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SUMMARY

The majority of bacteria are organized in surface-associated communi-
ties, the so called biofilms. Crucial processes that drive the formation
of such biofilms are the motility of bacteria on a substrate, enabling
cells to reach each others vicinity, and attractive cell-cell-interactions,
driving the formation of microcolonies. These colonies, aggregates
consisting of thousands of cells, are the precursors of biofilms.

In this thesis we investigate the role of cell appendages, called type
IV pili, in the substrate motion of bacteria and the formation of bacte-
rial microcolonies. Therefore, we study the bacterial dynamics with
the help of experiments and theoretical models.

We introduce a novel simulation tool in the tradition of Brownian
dynamics simulations. In this computational model, that was develo-
ped alongside experimental observations, we study how explicit pili
dynamics, pili-substrate and pili—pili interactions drive the cell dyn-
amics. First, we apply our model to investigate how individual cells
move on a substrate due to cycles of protrusion and retraction of type
IV pili. We show that the characteristic features, in particular persis-
tent motion, can solely originate from collective interactions of pili.
Next, we perform experiments to study the coalescence of bacterial
microcolonies. With the help of experiments and our computational
model, we identify a spatially-dependent gradient of motility of cells
within the colony as the origin of a separation of time scale, a feature
which is in disagreement with the coalescence dynamics of fluid drop-
lets. Additionally, we show that altering the force generation of pili
can cause demixing of cells within bacterial aggregates. Finally, we
combine our knowledge of the substrate motion of cells and of the
pili-mediated interactions of colonies to identify the main processes
(aggregation, fragmentation and cell divisions) that drive assembly
of colonies. Starting from experiments, we develop a mathematical
model and observe excellent qualitative and quantitative agreement
to experimental data of the density of colonies of different sizes.

In summary, hand in hand with experiments, we develop theoreti-
cal frameworks to unravel the role of type IV pili in bacterial surface
motility, microcolony dynamics and colony formation.
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ZUSAMMENFASSUNG

Die Mehrzahl der Bakterien sind organisiert in sogenannten Biofil-
men, Ansammlungen von Zellen assoziert mit den unterschiedlichsten
Oberfldchen. Wichtige Prozesse, die die Bildung solcher Biofilme an-
treiben, sind die Bewegung einzelner Zellen tiber die Oberfldche, so

dass sich auch weit entfernte Zellen in direkte Nachbarschaft brin-
gen konnen, sowie anziehende Interaktionen zwischen Zellen, welche

die Bildung von Mikrokolonien verursachen. Solche Kolonien kénnen

aus tausenden einzelnen Zellen bestehen und sind der Startpunkt fiir

die Bildung eines Biofilms.

In dieser Arbeit untersuchen wir die Rolle von Zellfortsdtzen, den
sogenannten Typ IV Pili, in beiden Prozessen, der Bewegung tiber
eine Oberfldche und der Bildung von Kolonien. Dafiir studieren wir
die Dynamik von Bakterien mithilfe von Experimenten und theoretis-
chen Modellen.

Wir haben ein neuartiges numerisches Werkzeug entwickelt, dass
es uns erlaubt, die Zelldynamik resultierend aus der expliziten Dyn-
amik von Pili, den durch Pili verursachten Krifte und den direkten
Pili-Pili-Interaktionen zu studieren.

Zuerst wenden wir dieses Modell an um die Bewegung einzelner
Zellen auf einer Oberfliche zu untersuchen und erkldren, wie die
kollektive Dynamik mehrerer Pili charakteristische Eigenschaften der
Oberflachenbewegung erzeugen. Insbesondere erkldren wir, wie per-
sistente Bewegung der Zellen entstehen kann.

Daraufhin fithren wir Experimente durch um die Koaleszenz von
bakteriellen Mikrokolonien zu studieren. Mithilfe dieser Experimente
und durch Vergleiche mit Simulationen kénnen wir eine ortsabhingi-
gen Gradienten der Zellbewegung innerhalb von Kolonien als Ursa-
che einer Trennung der Zeitskalen der Koaleszenz erkldren. Solch ein
Verhalten ist nicht mit der Dynamik von viskosen Tropfen zu erkldren
ist. Weiterhin zeigen wir, wie Anderungen der Krafterzeugung inner-
halb der Zellen zur Entmischung von Zellpopulationen innerhalb von
Kolonien fiihren kann.

Zuletzt kombinieren wir unser gewonnenes Wissen iiber die Be-
wegung von Zellen auf einer Oberflache und der Dynamik bzw. den
Interaktionen von Mikrokolonien, um die Bildung von Kolonien zu
untersuchen. Wir sind in der Lage, die wichtigsten involvierten Pro-
zesse zu identifizieren. Ein eigens entwickeltes mathematischen Mo-
dells bietet exzellente qualitative und quantitative Ubereinstimmung
zum Experiment.

In dieser Arbeit entwickeln wir Hand in Hand mit Experimenten
verschiedenste theoretische Modelle um die Rolle von Typ IV Pili
wihrend der bakteriellen Bewegung, der Koloniebildung und der Dy-
namik von Kolonien zu erkldren.
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INTRODUCTION

If one asks how bacteria move, one usually thinks about cells that use
rotating flagella to swim through water. In reality, most bacteria are
associated with substrates and developed different tools to efficiently
move over different surfaces, ranging from the human intestine [1],
over the ground of lakes [2] and up to the inside of nuclear reac-
tors [3].

In this chapter, we introduce the different ways how bacteria move
over surfaces (see section 1.1) and explain in detail how multiple long
cell appendages, the pili, can mediate the surface motility of cells. Af-
terwards, we give the required basics to study trajectories of particles
undergoing Brownian motion and discuss how this knowledge helps
us to investigate the motility of bacteria (see section 1.2). Next to the
motility of single cells, in this thesis we are also investigating how mi-
crocolonies, aggregates consisting of up to thousands of cells, behave.
In section 1.3 we describe general mechanisms of how microcolonies
form due to type IV pili. Additionally, we discuss the role of micro-
colonies as early biofilms and their connection to multicellularity, a
fundamental requirement for complex life. Before describing the ob-
jective and structure of the thesis in the final section 1.5, we introduce
the model organism studied in this thesis, the bacterium Neisseria go-
norrhoeae. In particular, we highlight important properties of these
cells and briefly explain the relevance of our results for an improved
medical understanding of this pathogenic organism (see section 1.4).

1.1 SURFACE MOTILITY OF BACTERIA

For the survival of many bacteria it is essential for them to move,
particularly in order to find nutrients. Additionally, the majority of
bacteria is organized in surface-associated communities, the so called
biofilms [4, 5] (see subsection 1.3.2). In order to form such a biofilm,
bacteria first have to come together.

A mechanism of motion, frequently used by many bacteria, is swim-
ming, driven by the rotation of a single flagellum or multiple fla-
gella [6-10]. Many swimming strategies involving flagella have deve-
loped during the evolution of life [11], for example “run and tum-
ble” of Escherichia coli [6-10], “run and reverse” of Shewanella putrefa-
ciens [12] or “run-reverse-flick” of Vibrio alginolyticus [13, 14].

Besides the swimming in a free fluid, bacteria possess also a wide
range of tools to move directly on top of different types of substra-
tes, so diverse as eukaryotic cells [15], the outer hull of ships [16]
and clinical catheters [17]. A commonly known mechanism where
flagella play an important role during the collective motility of mul-
tiple bacteria on a substrate is called “swarming” [18, 19]. During
this process, bacteria, which in most cases possess flagella [18, 20],
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TRENDS in Micrabiology

Figure 1.1: Patterns formed by swarming bacteria for (a) Proteus mirabilis, (b)
Pseudomonas aeruginosa (c) Rhizobium etli (d) Serratia marcescens
(e) Salmonella Typhimurium and (f) Escherichia coli. Image taken
from [18].

grow and spread on top of a surface from which they can absorb nu-
trients. The swarming bacteria often differentiate in a way that cells
at the edge are hyperflagellated and form multicellular swarmer cell
rafts [21]. The wide range of resulting shapes of the swarming bacte-
ria is shown in figure 1.1.

Apart from flagella, bacteria frequently use so called “type IV pili”
to mediate motility. Type IV pili are semiflexible cell appendages that
are found in a wide range of bacteria. Some examples are Pseudomo-
nas aeruginosa, Neisseria meningitidis and Myxococcus xanthus [22]. By
elongation, attachment and retraction, these pili cause the motility of
individual bacteria and cell aggregates, a mechanism reminiscent of a
grappling hook (see figure 1.2). Importantly, pili enable cells to move
independently of other cells on top of a substrate.

In this thesis, we study how pili mediate the motility of bacteria
and how they are involved in the formation of microcolonies. The sy-
stem we are investigating, the bacterium Neisseria gonorrhoeae, is solely
using type IV pili to move over substrates and to mediate attractive
cell-cell-interactions. For these reasons, we now want to discuss the
mechanisms involved in pili-mediated motility in greater detail.

Bacteria possess multiple pili that can emerge homogeneously from
the surface of the cells, for example in Neisseria gonorrhoeae [23, 24]
and Neisseria meningitidis [25], or can be locally concentrated, for ex-
ample at the poles of the rod-shaped Pseudomonas aeruginosa [26].
While the pili dynamically change their length, their mean length
can be estimated to be around 1 — 2 um [27], thus being comparable
to the size of the bacteria [28] (see figure 1.2a and 1.2b). Filaments of
up to 10 — 20 um length were also observed experimentally [24, 28].



1.1 SURFACE MOTILITY OF BACTERIA

b

C Cell with free pilus Pilus attaches to substrate Retracting pilus pulls the cell

Figure 1.2: Surface-motility mediated by type IV pili. (a,b) Electron mi-
croscope images of Neisseria gonorrhoeae. The filaments emerging
from the surface of the cells are the type IV pili. Image (a) was
contributed by Nicolas Biais (Brooklyn College, New York City),
image (b) was taken from [29]. (c) Sketch of pili-mediated mo-
tility of bacteria. Initially, a pilus is free and protruding. After
attachment, the pilus starts to retract and pulls the cell body by
a mechanism reminiscent of a grappling hook, causing a displa-
cement.

