−
nlR̄

j′l(λ̂
−
nlR̄)

jl(λ̂
−
nlR̄)

+
D+a

+
l

R̄
2 λ̂

+

nlR̄
(
Anlj

′
l(λ̂

+

nlR̄) +Bnly
′
l(λ̂

+

nlR̄)
)

.

(C.26)

for the case (λ−nl)
2 < 0. For jl(λ̂

+

nlR̄) ̸= 0 and yl(λ̂
+

nlR̄) ̸= 0 (thus, for almost all
λ̂
+

nl), we can determine Bnl from Anl using the normalization condition c+nl(R̄) = 1.
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This yields for the last line in Eq. (C.26) Aj′ +By′ = y′/y +A(j′ − jy′/y) (where
we omitted the indices). Using the relations between Bessel functions, Abramowitz
et al. (1965) (Equations 10.1.21 and 10.1.31), we can show that j′−jy′/y is nonzero
for all finite values λ̂+

nlR̄. We can thus solve Eq. (C.26) for any such fixed λ+
nl by

choosing an appropriate Anl. For jl(λ̂
+

nlR̄) = 0, the coefficient Bnl is fixed by the
normalization, while Anl is free. In this case, j′l(λ̂

+

nlR̄) ̸= 0, and thus we can solve
Eq. (C.26) for any such fixed λ+

nl by choosing Anl. The equivalent argument holds
for yl(λ̂

+

nlR̄) = 0. The argument is independent of the sign of (λ−nl)2. We therefore
find a continuous spectrum of eigenvalues for µnl < −k+ for every l, m.
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C. Details on the effective droplet model

C.3 Scaling behavior of stationary radius and instability in
the effective droplet model

In the main text we discuss the stationary radius and its shape stability in the effective
droplet model. We consider the limit of vanishing chemical reactions A → 0, corre-
sponding to ν− → 0. We additionally keep the ratios ν−/k− and k−/k+ fixed, so
that the reaction-diffusion length-scales l± in both phases diverge. In this case, the
supersaturation ϵ is an independent variable. For vanishing chemical reactions, the
supersaturation is not chemically generated, but rather a boundary value far from the
droplet, which may be created by a reservoir or transport, or by considering an ini-
tially supersaturated state in which the droplet forms. This is a well-controlled limit
that is both mathematically rigorous and physically relevant. Additionally, it provides
a continuous path from our current discussion of chemically active droplets towards
passive droplets in an Ostwald-ripening scenario, as discussed by Lifshitz and Slyozov
(1961). We present details of the calculation in this appendix.

C.3.1 Scaling behavior of the stationary radius

When we vary only A, and keep all other parameters constant, the length-scales di-
verge as l± = l̂±wA

−1/2 with l̂+ = (k−k+
ν−
k−∆c

)1/2 and l̂− = (D−D+

ν−
k−∆c

)1/2. The
relation between supersaturation and the stationary radius is given by Eq. (4.4), or
explicitly

ϵ(R) =
β+γ

R∆c
+

(
β−γ

R∆c
+

ν−
k−∆c

)
D−
D+

R
l−

coth R
l−

− 1

1 + R
l+

. (C.27)

We assume that R scales inversely with A with some unknown exponent a, such
that R = R̂wA−a . This gives

ϵ =
1

6R̂
Aa +

(
β−
β+

1

6R̂
Aa +

ν−
k−∆c

)
D−
D+

R̂
l̂−
A

1
2
−a coth

(
R̂
l̂−
A

1
2
−a
)
− 1

1 + R̂
l̂+
A

1
2
−a

, (C.28)

where we used the definition of our length-scalew = 6β+γ/∆c. We can now analyze
the scaling behavior of f(R) for different values of a. To expand the terms, we use
x cothx = 1 + x2/3 + O(x4) and 1/(1 + x) = 1 − x + O(x2) for x → 0, and
x cothx → x(1 + 2(e2x − 1)) for x → ∞.

Scaling with a = 1/2 For a = 1/2, the terms with Aa vanish, and only the con-
stants with A1/2−a are relevant,

ϵ(R) → D−
D+

ν−
k−∆c

R̂
l̂−

coth
(
R̂
l̂−

)
− 1

1 + R̂
l̂+

+O(A1/2) . (C.29)
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Depending on the parameters of the chemical reaction and diffusion, we can consider
the two limits R̂ ≫ l̂± and R̂ ≪ l±. We find ϵ(R) → 1

3
D−
D+

ν−
k−∆c

(
R̂
l̂−

)2
for R̂ ≪ l̂±,

and ϵ(R) → ϵ∞ for R̂ ≫ l̂± with

ϵ∞ =

√
D−k−
D+k+

ν−
k−∆c

. (C.30)

Scaling with a = 0 For a = 0, we find to lowest order ϵ(R) → 1
6R̂

+O(A).

Scaling with 0 < a < 1/2 For 0 < a < 1/2, it is not a priori clear which of the
terms Aa or A1/2−a are dominant. So generally expanding all terms, we find

ϵ(R) → 1

6R̂
Aa +

1

3

D−
D+

ν−
k−∆c

(
R̂

l̂−

)2

A1−2a +O(A1−a, A3(1/2−a)) . (C.31)

We observe that of the two dominant terms, the first goes with 1/R̂, and the second
with R̂

2. Thus, for increasing R̂, the first shrinks and the second one grows. Thus
the minimum of ϵ(R) we observe numerically, which characterizes the threshold in ϵ
above which stationary droplet radii exist, can be found when both terms are relevant,
so for a = 1/3.

Scalingwitha = 1/3 Theonset of stationary solutions is described by theminimum
of ϵ(R), which obeys scaling with a = 1/3,

ϵ(R) →

 1

6R̂
+

1

3

D−
D+

ν−
k−∆c

(
R̂

l̂−

)2


︸ ︷︷ ︸
ϵ̂(R̂)

A1/3 +O(A1/2) , (C.32)

where we can define a rescaled function ϵ̂(R̂), which can be rewritten as

ϵ̂ =
1

6
R̂
−1

+
1

3
R̂

2
. (C.33)

We can find the minimum via ϵ̂′(R̂0) = 0, which yields R̂0 = 4−1/3. Inserting this
in Eq. (C.33) gives ϵ̂0 = 4−2/3.

C.3.2 Scaling behavior of the instability for a = 1/3

We now discuss the scaling of the shape instability, described by Eq. (4.13) in the
regime where the stationary radius scales with a = 1/3. To calculate the scaling
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behavior of the instability, we need the following expansions, for l± = l̂±wA
−1/2

and R = R̂wA−1/3, and ϵ = ϵ̂A1/3. We find

c̄′+(R) ≈ ∆c

w

1

R̂

(
ϵ̂− 1

6R̂

)
A2/3 +O(A5/6) (C.34)

c̄′−(R) ≈ ∆c

w

1

3

D+

D−
R̂A2/3 +O(A1) (C.35)

c̄′′+(R) ≈ ∆c

w2

2

R̂
2

(
1

6R̂
− ϵ̂

)
A1 +O(A7/6) (C.36)

c̄′′−(R) ≈ ∆c

w2

1

3

D+

D−
A1 +O(A4/3) (C.37)

For c̄′±, we thus recover the previous results for the stationary radius in scaling regime
a = 1/3 via j−(R) = j+(R).

Inserting this in the equation for the eigenvalue Eq. (4.13) we find

µ ≈
[
D+

∆c

w2

2

R̂
2

(
1

6R̂
− ϵ̂

)
−D−

∆c

w2

1

3

D+

D−

+
D+

R̂
2
w2

1

6R̂
hl(−l − 1)− D+

R̂w

∆c

w

1

R̂

(
ϵ̂− 1

6R̂

)
(−l − 1)

− D−

R̂
2
w2

1

6R̂
hll +

D−

R̂w

∆c

w

1

3

D+

D−
R̂l

]
A+O(A7/6) , (C.38)

which can be written for the rescaled eigenvalue µ̂ = µ t0A
−1 as

µ̂ ≈ (l − 1)

(
ϵ̂

R̂
2 +

1

3

)
− 1

6R̂
3

(
l − 1 + hl(l + 1) + hl · l

D−β−
D+β+

)
(C.39)

with curvature term hl = (l2 + l − 2)/2. For this result, we assumed λ±R ≪ 1,
which, in our scaling calculation for small A, is valid for small (or zero) µ. In above
description, the first line contains the stabilizing, and the second line the destabilizing
terms. We see here that for fixed parameters (and fixed radius), the stabilizing terms
increase faster for growing mode l than the destabilizing terms. Seen as a function of
R̂, the destabilizing terms grow with the radius, while the stabilizing ones vanish. In
non-rescaled form, this can be written as

µ t0 ≈ (l−1)

(
ϵw2

R2
+

1

3
A

)
− w3

6R3

(
l − 1 + hl(l + 1) + hl · l

D−β−
D+β+

)
. (C.40)

This form highlights the term A/3 which is created by the chemical reaction inside
the droplet, which separates the chemically active system from the growth of a non-
reactive droplet in supersaturated background.

The description of the eigenvalues is valid also in a quasistatic limit where the
droplet radius is close to a stationary radius and changes only slowly over time. In this
case, we can treat the radius and concentration field as constant, but with j−(R) ̸=
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C.3. Scaling behavior of stationary radius and instability in the effective droplet model

j+(R). Therefore an interpretation in terms of a slowly growing radius (growing
from R > Rc towards R = R̄) is possible. In this case we see that for a small radius
(R ≈ Rc) the stabilizing terms dominate, and then consecutive modes (starting with
l = 2) can become unstable - how many modes become unstable is limited in a purely
linear idea only by the size of the stationary radius. In a nonlinear case, other effects
might dominate, for example the droplet division we observed, by which the droplet
volume can decrease before it reaches the stationary radius.

C.3.2.1 Stability of the stationary radius

Looking purely at the stationary radius, we find via j−(R) = j+(R) a relation be-
tween c̄′+(R) and c̄′−(R):

c̄′−(R) =
D+

D−
c̄′+(R) (C.41)

Inserting this in our equation for µ, we find

µ̂ R̂
2 ≈ 2(l − 1)ϵ̂− 1

6R̂

(
2(l − 1) + hl(l + 1) + hl · l

D−β−
D+β+

)
(C.42)

We can thus express the onset of instability R∗l of the stationary radius similar to
the nucleation radius as a function of the mode l and the supersaturation

R∗l ≈
w

6ϵ

2(l − 1) + hl(l + 1) + hl · lD−β−D+β+

2(l − 1)
. (C.43)

Using w = 6β+γ/∆c, this can be compared to the corresponding equation of the
Mullins-Sekerka instability, Eq. (4.17). We find that the reaction inside the droplet,
which also creates the stationary size, leads to a difference in both functions. Evalu-
ating the equation gives

R∗2 ≈ β+γ

ϵ∆c

(
4 + 2

D−β−
D+β+

)
, (C.44)

compared to

Rms
2 ≈ β+γ

ϵ∆c

(
7 + 4

D−β−
D+β+

)
, (C.45)

in the case of the Mullins-Sekerka instability.
Using Eq. (C.41) to replace ϵ in Eq. (C.39) instead, we find

µ̂ ≈ 2

3
(l − 1)− 1

6R̂
3

(
hl(l + 1) + hl · l

D−β−
D+β+

)
(C.46)

This form can be used to estimate the eigenvalue µ as a function of the stationary
radius: For l = 0 the first term is negative, while the second term is positive, thus,
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the mode is unstable for small radii and stable for larger ones. For l = 1, the right-
hand side is zero, so that we find that in this limit, the translational mode is marginal.
For l > 1, small stationary radii are stable, while larger ones become unstable, and
the mode reaches a constant value for large R̂,

µ̂ ≈ 2

3
(l − 1) (C.47)

For the onset of the instability we find

R∗l = w

(
1

4

hl(l + 1) + D−β−
D+β+

hll

l − 1

)1/3

A−1/3 (C.48)

and evaluated for some modes

R∗0 =

(
1

4

)1/3

A−1/3 (C.49)

R∗2 =

(
3

2
+

D−β−
D+β+

)1/3

A−1/3 (C.50)

For the l = 0 mode, the sign of µ around this value is reversed (because hl=0 is
negative), so for larger radii, the mode becomes stable, while for all other modes the
mode becomes unstable beyond this radius. The l = 0 mode becomes unstable at
stationary radius R0, as calculated below Eq. (C.33).

C.3.2.2 Scaling behavior of phase diagram

Equating both forms for R∗l , we find the scaling behavior that the onset of the insta-
bility of mode l would have in a phase diagram of A and ϵ. For all modes (l ̸= 1) we
find Al ∝ ϵ3, and explicitly

Al ≈ 54
gl

(1 + 1
2gl)

3
ϵ3 (C.51)

with

gl =
hl(l + 1) + hll

D−β−
D+β+

l − 1
. (C.52)

We find the existence of a stationary solution

A0 ≈ 16ϵ3 . (C.53)

For the mode l = 2 we find (for D+ = D− and β+ = β−)

A2 ≈
5

2
ϵ3 . (C.54)
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C.3. Scaling behavior of stationary radius and instability in the effective droplet model

C.3.3 Scaling behavior of the instability for a = 1/2

To calculate the scaling behavior of the instability Eq. (4.13) in the regime a = 1/2,
where the stationary state is described by Eq. (C.29), we need the following expan-
sions, for l± = l̂±wA

−1/2 and R = R̂wA−1/2. We find

c̄′+(R) ≈ ∆c

w

1

R̂
ϵ

(
−fk,0

(
R̂

l̂+

))
A1/2 +O(A1) (C.55)

c̄′−(R) ≈ ∆c

w

1

R̂

ν−
k−∆c

fi,0

(
R̂

l̂−

)2

A1/2 +O(A1) (C.56)

c̄′′+(R) ≈ −∆c

w2

ϵ

R̂
2

2 + 2

(
R̂

l̂+

)
+

(
R̂

l̂+

)2
A1 +O(A3/2) (C.57)

c̄′′−(R) ≈ ∆c

w2

1

R̂
2

ν−
k−∆c

2 +

(
R̂

l̂−

)2

− 2

(
R̂

l̂−

)
coth

(
R̂

l̂−

)A1 +O(A3/2)

(C.58)

For the instability, Eq. (4.13), we find

µ t0 = − ϵ

R̂
2

2 + 2

(
R̂

l̂+

)
+

(
R̂

l̂+

)2
A1−

D−
D+

1

R̂
2

ν−
k−∆c

2 +

(
R̂

l̂−

)2

− 2

(
R̂

l̂−

)
coth

(
R̂

l̂−

)A1

+
ϵ

R̂
2

(
−fk=0

(
R̂

l̂+

))
(−fk(λ+R))A1 +

D−
D+

1

R̂
2

ν−
k−∆c

fi(λ−R)A1 (C.59)

For small values of µR2/D+, we can expand

λ±R ≈ R̂

l̂±
+

1

2 R̂
l̂±

µt0R̂
2
A−1 +O

(
µR2

D±

)
(C.60)

We can study this in two limits: For R̂/l̂± ≪ 1, and for R̂/l̂± ≫ 1.

C.3.3.1 Limit R̂/l̂± ≪ 1

In this limit we find

µA−1t0R̂
2 ≈ ϵ

(l − 1)

(
1 +

R̂

l̂+

)
−

(
R̂

l̂+

)2
+

1

3
(l − 1)

D−
D+

ν−
k−∆c

(
R̂

l̂−

)2

(C.61)
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Replacing the last term for the stationary radius by j−(R) = j+(R), we find

µA−1t0R̂
2 ≈ ϵ

(l − 1)

(
2 +

R̂

l̂+

)
−

(
R̂

l̂+

)2
 (C.62)

In our limit, R̂ ≪ l̂+, this is always positive for l > 1 and negative for l = 0. We can
use this to estimate the growth mode µ,

µ t0A
−1 ≈ 2

3
(l − 1) , (C.63)

which matches the limit for the scaling regime a = 1/3, Eq. (C.47).

C.3.3.2 Limit R̂/l̂± ≫ 1

In this limit, with fi(x) ≈ −1+ x and fk(x) ≈ −1− x (for x large), and taking the
linear order for µ in λ±R/D+ into account, we find

µt0A
−1R̂

2 ≈
−ϵ(1 + l̂+

l̂−
)

1− ϵ
2(1 +

D+

D−
l̂+
l̂−
)

(C.64)

where we used the limit ϵ∞ for ϵ given in Eq. (4.27). In this regime, R̂ → ∞, so that
we find µt0A

−1 ≈ 0 there.
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Details on the continuum droplet model

D.1 Linear stability of the homogeneous state in the
continuum droplet model

We can use the extended Cahn-Hilliard model to study the dynamic shape changes of
droplets in different geometries. For droplets much larger than the interfacial width,
and for dynamical behavior without topological changes, we expect similarities be-
tween our stability analysis using the sharp droplet model and the dynamics in the
extended Cahn-Hilliard model. The dynamic equation is ∂tc = m∆µloc−mκ∆2c+
s(c), with local relative chemical potential µloc(c).

The extended Cahn-Hilliard model describes nucleation of new droplets, and
topological changes. This means that the homogeneous state can become unstable, an
effect that was not considered in the linear stability analysis. The difference between
the models is here created by the way the effective droplet model is derived - to get
the linearized diffusive dynamics, the free energy density is approximated as parabolic
in both phases, and thus convex. The full free energy density has an inflection point,
however, beyond which local density variations lead to a lowering of the energy, result-
ing in spinodal decomposition. This instability is changed in the presence of chemical
reactions, which can increase or decrease the stability of the homogeneous state.