Individual pili are made of subunits, called pilE. These subunits
have an effective size of 0.6 — 0.8 nm. Thus, an individual pilus ha-
ving a length in the order of a few microns, consists of thousands of
monomers. The resulting filament has the structure of an x-helix [29]
with a diameter of around 8.5 nm [30]. It is semiflexible with a per-
sistence length around 5 pm [31]. Subunits not incorporated into the
pili are stored in the inner membrane of the cells. They form filaments
with the help of a complex molecular machinery, including the ATPa-
ses pilF and pilB. The assembled pili are able to extend from the cell
membrane through channels, called pilQ, allowing them to bridge
the outer membrane (see figure 1.3a). The molecular motor pilT is
responsible for the disassembly of the pilus by generating forces of
up to 100 — 180 pN [32-34] (see figure 1.3b). The pilus subunits rele-
ased after disassembly are recycled into the inner membrane [35]. A
detailed description of the molecular details of the pilus machinery
is given in [35].

Pili extend and retract from the surface of the cells with velocities of
around 1 —2 um/s [23]. The retraction velocity can be altered by oxy-
gen depletion [36] and is regulated by pilT paralogues, in particular
pilT2 and pilU. For example, in a pilT2 deletion mutant it was obser-
ved that the pilus retraction velocity is reduced considerably [37].

From optical tweezer experiments with pili attaching to trapped
silica beads, it was shown that retraction of the pili enables the cell
to create drag forces of up to 100 — 200 pN [32], making pilT to one
of the strongest molecular motor known in nature. For comparison,
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a ¢ b |

assembly apparatus pil T

Figure 1.3: Simplified sketch of the type IV pilus machinery. The sketch was
adapted from [23, 35]. (a) Assembly of pili. The pilus subunits,
called pilE, are moving along the inner membrane (IM) of the
bacterium and are assembled by the assembly apparatus. The re-
sulting filament is able to penetrate through the outer membrane
(OM) by a channel, called pilQ. (b) Retraction of pili. Due to the
molecular motor pilT, the pilus is disassembled, mediating its re-
traction. Most likely, the subunits are redistributed in the inner
membrane.

the forces generated by kinesin and dynein, motors associated with
intracellular transport along microtubules, possess characteristic stall
forces of less than 6 pN [38]. The cooperative pulling of multiple pili
enables the cell to generate forces in the range of nanonewtons [33].

Pili can bind to a substrate. While this binding can be correlated
with key residues of the pilus subunits that are involved in adhesion
and are only exposed at the tip [39—41], it has also been suggested that
pili can possess multiple binding sites along the filament [42, 43]. Pili
attached to different substrates exhibit slip-bond behavior, a process
where their detachment rate increases with increasing pulling force
[34]-

The interactions of multiple pili and their cycles of extension, atta-
chment and retraction cause the motion of cells over a substrate, also
called "twitching motility” [22]. It is a jerky motion during which cells
switch between phases of motion and pauses. This behavior results
from collective interactions of multiple pili of a cell [28].

While type IV pili are often involved in the motility of bacteria,
they are also frequently used for DNA uptake and exchange [44] and
generating attractive cell-cell-interactions, leading to the formation of
microcolonies (see subsection 1.3.1).

For completeness, we want to discuss another type of surface mo-
tility of bacteria, the so called “gliding motility”, a process which is
still poorly understood. Cells that glide, including Salmonella enterica,
Myxococcus xanthus [45] and Bacillus subtilis [46], exhibit motion over
a substrate that is reminiscent of the swarming motility and often in-
volves multiple bacteria. While for some of the bacteria type IV pili
seem to mediate the gliding motility, it appears that more than one
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mechanism can cause the motility. Many bacteria perform sliding mo-
tility without any appendages (like flagella or pili) involved [45].

1.2 RANDOM WALKS AND CHARACTERIZATION OF BACTERIAL
MOTILITY

In the first part of this section, we introduce Brownian motion and
show how the Langevin equation can be used to study it. The discus-
sion of the Langevin equation allows us to introduce two important
quantities, the velocity autocorrelation and the mean squared displa-
cement, both of which are frequently used to characterize the proper-
ties of random walks.

In the second part of this section, we formulate and study the mas-
ter master equation of a simple one-dimensional random walk. Mas-
ter equations are an important tool for the description of the time
evolution of stochastic processes and has been used on multiple occa-
sions within this thesis (see section 3.1 and section 6.2).

In the last part of this section, we give a brief introduction to the
motility of bacteria, driven by active processes.

1.2.1 Brownian motion and the Langevin equation

In 1828, Robert Brown observed the random motion of pollen grains
suspended in water [47]. Only 8o years later, Albert Einstein [48] and
Marian Smoluchowski [49] could identify collisions of the pollen with
atoms and molecules within the fluid as origin of the random mo-
tion. The motion of Brownian particles can be studied by a stochastic
differential equation, namely the Langevin equation. The following
calculations were taken from [50]. Here, we only present the one-
dimensional version of the Langevin equation, higher dimensional
forms of this equations can be found in the literature [50, 51].

The Langevin equation describes the force balance of the Brownian
particle:

v=—u+T(t), (1.1)

with the velocity v of the particle, the friction p and the Langevin
force I'(t). Here, the mass m of the particle is included in v, p and T.
The stochastic force obeys

(N(t) =0 (1.2)
(FOT(") =Tod(t—t') (1.3)

and is also called white noise-force. In this equation, Iy denotes the
strength of the noise and d(x) is the Dirac delta function.

From the Langevin equation, one can compute the particle velocity,
given by

v(t) = exp (—ut) [vo + L dt’ exp (ut’) I(t")|, (1.4)
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with the initial velocity vo. The velocity autocorrelation is then given
by
(v(t1)v(t2)) = viexp [—p(t +t2)]

I
+ ﬁ (exp [—plty — ta] —exp [-u(t; +t2)]).  (1.5)
For pty > 1 and pt, > 1 this equation takes a simpler form
I
(Mt v(ta)) = 3T exp it — tall. (1.6)
In the stationary state we get
I
2y _ 0
(v(t)?) = 52 (17)

By assuming thermodynamic equilibrium we can use the equiparti-
tion theorem and determine the strength of the noise, Iy, by

1 1 . Fom

—kT = *m<V(t)z> = W, (18)

2 2
where k is the Boltzmann constant, T is the temperature and m is the
mass of the Brownian particle. Then we have
_2ukT
Tom
When we track the trajectory x(t) of an particle, we can define its
velocity by

To (1.9)

. . x(t+At) —x(t)

VO =0 = Jim T
For the analysis of experimental data, we cannot reach the limit At =0,
but need to pick a finite At. This makes the value of the velocity de-
pendent on the value of At and thus it is often difficult to estimate the
velocity autocorrelation experimentally. We can define another quan-
tity which only depends on the position of the particle and thus, is
independent of the value of At, the so called mean squared displace-
ment:

((x(0)—x(0)%) = [ dur | dtz ((ew(e2). (1.11)

0 0
The mean squared displacement of a Brownian particle is then given

by

(1.10)

Mo\ (1—exp[—ut])?
_ 2y _ (.2 10 pl—H
(Ixtt) = x(0%) = (v - 52 ) T2,
I I
+ H—gt — LT% (1 —exp[—put]). (1.12)

For very large values of the time, put > 1, this equation simplifies to

((x(t) —x(0))?) ~ 2Dt. (1.13)
Here, we define the diffusion coefficient

To kT
D= 7= (1.14)

giving an equation that is called the Stokes-Einstein relation. Note
that the particle mass m is incorporated in the friction p and thus,
the diffusion coefficient is not dependent on the mass.
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Figure 1.4: One-dimensional random walk. (a) Trajectory of a one-
dimensional random walk with constant step length of 1, con-
stant time steps of 1 and p = q = 0.5. (b) Discrete probabilities
P(x,t) (bars) for a one-dimensional random walk, as given by
equation 1.17, at time t = 50. The continuous limit of the proba-
bility distribution, given by equation 1.18, is shown by the red
line.

1.2.2  Master equation of a simple random walk

We study how a particle moves randomly on a one-dimensional lat-
tice and how this can be described by a Master equation [52].

The probability of the particle to be at a point x at time t is given by
P(x,t). For now, we assume that x and t can only take integer values,
x € Z and t € IN. The particle jumps at each time step, chosen to
be constant, with a probability p to the right and with a probability
q = 1 —p to the left. Such a random walk is shown in figure 1.4a. The
evolution of the system is then given by

P(x,t) =pP(x—1,t—1)+qP(x+1,t—1). (1.15)

Additionally, we can write down the rate of change of the probability
P(x, 1), given by
P(x,t) —P(x,t—1)=pP(x—1,t—1)+qP(x+1,t—1)
—(p+q)P(x, t—1). (1.16)

The solution of these equations is the binomial distribution,

t! tix tox
P(X/t) = Z(HTX)' (thx)|p 2. q:? (1'17)

and for large t it can be approximated by

1 (x—tlp—q))?
NI exp I , (1.18)

which is a Gaussian distribution. The form of these distributions is
shown in figure 1.4b.

P(x,t) ~

7
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In the continuum limit, where we consider the infinitesimal step
length Ax and time At, the master equation has the form

P(x,t) = pP(x — Ax, t — At) + qP(x + Ax, t — At). (1.19)

By making a Taylor expansions of P(x,t) for At and Ax we get

oP oP
Pix,t) ~ (p-+ a) (Pl t) = Sat) - (p— ) S ae
p+qo*P,
+ > aXZAx. (1.20)

By considering the fact that p + q = 1 and setting

Ax

Vel sy 6.2
1 Ax?
b= At,lirf—m 2 At (122)
we get
oP P _d%P
— =—V_—+D—. .
ot ox o2 (1.23)

Here, V is the constant drift and D is the diffusion coefficient. This
equation is a special form of the Fokker-Planck equation with con-
stant D and V and is also known as Smoluchowski equation. For
p = 0.5 the drift vanishes, V = 0, and with the initial condition

P(x,0) = 8(x) (1.24)

(with the Dirac delta function 6(x)), the resulting probability density
function of the one-dimensional random walk is given by

P(x,t) =

1 x?
exp| —— |- 1.2
VAnDt P ( 4Dt) (1.25)
By computing the second moment of this distribution,
(x(t)?) = 2Dt, (1.26)

we get the same expression as computed from the Langevin equation
for the mean squared displacement (see equation 1.13).

1.2.3 Bacterial motility as an active process

As it was discussed in section 1.1, the motility of bacteria can ori-
ginate from many mechanisms. Up to now, we assumed that the
random motion of the Brownian particle was due to thermal noise,
assuming thermodynamic equilibrium.

In reality, the motility of living organisms, in particular moving
bacteria, is characterized by an active self-propulsion [7, 53].

Cells are called ”active” when energy is taken in and dissipated and
due to this processes, the cell executes motion [53]. An example of
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Figure 1.5: Microcolonies of Neisseria gonorrhoeae. Electron microscope ima-
ges of Neisseria gonorrhoeae microcolonies. (a) A microcolony gro-
wing on a glass surface. The image was contributed by Nicolas
Biais (Brooklyn College, New York City). (b) Microcolony gro-
wing on top of epithelial cells. Due to the retraction of attached
pili, the microvilli of the epithelial cells, located beneath the mi-
crocolonies, are stretched and elongated. The figure was adapted
from [54].

such a process is the retraction of a pilus, mediated by the molecular
motor pilT [23].

Many aspects of the random motion of active particles can be un-
derstood within the framework of the Langevin equation introduced
above. In the case of active systems, the noise strength is different
from equation 1.9 and is affected by active processes driving the sy-
stem out of thermodynamic equilibrium.

To characterize the random motion of active particles, we can often
take the passive models, described in the previous chapters, and re-
place the origin of the noise I', for example by different intercellular
processes or hydrodynamic interactions [7].

1.3 BACTERIAL MICROCOLONIES AND THEIR FORMATION

After showing how pili mediate the motion of single cells and how
we can study the motility of bacteria, we will now consider bacterial
microcolonies, aggregates consisting of several bacteria. In the first
part of this section, we introduce microcolonies and their formation,
mediated by type IV pili. Such microcolonies are the first step in the
formation of early biofilms, surface-associated communities of bacte-
ria. In the second part of this section, we introduce the model orga-
nism of this thesis, the pathogenic bacterium Neisseria gonorrhoeae.

1.3.1  Pili-mediated formation of microcolonies

Besides the motility of individual cells on top of a substrate (see
section 1.1), pili can also mediate the formation of microcolonies,
bacterial aggregates consisting of up to thousands of cells [55, 56].
For many bacteria, this is one of the main mechanisms to form ag-
gregates [29]. The formation of these microcolonies is driven by pili-
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mediated attractive cell-cell-interactions, originating from the binding
of two or more retracting pili [29, 54, 57].

For pili-pili-bundling it has been suggested that the strength of
interactions is dependent on the geometry of the pili, in particular
whether two pili are parallel or antiparallel. Pili protruding from a
single cell are in general parallel to each other. Interactions of the
pili of these cell would reduce the available pili surface area that can
be used for bonds to pili of other cells, without offering any direct
benefit. On the other side, pili of different cells are likely to be antipa-
rallel to each other and in this case it would be preferential to form
pili-pili-bonds [29]. Although this idea appears plausible, no direct
experimental proof for type IV pili is available up to this date. For
F-actin filaments it was shown in a recent study that interfilament
sliding friction differs for parallel and antiparallel sliding [58].

In figure 1.5, microcolonies of Neisseria gonorrhoeae are shown, which
formed due to pili-pili-interactions of the individual cells. The colo-
nies themself also possess free pili at their surface that are elongating
to the surrounding fluid and can attach to a substrate (for example
epithelial cells), enabling the colony to perform motility over the sub-
strate [59, 60]. Because of this, colonies are able to move, collide and
coalesce with other colonies, thus introducing an important mecha-
nism of colony growth (see chapter 3 and chapter 6).

Cells benefit from the formation of microcolonies by protecting the
cells within the aggregates from external chemical and mechanical
threats. Additionally, microcolonies possess more pili adjacent to the
substrate, thus increasing the strength of the interactions with the sur-
face and the force the colony is exerting on the surface (for example
epithelial cells). These forces can be in the order of nanonewton for a
single pili bundle [33], allowing the cells to mediate dramatic changes
to the cytoskeleton. These changes can be beneficial for the infection
of pathogenic bacteria, for example Neisseria gonorrhoeae [54].

The bacterial microcolonies formed by pili-pili-interactions repre-
sent the first step of the formation of biofilms.

1.3.2  Microcolonies as precursors of biofilms

While one usually imagines bacteria as individual entities, in fact
most bacteria organize in biofilms, surface-associated communities
of bacterial cells on a substrate, embedded in an exopolysaccharide
matrix [61].

The life cycle of a biofilm, here presented for Myxococcus xanthus
bacteria and depicted in figure 1.6, can be divided into five stages [55,
61, 63]:

1. Planktonic state: In the first phase, individual cells are freely
moving, being independent of each other. Cells possessing fla-
gella (for example Escherichia coli or Myxococcus xanthus) are
swimming during this phase, cells having pili only (for exam-
ple Neisseria gonorrhoeae or Neisseria meningitidis) are moving on
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Figure 1.6: Life cycle of a biofilm, taken from [61]. Initially, cells need to find
a surface on which they can form the biofilm. This phase is called
the planktonic state, where individual cells swim through a fluid.
It is followed by the attachment phase, where cells adhere with
the help of pili to the surface. This phase can be divided into "re-
versible” and ”irreversible” [62], characterized by how strong the
bond with the surface is. The attached cells will form microcolo-
nies due to different growth mechanisms like proliferation and
coalescence of colonies. During this step, the pili-mediated sur-
face motility plays an important role. The microcolonies create an
exopolysaccharide matrix that also includes dead cells and extra-
cellular DNA, representing the fourth state, the macrocolony. In
this state, the colony can take different shapes. In the last step,
such macrocolonies dissolve by resetting at least a fraction of
cells to the planktonic state, which allows the bacteria to invade
the environment.
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a substrate. The motion continues until the bacteria come close
to the substrate.

2. Attachment state: When cells are close to a substrate, they can
adhere, for example by using type IV pili. The adhesion can
often be differentiated into “reversible” and ”irreversible” [61,
62]. They differ in the strength of the binding such that, for
the “reversible” state, it is considerably weaker. Often, cells are
initially in a “reversible” state, followed by the transition to the
“irreversible” state.

3. Microcolony formation: Due to different growth mechanisms
(like cell divisions and coalescence of smaller cell aggregates
and cells moving on the substrate) microcolonies consisting of
a high number of cells can form. These microcolonies continue
their growth until they start forming macrocolonies.

4. Macrocolony formation: Macrocolonies often have a mushroom-
like shape that originates from pili-mediated interactions of the
cells [64]. The cells are separated by fluid-filled void regions,
that can take different complex shapes. Additionally, cells within
macrocolonies produce an exopolysaccharide matrix, that also
includes dead cell debris and extracellular DNA.

5. Dispersal state: Macrocolonies are able to dissolve, releasing sin-
gle cells into the surrounding fluid and bringing them back to
the planktonic state, allowing them to disperse after local re-
sources of nutrients have been depleted.

From this overview of the biofilm life cycle it becomes clear that
the formation of biofilms is an expensive process that involves the
production of a high amount of molecules that will later form the
exopolysaccharide matrix. This cost is outweighed by the advantages
a biofilm offers to the individual cells.

Cells within biofilms are better protected from antibiotics than cells
in the planktonic state, making them up to 1000 times more resistant
to those antimicrobial drugs [65, 66]. Biofilms also enable the cells to
withstand strong shear forces [67, 68]. Additionally, biofilms are able
to protect individual cells from UV radiation [69] and predators, in
particular from unicellular eukaryotic organisms called protozoa [70].
The formation of such biofilms is often triggered by environmental
limitations, such as a lack of nutrients [61, 71].

Interestingly, biofilms are not only formed by a single species, but
often form polymicrobial aggregates, consisting of more than one
bacteria species [72—74].

Additionally, biofilms can contain cells with different fates, such
that initially identical cells follow different developmental pathways.
Depending on where a cell is positioned within a biofilms, it adopts
different properties. The cells can exhibit differences in motility, pro-
duction of the exopolysaccharide matrix or mechanical properties,
mediating the formation of the mushroom-shape of the biofilm du-
ring the macrocolony state [75].
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In order to organize such complex differentiation within biofilms,
individual cells must be able to communicate with each other. The
differentiation can be triggered by quorum sensing, intercellular sig-
naling that is driven by the secretion and recognition of different mo-
lecules [76]. Additionally, it was recently suggested that mechanical
cues may also affect the differentiation of cells within microcolonies
and biofilms [77].

Finally, it is interesting to point out that strong similarities exist
between differentiation patterns of bacteria within biofilms and the
development of multicellular organisms [5], for example during em-
bryogenesis.

1.4 neisseria gonorrhoeae AS MODEL ORGANISM TO STUDY BACTE-
RIAL COLONY FORMATION

In this thesis, we investigate how pili mediate the formation of bacte-
rial microcolonies and the motility of cells and microcolonies on a
substrate. The model organism of our choice is the bacterium Neisse-
ria gonorrhoeae. Due to the fact that these bacteria only possess type
IV pili and no other tools to cause cell motility and attractive cell-cell-
interactions, it is an ideal organism to study exactly those processes.

The individual bacteria have a dumbbell-shape, which is called a
diplococcus [29] (see figure 1.2), and possess around 5-20 pili protru-
ding from the cell membrane [28, 29, 34]. The microcolonies formed
by Neisseria gonorrhoeae can consist of up to thousands of cells, rea-
ching diameters in the order of 20 — 30 um (see figure 1.5).

The bacterium Neisseria gonorrhoeae is the causative agent of the
sexually transmitted disease gonorrhea. With 8o million reported new
infections worldwide every year, gonorrhea is one of the most com-
mon sexually transmitted diseases worldwide, causing around 700
reported deaths in 2015 [78, 79]. While the number of reported de-
aths is, compared to other bacterial diseases, low, it could increase
considerably in the future due to the alarming development of antibi-
otic resistance by Neisseria gonorrhoeae.

Antibiotic treatment of the disease gonorrhea reaches back as far
as 1897, where Arthur Eichengriin successfully used colloidal silver,
called Protargol, as treatment [80]. In recent years, treatment of the
disease gonorrhea has been compromised by an alarming rise of re-
sistance to antibiotics. This goes up to the point where only the an-
tibiotic Ceftriaxone is able to guarantee a successful treatment [81-
84], although first cases of resistances were reported even for Ceftri-
axone [85-87].