We can expand the dynamic equation for a small spatial perturbation δc around
a homogeneous concentration c0, c = c0 + δc. We assume that the concentration c
is in the regime where the linearization for the chemical reaction outside the droplet
still holds, s(c) = ν+ − k+(c− c

(0)
+ ). We find ∂tc0 = s(c0), and

∂tδc = µ′(c0)∆δc−mκ∆2δc− k+δc , (D.1)
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with µ′(c) = dµloc(c)/dc. For a decomposition in sinusoidal perturbations,

δc =
∑
q

ϵq sin(qx)eη(q)t (D.2)

we find the eigenvalue

η(q) = −(k+ + µ′(c0)q
2 +mκq4) . (D.3)

Contrary to the linear stability analysis of different droplet shapes, this is an explicit
equation for the eigenvalue. The only way the reactions enters is through the con-
stant k+, which shifts the eigenvalue by a constant, independent of the wavevector
q. For large wavevectors, the eigenvalue is negative, leading to a stable perturbation.
The long wave-length limit q → 0 is determined by k+. The intermediate range is
determined by the sign of µ′(c0). For µ′(c0) < 0 modes can be unstable, and the
dominant mode (most unstable one) is determined as

q∗ =
√

−µ′(c0)/(2mκ) (D.4)

with maximal eigenvalue

η(q∗) =
µ′(c0)

2

4mκ
− k+ . (D.5)

D.2 Numerical solution of the continuum model

D.2.1 A semi-implicit quasi-spectral solver

Wenumerically solve the dynamic equations of the continuummodel of active droplets
introduced in section 3.1. This includes the equations for the concentration field (3.1)
with fluxes (3.2), the chemical potential (3.5) with (3.6), stress balance (3.11) with
incompressibility (3.12) and the chemical reaction (3.13) with (3.14).

For this we use a spectral method in a 3d rectangular box. This has the advantage
that in a spectral decomposition, the spatial operators become simple multiplications
with the wavenumber Chen and Shen (1998). However, our equations contain a
number of nonlinear functions, which are easier to evaluate in real space. We therefore
transform forward and back in each time step.

To calculate the next time step ti from the fields found in time step ti−1, we
use a semi-implicit Runge-Kutta method Ascher et al. (1997) (method (2,3,3)) for
the concentration field. This evaluates the gradient term in µ̄, Eq. (3.5), implicitly,
while evaluating the rest of µ̄ as well as the advection term of the fluxes, vc, explicitly.
This effectively means that the terms related to the interfacial profile are calculated
implicitly, which allows for larger time steps as an explicit scheme.

For the concentration field, we choose no-flux boundary conditions (∂nc = 0,
where the derivative is in a direction normal to the simulation box), which leads to
a decomposition in cosine functions in the spectral description. The Laplacian then
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is −k2 for a mode with wave vector k. The Stokes equation can also be solved using
spectral methods. Here, no-flux conditions lead to vn = 0. Additionally we enforce
incompressibility using a reprojection method. For this, the velocity field calculated
by neglecting the partial pressure, Pp = 0, can be split into two parts (Helmholtz
decomposition),

v = vψ + vϕ = ∇×ψ −∇ϕ (D.6)

with vector fieldψ and scalar field ϕ, and velocity parts vψ = ∇×ψ and vϕ = −∇ϕ.
With this, we find

∇ · v = ∆ϕ (D.7)

and thus, using incompressibility, ∇ · v = 0, we can calculate ϕ. We thus find the
incompressible part of the velocity field

vψ = v −∇ϕ . (D.8)

We can evaluate this in Fourier space using a spectral method. For a rectangular box
aligned with the coordinate system, we thus find that each velocity component vα
is decomposed by sines in one direction and cosines in the other direction. Spatial
derivatives convert a sine-description into cosines, and vice versa.

We normalize concentration, length, time and energy by ∆c = c
(0)
− − c

(0)
+ , w =

2(κ/b)1/2, t0 = w2/D and ê0 = κw(∆c)2/3, respectively.

D.2.2 Numerical details for simulations with hydrodynamics

For the simulation with hydrodynamic flows, Fig. 7.5, we employed the method de-
tailed inD.2.1. We choose c(0)+ /∆c = 0, kt0 = 10−2, νt0 = 2·10−3 and η ŵ3/(t0ê0) =
2. Additionally, we use as box-lengthL/ŵ = 100 in all 3 dimensions, number of grid-
points in one direction N = 128 and simulation time T/t0 = 4 · 103. For the time
step, we start with a time step of ∆t/t0 = 10−4, and double the time step to a final
step size of ∆t/t0 = 0.01.

We start with initial conditions R = R0(1 + ϵY2,0). The concentration field at
positions r is initialized by the function

c(r) =
c
(0)
+ + c

(0)
−

2
+

c
(0)
+ − c

(0)
−

2
tanh d(r)

w
. (D.9)

where d(r) is the oriented distance of r to the nearest point on the ellipsoid. The
value of d(r) is negative for points inside the droplet and positive for points outside.

D.2.3 Numerical details for simulations without hydrodynamics

We employed two methods to solve the dynamic equations without hydrodynamic
flows. For the results in Fig. 5.2, Fig. 5.1 and Fig. 5.4, we solved the dynamic equa-
tions for the case v = 0 numerically using the xmds2 software package, Dennis et al.
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D. Details on the continuum droplet model

(2013) (version 2.2.2), with an adaptive Runge-Kutta scheme of order 4/5, with tol-
erance 10−5. For the results in Fig. 5.3, we used the semi-implicit method described
in D.2.1, with v = 0. We tested that both methods yield similar results and con-
verge for vanishing stepsizes. In both cases, the Laplace operator was evaluated by
a spectral method, while the chemical rates were evaluated in real space. Numerical
calculations were performed in a finite volume with no flux boundary conditions.

We normalize concentration, length and time by ∆c = c
(0)
− − c

(0)
+ , ŵ and t0 =

ŵ2/D, respectively, where the characteristic length scale is ŵ = 2(κ/b)1/2. The
relevant dimensionless model parameters are c

(0)
+ /∆c, k±t0, ν±t0/∆c and c±c /∆c.

In all numerical calculations, we chose c(0)+ /∆c = 0 and k±t0 = 10−2.

D.2.3.1 Stability diagram

Using three dimensional calculations inCartesian coordinates, we observed that droplet
configurations during the division of isolated single droplets were approximately ax-
isymmetric. To determine the stability diagram shown in Fig. 5.2 we therefore per-
formed calculations in cylindrical coordinates imposing axisymmetry. We used an
axisymmetric cylindrical box with length 60ŵ and radius 30ŵ, discretized with 120
and 60 points, respectively.

The initial conditions were given by a concentration profile that corresponded
to a droplet geometry of a slightly prolate ellipsoid with unequal half axes of length
R/ŵ − 0.1 and R/ŵ + 0.1, centered at the box center. The initial droplet size was
chosen close to the stationary size in the continuum model. As an estimate for the
stationary size we typically chose R/ŵ = 0.9R̄s/w. Here, R̄s is the stationary radius
calculated in the effective droplet model and w = 6β+γ/∆c, see Section 3.2. The
concentration field at positions r was initialized by the function

c(r) =
c∞ + c

(0)
−

2
+

c∞ − c
(0)
−

2
tanh d(r)

ŵ
. (D.10)

where d(r) is the oriented distance of r to the nearest point on the ellipsoid. The
value of d(r) is negative for points inside the droplet and positive for points outside.
The concentration far from the droplet is c∞ = ν+/k+ + c

(0)
+ .

We calculated the dynamics of the concentration field over a time interval T/t0 =
104, for different values of ν±t0/∆c. The parameters c±c related to the chemical re-
action were chosen as c+c /∆c = 0.25 and c−c /∆c = 0.75. Because close to the
shape instability the dynamics slows down, we may slightly overestimate the region
of stability, since we cannot detect the exact instability with the finite time intervals
simulated.

D.2.3.2 Calculations for multiple divisions

Several subsequent divisions break cylindrical symmetry. The calculations shown in
Fig. 5.4 were therefore performed in three dimensions using Cartesian coordinates.
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D.3. Comparison of droplet deformation in the continuum model and the effective droplet
model
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Figure D.: Growth of shape perturbations of the l = 2 mode for different nor-
malized viscosities F = ηw/(γτ) for the continuous model (red crosses) and effec-
tive model (blue curve). The last data point (with arrow) corresponds to F → ∞.
(Parameters: A = 8 · 10−3, ϵ = 0.2, η−/η+ = 1, c(0)+ /∆c = 0, k+/k− = 1,
ν−/(k−∆c) = 0.8)

We chose a cubic box with side length L = 50ŵ and an equidistant discretization of
100 points along each dimension.

Initial conditions corresponded to a spherical droplet centered at r = (L/4, L/4, L/4).
The concentration field was initialized with c = c

(0)
− inside the droplet and c = c∞

outside. The parameters for the calculations were ν−t0/∆c = 1.3 ·10−2, ν+t0/∆c =
2 · 10−3 and c+c /∆c = c−c /∆c = 0.5. Surfaces shown in Fig. 5.4 correspond to
c/∆c = 0.5.

D.3 Comparison of droplet deformation in the continuum
model and the effective droplet model

Here we compare the analytical predictions of the effective model for the instabil-
ity with numerical calculations of the continuous model for different values of the
renormalized viscosity F . For this we numerically solved the dynamic equations of
the continuous model starting with a droplet with a small initial deformation of mode
l = 2. We fitted the dynamical behavior of the mode to an exponential function, with
yields a numerical estimate for the eigenvalueµ2. In Fig. D.1 the resulting eigenvalues
are shown, together with the eigenvalue of corresponding parameters of the effective
model. We find that the value of F for which droplet shapes become unstable is very
similar to the value predicted by the effective model. The eigenvalues are qualitatively
similar to the ones of the effective model, despite working in an a parameter regime
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D. Details on the continuum droplet model

where the interfacial width and the differences of concentration within a phase cannot
be considered very small, so that the models are not necessarily comparable.

To generate the data in the figure, we initialized droplets with a small shape per-
turbation for different values of F . All parameters and initial conditions were chosen
as described in D.2.2. We found that for F ≥ 100 droplets divide, while they are
stable for F ≤ 1. For F = 10, the shape deformation was very slow, so that division
was not seen in the time interval T/τ = 4000. For 10 < F < 100, as well as F = ∞,
we fitted radius and spherical harmonic deformation to the concentration field using
Eq. (D.10). For short times, the droplet radius changes as the concentration field
and droplet size go towards the stationary values. After that, the shape deformation
grows until the droplet deforms so strongly that the fitting fails. By hand we chose
intermediate time windows for the simulations where the size was stationary and the
shape deformation small. In these windows we fitted the deformation amplitude ϵ
(compare Eq. (D.10)) with an exponential function, Aeµ2t + B with parameters A,
B and eigenvalue µ2 to the l = 2 mode of the shape deformation.
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Appendix E
Stability analysis of different geometrical droplet
shapes

In this appendix, stationary states and their stability are discussed in 1, 2 and 3 dimen-
sions for a (binary) phase separating systems with chemical reactions. We consider
finite droplet structures, such as line segments in 1d and circles in 2d, and infinite
structures, such as bands in 2d and plates and cylinders in 3d. Here the calculations
are shown, figures and discussion can be found in chapter 6.

E.1 Effective droplet model for active droplets
We consider the different shapes and dimensions using the effective droplet model
introduced in chapter 3, section 3.2. The system consists of two components A and
B with volume-conserving chemical reactions A ⇌ B between them. The chemical
reaction can be active non-equilibrium reactions fueled by additional effects not de-
scribed here. We consider an incompressible system where the system is described by
the concentration c of B only, and we ignore the influence of hydrodynamic fluxes,
corresponding to the limit of infinite viscosity, η → ∞.

We concentrate on the case of a minority phase (’droplet’) with high density of B
in an environment of mainly A. Fields and parameters inside the droplet are denoted
with index −, outside with +. For a flat interface, and without chemical reactions,
the equilibrium volume densities inside and outside the droplet will be denoted c

(0)
−

and c
(0)
+ , respectively.

W consider stationary symmetric ’droplets’ of different symmetries with vanishing
chemical reaction rate s+ → 0 far from the droplet, r → ∞. Additionally, we will
consider the linear stability of the stationary shapes. The interface moves due to a
difference in ingoing and outgoing fluxes of B-material normal to it, Eq. (3.30). To
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E. Stability analysis of different geometrical droplet shapes

linear order, Eq. (3.31) can be used, by replacing the spherical coordinates with the
coordinate system fitting the geometry of the respective stationary state, where er is
the unit vector normal to the stationary interface.

E.2 Stationary line segments in 1d

E.2.1 Stationary states

In one dimension, we can consider stationary line segments, with length 2L and
stationary concentration profile c̄(x). See Fig. 6.1A in the main text for a sketch
of the system. We center the stationary line segment at x = 0, where, assuming
symmetry, c̄′(0) = 0. The curvature of the interface is zero, H(L) = 0. We find the
stationary concentration field,

c+(x) = Ae−x/l+ + C+ (E.1)
c−(x) = B cosh(x/l−) + C− (E.2)

with

A = −ν+
k+

eL/l+ (E.3)

B =
ν−
k−

(cosh(L/l−))−1 (E.4)

C± = ±ν±
k±

+ c
(0)
± . (E.5)

With this we find an expression for the stationary size,

tanh(L/l−) =
l+ν+
l−ν−

(E.6)

which has one solution for −1 < l+ν+
l−ν−

< 1, and none otherwise.

E.2.2 Stability of the stationary states

We now study the stability of the stationary state with respect to a small deformation,
(c, L1, L2) = (c̄, L,−L)+ (δc, δL1,−δL2). Here, L1 denotes the interface position
at x > 0, and L2 denotes the position at x < 0. We can split the deformations into
symmetric and antisymmetric deformations,

(δc, δL1, δL2) =
∑
n

ϵs,n(ρs,n(x), L, L)e
µs,nt +

∑
n

ϵa,n(ρa,n(x), L,−L)eµa,nt

(E.7)
where a and s denotes the symmetric/antisymmetric modes, and different modes are
numbered with n and have an amplitude ϵa/s,n and eigenvalue µa/s,n. Symmetric
modes have concentration field ρs,n with ρs,n(x) = ρs,n(−x) and antisymmetric
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E.2. Stationary line segments in 1d

modes have a concentration field ρa,n with ρa,n(x) = −ρa,n(−x). Symmetric modes
thus correspond to a change in droplet size (a change of the length of the line segment),
while antisymmetric modes describe a displacement of the droplet, while the size
stays constant, see Fig. 6.1A for a sketch of the deformation modes. Linearizing the
dynamic equations inside and outside the droplet, and the interfacial movement, we
find for every mode

0 = ρ′′± − λ2
±ρ± (E.8)

∆cµ = −D−
L

ρ′−(L)−D−c̄
′′
−(L) +

D+

L
ρ′+(L) +D+c̄

′′
+(L) (E.9)

with inverse length-scale

λ± =

√
k± + µ

D±
(E.10)

and ρ = ρs/a,n and µ = µs/a,n.
For a discussion of the solution, we focus on the case λ2

± > 0 without loss of
generality, as solutions for λ2

± < 0 are contained in the descriptions as oscillating
spatial solutions with imaginary λ±a/s,n.

E.2.2.1 Symmetric modes

For the symmetric case, the linearized boundary conditions are ρ±(L) = −c̄′±(L) ·L,
as well as ρ′−(0) = 0 and ρ+(x → ∞) → 0. Solving the linear equations, we find

ρ(x) =


Ase

λ+x , x < L2

Bs cosh(λ−x) , L2 < x < L1

Ase
−λ+x , x > L1

(E.11)

with coefficients As and Bs,

As = −ν+
k+

L

l+
eλ+L (E.12)

Bs = −ν−
k−

L

l−

tanh(L/l−)
cosh(λ+L)

. (E.13)

We find an implicit equation for the eigenvalue of the symmetric mode µ = µs,n,

∆cµ = ν+l+λ− tanh(λ−L) + ν+l+λ+ − ν− − ν+ (E.14)

We can see whether this equation has solutions µ = 0. Inserting the equation for the
stationary size, we find 0 = −ν−(1−tanh2(L/l−)). Therefore, no marginal solutions
exist for ν− ̸= 0. Numerically, we find that stationary 1d droplets are always stable
with respect to changes in size, µ < 0, similar to the results of the l = 0 mode for 3d
droplets.
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E. Stability analysis of different geometrical droplet shapes

E.2.2.2 Antisymmetric modes

The linearized boundary conditions for antisymmetric modes are ρ±(L) = −c̄′±(L) ·
L, as well as ρ−(0) = 0 and ρ+(x → ±∞) → 0. The antisymmetric case yields

ρa,n(x) =


−Aae

λ+n x , x < L2

Ba sinh(λ−n x) , L2 < x < L1

Aae
−λ+n x , x > L1

(E.15)

with coefficients Aa and Ba,

Aa = −ν+
k+

L

l+
eλ

+
nL (E.16)

Ba = −ν−
k−

L

l−

tanh(L/l−)
sinh(λ+

nL)
. (E.17)

We find the implicit equation for the eigenvalue for the antisymmetricmodeµ = µa,n,

∆cµ =
ν+l+λ−

tanh(λ−L)
+ ν+l+λ+ − ν− − ν+ (E.18)

The antisymmetric modes always have a marginal solution µ = 0, corresponding to
translational invariance. We did not find any solutions with µ > 0 numerically, or
indications that several solutions might exist for λ± > 0.