It is important to highlight that the bacteria are only able to infect
human cells, prohibiting to study Neisseria gonorrhoeae with the help
of animal models. In order to induce the infection, pili of Neisseria go-
norrhoeae bind specifically to the human transmembrane glycoprotein
CD46 [88]. The epithelial cells associated with the single bacteria and
bacterial microcolonies exhibit a higher concentration and elongation
of microvilli, membrane protrusion that are involved in adhesion of

13



14

INTRODUCTION

eukaryotic cells (see figure 1.5b) [54]. Additionally, pilus attachment
and retraction mediates the formation of cortical plaques, cytoskeletal
domains with an increased concentration of actin [89]. Due to these
dramatic changes of the mechanics of the epithelial cells and their
cytoskeleton, cell apoptosis is triggered, which is an important step
during the infection process [29, 54].

While we focus on the dynamics of Neisseria gonorrhoeae in this the-
sis, our results can be applied to other pathogenic and highly dange-
rous bacteria possessing type IV pili, for example Neisseria meningiti-
dis and Pseudomonas aeruginosa.

1.5 OBJECTIVES AND STRUCTURE OF THIS WORK

In this thesis we want to study how forces, specifically those mediated
by type IV pili, can mediate the dynamics of bacteria and bacterial ag-
gregates. The model organism of our choice is the bacterium Neisseria
gonorrhoeae.

In order to highlight the importance of pili during the life of these
bacteria, we start by looking at multiple single cells on top of a sub-
strate. Due to their pili, these cells move over the substrate, a process
which is studied in chapter 3. While the cells move, they will start
to come close to each other and interact due to the binding of pili
to each other. This will mediate the formation of microcolonies (see
chapter 4 and chapter 6).

The colonies are then also able to move over the substrate (see chap-
ter 3). In this thesis, we study how single cells and colonies move over
on a substrate and how different models can be applied to explain ex-
perimental observations.

How individual cells behave within a colony and how this beha-
vior affects processes like the coalescence of two colonies is studied
in chapter 4. Here, we compare bacterial microcolonies to liquid drop-
lets. Additionally, we study how wild type cells and different types of
mutated cells mix and demix within microcolonies and connect our
observations to the differential adhesion hypothesis (see chapter 5).

The three main processes affecting the formation and growth of
these colonies are the pickup of single cells due to larger microcolo-
nies, the coalescence of two colonies in order to form a larger colony
and the proliferation of the bacteria. The time-dependent distribution
of colony sizes is studied in chapter 6 and compared to experimental
results.

To study the dynamics of cells and microcolonies, we developed
a computational model, allowing us to investigate the role of indivi-
dual pili interactions during all processes previously mentioned (see
chapter 2).

In this thesis, we employ experimental, theoretical and numerical
approaches to study how pili lead to bacterial behavior on multiple
scales: from individual cells, over single colonies and up to multiple
colonies.



COMPUTATIONAL MODEL OF BACTERIAL
MOTILITY AND MECHANICS

In order to study how pili mediate the dynamics of single bacteria
and microcolonies, we developed a computational model of indivi-
dual cells in which the direct cell-cell-interactions are modeled by
explicitly simulating the dynamics of pili and computing the forces
mediated by them. This allows us to study quantities that are not (yet)
accessible by experiments, for example the properties of the pili and
the forces acting on cells within a colony.

The main features of the computational model are described in this
chapter, more details can be found in appendix A. The presented mo-
del was published in [60]. It allows us to investigate the motion of
single cells on a substrate (see chapter 3), the internal dynamics of
microcolonies and how they affect the coalescence of microcolonies
(see chapter 4) and the self-assembly of mixtures of different cell po-
pulations (see chapter 5).

While the model was developed to study the behavior of Neisseria
gonorrhoeae, it can easily be adapted to investigate the dynamics of a
wide range of bacteria possessing type IV pili by changing the used
parameters (for Neisseria meningitidis) or by changing the geometry of
the cells (for Pseudomonas aeruginosa or Neisseria elongata).

2.1 GEOMETRY OF THE CELLS AND FREE PILI DYNAMICS

The cells of Neisseria gonorrhoeae possess a dumbbell shape, also cal-
led a diplococcus [29]. In our model, the in silico cell consists of two
spheres, the so called cocci, that each have a radius R. The positions

) and rgb)

of the cocci a and b of one cell i are given by rga , such
that |r£a) — rgb)| = deocci < 2R. They thus have a fixed distance (see fi-
gure 2.1a). The center of the cell is then given by

rlom — " errgb), (2.1)
A cell possesses around 5-20 pili [27, 28, 34] that are randomly crea-
ted by the cell with a rate y,04 and homogeneously distributed on
the surface of the cell [28]. It has been suggested that that the num-
ber of pili is limited by the number of domains responsible for pili
creation [35]. Thus, we introduce a maximal number of pili Npax that
limits the amount of pili a cell possesses.

Pili are modeled as springs. They have the shape of a line, with
their position being characterized by two points: their start point at
the surface of the cell (also called anchor point) and their end point
(see figure 2.1a). The distance between these two points is named

the contour length of the pilus. It has been suggested by experiments
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a pilus fluid b fluid C
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" pilus
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€ substrate substrate

Figure 2.1: Schematic representation of the geometry of the simulations and
how pili interact with the substrate and other pili. Figure adap-
ted from [60]. (a) A dumbbell shaped cell i with cocci positions

rga) and ri(b) with one pilus. The position of the pilus k is charac-
terized by its start point, which is the anchor point connecting
the pilus and the cell, and its end point. (b) Pili can bind to a
substrate with their tip or can bind to other pili. The binding of
two pili is chosen from the intersection of the beam region of one
pilus, resulting from its thermal fluctuations, and the line shape
of the second pilus. (c) Three-dimensional representation of the
geometry and the pili dynamics in the computational model.

that the pili lengths are exponentially distributed with a characteristic
length of 1. =1 —2 um [27, 28].

The persistence length of type IV pili was initially measured by
Skerker et al. in 2001 [31] to have a value of 5 um by observing the
thermal fluctuations of fluorescently labeled pili associated with a
substrate. Contrary to this result, in 2015 Lu et al. [go] used AFM
pulling experiments to estimate the value of the persistence length to
be around 1 nm, thus being three orders of magnitude lower than
the earlier measured value. A recent theoretical analysis [91] of the
effects of pili persistence length lyers on the motility of cells suggests
that the persistence length is in the order of microns, thus confirming
the results of Skerker et al. Here, we use their value and assume that
pili are semiflexible polymers.

In our model, a pilus protrudes perpendicularly from the surface
of the cell with a velocity vpro. When a pilus hits the substrate, it will
slide along the substrate with its tip. The protrusion of a pilus con-
tinues until it switches stochastically to a retraction state. The rate
Yret after which this switching takes place is governed by the charac-
teristic length 1. of the pili, so that yret = Vpro/lc. After switching to
a retraction mode, a pilus is no longer able to switch back to a pro-
trusion state. Here, we assume that the velocity of protrusion and the
velocity of retraction have the same value

Vpro = Vret = Vo, (2-2)

as has been suggested experimentally [23]. A pilus is removed if the
contour length has shrunk to zero due to its retraction. More details
about the geometry and the pili dynamics can be found in appen-
dix A.1.
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2.2 BINDING OF PILI TO A SUBSTRATE AND TO OTHER PILI

Pili are able to bind stochastically to the substrate with their tip and
to other pili along their full length (see figure 2.1b). Information of
how these processes are implemented are given in the following sub-
sections.

After attachment, pili start to retract immediately in our model,
as has been suggested experimentally [35]. Pili that are attached are
not allowed to bind to the substrate or other pili, thus only binary
interactions are permitted.

2.2.1  Pili substrate binding

The exact mechanism of how type IV pili bind to substrates is not
known. For the pili of Pseudomonas aeruginosa it has been suggested
that pili possess key residues of the pilin subunits that are involved
in adhesion and are only exposed at the tip [39—41]. Within the poly-
mer, they are involved in the interactions of the subunits. For other
proteins associated with pili it was suggested that they are not only
located at the tip of the pili, but can also be rarely found along the
filament, so that a pilus may possess multiple binding sites [42, 43].
In our model, we assume that the tip of a pilus binds to the sub-
strate with an attachment rate yau ps if the tip is directly on top of the

substrate. In particular, the z—component of the end point r](f) of the
pilus needs to be 0 (see figure 2.1b).

2.2.2  Pili-pili binding

Pili mediate attractive interactions between cells by binding to pili of
other cells [25, 92, 93]. The experimental observation that cells wit-
hout pili are not incorporated into bacterial microcolonies [57] sugge-
sts that pili are not able to bind to the surface of bacteria.

In our model, pili are characterized as lines with an start points rl(f’)

and end points r](f’). In order to describe the binding of two pili, we
consider the thermal fluctuations of pili that swipe through a cone-
like region in space (see figure 2.1b and 2.1c). The cone-like shape
of this region is governed by the beam equation [94], more details
are given in chapter A.2. If a pilus, having the shape of a line, and
a second pilus having the shape of such a cone, intersect, they can
bind stochastically with the rate yat,pp at a random point of the line
segment within the beam volume.

2.3 FORCES AND MOTILITY

We consider two classes of forces that are acting on the cells: excluded
volume forces and pili-mediated forces.

17
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a b fluid

substrate

cell 1

Figure 2.2: Sketch of the different forces that are acting on cells within the

model and mediate the cell motion. The figure was taken from
(cs
j

substrate and the distance vector d].(cs), pointing from the center
of the cell pointing towards the point where the force is acting.

[60]. (a) Excluded volume forces F Vof a cell overlapping with a

(b) Excluded volume forces FE?C) of a cell overlapping with a
substrate with the overlap length Adqy and the distance vector
rjj, pointing from the center of the cell towards the center of the

cocci of cell i and j. (c) Pili-mediated forces F](<p s) due to binding
to the substrate. The vector d](cp 5) points from the center of the cell
to the start point of the pilus. (d) Pili-mediated forces F](Qpp) due

to binding of two pili. The vector d]ipp) points from the center of
the cell to the start point of the pilus k.



2.3 FORCES AND MOTILITY

2.3.1  Excluded volume forces

If a cell overlaps with a substrate, located at position z = 0 (see fi-
gure 2.2a), a repulsive force F§Cs) will act from the substrate on coccus
j = a,b, described by a simple Hookean spring with spring constant
kes in the normal direction.

Additionally, the overlap of two cells, called i and j, results in a
repulsive force Fgc) (see figure 2.2b). Again, this is described as a
harmonic force with a different spring constant k.

2.3.2  Pili and pili-mediated forces

Pili are modeled as springs with spring constant kyy;. If a pilus k
is attached to the substrate or another pilus, it will start to retract
and, due to the resulting stretching of the spring, generate a force

F](fs) or F,&pp). These forces are proportional to the difference between
(cont

the contour length 1, ) of the attached pilus and the length of the

(free

pilus if it be not attached, called the free length 1, ) If a pilus is
not stretched but compressed, it is not able to generate any force
between cells or to the substrate. While the contour length of the pili
is a function of the position of the cells and their pili, the free length
is affected by the retraction of the pili. The retraction velocity v](f e of

pilus k is affected by the pulling force F and exhibits stalling behavior,

F
v](fet) = max {O, Vret <1 — )} , (2.3)

Fstall
with the stalling force Fgap [23, 95]. Here, F is the absolute value of
F]((pp) or F](st).
Additionally, the pilus detachment rate (yéssf ! for pilus-substrate
bonds and yfipeif) for pilus-pilus bonds) is affected by the pulling force:

(sub) 1 F
Yaet =, P\ T / (2.4)
d,ps d,ps

i 1 F
yEy = ——exp | =— |, (2.5)
td,pp Fd,pp

where we define the pili detachment times tq,, and tqp,s and the
pilus detachment forces Fq ,p, and Fq ps. The form of these equations is
motivated by Kramer [96] and Bell et al. [97]. From experiments [34],
it was also proposed that the detachment rate follows

1
(sub) _ . (2.6)

Y
det £ oxo (—F ) 442 exp (—_F
d,ps P F(l) d,ps p F(Z)

d,ps d,ps

with the detachment forces Féf};s =1.28 pN and Fff}ls =33.8 pN and

the detachment times t((f;s = 0.85 s and tézr),s = 0.04 s on a BSA-coated
glass surface.
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Further information concerning the pili-mediated forces are given
in appendix A.3.

2.3.3 Cell motility

The total force acting on a cell i is then given by
tot
FO= S B+ Y B9+ Y R+ Y R (2.7)
cocci j cells j pili k pili k

Additionally, the torque acting on cell i is given by

(tot) (cs) (cs) (cc) (cc)
T, = Z dj ><Fj —i—Zdij ><Fij

cocci j cells j
+ Z d](f’s) % FIEPS) n Z dfj’p) % F](fp). (2.8)
pili k pili k
Here, dj(cs), dgc), d](fs) and d]((pp) are the distance vectors pointing

m) to the points at which the forces are

from the center of the cell rg
acting (see figure 2.2).

We assume that the velocity of the cell i is related to the force in the
overdamped limit [98], thus its center and the positions of the cocci

follow

drgcom) dl‘.a) dl‘(b) (tOt)
dt = dt = dat :HtransFi ’ (2.9)

where iyrans is the translational mobility of the cells. Additionally, the
cell and its cocci rotate due to the torque, where the angular velocity
vector is given by

(tot)

(tot)
Wi = I-J-rotatTi ’

(2.10)

where [otat is the rotational mobility of the cell.

2.4 SIMULATION DETAILS

The simulations were performed on the local computing cluster of
the MPI-PKS, consisting of x86-64 GNU/Linux systems. All machines
possess Intel Xeon processors with a clock rate of 2.2 to 3.0 GHz
and have between 2 to 4 CPUs. The code was written in C++ and
parallelized on CPU by using the library OpenMP. We used the GCC-
compiler (version 4.8.1) and were running the simulations on up to 8
cores in parallel.

We used an Euler algorithm to solve the equations of motion with
a time step At =5 x 107° s or smaller. Higher order schemes offer
comparable results, but they do not increase the computation speed.

While most parameters within our model are known from experi-
ments (see table 2.1), many parameters play only a minor role within
our simulation, e.g.the excluded volume constants k.. and ke which
are in general large [99] (compared to the forces mediated by pili)



2.4 SIMULATION DETAILS

and do not affect the simulations as long as they are large enough to
not allow overlapping of cells with each other and the substrate (see
appendix F.3.1).

If not stated otherwise, the translational and rotational mobility
Herans and Hrotat Were chosen such that the viscosity is 10x larger than
the viscosity of water. This modification is useful because it allows
to increase the time step At of the simulation. The used mobilities
correspond to a force of 2 pN to move a single cell with the maxi-
mal pilus retraction velocity vie. This force is considerably smaller
than the characteristic pilus pulling force Fy,y, and also much smal-
ler than the detachment forces we used in most parts of this thesis.
Thus, we do not expect a qualitative difference in the outcome of the
simulations.

For the remaining parameters of the simulation (see table 2.1), in
particular the detachment forces (Fq,ps and Fqpp), the detachment ti-
mes (td,ps and td,pp) and the binding rates (Yatt,ps and Vatt,pp), We sam-
pled over different values. The values over which we sampled are
given in appendix F.
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PARAMETER VALUE REF.
Cocci radius R 0.5 um [28]
Cocci distance deoeci 0.6 um [28]
Cell-cell excl. vol. const. ke 2x10% pN pm !

Cell-sub. excl. vol. const. K 4 %104 pN pm=!
Translational mobility pirans 1 um (s pN)_]

Rotational mobility protat 2 (ums pN)*1

Pilus persistence length lpers 5 um [31]
Pili production rate yprod 15 Hz [34]
Maximal pili number Npyax 15 [35]
Pili protrusion velocity vpro 2 um/s [23, 28]
Pili retraction velocity vret 2 um/s [23, 28]
Mean pili length 1. 1.5 um [28]
Pili spring constant kp;; 2000 pN/pum [100, 101]
Pili stalling force Fgian 180 pN [23, 34]

Pili-pili detachment force Fqpp
Pili-sub. detachment force Fy ps
Pili-pili detachment time tg pp,
Pili-sub. detachment time tq s
Pili-pili binding rate vatt,pp
Pili-sub. binding rate vatt,ps

Table 2.1: Parameters of the computational model. The upper half shows
parameters that could either be estimated from experiments or
did not affect the outcome of the simulations as long as they were
chosen high enough. The lower half shows parameters that were
sampled (see appendix F).



MOTILITY OF SINGLE BACTERIA ON A
SUBSTRATE

Many bacterial cells and microcolonies use type IV pili to attach to
different substrates, for example epithelial cells [15] or glass and plas-
tic surfaces [28, 34, 59]. By retracting attached pili, the cells create
pulling forces and using these forces, they mediate their motility on
the substrate.

Experimentally, it was shown that Neisseria gonorrhoeae bacteria mo-
ving on a BSA-coated glass substrate exhibit a persistent random mo-
tion. The characteristic length of the motion is higher than the average
length of the pili [27]. Previously, it was suggested that this behavior
cannot be solely explained by a tug-of-war mechanism, known to ex-
ist for the bidirectional transport by molecular motors [38]. Instead,
it was suggested that one needs to consider directional memory in
the form of bundling of multiple pili and correlations between the
originating points of pili [34]. Here, we use our computational mo-
del (see chapter 2) to study whether we can reproduce the persistent
motion over lengths higher than the average pilus length. To this end,
we do not consider any process that could account for directional
memory [34]. Additionally, a one-dimensional stochastic model high-
lighting an underlying tug-of-war mechanism provides us with an
intuitive understanding of the persistent motion.

Furthermore, we study how the number of pili per cell affects the
motion of cells. Experimentally, it has been shown that the more pili
a cell possesses, the higher is the persistence time and the diffusion
coefficient of a cell [27]. Previous computational models were not able
to reproduce such behavior without including directional memory of
the pili [34].

For single cell motion on top of a plastic surface it was shown
that the distribution of velocities is bimodal and that cells having
the shape of a diplococcus have a higher probability to move in the
direction perpendicular to their long axis [28]. Here, we use our com-
putational model to address this question.

Studied parameter sets

If not stated otherwise we use the parameters given in table 2.1 while
applying the computational model and as input to our stochastic mo-
del. Although we investigated a wide range of parameter sets by sam-
pling over different values of the attachment rates, detachment forces
and detachment times (see table F.2), here we present only two of
them, given in table 3.1. These sets represent different regimes of how
cells use pili to move on a substrate.

For the first parameter set, called slow (short for slow binding and
unbinding dynamics), pili bind strongly but with a low rate to the
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substrate. In this regime, we assume that pili rarely attach to the sur-
face and we assume that the force-dependent detachment rate is gi-
ven by

Ydet - (1) . ’ (31)
L4 ps OXP <_F<11>

d,ps

as motivated by the Kramers rate (see subsection 2.3.2). Here, F is

(1) is called the detachment time and Ff;;s is the

the pulling force, t dps

detachment force.

SLOW FAST

Fiie PN 180 1.8
Fio, PN - 33.8
£ [s] 10 085
ti [s) - 0.04
Yatt,ps [s~'] 0.5 15
Mirans [tm (s pN) '] 1 10
Hrotat (LM s pN)'] 2 20

Table 3.1: Definition of pili-substrate-interactions parameter sets and the mo-
bilities used for modeling the substrate motion of cells.

The second parameter set, called fast (short for fast binding and un-
binding dynamics), is motivated by experiments in which the mean
detachment time of a pilus attached to a BSA coated silica bead was
measured [34]. Trapping the glass bead in an optical tweezer allowed
to create a drag force acting on the pilus. In the experiment, the deta-
chment rate was found to follow

b 1
YS:t)(F) N (1) F (2) F ’ G-2)

(2)
d,ps

with a second characteristic time t; = and a second characteristic
force Féf;s. For the fast parameter set, the detachment rate depends
on more parameters. In general, the detachment times and forces are
considerably smaller, compared to those chosen for the slow parame-
ter set. The attachment rate was chosen to be higher than those of the
slow parameter set. For the fast parameter set we assume that pili only
bind weakly to the substrate, but will frequently attach to a substrate.

Contrary to the previously defined values of the parameters of
the computational model, given in table 2.1, here we chose higher
values of the mobilities of the cells, corresponding to smaller fricti-
ons, for the fast parameter set. The chosen values correspond to the
friction of a cell moving within water. We pick higher values of the

mobilities because of the low values of the detachment forces of the
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a b
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Figure 3.1: (a) Sketch of the stochastic model of cell surface motion. The
cell possesses in total 3. The number of pili bound to the left
side is given by Nj, the number of pili bound to the right side is
given by N;. The pili can constantly change between states of at-
tachment and detachment, as predicted by the stochastic model.
(b) States and transitions of the stochastic model for a cell with
three pili on each side. The arrows show the transition between
the different states (N}, N;), in particular due to attachment of
pili, the detachment of pili and the motion of the cell over pilus
attachment points. In the model, we assume a cell is moving if a
nonzero number of pili is attached only to one side.

fast parameter set. As computed in appendix D.1.1, for a translatio-
nal friction of Uirans = 1 um (s pN)_1, the drag force of a single pi-
lus pulling a cell is given by approximately 2 pN, thus being in the
order of the detachment forces, shown in table 3.1. For a mobility
Lirans = 10 um (s pN)*] , the force only has a value of approximately
0.2 pN, being one order of magnitude smaller than the detachment
forces. For the slow parameter set, we do not observe any difference
for the lower and the higher value of the translational and rotational
mobility.