E.3 Stationary bands in 2d
In two dimensions, stationary bands exist, which have a fixed width L in one spatial
direction, denoted x, and are extended into the other direction, denoted y. The width
of the band is given by the length of 1d stationary line segments, see previous section.

The stability analysis, has to take perturbations of different wavevectors q into
account, and thus differs from the 1d case. We can describe perturbations as

(δc, δL1, δL2) =
∑

n ϵs,n cos(qy)(ρs,n(x), L, L)eµs,nt (E.19)
+
∑

n ϵa,n cos(qy)(ρa,n(x), L,−L)eµa,nt (E.20)

where we again can find a split into symmetric and anti-symmetric modes. Symmetric
modes describe a variation in the droplet width along the y axis, while antisymmetric
modes describe a displacement of the droplet center in x direction which oscillates
whenmoving along the y axis, while the droplet width stays constant. Stationary band
and deformations can be seen in Fig. 6.1B. The equations describing the interface
motion stay the same as in 1d, Eq. (E.9), but with a modified inverse length-scale

λ2
± =

k± + µ

D±
+ q2 . (E.21)
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E.3. Stationary bands in 2d
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Figure E.: Stability of droplet bands in 2d. (A) Largest eigenvalue of symmetric
(purple) and antisymmetric (orange) deformations as function of the supersaturation
with (B) corresponding deformation wavelength qmax for A = 10−3. Dots mark the
points where the respective modes become unstable. (C, D) same as (A), (B), but on
a double-logarithmic scale for reaction amplitudes A = 10−4, 10−3, 10−2. Negative
values are shown as dashed lines, positive values as regular lines. Wavevectors q are
given in units of 1/w. (Parameters: k+/k− = 1, ν−/k− = 1,D+/D− = 1, c(0)+ = 0)

We find as boundary conditions for the concentration modes ρs/a,n(L) = a±q , with
a±q = β±γhq − c̄′±(L) ·L, with curvature term hq = q2L. For the symmetric modes,
we can find the concentration modes using conditions ρ′−(0) = 0 and ρ+(x →
∞) → 0, as in Eq. (E.11) with As = a+q e

λ+x and Bs = a−q / cosh(λ−L). For
the antisymmetric modes, we find the form in Eq. (E.15), with Aa = a+q e

λ+x and
Ba = a−q / sinh(λ−L). Solving the implicit equation Eq. (E.9) for the eigenvalue µ,
we find the stability of the stationary bands with respect to deformations of different
wavelengths. Some typical results are shown in Fig. 6.2B. In the limit q → 0, we find
the same results as in the 1d case, with a stable symmetric and a marginal antisym-
metric mode. For small ϵ, both curves decrease for q > 0, so that all modes are stable.
For larger ϵ, both the antisymmetric mode and the symmetric one reach a maximum
at a very similar wavelength q, where the deformation modes are unstable.

In Fig. E.1, themaximal eigenvalue µ of the symmetric and antisymmetric modes,
together with the corresponding wavevector qmax are shown.
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Figure E.: Stability of droplet plates in 3d. (A) Largest eigenvalue of symmetric
(purple) and antisymmetric (orange) deformations as function of the supersaturation
with (B) corresponding deformation wavelength qmax for A = 10−4, 10−3, 10−2.
Dots mark the points where the respective modes become unstable. Negative values
are shown as dashed lines, positive values as regular lines. Wavevectors q are given in
units of 1/w. (Parameters: k+/k− = 1, ν−/k− = 1, D+/D− = 1, c(0)+ = 0)

E.4 Stationary plates in 3d

We now discuss stationary plates in 3d, which have a finite width L in x direction,
and extend in y and z direction.

As for the 2d bands, the stationary concentration field in x direction and the
width are the same as for line segments in 1d. The stability analysis for 3d plates is
analogous to the 2d band system, as any perturbation can be decomposed in waves
in y-direction and waves in z-direction. The perturbations in the different directions
decouple, and thus the equations for the 2d band system are valid for every direction
separately. The only change is in the curvature term hq. As the plane is only deformed
in one direction for every mode, and flat in the other direction, the mean curvature is
half the value found for bands in 2d:

hq =
q2L

2
, (E.22)

for a wavevector q in the x-y plane with amplitude q.
In Fig. E.2A and B, the largest eigenvalue and corresponding wavevector of the

symmetric and antisymmetric mode are shown for several values of A. Qualitatively,
they behave very similar to 2d bands. The antisymmetric mode becomes unstable for
smaller values of supersaturation by about a factor of 4.

E.5 Stationary cylinders in 3d

We now consider stationary droplet cylinders in 3d. We use cylindrical coordinates
r, φ, z, where the z axis aligns with the axis of the droplet cylinder.
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E.5. Stationary cylinders in 3d

E.5.1 Stationary state

We determine stationary solutions of the cylinder radiusR and the concentration field
c±, inside (”-”) and outside (”+”) the cylinder. We want to consider only solutions that
are z-independent and cylindrically symmetric. We denote the stationary state with
x̄ (for variable/field x).

The modified Helmholtz equation that describes the concentration field is solved
in cylindrical symmetry by I0(r) and K0(r), the modified Bessel functions of order
0 of the first and second kind, and in spherical symmetry by i0(r) and k0(r), the
corresponding spherical modified Bessel functions. Using boundary conditions at the
interface, Eq. (3.28) and (3.29) and convergence at 0 and infinity, we find as solutions
for the cylindrical case

c̄+(r) = +
ν+
k+

+ c
(0)
+ +A+K0(r/l+) (r > R̄) (E.23)

c̄−(r) = −ν−
k−

+ c
(0)
− +A−I0(r/l−) (r < R̄) , (E.24)

with characteristic length scales l± = (D±/k±)
1/2 set by reaction and diffusion, and

parameters A± determined by the boundary condition at the droplet interface,

A+ =

(
γβ+H(R̄)− ν+

k+

)
1

K0(R̄/l+)
(E.25)

A− =

(
γβ−H(R̄) +

ν−
k−

)
1

I0(R̄/l−)
. (E.26)

The mean curvature of a cylinder is H(R̄) = 1/(2R̄).
The stationary fields above have the stationary radius R̄ of the cylinder as variable.

It can be determined by Eq. (3.31), which yields the implicit equation

0 = D+c̄
′
+(R̄)−D−c̄

′
−(R̄) . (E.27)

For the spherical case, the same equations are valid, with k0 and i0 instead of K0 and
I0, and with mean curvature H(R̄) = 1/R̄. See Fig. 6.7A for stationary solutions.

E.5.2 Linear stability analysis of stationary shapes

For small perturbations δc, δR of the stationary, cylindrically symmetric system, the
dynamics are described by the linearized system

∂tδc = −δvr c̄
′ +D±∆δc− k±δc (E.28)

(c
(0)
− − c

(0)
+ )∂tδR = D+∂rδc+(R̄)−D−∂rδc−(R̄) (E.29)

+(D+c̄
′′
+(R̄)−D−c̄

′′
−(R̄))δR .

With δc− and δc+ we denote perturbations of the concentration field inside and out-
side the droplet. The same notation holds for the other fields. In this linear analysis,
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Figure E.: Instability of stationary cylinders for modes m = 0, 1, 2, 3 as func-
tion of the wavevector q for ϵ = 0.05, 0.1, 0.2. A) For ϵ = 0.05, the m = 1
mode is metastable for q = 0, which corresponds to a translation of the cylinder,
all other modes are stable. B) For ϵ = 0.1, the m = 0, 1 and 2 are unstable
for small/intermediate q-modes. C) For ϵ = 0.2, all modes shown are unstable for
small/intermediate q-modes. The wavevectors qmax where each modes are most un-
stable are closer to each other than for smaller ϵ. Wavevectors q are given in units of
1/w.
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Figure E.: Largest eigenvalue µm(qmax) and corresponding wavevector qmax of
stationary cylinders for modes m = 0, 1, 2, 3 as function of the supersaturation
ϵ. A) Maximal eigenvalue of each mode. Dots indicate where each mode becomes
unstable. For small supersaturations, the modes have different values, for large super-
saturations, the eigenvalues converge towards a common value, which increases for
increasing supersaturation with sub-powerlaw behavior. B) Wavevector where the
eigenvalue of a mode m is maximal (lines). The shaded regions indicate unstable q-
modes. Dots indicate the onset of the instability. All modes except m = 0 become
unstable first for the q = 0 mode.

the boundary conditions for these perturbations are specified at the stationary radius
R̄,

δc±(R̄) = β±γδH − c̄′±(R̄)δR (E.30)

with perturbation of the curvature δH = H(R)−H(R̄).
For the stability analysis, we are looking for a description of the unknown func-

tions δc+ (for r < R̄), δc− (for r > R̄) and δR in eigenfunctions ci, Ri, so that
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Figure E.: Stability diagrams for different modes m (top to bottom: m = 0, 1, 2)
as function of the supersaturation ϵ = ν+/k+ and reaction amplitude A. The blue
line shows the threshold value above which stationary cylinders exist. The red line
shows the onset of instability (for any wavelength q and the given mode m). The
dotted lines are the corresponding lines for spherical droplets. For the left plot, the
color shows the value of µτ , on the right side, the wavelength q with the maximal
value of µ is shown as q̂ = qR. Parameters: ν0 = k−∆c, k±τ = 0.01, D+ = D−,
β+ = β−, with normalization of concentration, time and length ∆c = c

(0)
− − c

(0)
+

and τ = w2/D+, w = 6β+γ/∆c.

151



E. Stability analysis of different geometrical droplet shapes

(δc+, δc−, δR)T =
∑
i

ϵi(c
+
i , c
−
i , Ri)

T eµit . (E.31)

E.5.3 Perturbation of a cylinder

In the cylindrical case, the eigenfunctions can be chosen asδc+
δc−
δR

 =
∑
nlm

ϵnlm

P+
nmq(r)Φm(φ)Zq(z)

P−nmq(r)Φm(φ)Zq(z)

R̄ · Φm(φ)Zq(z)

 eµnmqt . (E.32)

A short derivation is shown in the Appendix. Here, the functions Φ and Z can be
expressed as

Φm(φ) =

{
sin(mc)

cos(mc)
, Zq(z) =

{
sin(qz)
cos(qz)

(E.33)

with m ∈ Z and q ∈ R. The angular function Φm(φ) needs two parts to account for
the same deformation, but in different directions in Cartesian coordinates. Since the
angle φ lies between 0 and 2π, we only find integer valued modes. For the length-
function Zq(z), the two possibilities differentiate between deformations that have a
maximum or a minimum at z = 0. The cylinder in our discussion is infinite in the
z-direction, therefore q is continuous.

The radial solutions are slightly more complicated, and can be expressed as

P±nmq(r) = A±nmqIm(λ
±
nmqr) +B±nmqKm(λ

±
nmqr) (E.34)

with
λ2
nmq± =

k± + µnmq
D±

+ q2 ∈ C , (E.35)

where Im and Km denote modified Bessel functions of first and second order. To-
gether, they are a complete set of basis-functions, and also the radial solutions of the
modifiedBessel equation, whichwe get fromEq. (E.28) with the ansatz of Eq. (E.32).
The value of µnmq enters λ±nmq. It will be determined by the radial equation. The in-
dex n simply numbers different solutions for µ of the radial equation. In the case of
an unstable shape, µ > 0, we find λ2 > 0 in the cylinder and outside. For λ2 < 0, λ
is imaginary, and the solutions can alternatively be expressed by the Bessel functions
Jm and Ym.

The coefficientsA andB are determined by the boundary conditions. Forλ2
nmq± >

0, the modified Bessel functions Im diverge for large λ±r, and the functions Km di-
verge for vanishing λ±r, we know A+ = 0 and B− = 0. We find for the boundary
conditions of the concentration field, Eq. (E.30),

P±nmq(R̄) = a±mq (E.36)
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E.6. Stationary disks in 2d

with
a±mq = γβ±hmq − c̄′(R̄±) · R̄ (E.37)

and curvature term

hmq =
m2 + R̄

2
q2 − 1

2R̄
. (E.38)

This determines the remaining two coeffcients,

A− = a−mq/Im(λ
−
nmqR̄) (E.39)

B+ = a+mq/Km(λ
+
nmqR̄) . (E.40)

Inserting Eq. (E.32) into the equation that describes the interface movement,
Eq. (E.29), it becomes

(c
(0)
− − c

(0)
+ )µnmq =D+c̄

′′
+(R̄)−D−c̄

′′
−(R̄) (E.41)

+
D+

R̄
P ′nmq+(R̄)− D−

R̄
P ′nmq−(R̄)

This is an implicit equation to determine the growth rate of perturbation modes µnl
(this is also the eigenvalue). The equation is implicit, because the eigenfunctionsP±nmq
depend on µnmq via λ±nmq, see Eq. (E.35).

In Fig. E.3 the largest eigenvalues of different deformations are shown. In panel
A, the instability of the l = 1 mode is shown as a function of the wavevector q for
different stationary radii (along one of the lines in Fig. 6.7A). At q = 0 we see that
the eigenvalue is zero, so translations of the whole cylinder have a marginal stabil-
ity. Depending on the stationary radius, this is the maximal eigenvalue, and larger
wavevectors are stable (R = 2), or the eigenvalue has a maximum at a larger qmax > 0,
so that the cylinder is unstable with respect to a deformation with mode m = 1 and
the respective wavevector. For a change in volume, m = 0 and q = 0, we find the
same result as for the spherical case: the smaller stationary radius for one fixed set of
parameter values is unstable, the larger one is stable. For q > 0, there can, however,
be a qmax where the size is unstable with respect to the m = 0 mode. Since this
corresponds to oscillations of droplet volume along the cylinder axis, we may expect
this to lead to a split of the shape into single droplets in the full nonlinear dynamics.
For m ≥ 2, the initial value for q = 0, as well as the slope and the existence of a
maximum with qmax ̸= 0 depends on parameter values.

E.6 Stationary disks in 2d

We now consider stationary disks in 2d, the equivalent of spherical droplets in two
dimensions. The stationary radius and concentration field of such a round droplet is
given by the same equations as for the droplet cylinder in 3d, as a cut through the
cylinder with constant z, but with mean curvature H(R̄) = 1/R̄. The linear stability
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E. Stability analysis of different geometrical droplet shapes

analysis of a stationary disk is the same as for the cylinder for q = 0, with curvature
term

hmq =
m2 − 1

R̄
. (E.42)

The modem describes deformations of the droplet disk, equivalent to mode l in spher-
ical droplets. A sketch of a stationary disk and its deformations can be seen in Fig. 6.4
in the main text.
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Appendix F
Stability analysis of chemically active droplets with
hydrodynamic flows

In this appendix we derive the linear stability of spherical stationary droplets in the
effective droplet model with hydrodynamic flows. The model is defined by Eq. (3.20)
to (3.31) in chapter 3. We present the stationary state, the linear stability analysis and
the scaling behavior of the stability for vanishing chemical reaction rates. A discussion
of the results can be found in chapter 7.

F.1 Linear stability analysis with hydrodynamic flows

Here we derive stationary spherical states and their stability for the effective droplet
model with hydrodynamic flows, Eq. (3.20) to (3.31).

F.1.1 Stationary state of a spherical active droplet

We first briefly discuss the stationary solutions of the effective droplet model. We
consider states with spherical symmetry and without hydrodynamic flows v̄ = 0,
where the bar indicates a steady state value. In this case, the pressure is constant both
inside and outside the droplet, with a pressure difference due to Laplace pressure
between the inside and outside of the droplets,

p̄− = p̄+ +
2γ

R̄
. (F.1)

The steady state concentration profiles in the presence of chemical reactions are
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F. Stability analysis of chemically active droplets with hydrodynamic flows

given by

c̄+(r) = +
ν+
k+

+ c
(0)
+ +A+k0(r/l+) (F.2)

c̄−(r) = −ν−
k−

+ c
(0)
− +A−i0(r/l−) , (F.3)

where i0(x) = 2 sinh(x)/x and k0(x) = e−x/x denote modified spherical Bessel
functions of order zero of the first and second kind, respectively. The characteristic
length scales l± = (D±/k±)

1/2 are set by reaction rate constants and diffusion coef-
ficients. The parameters A± are determined by the boundary condition at the droplet
interface, Eq. (3.28)-(3.29),

A+ =

(
γβ+
R̄

− ν+
k+

)
1

k0(R̄/l+)
(F.4)

A− =

(
γβ−
R̄

+
ν−
k−

)
1

i0(R̄/l+)
. (F.5)

Stationarity of the droplet radius R̄ implies

D+c̄
′
+(R̄) = D−c̄

′
−(R̄) , (F.6)

see Eq. (3.31). Note that this equation typically has zero, one or two solutions for a
given set of parameters.

F.1.2 Linearized dynamics

We introduce small perturbations to the spherically symmetric stationary state, with
p = p̄ + δp, v = δv, c = c̄ + δc and R = R̄ + δR and write the dynamics of these
perturbations to linear order. The linearized dynamics reads

∇δp = η±∆δv (F.7)
∇ · δv = 0 (F.8)
∂tδc = −δvr c̄

′ +D±∇2δc− k±δc (F.9)

∂tδR = δvr(R̄) +
1

∆c

[
D+c̄

′′
+(R̄)−D−c̄

′′
−(R̄)

]
δR

+
1

∆c

[
D+∂rδc+(R̄)−D−∂rδc−(R̄)

]
. (F.10)

Here δvr denotes the radial part of the hydrodynamic velocity. With δc− and δc+ we
denote perturbations of the concentration field inside and outside the droplet. The
same notation holds for the other fields. In this linear analysis, boundary conditions
apply at the stationary radius R̄,

δc±(R̄) = β±γδH − c̄′±(R̄)δR , (F.11)

with perturbation of the curvature δH = H(R)−H(R̄).
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F.1. Linear stability analysis with hydrodynamic flows

The linearized dynamics can be decomposed in spherical harmonics, see Eq. (7.1)
in chapter 7. The curvature perturbation then takes the form

δH =
∑
nlm

hl
R̄
ϵnlmYlm , (F.12)

with hl = (l2 + l − 2)/2.

F.1.3 Hydrodynamic eigenmodes of the linearized dynamics

We can expand the hydrodynamic eigenmodes using a basis of vector spherical har-
monics, see Eq. (7.2) in chapter 7. The velocity boundary conditions Eq. (3.27) in
chapter 3 for the mode amplitudes read

0 = vr+lm (R̄)− vr−lm (R̄) (F.13)

0 = v
(1)+
lm (R̄)− v

(1)−
lm (R̄) (F.14)

0 = v
(2)+
lm (R̄)− v

(2)−
lm (R̄) . (F.15)

The stress boundary conditions (see Eq. (3.25) and Eq. (3.26) in chapter 3) at the
interface read

0 = 2η+(v
r+
lm )′(R̄)− p+lm(R̄)− 2η−(v

r−
lm )′(R̄) + p−lm(R̄)− 2γϵlm

hl
R̄

(F.16)

0 = η+

[
(v

(1)+
lm )′(R̄) +

vr+lm (R̄)

R̄
−

v
(1)+
lm (R̄)

R̄

]
(F.17)

− η−

[
(v

(1)−
lm )′(R̄) +

vr−lm (R̄)

R̄
−

v
(1)−
lm (R̄)

R̄

]
(F.18)

0 = η+

[
(v

(2)+
lm )′(R̄)−

v
(2)+
lm (R̄)

R̄

]
− η−

[
(v

(2)−
lm )′(R̄)−

v
(2)−
lm (R̄)

R̄

]
. (F.19)

We solve the radial profiles of the modes with a polynomial ansatz and exclude
functions that diverge for r → 0 or r → ∞ inside and outside the droplet, respectively.
The pressure is then given by

p−lm(r) = γfA

( r

R

)l+1
(F.20)

p+lm(r) = −γfB

( r

R

)−l
. (F.21)

For the hydrodynamic flow velocity we obtain

vr−lm (r) =
γ

η−

[
fC1

( r

R

)l+1
− fC3

( r

R

)l−1]
(F.22)

v
(1)−
lm (r) =

γ

η−

[
l + 3

l(l + 1)
fC1

( r

R

)l+1
− l + 1

l(l + 1)
fC3

( r

R

)l−1]
(F.23)

v
(2)−
lm (r) = 0 (F.24)
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and

vr+lm (r) =
γ

η−

[
−fC2

( r

R

)−l
+ fC4

( r

R

)−l−2]
(F.25)

v
(1)+
lm (r) =

γ

η−

[
l − 2

l(l + 1)
fC2

( r

R

)−l
− 1

l + 1
fC4

( r

R

)−l−2]
(F.26)

v
(2)+
lm (r) = 0 . (F.27)

Here, we have defined

fA =
(l − 1) (l + 1) (l + 2) (2l + 3)

∆ (2l2 + 4l) + (2l2 + 4l + 3)
(F.28)

fB =
l (l − 1) (l + 2) (2l − 1)

(2l2 + 1) + (2l2 − 2) /∆
(F.29)

fC1 =
1

2

l (l − 1) (l + 1) (l + 2)

∆ (2l2 + 4l) + (2l2 + 4l + 3)
(F.30)

fC2 =
1

2

l (l − 1) (l + 1) (l + 2)

∆ (2l2 + 1) + (2l2 − 2)
(F.31)

fC3 =
1

2

l (l − 1) (l + 1) (l + 2)
(
∆
(
2l2 + 4l + 3

)
+
(
2l2 + 4l

))
(∆ (2l2 + 1) + (2l2 − 2)) (∆ (2l2 + 4l) + (2l2 + 4l + 3))

(F.32)

fC4 =
1

2

l (l − 1) (l + 1) (l + 2)
(
∆
(
2l2 − 2

)
+
(
2l2 + 1

))
(∆ (2l2 + 1) + (2l2 − 2)) (∆ (2l2 + 4l) + (2l2 + 4l + 3))

(F.33)

where ∆ = η+/η− denotes the ratio of the viscosities inside and outside the droplet.

F.1.4 Concentration eigenmodes

The equation for the radial part of the concentration eigenmode is

1

D±
vrl (r)c̄

′(r) =

[
1

r2
d

dr
r2

d

dr
− λ±2nl − l(l + 1)

r2

]
cnl(r) (F.34)

with
λ±2nl = (k± + µnl)/D± . (F.35)

The boundary conditions at R̄ are

cnl(R̄±) = γβ±
hl
R̄

− R̄ c̄′(R̄±) . (F.36)

The left-hand side of Eq. (F.34) constitutes an inhomogeneity

f±l (r) = − 1

D±
vrl (r)c̄

′(r) . (F.37)

The solution c±nl(r) of the inhomogeneous equation (F.34) that satisfies the boundary
condition Eq. (F.36) can be constructed from a particular solution c±nl,p(r) of the
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F.1. Linear stability analysis with hydrodynamic flows

inhomogeneous equation to which solutions c±nl,h(r) of the homogeneous equation
with f±l = 0 are added to satisfy the boundary conditions, Eq. (F.36). This can be
expressed as

c−nl(r) = α−nlc
−
nl,h(r) + c−nl,p(r) (F.38)

c+nl(r) = α+
nlc

+
nl,h(r) + c+nl,p(r) , (F.39)

where the coefficients α± read

α±nl =
a±l − c±nl,p(R̄)

c±nl,h(R̄)
, (F.40)

with a±l = c±nl(R̄).
We are especially interested in the case of unstable modes with µnl > 0. Therefore

we focus on the solution of equation (F.34) for λ±2nl > 0 and k± > 0. In this case,
the homogeneous equation with f±l = 0 is a modified Helmholtz equation which
is solved by modified spherical Bessel functions, c−nl,h(r) = il(λ

−
nlr) and c+nl,h(r) =

kl(λ
+
nlr), where il and kl denote the modified spherical Bessel functions of first and

second order, respectively. The particular solution of the inhomogeneous equation
can be obtained by a Green’s function approach,

c−l,p(r) = λ−nlkl(λ
−
nlr)

∫ r

0

[
il(λ

−
nlr2)f

−
l (r2)r

2
2

]
dr2 (F.41)

+λ−nlil(λ
−
nlr)

∫ R̄

r

[
kl(λ

−
nlr2)f

−
l (r2)r

2
2

]
dr2

c+l,p(r) = λ+
nlkl(λ

+
nlr)

∫ r

R̄

[
il(λ

+
nlr2)f

+
l (r2)r

2
2

]
dr2 (F.42)

+λ+
nlil(λ

+
nlr)

∫ ∞
r

[
kl(λ

+
nlr2)f

+
l (r2)r

2
2

]
dr2 ,

with the radial part of the inhomogeneity f±l (r) given by Eq. (F.37). The explicit
calculation of these functions has to be handled with care, since the functions kl and
il have divergences for large and small arguments r that cancel in the final result but
can still lead to numerical difficulties when evaluated directly.

The derivative of the concentration profile at R̄ can be expressed as

c′nl(R̄−) =
a−l
R̄

gl,i(λ
−
nlR̄) +

c−l,p(R̄)

R̄
·
[
gl,k(λ

−
nlR̄)− gl,i(λ

−
nlR̄)

]
(F.43)

c′nl(R̄+) =
a+l
R̄

gl,k(λ
+
nlR̄) +

c+l,p(R̄)

R̄
·
[
gl,i(λ

+
nlR̄)− gl,k(λ

+
nlR̄)

]
(F.44)

with

gl,i(x) =
xi′l(x)

il(x)
(F.45)

gl,k(x) =
xk′l(x)

kl(x)
. (F.46)
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Using the equation for the shape perturbations (F.10), and using Eqns (F.43) and
(F.44), we obtain Eq. (7.3) in chapter 7. This equation determines the eigenvalue
µnlm of the hydrodynamic modes.

F.2 Scaling relations in the limit of small reaction fluxes
In the limit of small chemical reaction fluxes s± we obtain simple scaling expressions
for stationary radii and their shape instability conditions. Here we discuss the sta-
tionary radius in the limit of small chemical reaction amplitude A = ν−τ/∆c while
keeping the ratios ν−/(k−∆c) and k+/k− of reaction parameters fixed. Here we
present the method and discuss the results.

F.2.1 Stationary radius

The stationary radius does not contain hydrodynamic flows, so that the results in
Section 4.4 without hydrodynamic flows hold.

F.2.2 Shape instability

We now discuss scaling relations for the onset of instability in the (A, ϵ̂) plane in the
limit of small A, which give the trends shown as dashed lines in Fig. 7.2D-F. We
use the scaling of the stationary radius R̄ = R̄s close to ϵ0 with R̂ = R̄A1/3/w,
ϵ̂ = ϵA−1/3 and l̂± = l±A

1/2 in Eq. (7.3) to obtain

µ̂nlm = −dl

R̂

A−2/3

F
+

2

3
(l − 1)− D+

D−

(l − 1)gl

R̂
3 +O(A1/6) (F.47)

where µ̂nlm = µnlmτ/A and R̂ is related to ϵ̂ by Eq. (4.21). Here, dl = fC3 − fC1,
where fC1 and fC3 are defined in Eq. (F.33) and

gl =
hl(l + 1) + D−

D+

β−
β+

hll

l − 1
(F.48)

with hl = (l2 + l − 2)/2. For large mode index l,

dl =
l

2(η+/η− + 1)
+O(1/l) . (F.49)

We now consider conditions for which µnlm = 0 for small A and the mode (n, l,m)
becomes unstable. Using (4.21) in (F.47), we find a relation between ϵ̂ and R̂ at the
onset of instability µnlm = 0,

ϵ̂ =
dl

2(l − 1)

1

F̂
R̂+

(
1

6
+

D+

D−

1

2
gl

)
R̂
−1

+O(A1/6) . (F.50)

This curve captures the scaling behavior of the onset of instability for different param-
eters in the R̄− ϵ plane, corresponding to the red dotted line in Fig. 7.2A-C.
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We now focus on finding the scaling relations for the onset of stability of the
stationary radius as function of A, ϵ and F , as shown in Fig. 7.2D-F. At this onset,
both (F.50) and (4.21) need to be satisfied. We use both equations to eliminate R̂.
We find a crossover regime with relations A∗ ∼ F−3/2 between the region where
hydrodynamic flows are relevant (A < A∗) andwhere they can be neglected (A > A∗).
For A > A∗ we find for µnlm = 0 as relation between A and ϵ

A ≃ 54
gl(

1 + 1
2gl
)3 ϵ3 . (F.51)

For A < A∗ we find

A ≃ 1

3

(
2(l − 1)

dl

)2

ϵ−1F−2 . (F.52)

In Fig. 7.2D-F, the dashed lines indicate these two scaling solutions in the limitA →
0 and F → ∞ for l = 2, which we find to be the first mode to become unstable.
We find that the general trends of the stability diagram are captured well, with small
deviations from the full solution of Eq. (7.3) for small ϵ, and larger deviations in the
regime close to ϵ∞ where the scaling of the stationary radius R̄s ∝ A−1/3 breaks
down.

F.2.3 Details on scaling analysis with hydrodynamic effects

With hydrodynamic effects included, the equation for the eigenvalues is

∆c µnl =
∆c

R̄
vrl (R̄) +D+c̄

′′(R̄+)−D−c̄
′′(R̄−) +

D+

R̄
c′nl(R̄+)−

D−
R̄

c′nl(R̄−) .

(F.53)
with

c′nl(R̄−) =
a−l
R̄

gl,i(λ−R̄)

+
c−lm,p(R̄)

R̄
·
[
gl,k(λ−R̄)− gl,i(λ−R̄)

]
(F.54)

c′nl(R̄+) =
a+l
R̄

gl,k(λ+R̄)

+
c+lm,p(R̄)

R̄
·
[
gl,i(λ+R̄)− gl,k(λ+R̄)

]
, (F.55)

and

gl,i(x) =
xi′l(x)

il(x)
(F.56)

gl,k(x) =
xk′l(x)

kl(x)
. (F.57)

The first term is
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∆c

R̄
vrl (R̄) ≈ − γ

η−

∆c

R̄
dl (F.58)

which scales with Aa at the stationary radius, and a function dl that only depends
on ∆ = η+/η− and mode l. This function can be approximated by its limit for large
modes l,

dl ≈
l

2(∆ + 1)
(F.59)

This approximation works rather well even for l = 2.
The full hydrodynamic velocity is (derived via Stokes equation, see separate doc-

ument)

vr+l (r) = − γ

η−
fC2R

lr−l +
γ

η−
fC4R

l+2r−l−2 (F.60)

vr−l (r) =
γ

η−
fC1R

−l−1rl+1 − γ

η−
fC3R

−l+1rl−1 . (F.61)

The particular solutions for the concentration field, with inhomogeneity f±l (r) =
− 1
D±

vr±l (r)c̄′±(r), can be found via a Greens ansatz as

c−nl,p(R) = λ−kl(λ−R)

∫ R

0
il(λ−r)f

−
l (r)r2 dr (F.62)

c+nl,p(R) = λ+il(λ+R)

∫ ∞
R

kl(λ+r)f
+
l (r)r2 dr . (F.63)

For A → 0, and R ≪ l±, we can express the modified spherical Bessel functions
il(x) and kl(x) by it’s lowest orders for x → 0,

il(x) ≈
xl

1 · 3 · 5 · · · · · (2l + 1)
(F.64)

kl(x) ≈
1 · 3 · 5 · · · · · (2l − 1)

xl+1
(F.65)

For the particular solution inside the droplet, we find that it is independent of the
reaction amplitude A,

c−nl,p(R̄) ≈ γ

η−

ν−
3D−k−

1

2l(2l + 1)

(
fC3

2l + 3
− fC1

2l + 5

)
R3

0

l−20

. (F.66)

This contributes the following term to Eq. (7.3):

−D−
R̄

c−lm,p(R̄)

R̄
·
[
gl,k(λ−R̄)− gl,i(λ−R̄)

]
≈ γ

η−

ν−
3k−

2l − 1

2l(2l + 1)

(
fC1

2l + 5
− fC3

2l + 3

)
R

l2−
(F.67)

162



F.2. Scaling relations in the limit of small reaction fluxes

which goes with A2/3, and therefore converges to 0 faster than the vr-term in the
limit A → 0.

For the particular solution outside the droplet, the calculation is a bit more in-
volved, because in the integral both small and large values for x occur. For this, we
use a series expansion for kl(x) (see Abramowitz et al. (1965)),

kl(x) = 2R(l + 1/2, x)e−x (F.68)

R(l + 1/2, x) =
l∑

k=0

(l + 1/2, k)(2x)−k (F.69)

= 1 +
(l + 1)!

1!Γ(l)
(2x)−1 +

(l + 2)!

2!Γ(l − 1)
(2x)−2 + . . . (F.70)

This expansion, and the explicit form for c̄ yields terms
∫
e−2xxk. These are solved by

−2−k−1Γ(k+1, 2x), where Γ denotes the (incomplete) gamma function. Expanding
the Gamma function as a series,

Γ(−n, x) =
(−1)n

n!

E1(x)− e−x
n−1∑
j=0

(−1)jj!

xj+1

 (F.71)

with exponential integral

E1(x) = −γ − lnx−
∞∑
k=1

(−x)k

k · k!
, (F.72)

we find a solution of the integrals in terms of sums of exponential and (rational) poly-
nomial terms.

Keeping only the relevant terms (or R/l+ ≪ 1), we arrive at

c+nl,p(R̄) ≈ γ

η−

1

D+

1

1 · 3 · 5 · · · · · (2l + 1)

(2l)!

l!

(
2−l−2

l
fC2 −

2−l+2

l − 1
fC4

)
l+

R

l+

(
β+γ

R
−∆cϵ

) (F.73)

which is independent of A, similar to c+nl,p(R̄).
Comparison with Eq. (F.58) shows that the respective terms of the particular solu-

tions in Eq. (F.53) have the same linear dependency on γ/η−, but a larger dependency
onA, and do therefore not contribute in the limitA → 0. This is nice, since we would
expect from physical considerations that for smaller reactions rates, the concentration
field has smaller gradients, so that the advection of the field with the hydrodynamic
flow plays a smaller role. Note however, that for intermediate values, it vanishes
slower than the effects in Eq. (7.3), so that it can play a role for intermediate hydro-
dynamic influence, given by F = γ/η− · τ/w (where w and τ are relevant length-
and timescales that are independent of A).
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F. Stability analysis of chemically active droplets with hydrodynamic flows

Thus, combining the hydrodynamic termEq. (F.58) with our results fromEq. (7.3),
we find that for A → 0, the hydrodynamic flow dominates, which stabilizes the
droplet. The scaling of the growth rate with the reaction amplitude is due to the fact
that we are considering stationary droplet sizes.