3.1 STOCHASTIC MODEL OF BACTERIAL MOTILITY ON A SUB-
STRATE

We apply our computational model, presented in chapter 2, to study
the substrate motion of single cells. In addition to this model, we use
a mathematical model to investigate the underlying mechanisms of
substrate motility of single cells. A simple one-dimensional stochastic
model allows us to easily study the tug-of-war mechanism.

The stochastic model, described in this section, shares similarities
to a previously published work by Miiller et al. [38]. They suggest a
stochastic model to study the bidirectional transport of cargo due to
two populations of molecular motors, kinesin and dynein, pulling in
different directions and having load-dependent transport properties.

In the one-dimensional stochastic system a cell possesses Nyoa1 € IN
pili on each side, N; pili being attached on the left side and N, pili
being attached on the right side (see figure 3.1a). Then, we define a
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state (N}, N;) and study transitions between different states and their
effect on the motion of the cell.

In order to compute the probability P(Nj, N;) one needs to know
the transition rates between the different states. An overview over the
different transitions that are possible within our stochastic model is
shown in fig 3.1b and discussed in the following. The resulting master
equation takes the form

Niotal Niotal
dP(Nl,Nr) total ' N tot. o
TN =3 Tarte) 33

with the transition matrix T, consisting of all rates describing the tran-
sitions between the different states

(1,3) = (N, Ny). (3-4)
Transition due to the attachment of pili to the substrate

We will consider cells with N and N, attached pili on the left and
right side respectively. The attachment of an individual pilus is des-
cribed by the following transitions

(le Nr) — (Nl + ]/Nr) s (3-5)
(Nl/Nr) — (Nl/ Nr + ]) . (36)

For an individual cell

Nfree = Ntotal - Nl - Nr (37)

pili are not attached and can bind to the surface. Then the rates of the
transitions defined in 3.5 are given by
W= 8

Ya = WNfreeYatt, (3-8)
'Ygr) = NfreeYatt, (39)
with the pilus attachment rate .. Here, we allow the cell to have all
pili attached to one side. The transitions mediated by attachment of
pili are visualized in figure 3.1b for cells.

Transitions due to the detachment of pili

Again, the cell has N pili attached to the left side and N, pili atta-
ched to the right side. The detachment of a pilus corresponds to the
transitions

(NIINI‘) — (Nl_]/Nr)/ (3'10)
(leNr) - (Nerr_1)~ (3'11)
The detachment rate of pili is load-dependent. Before we can define

the rates for the transitions caused by pilus detachment, we first need
to compute the forces acting on the pili as a function of Nj and N;.
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For a pilus we know that the characteristic force is given by Fs.y
(see equation 2.3). Here, we assume that for a given configuration
(N}, N;) the pilus switches instantaneously to the stationary state, as
computed in appendix D.1. This corresponds to an infinitely large
spring constant k,; of the pili.

For the case that the same number N of pili is attached to the left
and right size, the drag forces F; (N;, N;) and F; (N}, N;) acting on the
individual pili on the left or right side are given by

Fi(N, N) = Fgtan, (3-12)
Fr(N/ N) = Fstallr (313)

thus, the pili reach their stalling force Fq,y (see equation 2.3). When
they have reached this force, they can no longer retract and the system
reaches a stationary state. See appendix D.1.2 for more information.

If pili are only attached to one side (left or right), the individual
pili pulling forces are given by

_ Fstall
Fi(Ny, 0) = W, (3.14)

Vret

o Fstanl
F:(0,N;) = W’ (3.15)

Vret
as derived in appendix D.1.1. Here, the dynamic parameters (the
translational mobility irans Of the cell and the pilus retraction velo-
City viet) affect the magnitude of the force because the cell is moving
while being in this state. If we estimate the values of all parameters
characterizing this force we see that

Fstall Htrans

>1, (3.16)
Vret

so that the resulting forces are usually very small.

The last case we need to consider is attachment of pili on both sides,
but with N; # N,. In appendix D.1.3 we show that the drag forces of
single pili are then given by

N,
Fi(Nj, N;) = Fgia max [1, NJ , (3-17)
N;
Fr(Np, N;) = Fgayy max ]IW . (3.18)
T
(sub)

Now we can compute the pilus detachment rate vy ., (F) of an
individual pilus on the left or right side, given in equation 3.1 and
equation 3.2.

The transition rates are then given by

1 b
‘yc(i) = Nl‘yEisst)(Fl)’ (319)

b
vy = Nevger (). (3:20)
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V ® °

Figure 3.2: Sketch of the transition of pili states due to motion over a pilus
attachment point. Initially, all pili are on the right side and pull
on the cell. Due to the motion of the cell and the different dis-
tances of the pilus attachment points to the cell, at some point
the cell moves over one of the pilus attachment points. In the
stochastic model we assume that this switches the pilus from the
right side to the left one.

Transitions due to the motion of the cell

Next to attachment and detachment, the state (N}, N;) can also change
due to the motion of the cell in the following way:

(N,0) = (N;—=1,1), (3.21)
(O,N;) — (1IN, —1). (3.22)

This results from the motion of the cell over an attachment point of
a pilus (see figure 3.2). A cell can only move if all pili are bound to
one side (see next chapter). The attachment points of the pili have
the mean distance L from their start points. If we assume that these
lengths are exponentially distributed with the mean length L, then
the closest pilus has, on average, a distance &, if N pili are attached.
If a cell moves with the velocity v, it needs the time t, = NLVC to move
over a pilus. Then the rates of the transitions are given by

1 Npv

v = {C, (3.23)
) Npv

Ym o= (3-24)

Here, we assume that a pilus cannot retract to a zero length while
being attached, because at least the domain of the pilus attached to
the substrate needs to point out of the cell membrane. Thus, we as-
sume that even a short pilus can still make the transition from one
side to the other one.

How we compute the velocity of the cell v. is shown in the follo-
wing paragraph.
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Describing the motion of the cell

Due to the instantaneous relaxation of pili, corresponding to a large
pili spring constant k,;; — oo, the cell can only move when all pili
are attached on one side, so that we either have a state (N;,0) or
(0,N;) (see appendix D.1). A cell will always move in the direction
in which the pili are attached, thus it will move to the left for states
(N}, 0) and to the right for (0, N;).

In appendix D.1.1 we show that the velocity of a cell v, having N
pili attached on one side, is given by

Vo= e (3.25)
Fstan N Hrans

with the pilus retraction velocity vy, the characteristic pilus force
Fstan and the translational mobility prans (see chapter 2 for a definition
of these quantities). By estimating the values of all parameters as close
to the experiment as possible for individual cells we have

Vret

e« (3.26)
Fs’callN Htrans 3

so that the cell velocity of single cells could be approximated by
Ve ~ Vret-

Solving the stochastic model

In order to compute the steady state solution P(Nj, N, ) of the probabi-
lity of states (N}, N;) we need to write down the complete transition
matrix T and set

dP(NllNr) -
it =0 (3-27)

for all states (Nj, N,). This system of equations can be solved numeri-
cally with Matlab R2o15a.

In order to compute a trajectory of the cells we apply a Gillespie
algorithm [102, 103], allowing us to estimate quantities like the mean
squared displacement and the velocity autocorrelation function. The-
refore, we assume that the transition rates correspond to Poisson pro-
cesses where, for a given rate vy, the time t of the next event is given

by
p(t) =vexp (—vyt). (3-28)
The algorithm then has the form

1. Compute the six transition times for all three processes (atta-
chment, detachment and the motion transition) from the expo-
nential distribution of times.

2. Pick the smallest transition time.

3. Execute the transition of the smallest transition.
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4. Compute the new position of the cell and save the time.
5. Go back to step 1.

We verified that the probability of states agrees with the solution of
the system of equations.

Estimating the parameters of the stochastic model

The parameters of the stochastic model, specifically the number of
free pili Nyyt,, the attachment rate v, and the mean pili length L, do
not necessarily need to coincide with the parameters of the computati-
onal model (see table 2.1 and table 3.1). Due to the three-dimensional
shape of the cell, a pilus emerging from the cell membrane, first needs
to be long enough to reach the substrate, reducing the mean atta-
chment rate of the pili.

In chapter C we will present a simple geometric model that al-
lows us to estimate those parameters as a function of the cell/co-
lony size and the parameters corresponding to the computational
model. In this model, we neglect that a cell has the shape of a di-
plococcus. Instead, we assume that a cell has a spherical shape of ra-
dius R = 0.7 um (as estimated in appendix F.3.2 for a single cell) and
15 pili grow stochastically from its surface. The pili protrude perpen-
dicularly from the cell surface, until they collide with the substrate.
From this point on, they will slide along the substrate, analogously
to the computational model. By considering the mean length of pili,
the pilus velocities and the attachment rate of the pili tips (all taken
from table 2.1 and table 3.1), we can estimate the effective attachment
rate of pili and the mean displacement a pilus is able to mediate on
the substrate. The predicted values for the two parameter sets (slow
and fast) are given in table 3.2. For both parameter sets we observe ef-

SLOW FAST

Yatt [s77] 0.09 1.95
L [um] 1.58 0.59

Table 3.2: Parameters of the stochastic model of cell motility on a substrate,
estimated from geometric considerations.

fective attachment rates y.« that are smaller than the pilus attachment
rate Yau,ps With the substrate. This results from the fact that each pi-
lus first needs to protrude a certain distance before it collides with
the substrate.

For the mean displacements on the substrate L a pilus can mediate,
we observe that the value is larger for the slow parameter set, compa-
red to the fast parameter set. This behavior originates from the fact
that for higher attachment rates, pili will attach within a short time
after bringing its tip in the vicinity of the substrate. After attachment,
they will immediately start to retract, thus a higher attachment rate
corresponds to a shorter mean length of the pili.
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Figure 3.3: (a) Trajectories of in silico cell, resulting from the computational
model, for the fast and slow parameter set. (b) Distribution of
angles between the direction of motion of a cell (projected on the
substrate) and its long axis. Here, 0° corresponds to a motion
parallel to the long axis and 90° to a motion perpendicular to
the long axis, connecting the two spheres of the diplococcus. (c)
Histogram of velocities for both parameter sets.