Including the hydrodynamic flow into Eq. (7.3) that describes the instability of
the stationary droplet radius, we can express the onset of instability µl = 0 as

ϵ0(R0) =
1

D+2(l − 1)

(
R0F0

w

τ
dl +

β+γD+

R0∆c
fl

)
(F.74)

with fl = 2(l − 1) + hl(l + 1) + hll
D−β−
D+β+

. The minimum of this function can be
found as

R∗20 =
1

F0
τ
w

β+γD+

∆c

fl
dl

(F.75)

Since we are considering the stability of stationary radii, this needs to be equated
to the expressions for the stationary radius, which gives a value for F0 at which the
hydrodynamic effects start to dominate the droplet stability.

We can again find the limit of the eigenvalue for large stationary radii, where the
first order perturbation is the hydrodynamic term (for large enough F0,

µ ≈ 2

3
(l − 1)

ν−
∆c

− 1

R0
F0

w

τ
dl −

D+β+γ

R3
0∆c

gl (F.76)

with gl =
D+

D−
hl(l+1)+ β−

β+
hll. For large F0, we can calculate an alternative equation

for the stationary radii at which the instability develops µ = 0 (ignoring the last
term), and equate it to the reformulation of Eq.(70) (again, ignoring the last term).
We find the scaling behavior of the region of instability that is influenced mainly by
the hydrodynamic flows

ϵ0 ≈
(
F0

w

τ

dl
2(l − 1)

)2

3
∆c

ν−D+
(F.77)

or, returning to the non-rescaled form, ϵ = ϵ0A
1/3 etc.,

ϵ ≈ F 2A−1
(
w

τ

dl
2(l − 1)

)2

3
∆c

ν−D+
(F.78)

For the other limit, F0 small, we recover the non-hydrodynamic scaling behavior.
The transition is given by Eq. (F.75).
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Appendix G
Parameter examples

G.1 Chemical turnover time of stationary droplets
To facilitate the estimation of parameters, we define the droplet turnover time as the
time after which the droplet material has been replaced on average. Consequently,
the turnover time tR is given by the total amountN of droplet material in the droplet,
divided by the integrated flux J with which droplet material is turned into component
A by the reaction B → A,

tR =
N

J
. (G.1)

Here, N is given by

N =

∫
V
c−(r)dV , (G.2)

where c−(r) is the concentration field of droplet material inside the droplet, and
V is the droplet volume. In the stationary state, the reaction flux J is equal to the
integrated outflux of droplet material across the droplet interface, which is given by

J = −
∮
S
j−(R)dA , (G.3)

where j−(R) is the diffusion flux of droplet material normal to the droplet surface S.
In a stationary state, j−(R) is given by Eq. (C.4) and c−(r) by Eq. (C.1). We

then have

N =
4

3
πR3

(
c
(0)
− − ν−

k−

)
+ 4πRl2−

(
ν−
k−

+
γβ−
R

)(
R

l−
coth R

l−
− 1

)
(G.4)

J = 4πRD−

(
γβ−
R

+
ν−
k−

)(
R

l−
coth R

l−
− 1

)
. (G.5)
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Therefore, the turnover time of a stationary droplet is given by

tR =
c
(0)
− − ν−

k−

ν− + k−
γβ−
R

·
1
3

(
R
l−

)2
R
l−

coth R
l−

− 1
+

1

k−
. (G.6)

In the limit of R ≪ l− and γβ−/(c
(0)
− − c

(0)
+ ) ≪ R, we find

tR ≈
c
(0)
−
ν−

. (G.7)

G.2 Examples of parameter values for dividing droplets
without hydrodynamics

In Table G.1, we provide five examples of parameter values for which droplets become
unstable. The corresponding stationary radii are shown in Fig. G.1 as a function of
the supersaturation. The turnover time tR is defined in G.1. Case I is based on the
properties of colloidal droplets or liquid protein phases with low interfacial tension,
Brangwynne et al. (2009); Li et al. (2012); Safran (1994). We find that droplet divi-
sion at sizes of several micrometers could be realized experimentally, see Fig. G.1 and
Table G.1. In case I the division radius is Rdiv ≈ 3µm. Case II is based on the prop-
erties of water/oil interfaces, see Safran (1994); Peters and Arabali (2013); Page et al.
(2000); Atkins and de Paula (2010). This example shows that even for these larger in-
terfacial tensions as compared to case I, droplets can still have a division radius of the
order of micrometers. Case III shows the effect of different diffusion constants and
length-scales inside and outside the droplet, with division radii again in the microme-
ter range. Cases IV and V explore parameter regimes for which dividing droplets are
larger. Case IV is based on case I, but with a longer turnover time. This leads to an
increased division radius of 10µm. Case V is an example for division at even larger
radii withRdiv ≈ 140µm. To obtain this droplet size, large diffusion constantsD are
required, and the interfacial width w and the turnover time tR also have to be large.
This can be understood by considering Eq. (4.31), which implies that for R ≪ l±,
the division radius scales as Rdiv ∼ (DwtR)

1/3.
Our analysis thus shows that dividing droplets with sizes of several micrometers

could be achieved experimentally. Simple choices of realistic parameter values typi-
cally lead to such droplet sizes. However, larger droplets from 100 micrometers to
millimeters may turn out to be more difficult to achieve. To obtain such droplets
in case V we had to choose large diffusion coefficients and slow reaction rates. We
therefore propose that dividing active droplets as presented in this work provide sim-
ple models of micrometer sized protocells.

G.3 Estimation of the influence of hydrodynamic flows
Here we estimate the hydrodynamic parameter for two physical phase-separating sys-
tems to understand the importance of hydrodynamic flows on the droplet division
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G.3. Estimation of the influence of hydrodynamic flows

Quantity Unit Case I Case II Case III Case IV Case V

D− µm2
/s 10 10 1 10 1000

D+
µm2

/s 10 10 100 10 1000
w nm 10 1 10 10 100
γ mN/m 10−3 10 10−3 10−3 10
β− = w∆c

6γ
M·m2

/N 2 · 10−4 2 · 10−8 2 · 10−4 2 · 10−4 1.7 · 10−6

β+ = w∆c
6γ

M·m2
/N 2 · 10−4 2 · 10−8 2 · 10−4 2 · 10−4 1.7 · 10−6

c
(0)
− mM 100 103 100 100 103

c
(0)
+ mM 1 10−3 1 1 10−3

tR s 100 100 10 4000 104 (≈ 3 h)
l− mm 0.1 5 0.1 0.1 5
l+ mm 0.1 5 0.01 0.1 5

ν− =
c
(0)
−
tR

mM/s 1 10 10 2.5 · 10−2 0.1

ν+ = ϵ∆ck+ nM/s 200 0.3 2 · 105 100 30

k− = D−
l2−

1/s 10−3 4 · 10−7 10−4 10−3 4 · 10−5

k+ = D+

l2+
1/s 10−3 4 · 10−7 1 10−3 4 · 10−5

R̄s using Eq. (4.13) µm 3 1 3 10 140
R̄c using Eq. (4.13) µm 0.7 0.2 0.7 1.7 20
Rdiv = R̄s µm 3 1 3 10 140
ϵdiv 2 · 10−3 8 · 10−4 2 · 10−3 10−3 8 · 10−4

k+τ0 10−8 4 · 10−13 10−5 10−8 5 · 10−10

k−τ0 10−8 4 · 10−13 10−9 10−8 5 · 10−10

ν+τ0/∆c 2 · 10−11 3 · 10−17 2 · 10−9 10−11 3 · 10−13

ν−τ0/∆c 10−7 10−9 10−7 2.5 · 10−9 10−9

c
(0)
+ /∆c 0.01 10−6 0.01 0.01 10−6

β+/β− 1 1 1 1 1
D−/D+ 1 1 0.01 1 1

∆c = c
(0)
− − c

(0)
+ mM 99 103 99 99 103

w nm 10 1 10 10 100
τ0 = w2/D+ µs 10 0.1 1 10 10

Table G.1: Examples for parameter values of the effective model for five different cases.
Both dimensional and dimensionless parameters are shown. Our choice of parameters that
are related to phase separation (D±, w, γ, and c

(0)
± ) is based on measured values in liquid

protein phases, Brangwynne et al. (2009); Li et al. (2012); Safran (1994), (cases I, III and
IV) and in water/oil interfaces, Safran (1994); Peters and Arabali (2013); Page et al. (2000);
Atkins and de Paula (2010) (case II). Case V explores extreme parameter ranges to create large
droplet radii. The parameters describing chemical reaction rates can vary widely depending
on concentration levels and specific reactions considered, Atkins and de Paula (2010). The
reaction rates k± and ν± are related to elasticity coefficients, Kacser et al. (1973), for which
only very few measured values have been reported. Instead of specifying k± and ν± directly,
we therefore choose experimentally relevant turnover times tR, Brangwynne et al. (2009),
and length-scales l± that are larger than resulting droplet radii such that the droplets are
approximately homogeneous. The remaining parameters (β±, ν±, and k±) can be determined
using the expressions given in the first column of the Table. The supersaturation ϵdiv at which
the stationary radius R̄s becomes unstable, µ12 = 0, is obtained by linear stability analysis.
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m
I
II
III
IV
V

Figure G.: Stationary radius R̄ as a function of the supersaturation ϵ. The curves
correspond to the five parameter sets given in Table G.1, and are calculated using
Eq. (4.4). Dotted lines indicate an unstable droplet size (l = 0 mode) and dashed
lines indicate a shape instability (l = 2 mode), see Eq. (4.13). Stable droplets are
shown as solid lines. The red dots show the onset of the shape instability. We report
the respective stationary radii and supersaturations in Table G.1.

in experimental systems. We discuss two cases, water-oil phase separation, and soft
colloidal systems (such as protein-RNA phase-separation in cells). We have already
estimated parameter values for both systems without the influence of hydrodynamic
flows, where we found that droplet division should be possible for realistic values of
chemical reaction rates in both systems, and that corresponding stationary radii would
have sizes of a few micrometers. Here we estimate the value of the dimensionless vis-
cosity F for water-oil and soft colloidal systems, and compare them to the analytical
phase diagrams presented in Fig. 7.2.

To calculate the hydrodynamic parameter F for experimental systems, we need an
estimation of the diffusion coefficient of the droplet material D+ outside the droplet,
of the interfacial width w, of the surface tension γ and of the viscosity η− inside the
droplet. For water-oil systems, the interfacial width is of the order of w ≈ 1nm and
the diffusion constant is D+ ≈ 10−9m2/s. We can estimate the surface tension as
γ ≈ 10−2N/m, and the viscosity η− ≈ 10−3(N · s)/m2, Safran (1994); Haynes
(2014). With these values, we find F ≈ 0.1. In this case droplet division is strongly
suppressed, see Fig. 7.2. For soft colloidal systems, we estimate w ≈ 10nm, D+ ≈
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G.3. Estimation of the influence of hydrodynamic flows

10−10m2/s and γ ≈ 10−6N/m, Safran (1994); Brangwynne et al. (2009). The value
of F depends on the viscosity of the droplet. For values η− ≈ 10−3(N · s)/m2, F ≈
10, and for η− ≈ 1−10(N ·s)/m2, we have F ≈ 104. In both cases droplet division
is possible, but more easy to achieve for larger F . We convert A∗ to the reaction rate
ν− inside the droplet using the droplet concentration given in the previous section.

We can use the scaling analysis with hydrodynamic flows, Appendix F.2, to es-
timate the instability of the concrete parameter examples discussed previously under
the influence of hydrodynamic flows. In these scaling equations, the ratios η+/η−
and D−β−/(D+β+) enter the calculation of A∗ and ϵ∗ but we find that they do not
lead to relevant changes in the results. The scaling analysis thus yields results very
similar to the estimation using Fig. 7.2.

169





Bibliography

Milton Abramowitz, Irene A Stegun, and David Miller. Handbook of Mathemat-
ical Functions With Formulas, Graphs and Mathematical Tables (National Bu-
reau of Standards Applied Mathematics Series No. 55). Journal of Applied Me-
chanics, 32(1):239, 1965. doi: 10.1115/1.3625776. URL http://appliedmechanics.
asmedigitalcollection.asme.org/article.aspx?articleid=1396937.

Bruce Alberts, Dennis Bray, Karen Hopkin, Alexander D Johnson, Julian Lewis,
Martin Raff, Keith Roberts, and Peter Walter. Essential Cell Biology. Garland
Science, 2013. ISBN 0815344554.

Meghan Andes-Koback and Christine D Keating. Complete Budding and Asym-
metric Division of Primitive Model Cells To Produce Daughter Vesicles with
Different Interior and Membrane Compositions. Journal of the American Chem-
ical Society, 133(24):9545–9555, 2011. doi: 10.1021/ja202406v. URL https:
//pubs.acs.org/doi/10.1021/ja202406v.

UAscher, S Ruuth, and R Spiteri. Implicit-Explicit Runge-KuttaMethods for Time-
Dependent Partial Differential Equations, 1997.

P Atkins and J de Paula. Atkins’ Physical Chemistry. OUP Oxford, 2010. ISBN
9780199543373. URL https://books.google.de/books?id=BV6cAQAAQBAJ.

P W Atkins. Physical Chemistry. Oxford University Press, Oxford, 1994.

William M Aumiller and Christine D Keating. Phosphorylation-mediated
RNA/peptide complex coacervation as a model for intracellular liquid organelles.
Nature Chemistry, 8(2):129–137, feb 2016. doi: 10.1038/nchem.2414. URL
http://dx.doi.org/10.1038/nchem.2414.

171

http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1396937
http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1396937
https://pubs.acs.org/doi/10.1021/ja202406v
https://pubs.acs.org/doi/10.1021/ja202406v
https://books.google.de/books?id=BV6cAQAAQBAJ
http://dx.doi.org/10.1038/nchem.2414


Bibliography

Pascale Angelica Bachmann, Pier Luigi Luisi, and Jacques Lang. Autocatalytic self-
replicating micelles as models for prebiotic structures. Nature, 357(6373):57–59,
may 1992. doi: 10.1038/357057a0. URL http://dx.doi.org/10.1038/357057a0.

Salman F. Banani, Hyun O. Lee, Anthony A. Hyman, and Michael K. Rosen.
Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews
Molecular Cell Biology, 18(5):285–298, may 2017. doi: 10.1038/nrm.2017.7. URL
http://dx.doi.org/10.1038/nrm.2017.7.

John A Baross and Sarah E Hoffman. Submarine hydrothermal vents and associated
gradient environments as sites for the origin and evolution of life. Origins of Life and
Evolution of the Biosphere, 15(4):327–345, dec 1985. doi: 10.1007/BF01808177.
URL http://dx.doi.org/10.1007/BF01808177.

R G Barrera, G A Estevez, and J Giraldo. Vector spherical harmonics and their
application to magnetostatics. European Journal of Physics, 6(4):287–294, oct 1985.
doi: 10.1088/0143-0807/6/4/014. URL http://stacks.iop.org/0143-0807/6/i=4/
a=014?key=crossref.3ddea36749b1b2b1e7c999596f2b68d8.

George Keith Batchelor. An Introduction to Fluid Dynamics. Cambridge University
Press, 2000.

Tobias Baumgart, Samuel T. Hess, and Watt W. Webb. Imaging coexisting fluid
domains in biomembrane models coupling curvature and line tension. Nature, 425
(6960):821–824, oct 2003. doi: 10.1038/nature02013. URL http://www.nature.
com/articles/nature02013.

Clifford P. Brangwynne, Christian R. Eckmann, D S Courson, A Rybarska, Carsten
Hoege, Jöbin Gharakhani, F. Julicher, and Anthony A Hyman. Germline P Gran-
ules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation.
Science, 324(5935):1729–1732, jun 2009. doi: 10.1126/science.1172046. URL
http://www.sciencemag.org/cgi/doi/10.1126/science.1172046.

A.J. Bray. Theory of phase-ordering kinetics. Advances in Physics, 43(3):357–459, jun
1994. doi: 10.1080/00018739400101505. URL http://www.tandfonline.com/doi/
abs/10.1080/00018739400101505.

Dawn J Brooks, Jacques R Fresco, Arthur M Lesk, and Mona Singh. Evolution of
Amino Acid Frequencies in Proteins Over Deep Time: Inferred Order of Intro-
duction of Amino Acids into the Genetic Code. Molecular Biology and Evolution,
19(10):1645–1655, oct 2002. doi: 10.1093/oxfordjournals.molbev.a003988. URL
http://academic.oup.com/mbe/article/19/10/1645/1258758.

Kevin P. Browne, David A. Walker, Kyle J. M. Bishop, and Bartosz A. Grzybowski.
Self-Division of Macroscopic Droplets: Partitioning of Nanosized Cargo into
Nanoscale Micelles. Angewandte Chemie, 122(38):6908–6911, sep 2010. doi:
10.1002/ange.201002551. URL http://doi.wiley.com/10.1002/ange.201002551.

172

http://dx.doi.org/10.1038/357057a0
http://dx.doi.org/10.1038/nrm.2017.7
http://dx.doi.org/10.1007/BF01808177
http://stacks.iop.org/0143-0807/6/i=4/a=014?key=crossref.3ddea36749b1b2b1e7c999596f2b68d8
http://stacks.iop.org/0143-0807/6/i=4/a=014?key=crossref.3ddea36749b1b2b1e7c999596f2b68d8
http://www.nature.com/articles/nature02013
http://www.nature.com/articles/nature02013
http://www.sciencemag.org/cgi/doi/10.1126/science.1172046
http://www.tandfonline.com/doi/abs/10.1080/00018739400101505
http://www.tandfonline.com/doi/abs/10.1080/00018739400101505
http://academic.oup.com/mbe/article/19/10/1645/1258758
http://doi.wiley.com/10.1002/ange.201002551


Bibliography

John W Cahn and John E Hilliard. Free Energy of a Nonuniform System. I. Inter-
facial Free Energy. The Journal of Chemical Physics, 28(2):258–267, feb 1958. doi:
10.1063/1.1744102. URL http://aip.scitation.org/doi/10.1063/1.1744102.

Daniele Carati and René Lefever. Chemical freezing of phase separation in immisci-
ble binary mixtures. Physical Review E, 56(3):3127–3136, sep 1997. doi: 10.1103/
PhysRevE.56.3127. URL https://link.aps.org/doi/10.1103/PhysRevE.56.3127.

M E Cates. Complex fluids: the physics of emulsions. Soft Interfaces: Lecture Notes
of the Les Houches Summer School: Volume 98, July 2012, 98:317, 2012.

Subrahmanyan Chandrasekhar. Hydrodynamic and hydromagnetic stability. Dover
Publications, Inc., New York, 1981.

C.-M. Chen, P. G. Higgs, and F. C. MacKintosh. Theory of Fission for Two-
Component Lipid Vesicles. Physical Review Letters, 79(8):1579–1582, aug 1997.
doi: 10.1103/PhysRevLett.79.1579. URL https://link.aps.org/doi/10.1103/
PhysRevLett.79.1579.

L.Q. Chen and Jie Shen. Applications of semi-implicit Fourier-spectral method to
phase field equations. Computer Physics Communications, 108(2-3):147–158, feb
1998. doi: 10.1016/S0010-4655(97)00115-X. URL http://www.sciencedirect.
com/science/article/pii/S001046559700115X.

J J Christensen, K Elder, and H C Fogedby. Phase segregation dynamics of a
chemically reactive binary mixture. Phys. Rev. E, 54(3):R2212—-R2215, 1996.
doi: 10.1103/PhysRevE.54.R2212. URL http://pre.aps.org/abstract/PRE/v54/
i3/pR2212{_}1.

Peter Constantin, Todd F. Dupont, Raymond E. Goldstein, Leo P. Kadanoff,
Michael J. Shelley, and Su-Min Zhou. Droplet breakup in a model of the Hele-
Shaw cell. Physical Review E, 47(6):4169–4181, jun 1993. doi: 10.1103/PhysRevE.
47.4169. URL https://link.aps.org/doi/10.1103/PhysRevE.47.4169.

John Crank. Free and moving boundary problems . Clarendon Press, 1987.
ISBN 0198533705, 9780198533702. URL http://books.google.com/books?id=
wTB4AsVvQDsC{&}printsec=frontcover.

Vittorio Cristini and John Lowengrub. Three-dimensional crystal growth—II: non-
linear simulation and control of the Mullins–Sekerka instability. Journal of Crystal
Growth, 266(4):552–567, jun 2004. doi: 10.1016/j.jcrysgro.2004.02.115. URL
https://linkinghub.elsevier.com/retrieve/pii/S002202480400346X.

John Crosby, Tom Treadwell, Michelle Hammerton, Konstantinos Vasilakis,
Matthew P. Crump, David S. Williams, and Stephen Mann. Stabilization
and enhanced reactivity of actinorhodin polyketide synthase minimal complex in
polymer–nucleotide coacervate droplets. Chemical Communications, 48(97):11832,
2012. doi: 10.1039/c2cc36533b. URL http://xlink.rsc.org/?DOI=c2cc36533b.

173

http://aip.scitation.org/doi/10.1063/1.1744102
https://link.aps.org/doi/10.1103/PhysRevE.56.3127
https://link.aps.org/doi/10.1103/PhysRevLett.79.1579
https://link.aps.org/doi/10.1103/PhysRevLett.79.1579
http://www.sciencedirect.com/science/article/pii/S001046559700115X
http://www.sciencedirect.com/science/article/pii/S001046559700115X
http://pre.aps.org/abstract/PRE/v54/i3/pR2212{_}1
http://pre.aps.org/abstract/PRE/v54/i3/pR2212{_}1
https://link.aps.org/doi/10.1103/PhysRevE.47.4169
http://books.google.com/books?id=wTB4AsVvQDsC{&}printsec=frontcover
http://books.google.com/books?id=wTB4AsVvQDsC{&}printsec=frontcover
https://linkinghub.elsevier.com/retrieve/pii/S002202480400346X
http://xlink.rsc.org/?DOI=c2cc36533b


Bibliography

Michael Cross and Henry Greenside. Pattern Formation and Dynamics in
Nonequilibrium Systems. Cambridge University Press, Cambridge, 2009.
ISBN 9780511627200. doi: 10.1017/CBO9780511627200. URL http:
//books.google.com/books?id=TjK7PQAACAAJ{&}printsec=frontcover{%}5Cnpapers2:
//publication/uuid/3146CF37-2E58-4773-9068-4C68D2A79F79.

Stephen H Davis. Theory of solidification. Cambridge University Press, 2001.

Sybren Ruurds De Groot and Peter Mazur. Non-equilibrium thermodynamics. Dover
Publications, Inc., New York, 2011.

Graham R Dennis, Joseph J Hope, and Mattias T Johnsson. XMDS2: Fast, scalable
simulation of coupled stochastic partial differential equations. Computer Physics
Communications, 184(1):201–208, jan 2013. doi: 10.1016/j.cpc.2012.08.016. URL
https://linkinghub.elsevier.com/retrieve/pii/S0010465512002822.

I Derényi and I Lagzi. Fatty acid droplet self-division driven by a chemical re-
action. Phys. Chem. Chem. Phys., 16(10):4639–4641, jan 2014. doi: 10.1039/
C3CP54676D. URL http://xlink.rsc.org/?DOI=C3CP54676D.

Rashmi C Desai and Raymond Kapral. Dynamics of Self-organized and Self-assembled
Structures. Cambridge University Press, 2009.

H.G. Döbereiner, J. Käs, D. Noppl, I. Sprenger, and E. Sackmann. Budding and
fission of vesicles. Biophysical Journal, 65(4):1396–1403, oct 1993. doi: 10.1016/
S0006-3495(93)81203-7. URL https://linkinghub.elsevier.com/retrieve/pii/
S0006349593812037.

Nobuhide Doi, Koichi Kakukawa, Yuko Oishi, and Hiroshi Yanagawa. High sol-
ubility of random-sequence proteins consisting of five kinds of primitive amino
acids. Protein Engineering, Design and Selection, 18(6):279–284, jun 2005. doi:
10.1093/protein/gzi034. URL http://academic.oup.com/peds/article/18/6/279/
1510755/High-solubility-of-randomsequence-proteins.

Björn Drobot, Juan M. Iglesias-Artola, Kristian Le Vay, Viktoria Mayr, Mrityun-
joy Kar, Moritz Kreysing, Hannes Mutschler, and T-Y. Dora Tang. Compart-
mentalised RNA catalysis in membrane-free coacervate protocells. Nature Com-
munications, 9(1):3643, dec 2018. doi: 10.1038/s41467-018-06072-w. URL
http://www.nature.com/articles/s41467-018-06072-w.

Jens Eggers. Nonlinear dynamics and breakup of free-surface flows. Reviews of Mod-
ern Physics, 69(3):865–930, 1997. doi: 10.1103/RevModPhys.69.865.

Shana Elbaum-Garfinkle, Younghoon Kim, Krzysztof Szczepaniak, Carlos Chih-
Hsiung Chen, Christian R. Eckmann, Sua Myong, and Clifford P. Brangwynne.
The disordered P granule protein LAF-1 drives phase separation into droplets

174

http://books.google.com/books?id=TjK7PQAACAAJ{&}printsec=frontcover{%}5Cnpapers2://publication/uuid/3146CF37-2E58-4773-9068-4C68D2A79F79
http://books.google.com/books?id=TjK7PQAACAAJ{&}printsec=frontcover{%}5Cnpapers2://publication/uuid/3146CF37-2E58-4773-9068-4C68D2A79F79
http://books.google.com/books?id=TjK7PQAACAAJ{&}printsec=frontcover{%}5Cnpapers2://publication/uuid/3146CF37-2E58-4773-9068-4C68D2A79F79
https://linkinghub.elsevier.com/retrieve/pii/S0010465512002822
http://xlink.rsc.org/?DOI=C3CP54676D
https://linkinghub.elsevier.com/retrieve/pii/S0006349593812037
https://linkinghub.elsevier.com/retrieve/pii/S0006349593812037
http://academic.oup.com/peds/article/18/6/279/1510755/High-solubility-of-randomsequence-proteins
http://academic.oup.com/peds/article/18/6/279/1510755/High-solubility-of-randomsequence-proteins
http://www.nature.com/articles/s41467-018-06072-w


Bibliography

with tunable viscosity and dynamics. Proceedings of the National Academy of Sci-
ences, 112(23):201504822, 2015. doi: 10.1073/pnas.1504822112. URL http:
//www.pnas.org/lookup/doi/10.1073/pnas.1504822112.

Martha J Fedor and James R Williamson. The catalytic diversity of RNAs. Nat. Rev.
Mol. Cell. Biol., 6(5):399–412, may 2005. doi: 10.1038/nrm1647.

Marina Feric, Nilesh Vaidya, Tyler S Harmon, Diana M Mitrea, Lian Zhu,
Tiffany M Richardson, Richard W Kriwacki, Rohit V Pappu, and Clifford P
Brangwynne. Coexisting Liquid Phases Underlie Nucleolar Subcompartments.
Cell, 165(7):1686–1697, 2016. doi: https://doi.org/10.1016/j.cell.2016.04.047.
URL http://www.sciencedirect.com/science/article/pii/S0092867416304925.

Paul I J Flory. Thermodynamics of High Polymer Solutions. The Journal of Chemical
Physics, 10(51):51–61, 1942. doi: 10.1146/annurev.pc.02.100151.002123.

S W Fox. The evolutionary significance of phase-separated microsystems. Orig. Life,
7(1):49–68, jan 1976.

Erica A. Frankel, Philip C. Bevilacqua, and Christine D. Keating.
Polyamine/Nucleotide Coacervates Provide Strong Compartmentalization
of Mg2+, Nucleotides, and RNA. Langmuir, 32(8):2041–2049, 2016. doi:
10.1021/acs.langmuir.5b04462.

A. Gierer and H. Meinhardt. A theory of biological pattern formation. Kybernetik,
12(1):30–39, 1972. doi: 10.1007/BF00289234. URL http://www.springerlink.
com/index/t541854v22417131.pdf.

Walter Gilbert. Origin of life: The RNA world. Nature, 319(6055), 1986.

Luca Giomi and Antonio DeSimone. Spontaneous division and motility in
active nematic droplets. Phys. Rev. Lett., 112(14):147802, 2014. URL
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=
24766017{&}retmode=ref{&}cmd=prlinks.

Sharon C Glotzer, D Stauffer, and N Jan. Monte Carlo simulations of phase sepa-
ration in chemically reactive binary mixtures. Phys. Rev. Lett., 72(26):4109–4112,
1994. URL http://prl.aps.org/abstract/PRL/v72/i26/p4109{_}1.

Jeremy B A Green and James Sharpe. Positional information and reaction-diffusion:
two big ideas in developmental biology combine. Development (Cambridge, Eng-
land), 142(7):1203–1211, 2015. doi: 10.1242/dev.114991. URL http://dev.
biologists.org/content/142/7/1203.full.

Shani Guttman, Zvi Sapir, Moty Schultz, Alexander V. Butenko, Benjamin M.
Ocko, Moshe Deutsch, and Eli Sloutskin. How faceted liquid droplets grow
tails. Proceedings of the National Academy of Sciences, page 201515614, 2016. doi:

175

http://www.pnas.org/lookup/doi/10.1073/pnas.1504822112
http://www.pnas.org/lookup/doi/10.1073/pnas.1504822112
http://www.sciencedirect.com/science/article/pii/S0092867416304925
http://www.springerlink.com/index/t541854v22417131.pdf
http://www.springerlink.com/index/t541854v22417131.pdf
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=24766017{&}retmode=ref{&}cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=24766017{&}retmode=ref{&}cmd=prlinks
http://prl.aps.org/abstract/PRL/v72/i26/p4109{_}1
http://dev.biologists.org/content/142/7/1203.full
http://dev.biologists.org/content/142/7/1203.full


Bibliography

10.1073/pnas.1515614113. URL http://www.pnas.org/lookup/doi/10.1073/pnas.
1515614113.

John Burdon Sanderson Haldane. The origin of life. The Rationalist An-
nual, 148:3–10, 1929. URL http://www.sciencedirect.com/science/article/pii/
S001282529900015X.

M M Hanczyc. Metabolism and motility in prebiotic structures. Philos. Trans. R.
Soc. Lond., B, Biol. Sci., 366(1580):2885–2893, 2011. doi: 10.1098/rstb.2011.
0141. URL http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=
pubmed{&}id=21930579{&}retmode=ref{&}cmd=prlinks.

M M Hanczyc and J W Szostak. Replicating vesicles as models of primitive cell
growth and division. Curr. Opin. Chem. Biol., 8(6):660–664, 2004. doi: 10.1016/
j.cbpa.2004.10.002. URL http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.
fcgi?dbfrom=pubmed{&}id=15556412{&}retmode=ref{&}cmd=prlinks.

William M Haynes. CRC handbook of chemistry and physics. CRC press, 2014.

Stephan Herminghaus, Corinna C Maass, Carsten Krüger, Shashi Thutupalli, Lucas
Goehring, and Christian Bahr. Interfacial mechanisms in active emulsions. Soft
matter, 10(36):7008–22, 2014. doi: 10.1039/c4sm00550c. URL http://pubs.rsc.
org/en/content/articlehtml/2014/sm/c4sm00550c.

Paul G Higgs and Niles Lehman. The {RNA} World: molecular cooperation at the
origins of life. Nat. Rev. Genet., 16(1):7–17, jan 2015. doi: 10.1038/nrg3841. URL
http://dx.doi.org/10.1038/nrg3841.

Maurice L. Huggins. Some Properties of Solutions of Long-chain Compounds. J.
Phys. Chem., 46(1):151–158, 1942. doi: 10.1021/j150415a018. URL http://pubs.
acs.org/doi/abs/10.1021/j150415a018.

Anthony A Hyman, Christoph A Weber, and Frank Jülicher. Liquid-liquid phase
separation in biology. Annu. Rev. Cell Dev. Biol., 30(1):39–58, 2014. doi: 10.
1146/annurev-cellbio-100913-013325. URL http://www.annualreviews.org/doi/
abs/10.1146/annurev-cellbio-100913-013325.

William M Jacobs and Daan Frenkel. Phase Transitions in Biological Systems with
Many Components. Biophysj, 112(4):683–691, 2017. doi: 10.1016/j.bpj.2016.10.
043. URL http://dx.doi.org/10.1016/j.bpj.2016.10.043.

H O Johansson, G Karlström, F Tjerneld, and C a Haynes. Driving forces for phase
separation and partitioning in aqueous two-phase systems. Journal of chromatog-
raphy. B, Biomedical sciences and applications, 711(1-2):3–17, 1998. doi: 10.1016/
S0378-4347(97)00585-9. URL http://www.ncbi.nlm.nih.gov/pubmed/9699970.

176

http://www.pnas.org/lookup/doi/10.1073/pnas.1515614113
http://www.pnas.org/lookup/doi/10.1073/pnas.1515614113
http://www.sciencedirect.com/science/article/pii/S001282529900015X
http://www.sciencedirect.com/science/article/pii/S001282529900015X
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=21930579{&}retmode=ref{&}cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=21930579{&}retmode=ref{&}cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=15556412{&}retmode=ref{&}cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=15556412{&}retmode=ref{&}cmd=prlinks
http://pubs.rsc.org/en/content/articlehtml/2014/sm/c4sm00550c
http://pubs.rsc.org/en/content/articlehtml/2014/sm/c4sm00550c
http://dx.doi.org/10.1038/nrg3841
http://pubs.acs.org/doi/abs/10.1021/j150415a018
http://pubs.acs.org/doi/abs/10.1021/j150415a018
http://www.annualreviews.org/doi/abs/10.1146/annurev-cellbio-100913-013325
http://www.annualreviews.org/doi/abs/10.1146/annurev-cellbio-100913-013325
http://dx.doi.org/10.1016/j.bpj.2016.10.043
http://www.ncbi.nlm.nih.gov/pubmed/9699970


Bibliography

Frank Jülicher, Stephan W Grill, and Guillaume Salbreux. Hydrodynamic the-
ory of active matter. Reports on Progress in Physics, 81(7):076601, jul 2018. doi:
10.1088/1361-6633/aab6bb. URL http://stacks.iop.org/0034-4885/81/i=7/a=
076601?key=crossref.54b1ff7d6fa0c8207d74f7041b8f02b8.