3.2 COMPARISON OF THEORY AND EXPERIMENT

Now, we will use the presented modeling approaches (the computati-
onal model presented in chapter 2 and the stochastic model discussed
in chapters 3.1) to study the motility of single cells on a substrate.

We will investigate the motion of single cells and the origin of per-
sistent motion over length scales larger than the length of individual
pili [27, 28, 34]. In particular, we will study how a simple tug-of-war
mechanism can induce such behavior.

Afterwards, we will study how the pili number affects the motion
of individual cells and show that cells with more pili can exhibit a
more persistent motion, in agreement with experimental observati-
ons [27].

3.2.1  The role of pili dynamics during the motility of single cells

Here, we study how individual cells use type IV pili to move on top
of a substrate. We first use our computational model (see chapter 2)
to study the motility of cells for two different parameter sets, given
in table 3.1. The parameters used for our simulations are given in ta-
ble 2.1. Information about the simulation details are given in appen-
dix F.1. Examples of trajectories projected on the substrate are shown
in figure 3.3a.

We first study the distribution of angles between the direction of
motion and the long axis of the dumbbell-shaped cell. Experimentally,
it was shown that cells prefer to move in the direction perpendicular
to their long axis. In our simulations, we see the same behavior for
both parameter sets (see figure 3.3b). The intuitive explanation for
this behavior is the fact that due to the diplococcus shape, a cell has
more pili in the direction perpendicular to its long axis, compared to
the direction parallel to its long axis. The more pili a cell possesses,
the more likely it is that any pilus attaches in this direction, thus
mediating motion in the direction of the attachment point.
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From the trajectories, we compute the histogram of absolute velo-
cities of the cells (see figure 3.3c), which exhibits a bimodal behavior
similar to cells moving on a plastic substrate coated with BSA [28]. It
was shown experimentally that the velocity possessed two peaks, one
at 0 pm/s and another peak at a non-zero velocity. In our simulati-
ons, we observe a not so pronounced bimodal behavior of the distri-
bution of velocites for the slow parameter set. The probability density
function decreases with increasing velocities and only exhibits a small
peak for the velocity 2 um/s, corresponding to the characteristic pilus
retraction velocity and most likely results from phases where only a
single pilus is attached to the substrate. For the fast parameter set we
observe a different behavior. For 2 um/s, which is the characteristic
pilus retraction velocity vrt, we observe a pronounced peak in the
velocity histogram. For 0 um/s we see another peak, corresponding
to a cell that is not moving. Velocities that are larger than the pilus
retraction velocity do appear frequently. The origin of this surprising
behavior is geometrical. Short retractions of multiple pili can corre-
spond to large displacements of the cell. Thus, while a pilus may
retract with the velocity viet, the cell can move with a higher velo-
city. This effect is discussed in more detail in appendix D.2. The zero
velocity peak for the fast parameter set could either originate from
the fact that many pili are attached to the substrate and the cell is
trapped between them or from a situation where no pilus is attached.

In order to answer this question, we can study quantities that are
not so easily accessible in experiments with the help of our theoretical
models. More specifically, we can investigate the number of pili that
are attached to the substrate and generate an active pulling force (see
figure 3.4a) and how this number is changing with time.

For the distribution of the number of attached pili (generating a
nonzero pulling force) we observe that the average number is lar-
ger for the slow parameter set, characterized by strong pili-substrate
interactions, compared to the fast parameter set with very small pili-
substrate detachment forces F&)’S and Féiis’ For the fast parameter set
we observe that in roughly 30 % of the cases there are no pili are
attached to the substrate. In this case, the cell is not able to move,
thus explaining the peak for zero velocity in the velocity histogram
(figure 3.3b). While this result first appears counter-intuitive because
it was assumed that cells use pili to move while being permanently
attached to a substrate, it was shown experimentally that cells someti-
mes do not have pili on a glass surface coated with poly-D-lysine or
collagen [24]. Additionally, we were computing the mean velocity of
a cell as a function of the number of attached pili (generating a non-
zero force). For the slow parameter set we observe that the cell is the
fastest when only one pilus is attached to the substrate. In this case,
the cell moves in the direction of this pilus with the characteristic pi-
lus velocity vrer until the length of the attached pilus becomes zero.
For larger number of pili however, it appears to be more likely that
pili pull in opposite directions and thus trap the cell. For the fast pa-
rameter set we observe the highest velocity for 2-3 attached pili. This
behavior must result from collective interactions of the pili that in-
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Figure 3.4: (a) Distribution of attached and actively pulling pili for a single
cell moving on a substrate. (b) Mean velocity of a cell moving
on a substrate as a function of its current number of attached
pili. Here, we only count those attached pili that are generating a
pulling force and thus participate in the motion of the cell. The er-
ror bars show the standard deviation, a measure for the width of
the distribution of velocities. For both parameter sets we observe
also a non-zero velocity for the case that no pilus is attached.
This results from the fact that we compute the velocity from the
displacement of the cell within the time interval At =0.5s. In
this time a pilus can easily attach, mediate a motion and detach.

crease the velocity of the cell, for example by a process discussed in
appendix D.2.

From the trajectories, we can also characterize the statistical pro-
perties of bacterial motion on a substrate, specifically the mean squa-
red displacement and the velocity autocorrelation function (see fi-
gure 3.5).

By computing the mean squared displacement of individual cells
for both parameter sets (see figure 3.5a) we observe a diffusive be-
havior for large times. For this limit, we can compute the diffusion
coefficient D, resulting from

MSD(At) = ([r(t + At) —r(1)]%)¢ ~ 2dDAL, (3.29)

and given in table 3.3. Here, r(t) is the time-dependent trajectory of
the cell, projected on the substrate. The parameter d is the dimensi-
onality of the system, defined to be d = 2 because we only consider
the motion parallel to the substrate. The values of the diffusion coeffi-
cient give a quantitative proof that the cells for the fast parameter set
are more motile than those of the slow parameter set. For short time
intervals we observe a superdiffusive behavior, which corresponds to
a persistent motion with a characteristic time t.,,. In order to esti-
mate this characteristic time, we computed the velocity autocorrela-
tion function (see figure 3.5b), described by

VACEF(At) = (v(t + At)v(t))¢ = thar exp <_tAt
char

) , (3-30)

with the vectorial particle velocity v(t), the correlation time tq,,, and
the characteristic velocity ve,,, (see chapter 1.2). The characteristic
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Figure 3.5: (a) Time averaged mean squared displacement of in silico sin-
gle cells moving on a substrate for the parameter sets, given in
table 3.1. The black lines show fits of equation 3.29, given in ta-
ble 3.3. (b) Time averaged velocity autocorrelation function of in
silico single cells moving on a substrate. The black lines show fits
of equation 3.30, where the parameters are given in table 3.3.

SLOW FAST
te [s] 0.48+0.09 0.87 +0.04
ve [um/s] 0.76 £0.04 1.83+0.02
D [um?/s] 0.18+£0.03 1.57+0.03

Table 3.3: Fitting results of the MSD and VACF of single cell motion on a
substrate from the computational model.

times and velocities for the two parameter sets are given in table 3.3.
From them, we can compute the characteristic length scale of motion

lchar = Vchartchar- (331)

The mean pili length 1. was chosen to be 1.5 um in the computati-
onal model. For the slow parameter set we compute a value around
0.36 um, thus being considerably smaller than the mean pili length.
For the fast parameter set we get a length scale of roughly 1.6 um,
thus being slightly larger than the characteristic pilus length that was
taken as an input to the model and pointing in the direction of persis-
tent motion that, due to the collective interactions of pili, can exceed
the length of individual pili. By comparing these numbers to the ex-
perimental values [27], thar = 1.4£0.2'S, Vehar = 1.6 £0.1 um/s and
lehar = 2.2 pm, we see that the persistence is weaker in our computa-
tional model. In subsection 3.2.2 we suggest that this behavior may
originate from a underestimation of pili numbers such that a cell pos-
sesses possibly more than 15 pili. For higher pili numbers, the per-
sistence can increase and reach lengths that are comparable to the
experimental results.

Before we move to the stochastic model, we want to discuss the
experiments that lead to the conclusion that cells exhibit persistent
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Figure 3.6: Distribution of pili lengths of an in silico cell on a substrate. (a)
Distribution of the distance of the pili start and end point of all
pili. (b) Distribution of the distance of the pili start and end point
projected on the substrate of attached pili.

SLOW FAST

(L)) [um] 135 116
Sy um] 115 093

Table 3.4: Mean pili lengths as predicted by the computational model.

motion over distances larger than the mean pili length and want to
discuss which pilus length is measured experimentally. Therefore, we
were computing the mean pilus length of all pili from our simulati-
ons (see figure 3.6). We use two different definitions of the pili length.
In the first definition we compute the length of all pili, attached and
free, by computing the distance between their start point and end
point in three dimensions, called 1&;12”. For the second definition we
try to be as close to the experiment as possible, where the pilus length
is measured by transmission and electron microscopy [27, 28]. The
preparation of the samples could affect the pili, especially those that
were not attached to the substrate. They may break, bend or just de-
tach from the cell, but most likely will not keep the position that they
had before sample preparation. Additionally, in the experiment one
is only measuring the pilus length projected on the substrate. Thus,

we define the second length lf(?,tt) as the distance of the start and end

point of attached pili projected on the substrate, called l)((;tt). The dis-
tribution of these lengths are shown in figure 3.6 for both parameter
sets.

By computing the mean values from those distributions (see ta-
ble 3.4) we find that all lengths are smaller than the mean pili length
lc = 1.5 pm that was picked as an input parameter of the simulation.
Thus, we suggest that in experiments one does not measure the real
mean pili length 1. which is only dependent on the pilus velocity and
the rate of switching from the assembly state of the polymer to its
disassembly state, but instead we measure the lengths of pili affected
by attachment and detachment. The discrepancy between the input
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Figure 3.7: Trajectory of a cell moving on a substrate computed by the sto-
chastic model for the fast parameter set. (a) Attached pili on the
left side, N}, and on the right side, N;. (b) Trajectory x of a cell as
a function of time t.

length 1. of the model and the measured characteristic pili length ori-
ginates from the switching from protrusion to retraction of pili after
attachment [35]. Considering these effects, in our simulations we find
values comparable to those measured experimentally, ranging from
0.9 um [27] to 1.2 um [28].