H Kacser, , and JA34 Burns. The control of flux. In Symp. Soc. Exp. Biol., volume 27,
pages 65–104, 1973.

Eric Karsenti. Self-organization in cell biology: a brief history. Nature Reviews
Molecular Cell Biology, 9(3):255–262, mar 2008. doi: 10.1038/nrm2357. URL
http://www.nature.com/articles/nrm2357.

AndrewH. Knoll andMartin A.Nowak. The timetable of evolution. Science Advances,
3(5):1–14, 2017. doi: 10.1126/sciadv.1603076.

Ryo Kobayashi. Modeling and numerical simulations of dendritic crystal growth.
Physica D: Nonlinear Phenomena, 63(3-4):410–423, 1993. doi: 10.1016/
0167-2789(93)90120-P.

Shogo Koga, David S Williams, Adam W Perriman, and Stephen Mann. Peptide–
nucleotide microdroplets as a step towards a membrane-free protocell model. Na-
ture Chemistry, 3(9):720–724, 2011. doi: 10.1038/nchem.1110. URL http:
//dx.doi.org/10.1038/nchem.1110.

Dilip Kondepudi and Ilya Prigogine. Modern thermodynamics: from heat engines to
dissipative structures. John Wiley & Sons, 2014.

Moritz Kreysing, Lorenz Keil, Simon Lanzmich, and Dieter Braun. Heat flux across
an open pore enables the continuous replication and selection of oligonucleotides
towards increasing length. Nature Chemistry, 7(3):203–208, 2015. doi: 10.1038/
nchem.2155. URL http://www.ncbi.nlm.nih.gov/pubmed/25698328{%}5Cnhttp://
dx.doi.org/10.1038/nchem.2155.

K. Kruse, J. F. Joanny, F. Jülicher, J Prost, and K Sekimoto. Asters, Vortices, and
Rotating Spirals in Active Gels of Polar Filaments. Physical Review Letters, 92(7):
1–4, 2004. doi: 10.1103/PhysRevLett.92.078101.

Sławomir Lach, Seok Min Yoon, and Bartosz A. Grzybowski. Tactic, reactive, and
functional droplets outside of equilibrium. Chem. Soc. Rev., 65:1392–1399, 2016.
doi: 10.1039/C6CS00242K. URL http://xlink.rsc.org/?DOI=C6CS00242K.

J S Langer. Instabilities and pattern formation in crystal growth. Reviews of Modern
Physics, 52(1):1–28, 1980. doi: 10.1103/RevModPhys.52.1. URL http://link.
aps.org/doi/10.1103/RevModPhys.52.1.

Kathryn A. Lanier and Loren Dean Williams. The Origin of Life: Models and
Data. Journal of Molecular Evolution, 84(2-3):85–92, 2017. doi: 10.1007/
s00239-017-9783-y.

177

http://stacks.iop.org/0034-4885/81/i=7/a=076601?key=crossref.54b1ff7d6fa0c8207d74f7041b8f02b8
http://stacks.iop.org/0034-4885/81/i=7/a=076601?key=crossref.54b1ff7d6fa0c8207d74f7041b8f02b8
http://www.nature.com/articles/nrm2357
http://dx.doi.org/10.1038/nchem.1110
http://dx.doi.org/10.1038/nchem.1110
http://www.ncbi.nlm.nih.gov/pubmed/25698328{%}5Cnhttp://dx.doi.org/10.1038/nchem.2155
http://www.ncbi.nlm.nih.gov/pubmed/25698328{%}5Cnhttp://dx.doi.org/10.1038/nchem.2155
http://xlink.rsc.org/?DOI=C6CS00242K
http://link.aps.org/doi/10.1103/RevModPhys.52.1
http://link.aps.org/doi/10.1103/RevModPhys.52.1


Bibliography

Mei Li, Xin Huang, T. Y Dora Tang, and Stephen Mann. Synthetic cellularity based
on non-lipid micro-compartments and protocell models, 2014. URL http://dx.
doi.org/10.1016/j.cbpa.2014.05.018.

Pilong Li, Sudeep Banjade, Hui-Chun Cheng, Soyeon Kim, Baoyu Chen, Liang
Guo, Marc Llaguno, Javoris V Hollingsworth, David S King, Salman F Banani,
Paul S Russo, Qiu-Xing Jiang, B Tracy Nixon, and Michael K Rosen. Phase
transitions in the assembly of multivalent signalling proteins. Nature, 483(7389):
336–340, 2012. doi: 10.1038/nature10879. URL http://www.nature.com/nature/
journal/v483/n7389/full/nature10879.html.

I.M. M Lifshitz and V.V. V Slyozov. The kinetics of precipitation from super-
saturated solid solutions. J. Phys. Chem. Solids, 19(1-2):35–50, 1961. doi: 10.
1016/0022-3697(61)90054-3. URL http://linkinghub.elsevier.com/retrieve/
pii/0022369761900543.

Yuan Lin, David S.W. Protter, Michael K. Rosen, and Roy Parker. Formation and
Maturation of Phase-Separated LiquidDroplets by RNA-Binding Proteins. Molec-
ular Cell, 60(2):208–219, oct 2015. doi: 10.1016/j.molcel.2015.08.018. URL
http://dx.doi.org/10.1016/j.molcel.2015.08.018.

Corinna C. Maass, Carsten Krüger, Stephan Herminghaus, and Chris-
tian Bahr. Swimming Droplets. Annual Review of Condensed Mat-
ter Physics, 7(1):annurev–conmatphys–031115–011517, 2016. doi:
10.1146/annurev-conmatphys-031115-011517. URL http://www.annualreviews.
org/doi/10.1146/annurev-conmatphys-031115-011517.

JavierMacía andRicard V Solé. Synthetic Turing protocells: vesicle self-reproduction
through symmetry-breaking instabilities. Philos. Trans. R. Soc. Lond. B, 362
(1486):1821–1829, oct 2007. doi: 10.1098/rstb.2007.2074. URL http://rstb.
royalsocietypublishing.org/cgi/doi/10.1098/rstb.2007.2074.

S Marchi, W F Bottke, L. T. Elkins-Tanton, M Bierhaus, K Wuennemann, A Mor-
bidelli, and D A Kring. Widespread mixing and burial of Earth’s Hadean crust by
asteroid impacts. Nature, 511(7511):578–582, 2014. doi: 10.1038/nature13539.
URL http://dx.doi.org/10.1038/nature13539.

William F Martin. Hydrogen, metals, bifurcating electrons, and proton gradients:
the early evolution of biological energy conservation. FEBS Lett., 586(5):485–493,
mar 2012. doi: 10.1016/j.febslet.2011.09.031.

William F Martin, Filipa L Sousa, and Nick Lane. Evolution. Energy at life’s origin.
Science, 344(6188):1092–1093, jun 2014. doi: 10.1126/science.1251653.

C. B. Mast, S. Schink, U. Gerland, and D. Braun. Escalation of polymerization in
a thermal gradient. Proceedings of the National Academy of Sciences, 110(20):8030–
8035, 2013. doi: 10.1073/pnas.1303222110. URL http://www.pnas.org/cgi/doi/
10.1073/pnas.1303222110.

178

http://dx.doi.org/10.1016/j.cbpa.2014.05.018
http://dx.doi.org/10.1016/j.cbpa.2014.05.018
http://www.nature.com/nature/journal/v483/n7389/full/nature10879.html
http://www.nature.com/nature/journal/v483/n7389/full/nature10879.html
http://linkinghub.elsevier.com/retrieve/pii/0022369761900543
http://linkinghub.elsevier.com/retrieve/pii/0022369761900543
http://dx.doi.org/10.1016/j.molcel.2015.08.018
http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031115-011517
http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031115-011517
http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.2007.2074
http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.2007.2074
http://dx.doi.org/10.1038/nature13539
http://www.pnas.org/cgi/doi/10.1073/pnas.1303222110
http://www.pnas.org/cgi/doi/10.1073/pnas.1303222110


Bibliography

H. Meinhardt. Pattern formation in biology: a comparison of models and experi-
ments. Rep. Prog. Phys., 55(6):797–849, 1992. doi: 10.1088/0034-4885/55/6/003.
URL http://iopscience.iop.org/0034-4885/55/6/003.

Amandine Molliex, Jamshid Temirov, Jihun Lee, Maura Coughlin, Anderson P
Kanagaraj, Hong Joo Kim, Tanja Mittag, and J Paul Taylor. Phase Separation by
Low Complexity Domains Promotes Stress Granule Assembly and Drives Patho-
logical Fibrillization Article Phase Separation by Low Complexity Domains Pro-
motes Stress Granule Assembly and Drives Pathological Fibrillization. Cell, 163
(1):123–133, 2015. doi: 10.1016/j.cell.2015.09.015. URL http://dx.doi.org/10.
1016/j.cell.2015.09.015.

Matthias Morasch, Dieter Braun, and Christof B. Mast. Heat-Flow-Driven
Oligonucleotide Gelation Separates Single-Base Differences. Angewandte Chemie
- International Edition, pages 6788–6791, 2016. doi: 10.1002/anie.201601886.

William W Mullins and Robert F Sekerka. Morphological Stability of a Particle
Growing by Diffusion or Heat Flow. J. Appl. Phys., 34(2):323–329, 1963. doi: 10.
1063/1.1702607. URL http://scitation.aip.org/content/aip/journal/jap/34/2/
10.1063/1.1702607.

Giovanni Murtas. Early self-reproduction, the emergence of division mechanisms in
protocells. Mol. BioSyst., 9(2):195–204, 2013. doi: 10.1039/C2MB25375E. URL
http://xlink.rsc.org/?DOI=C2MB25375Ehttp://eutils.ncbi.nlm.nih.gov/entrez/
eutils/elink.fcgi?dbfrom=pubmed{&}id=23232904{&}retmode=ref{&}cmd=prlinks.

Karina K Nakashima, Jochem F Baaij, and Evan Spruijt. Reversible generation of
coacervate droplets in an enzymatic network. Soft Matter, 14(3):361–367, 2018.
doi: 10.1039/C7SM01897E. URL http://pubs.rsc.org/en/content/articlepdf/
2017/sm/c7sm01897ehttp://xlink.rsc.org/?DOI=C7SM01897E.

Allen P. Nutman, Vickie C. Bennett, Clark R. L. Friend, Martin J. Van Kranen-
donk, and Allan R. Chivas. Rapid emergence of life shown by discovery of 3,700-
million-year-old microbial structures. Nature, pages 1–12, 2016. doi: 10.1038/
nature19355. URL http://www.nature.com/doifinder/10.1038/nature19355.

Aleksandr Ivanovich Oparin. Origin of Life. Izd.Moskovhii RabochiI, 1924.

Aleksandr Ivanovich Oparin. Origin of Life. Dover Publications, Inc., New York,
1952.

Wilhelm Ostwald. Studien über die Bildung und Umwandlung fester Körper. Z.
Phys. Chem, 22(3):289–330, 1897.

Cheryl A. Page, James S. Bonner, Peggy L. Sumner, and Robin L. Autenrieth. Solu-
bility of petroleum hydrocarbons in oil/water systems. Marine Chemistry, 70(1-3):
79–87, 2000. doi: 10.1016/S0304-4203(00)00016-5.

179

http://iopscience.iop.org/0034-4885/55/6/003
http://dx.doi.org/10.1016/j.cell.2015.09.015
http://dx.doi.org/10.1016/j.cell.2015.09.015
http://scitation.aip.org/content/aip/journal/jap/34/2/10.1063/1.1702607
http://scitation.aip.org/content/aip/journal/jap/34/2/10.1063/1.1702607
http://xlink.rsc.org/?DOI=C2MB25375E http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=23232904{&}retmode=ref{&}cmd=prlinks
http://xlink.rsc.org/?DOI=C2MB25375E http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=23232904{&}retmode=ref{&}cmd=prlinks
http://pubs.rsc.org/en/content/articlepdf/2017/sm/c7sm01897e http://xlink.rsc.org/?DOI=C7SM01897E
http://pubs.rsc.org/en/content/articlepdf/2017/sm/c7sm01897e http://xlink.rsc.org/?DOI=C7SM01897E
http://www.nature.com/doifinder/10.1038/nature19355


Bibliography

A Z Patashinski, R Orlik, K Paclawski, M A Ratner, and B A Grzybowski. The
unstable and expanding interface between reacting liquids: Theoretical interpre-
tation of negative surface tension. Soft Matter, 8(5):1601–1608, 2012. URL
http://pubs.rsc.org/en/content/articlehtml/2012/sm/c1sm06590d.

Avinash Patel, Hyun O Lee, Louise Jawerth, Shovamayee Maharana, Marcus Jah-
nel, Marco Y Hein, Stoyno Stoynov, Julia Mahamid, Shambaditya Saha, Titus M
Franzmann, Andrej Pozniakovski, Ina Poser, Nicola Maghelli, Loic A Royer, Mar-
tin Weigert, Eugene W Myers, Stephan Grill, David Drechsel, Anthony A Hy-
man, and Simon Alberti. A Liquid-to-Solid Phase Transition of the ALS Pro-
tein FUS Accelerated by Disease Mutation. Cell, 162(5):1066–1077, 2015. doi:
https://doi.org/10.1016/j.cell.2015.07.047. URL http://www.sciencedirect.com/
science/article/pii/S0092867415009630.

Joseph D Paulsen, Rémi Carmigniani, Anerudh Kannan, Justin C Burton, and Sid-
ney R Nagel. Coalescence of bubbles and drops in an outer fluid. Nature Communi-
cations, 5:3182, 2014. doi: 10.1038/ncomms4182. URL http://www.ncbi.nlm.nih.
gov/pubmed/24458225{%}5Cnhttp://www.nature.com/doifinder/10.1038/ncomms4182.

Ben K. D. Pearce, Ralph E. Pudritz, Dmitry A. Semenov, and Thomas K. Henning.
Origin of the RNA world: The fate of nucleobases in warm little ponds. Pro-
ceedings of the National Academy of Sciences, 114(43):11327–11332, oct 2017. doi:
10.1073/pnas.1710339114. URL http://www.pnas.org/lookup/doi/10.1073/pnas.
1710339114.

F. Peters and D. Arabali. Interfacial tension between oil and water measured with a
modified contour method. Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 426:1–5, 2013. doi: 10.1016/j.colsurfa.2013.03.010. URL http://dx.doi.
org/10.1016/j.colsurfa.2013.03.010.

Matthew W. Powner, Béatrice Gerland, and John D. Sutherland. Synthesis of acti-
vated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature, 459
(7244):239–242, 2009. doi: 10.1038/nature08013. URL http://www.nature.com/
doifinder/10.1038/nature08013.

Ilya Prigogine, Gregoire Nicolis, and Agnes Babloyantz. Thermodynamics of evo-
lution. Physics Today, 25(11):23–28, nov 1972. doi: 10.1063/1.3071090. URL
http://physicstoday.scitation.org/doi/10.1063/1.3071090.

S. Puri and H. L. Frisch. Segregation dynamics of binary mixtures with simple chem-
ical reactions. Journal of Physics A: General Physics, 27(18):6027–6038, 1994. doi:
10.1088/0305-4470/27/18/013.

Christopher V Rao, Denise M Wolf, and Adam P Arkin. Control, exploita-
tion and tolerance of intracellular noise. Nature, 420(6912):231–237, 2002.
doi: 10.1038/nature01258. URL http://sfx.mpg.de/sfx{_}local?id=doi:10.
1038{%}2Fnature01258.

180

http://pubs.rsc.org/en/content/articlehtml/2012/sm/c1sm06590d
http://www.sciencedirect.com/science/article/pii/S0092867415009630
http://www.sciencedirect.com/science/article/pii/S0092867415009630
http://www.ncbi.nlm.nih.gov/pubmed/24458225{%}5Cnhttp://www.nature.com/doifinder/10.1038/ncomms4182
http://www.ncbi.nlm.nih.gov/pubmed/24458225{%}5Cnhttp://www.nature.com/doifinder/10.1038/ncomms4182
http://www.pnas.org/lookup/doi/10.1073/pnas.1710339114
http://www.pnas.org/lookup/doi/10.1073/pnas.1710339114
http://dx.doi.org/10.1016/j.colsurfa.2013.03.010
http://dx.doi.org/10.1016/j.colsurfa.2013.03.010
http://www.nature.com/doifinder/10.1038/nature08013
http://www.nature.com/doifinder/10.1038/nature08013
http://physicstoday.scitation.org/doi/10.1063/1.3071090
http://sfx.mpg.de/sfx{_}local?id=doi:10.1038{%}2Fnature01258
http://sfx.mpg.de/sfx{_}local?id=doi:10.1038{%}2Fnature01258


Bibliography

Riccardo Rao and Massimiliano Esposito. Nonequilibrium Thermodynamics of
Chemical Reaction Networks: Wisdom from Stochastic Thermodynamics. arXiv,
041064:19, 2016. doi: 10.1103/PhysRevX.6.041064. URL http://arxiv.org/abs/
1602.07257.

Lord Rayleigh. On the instability of jets. Proceedings of the London Mathematical
Society, 10:4–13, 1878. doi: 10.1112/plms/s1-10.1.4.

Lord Rayleigh. On the instability of a cylinder of viscous liquid under capillary force.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
34(207):145–154, 1892. doi: 10.1080/14786430601019433. URL http://www.
tandfonline.com/doi/abs/10.1080/14786449208620301.

Benedikt Rieß, Caren Wanzke, Marta Tena-Solsona, Raphael K. Grötsch, Chandan
Maity, and Job Boekhoven. Dissipative assemblies that inhibit their deactivation.
Soft Matter, 14(23):4852–4859, 2018. doi: 10.1039/C8SM00822A. URL http:
//xlink.rsc.org/?DOI=C8SM00822A.

Samuel A Safran. Statistical thermodynamics of surfaces, interfaces, and membranes, vol-
ume 90. Perseus Books, 1994.

Shambaditya Saha, Christoph A Weber, Marco Nousch, Omar Adame-Arana,
Carsten Hoege, Marco Y Hein, Erin Osborne-Nishimura, Julia Mahamid, Mar-
cus Jahnel, Louise Jawerth, Andrej Pozniakovski, Christian R Eckmann, Frank
Jülicher, Anthony A Hyman, Frank Jü, Anthony A Hyman, Omar Adame-Arana,
Carsten Hoege, Marco Y Hein, Erin Osborne-Nishimura, Julia Mahamid, Mar-
cus Jahnel, Louise Jawerth, and Andrej Pozniakovski. Polar Positioning of Phase-
Separated Liquid Compartments in Cells Regulated by an mRNA Competition
Mechanism. Cell, 166(6):1–13, 2016. doi: 10.1016/j.cell.2016.08.006. URL
http://dx.doi.org/10.1016/j.cell.2016.08.006.

Richard P Sear and JoséA Cuesta. Instabilities in complex mixtures with a
large number of components. Phys. Rev. Lett., 91(24):245701—-245701/4,
2003. URL http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=
pubmed{&}id=14683134{&}retmode=ref{&}cmd=prlinks.

Rabea Seyboldt and Frank Jülicher. Role of hydrodynamic flows in chemically driven
droplet division. New Journal of Physics, 20(10):105010, nov 2018. doi: 10.1088/
1367-2630/aae735. URL https://doi.org/10.1088{%}2F1367-2630{%}2Faae735.

Yongdae Shin and Clifford P. Brangwynne. Liquid phase condensation in cell phys-
iology and disease. Science, 357(6357), 2017. doi: 10.1126/science.aaf4382.

Ekaterina Sokolova, Evan Spruijt, MaikeMKHansen, EmilienDubuc, Joost Groen,
Venkatachalam Chokkalingam, Aigars Piruska, Hans A Heus, and Wilhelm T S
Huck. Enhanced transcription rates in membrane-free protocells formed by coac-
ervation of cell lysate. Proc. Natl. Acad. Sci. USA, 110(29):11692–11697, 2013.

181

http://arxiv.org/abs/1602.07257
http://arxiv.org/abs/1602.07257
http://www.tandfonline.com/doi/abs/10.1080/14786449208620301
http://www.tandfonline.com/doi/abs/10.1080/14786449208620301
http://xlink.rsc.org/?DOI=C8SM00822A
http://xlink.rsc.org/?DOI=C8SM00822A
http://dx.doi.org/10.1016/j.cell.2016.08.006
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=14683134{&}retmode=ref{&}cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=14683134{&}retmode=ref{&}cmd=prlinks
https://doi.org/10.1088{%}2F1367-2630{%}2Faae735


Bibliography

doi: 10.1073/pnas.1222321110. URL http://www.pnas.org/cgi/doi/10.1073/pnas.
1222321110.

Helen Song, Delai L. Chen, and Rustem F. Ismagilov. Reactions in droplets in mi-
crofluidic channels. Angewandte Chemie - International Edition, 45(44):7336–7356,
2006. doi: 10.1002/anie.200601554.

J. Stefan. Über die Theorie der Eisbildung, insbesondere über die Eisbildung im
Polarmeere. Annalen der Physik, 278(2):269–286, 1891. doi: 10.1002/andp.
18912780206.

J Stenesh. Biochemistry. Springer US, 2013. ISBN 9781475794298. URL https:
//books.google.de/books?id=UI7gBwAAQBAJ.

J W Szostak, D P Bartel, and P L Luisi. Synthesizing life. Na-
ture, 409(6818):387–390, 2001. doi: 10.1038/35053176. URL
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=
11201752{&}retmode=ref{&}cmd=prlinks.

Dora T.-Y. Tang, Dirk van Swaay, Andrew DeMello, J L Ross Anderson, and
Stephen Mann. In vitro gene expression within membrane-free coacervate proto-
cells. Chem. Commun., 51(57):11429–11432, 2015. doi: 10.1039/C5CC04220H.
URL http://dx.doi.org/10.1039/C5CC04220H.

T-Y. Dora Tang, C Rohaida Che Hak, Alexander J Thompson, Marina K Kuimova,
D S Williams, Adam W Perriman, and Stephen Mann. Fatty acid membrane
assembly on coacervate microdroplets as a step towards a hybrid protocell model.
Nature chemistry, 6(6):527–33, 2014. doi: 10.1038/nchem.1921. URL http://dx.
doi.org/10.1038/nchem.1921.

P Taylor. Ostwald ripening in emulsions. Adv. Colloid Interface Sci., 75(2):107–163,
1998. doi: 10.1016/S0001-8686(98)00035-9. URL http://linkinghub.elsevier.
com/retrieve/pii/S0001868698000359.

E. Tjhung, D. Marenduzzo, and M. E. Cates. Spontaneous symmetry breaking in ac-
tive droplets provides a generic route to motility. Proceedings of the National Academy
of Sciences, 109(31):12381–12386, 2012. doi: 10.1073/pnas.1200843109.

J Toner, Y H Tu, and S Ramaswamy. Hydrodynamics and phases of flocks. Ann.
Phys., 318(1):170–244, 2005. doi: 10.1016/j.aop.2005.04.011. URL http://www.
sciencedirect.com/science/article/pii/S0003491605000540.

A. M. Turing. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lon-
don, 237(1-2):37–72, 1952. doi: 10.1007/BF02459572. URL http://rstb.
royalsocietypublishing.org/content/237/641/37.short.

P J Unrau and D P Bartel. RNA-catalysed nucleotide synthesis. Nature, 395(6699):
260–263, sep 1998. doi: 10.1038/26193.

182

http://www.pnas.org/cgi/doi/10.1073/pnas.1222321110
http://www.pnas.org/cgi/doi/10.1073/pnas.1222321110
https://books.google.de/books?id=UI7gBwAAQBAJ
https://books.google.de/books?id=UI7gBwAAQBAJ
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=11201752{&}retmode=ref{&}cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed{&}id=11201752{&}retmode=ref{&}cmd=prlinks
http://dx.doi.org/10.1039/C5CC04220H
http://dx.doi.org/10.1038/nchem.1921
http://dx.doi.org/10.1038/nchem.1921
http://linkinghub.elsevier.com/retrieve/pii/S0001868698000359
http://linkinghub.elsevier.com/retrieve/pii/S0001868698000359
http://www.sciencedirect.com/science/article/pii/S0003491605000540
http://www.sciencedirect.com/science/article/pii/S0003491605000540
http://rstb.royalsocietypublishing.org/content/237/641/37.short
http://rstb.royalsocietypublishing.org/content/237/641/37.short


Bibliography

Gang Wan, Brandon D Fields, George Spracklin, Aditi Shukla, Carolyn M
Phillips, and Scott Kennedy. Spatiotemporal regulation of liquid-like conden-
sates in epigenetic inheritance. Nature, 2018. doi: 10.1038/s41586-018-0132-0.
URL http://dx.doi.org/10.1038/s41586-018-0132-0{%}0Ahttp://www.nature.com/
articles/s41586-018-0132-0.

Christoph A Weber, Chiu Fan Lee, and Frank Jülicher. Droplet ripening in concen-
tration gradients. New Journal of Physics, 19(5):53021, may 2017. doi: 10.1088/
1367-2630/aa6b84. URL https://doi.org/10.1088{%}2F1367-2630{%}2Faa6b84.

Stephanie C. C Weber and Clifford P. P Brangwynne. Getting RNA and Protein
in Phase. Cell, 149(6):1188–1191, 2012. doi: 10.1016/j.cell.2012.05.022. URL
http://www.sciencedirect.com/science/article/pii/S0092867412006344.

Madeline C Weiss, Filipa L Sousa, Natalia Mrnjavac, Sinje Neukirchen, Mayo
Roettger, Shijulal Nelson-Sathi, and William F Martin. The physiology and
habitat of the last universal common ancestor. Nature Microbiology, 1(9):16116,
sep 2016. doi: 10.1038/nmicrobiol.2016.116. URL http://dx.doi.org/10.1038/
nmicrobiol.2016.116.

C R Woese, O Kandler, and M L Wheelis. Towards a natural system of organisms:
proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci.
USA, 87(12):4576, jun 1990.

Jianfeng Xu, Nicholas Green, Clémentine Gibard, Ramanarayanan Krishnamurthyt,
and John Sutherand. Prebiotic Phosphorylation of 2-Thiouridine Provides Either
Nucleotides or DNA Building Blocks via Photoreduction. Nature Chemistry, xx:
xx, 2019. doi: 10.1038/s41557-019-0225-x.

Zhijie Yang, Jingjing Wei, Yaroslav I. Sobolev, and Bartosz A. Grzybowski. Systems
of mechanized and reactive droplets powered by multi-responsive surfactants. Na-
ture, pages 1–6, 2018. doi: 10.1038/nature25137. URL http://www.nature.com/
doifinder/10.1038/nature25137.

Lauren D Zarzar, Vishnu Sresht, Ellen M Sletten, Julia a Kalow, Daniel
Blankschtein, and Timothy M Swager. Dynamically reconfigurable complex
emulsions via tunable interfacial tensions. Nature, 518(7540):520–4, 2015. doi:
10.1038/nature14168. URL http://www.ncbi.nlm.nih.gov/pubmed/25719669.

Ou-Yang Zhong-can and W Helfrich. Instability and deformation of a spherical
vesicle by pressure. Phys. Rev. Lett., 59(21):2486–2488, nov 1987.

David Zwicker. Physical Description of Centrosomes as Active Droplets. PhD thesis,
Technische Universität Dresden, 2013.

183

http://dx.doi.org/10.1038/s41586-018-0132-0{%}0Ahttp://www.nature.com/articles/s41586-018-0132-0
http://dx.doi.org/10.1038/s41586-018-0132-0{%}0Ahttp://www.nature.com/articles/s41586-018-0132-0
https://doi.org/10.1088{%}2F1367-2630{%}2Faa6b84
http://www.sciencedirect.com/science/article/pii/S0092867412006344
http://dx.doi.org/10.1038/nmicrobiol.2016.116
http://dx.doi.org/10.1038/nmicrobiol.2016.116
http://www.nature.com/doifinder/10.1038/nature25137
http://www.nature.com/doifinder/10.1038/nature25137
http://www.ncbi.nlm.nih.gov/pubmed/25719669


Bibliography

David Zwicker, Markus Decker, Steffen Jaensch, Anthony A Hyman, and Frank
Jülicher. Centrosomes are autocatalytic droplets of pericentriolar material orga-
nized by centrioles. Proc. Natl. Acad. Sci. USA, 111(26):E2636–45, jul 2014. doi:
10.1073/pnas.1404855111. URL http://www.ncbi.nlm.nih.gov/pubmed/24979791.

David Zwicker, Anthony A. Hyman, and Frank Jülicher. Suppression of Ost-
wald ripening in active emulsions. Phys. Rev. E, 92(1):012317, 2015. doi:
10.1103/PhysRevE.92.012317. URL http://link.aps.org/doi/10.1103/PhysRevE.
92.012317.

David Zwicker, Rabea Seyboldt, Christoph A Weber, Anthony A Hyman, and Frank
Jülicher. Growth and division of active droplets provides a model for protocells.
Nature Physics, 13(4):408–413, apr 2017. doi: 10.1038/nphys3984. URL http:
//www.nature.com/articles/nphys3984.

184

http://www.ncbi.nlm.nih.gov/pubmed/24979791
http://link.aps.org/doi/10.1103/PhysRevE.92.012317
http://link.aps.org/doi/10.1103/PhysRevE.92.012317
http://www.nature.com/articles/nphys3984
http://www.nature.com/articles/nphys3984




Acknowledgments
First and foremost I want to thank my supervisor Frank Jülicher for his guidance
and advice, the possibility to visit exciting conferences and summer schools, for many
interesting discussions and for teaching me that asking questions in talks is not an-
noying or embarrassing, but can yield exciting new knowledge. I also want to thank
him for giving me the chance to work on the most exciting PhD project that ever
was, including both beautiful nonequilibrium physics and deep questions about the
origin of life on Earth. I could not have wished for a more exciting topic. My deepest
thanks also go to Dora Tang, who gave me the chance to try my hand at experimental
work.

I also want to thank the group of postdocs and PhD students at PKS, CBG and
CSBD. Especially I want to thank Tyler Harmon, Suropriya Saha, Lennart Hilbert
and Christoph Weber for stimulating discussions about droplets and physics in gen-
eral.

I want to thank my family, especially my mother, who listened to hours of enthu-
siastic, but often confused talk about all aspects of my PhD project, and encouraged
me especially during the writing process. Lastly, I want to thank my quasi-adoptive
family, Fam. Biemann. Knowing that you care about me and my project means so
much to me.

Rabea Seyboldt
Dresden

April 2019

186





Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die
aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche
kenntlich gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in
gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

DieDissertation wurde amMax-Planck-Institut für Physik komplexer Systeme unter
wissenschaftlicher Betreuung von Prof. Dr. Frank Jülicher angefertigt. Frühere Pro-
motionsverfahren haben nicht stattgefunden.

Ich erkenne die Promotionsordnung des Fachbereichs Mathematik und Naturwis-
senschaften der Technischen Universität Dresden an.

188


	Titlepage
	Zusammenfassung
	Abstract
	Table of Contents
	1 Introduction
	1.1 Phase separation and droplets
	1.2 Chemical reactions
	1.3 Droplets in biological systems
	1.4 Origin and evolution of life
	1.5 Dynamical behavior of active systems
	1.6 Overview of the thesis

	2 Theory of multi-component phase-separating systems with chemical reactions
	2.1 Dynamic description with linear response
	2.2 Detailed balance of chemical reactions
	2.3 Summary

	3 Minimal model for chemically active droplets in two formulations
	3.1 Continuum model for chemically active droplets
	3.2 Effective droplet model for chemically active droplets
	3.3 Outlook

	4 Shape instability of spherical droplets with chemical reactions
	4.1 Stability of spherical droplets with chemical reactions
	4.2 Physical mechanism driving the shape instability
	4.3 Relationship to Mullins-Sekerka instability
	4.4 Droplet shape stability in the limit of a small reaction amplitude
	4.5 Summary

	5 Dynamical behavior of chemically active droplets
	5.1 Numerical solution of droplet dynamics in the continuum model
	5.2 Dynamics of the homogeneous state
	5.3 Volume growth of chemically active droplets
	5.4 Division of chemically active droplets
	5.5 Cycles of growth and division
	5.6 Summary

	6 Shape instability of droplets with various geometries
	6.1 Droplet shapes with a flat interface in 1d, 2d and 3d: Line-segments, bands and plates
	6.2 Stationary droplet disks in 2d
	6.3 Stationary droplet cylinders in 3d
	6.4 Summary

	7 Role of hydrodynamic flows in chemically driven droplet division
	7.1 Stability of droplets with hydrodynamic flows
	7.2 Scaling of the hydrodynamic stability diagram
	7.3 Droplet division with hydrodynamic flows
	7.4 Summary

	8 Chemically active droplets as a model for protocells at the origin of life
	8.1 Protocells – simple precursors of biological cells
	8.2 Discussion of chemically active droplets as protocells
	8.3 Examples of parameter values for dividing droplets
	8.4 Summary

	9 Conclusion
	Appendices
	A Reaction rates with broken detailed balance
	B Relation between the continuum model and the effective droplet model
	B.1 Derivation of jump conditions for equilibrium phase separation
	B.2 Stress balance across the interface
	B.3 Dynamics of the effective droplet model

	C Details on the effective droplet model
	C.1 Stationary states of spherical droplets
	C.2 Stability analysis of a spherical droplet without hydrodynamic flows
	C.3 Scaling behavior of stationary radius and instability in the effective droplet model

	D Details on the continuum droplet model
	D.1 Linear stability of the homogeneous state in the continuum droplet model
	D.2 Numerical solution of the continuum model
	D.3 Comparison of droplet deformation in the continuum model and the effective droplet model

	E Stability analysis of different geometrical droplet shapes
	E.1 Effective droplet model for active droplets
	E.2 Stationary line segments in 1d
	E.3 Stationary bands in 2d
	E.4 Stationary plates in 3d
	E.5 Stationary cylinders in 3d
	E.6 Stationary disks in 2d

	F Stability analysis of chemically active droplets with hydrodynamic flows
	F.1 Linear stability analysis with hydrodynamic flows
	F.2 Scaling relations in the limit of small reaction fluxes

	G Parameter examples
	G.1 Chemical turnover time of stationary droplets
	G.2 Examples of parameter values for dividing droplets without hydrodynamics
	G.3 Estimation of the influence of hydrodynamic flows

	Bibliography
	Acknowledgments
	Versicherung