If we assume that the lengths measured experimentally correspond

to l)((?,lzl] or lf(;tt), than the measured characteristic length of the persis-

tent motion, estimated to be around 1.6 um for the fast parameter set
is considerably higher as the measured length. We clearly observe
a persistence over lengths higher than the measured pili length, as
suggested from experimental measurements [27].

While the computational model exhibits excellent qualitative and
even quantitative agreement to experimental data, due to its com-
plexity it is hard to really understand the processes that drive such
behavior. Our weapon of choice to study the underlying processes is
a simplified stochastic model, introduced in chapter 3.1.

Here, we study the motion of a cell in one dimension. All parame-
ters either agree with the computational model discussed previously
or were estimated as shown in section 3.1 and appendix C.

First, we applied a Gillespie algorithm to construct a trajectory of
the cells. An example of such a trajectory is shown in figure 3.7 for
the fast parameter set. Here, one can see that the cell exhibits phases
where more than three pili are attached on one side, while on the
other side none or only one pilus is attached. In this case, the cell is
moving in the direction of the higher number of attached pili. After a
certain time, the cell is able to escape such a state and the dominant
side can switch.

We can also compute the probability distribution of states, either
by analyzing the trajectories computed by the Gillespie algorithm or
by solving the transition matrix. The result is shown in figure 3.8. For
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Figure 3.8: Probability of states of a single cell for the stochastic model, for
the (a) slow parameter set and the (b) fast parameter set. The color
bar corresponds to the probability of the states.

the two parameter sets we see completely different kinds of behavior.
While the cells following the slow parameters have the highest pro-
bability to have pili attached on both sides at the same time, for the
fast parameter set cells preferentially have pili only on one side. This
observation can explain why cells for this parameter set are more mo-
tile, as predicted by the computational model, and agrees with the
behavior observed in figure 3.7.

In order to check for consistency, we compute multiple quantities
that were previously investigated using our computational model.

We started with the velocity histogram (see figure 3.9a). For the
slow parameter set we observe a large peak for a zero velocity and
a smaller peak for a velocity of roughly 2 um/s, corresponding to
the characteristic pilus retraction velocity. Due to the discrete nature
of states in the model, all other velocities have negligible probabili-
ties. The observed behavior shows qualitative agreement to the one
observed for the computational model (see figure 3.3b). For the fast
parameter set we only observe a peak for 2 um/s, corresponding to
the persistent motion of the cell in one direction.

The stochastic model predicts that in less than 5% of time no pilus
is attached to the surface. This can be also seen in figure 3.9b where
we show the histogram of attached pili. The distributions for both
parameter sets, in agreement to the computational model, differ such
that on average more pili are attached for the slow parameter set.

Additionally, we can compute the mean squared displacement and
the velocity autocorrelation function for the one-dimensional trajecto-
ries and from them estimate the diffusion coefficient D of the cellular
motion and the characteristic velocity v,y and time t.p,, of the persis-
tent motion. Analogously to the results of the computational model,
we observe a diffusive regime for large times for the mean squared
displacement (see figure 3.3c), from which we computed the diffu-
sion coefficient D, given in table 3.5. The values have the same order
of magnitude as those computed from the trajectories simulated by
the computational model (see table 3.3). Again, the cells following
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Statistical properties of single cell motion, computed from the
stochastic model. (a) Histogram of velocities of a cell moving
on a substrate for the slow and fast parameter set (see table 3.1).
(b) Probabilities of number of attached pili for a cell moving on
a substrate modeled by the stochastic model. (c) Time averaged
mean squared displacement of single cells moving on a substrate
for the parameter sets, given in table 3.1, as predicted by the sto-
chastic model. The black lines show fits of equation 3.29 with
parameters given in table 3.5. (d) Time averaged velocity auto-
correlation function of in silico single cells moving on a substrate.
The black lines show fits of equation 3.30 with parameters given
in table 3.5.
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SLOW FAST
te [s] 0.61£0.02 0.7440.02
Ve [um/s] 0.77 £0.02 1.644+0.02
D [um?/s] 0384001 1.64+0.04

Table 3.5: Fitting results of the MSD and VACF of single cell motion on a
substrate from the stochastic model.

the fast parameter set are considerably faster than those following the
slow parameter set.

By computing the characteristic times tq,,, and velocities v,y from
the velocity autocorrelation (see figure 3.3d and table 3.5), we again
see qualitative agreement to the computational model. On first sight,
the characteristic lengths, having values of 0.47 um for the slow para-
meter set and 1.21 pum for the fast parameter set, are smaller than the
persistence lengths computed from in the computational model. If we
compare the lengths to the mean pilus displacement L (see table 3.2),
we observe that the persistence length for the fast parameter set is,
indeed, higher than the mean pili length in the stochastic model. This
behavior is qualitative similar to the results of our computational mo-
del and shows that the suggested tug-of-war mechanism can mediate
persistent motion.

3.2.2  Pili number dependence of the single cell motility

After studying the substrate motion of a single cell with parame-
ters that were motivated by experiments, we now focus on the pili-
mediated motion of bacteria as a function of the number of available
pili. Previously, this dependence was studied experimentally by the
group of Dr. Berenike Maier (Universitdt Koln) [27]. They used a de-
repressible pilE strain of Neisseria gonorrhoeae and were able to show
that the more pili a cell possesses, the longer the characteristic time
of the persistent motion.

First, using our computational model, we simulated cells with a
fixed number of pili Np; and computed the characteristic time, velo-
city and length of the motion, the diffusion coefficient and the average
number of pili attached to the substrate (see figure 3.10) with the help
of our computational model 2.

In our simulations we observe that the diffusion coefficient is ra-
pidly rising with increasing number of pili for the fast parameter
set. For the slow parameter set, the diffusion coefficient is conside-
rably smaller and decreases with increasing number of pili (see fi-
gure 3.10a).

Additionally, we computed the characteristic time t.,, (see equa-
tion 3.30 and figure 3.10b) and found that in both cases the times
increase with higher pili numbers. For the fast parameter set we ob-
serve a behavior that is almost identical to experimental results [27].
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Figure 3.10: Cell motion as a function of the number of pili as modeled by
the computational model for the slow and fast parameter set
(see table 3.1). (a) Diffusion coefficient D of an individual cell
as function of the number of pili. The diffusion coefficient was
estimated from the time-averaged mean squared displacement
and fitted with the equation 3.29. (b,c) From the velocity auto-
correlation function it was possible to estimate the characteristic
time tcpa, and velocity vep,, of the motion (see equation 3.30). (d)
By multiplying the time t.,, and the velocity vc we computed
the characteristic length of the persistent motion of a cell on a
substrate. The mean pili length is an input parameter of the si-
mulation and has a value of 1.5 um, thus for higher numbers
the persistent motion can go over length scales considerably
longer than the length of individual pili. (¢) Mean number of
pili attached to the substrate. The error bars show the standard
deviation, a measure for the width of the distribution.
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The characteristic velocity v,y is also increasing for the fast para-
meter set (see figure 3.10c). With a higher number of pili cells move
with higher velocities and for longer times in a given direction. Con-
trary to this behavior, for the slow parameter set, the velocity vchar is
decreasing with increasing number of pili Npy;.

From the velocity vehar and tehay We can also compute the persis-
tence length of motion lgy,,, (see figure 3.10d) and see that for the
fast parameter set this length can clearly exceed the characteristic pili
length 1. = 1.5 um. For the slow parameter set, the persistence length
is smaller than the mean pili length and only changes weakly with
pili number.

The last quantity we studied is the average number of pili attached
to the substrate (see figure 3.10e). In both cases, the number is in-
creasing with increasing number of pili. Additionally, the numbers
for the fast parameter set are considerably smaller than those for the
slow parameter set, resulting from the weaker binding properties that
we assume for this parameter set and the constant attachment and
detachment of the pili.

In order to understand the origin of the increasing motility with an
increasing number of pili, we applied our stochastic model to study
the motion of single cells with a changing number of pili. The results
are shown in figure 3.11.

Again, we observe that the diffusion coefficient D, the characteris-
tic time tch,e, the velocity veha,y and the resulting persistence length
of motion Ly, increase with higher numbers of pili Ny;; for the fast
parameter set. For the slow parameter set we observe a similar but
weaker behavior. This result does not agree with the computational
model for the characteristic time tq,,,. Additionally, for the fast para-
meter set, the characteristic time t.,,, increases much faster with in-
creasing number of pili compared to the computational model. This
results from the fact that the cell is “locked” in a state where a large
number of pili is attached on one side. If a pilus attaches on the other
side, it will pull against them and a large force will act on the pilus,
forcing it to detach. This process is magnified by the fact that we as-
sume that the detachment rate increases exponentially with force (see
equation 3.2). While a similar mechanism can also appear for cells mo-
deled by the computational model, here the cell is not only moving
in one dimension but two, and will also be affected by a rotational
diffusion. Due to this diffusion, the effective diffusion coefficient and
the persistence time t.,, may decrease and thus could cause the ob-
served behavior. Additionally, the number of attached pili is higher
for high numbers of pili for the fast parameter set, compared to the
slow parameter set.

We suggest that the difference of the predictions between the two
modeling approaches originate from the neglected pili dynamics in
the stochastic model. There, we assume that an attached pilus rea-
ches its final force (computed in appendix D.1) instantaneously. For
very low detachment forces, the probability that a pilus detaches be-
fore it even comes close to the final force cannot be neglected. We
compute the probability density function of detachment times for the
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Figure 3.11: Properties of the cell motion as a function of the number of pili
as modeled by the stochastic model for the slow and fast para-
meter set (see table 3.1). (a) Diffusion coefficient D of a cell as
function of the number of pili. The diffusion coefficient was esti-
mated from the time-averaged mean squared displacement and
fitted with equation 3.29. The value of the diffusion coefficient
for the fast parameter set is growing rapidly. (b,c) We used the
velocity autocorrelation function 3.30 to estimate the characteris-
tic time tehar and velocity v, of the motion. (d) Characteristic
length 1., of the persistent motion of a cell on a substrate. (e)
Mean number of pili attached to the substrate. The error bars
show the standard deviation, a measure for the width of the
distribution.
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Figure 3.12: Dynamics of pili forces for a single cell. Here, we study the case
of a cell having two pili attached to the left side and one pi-
lus attached to the right side. The system and its solution are
introduced in appendix D.1. The parameters were taken from
table 2.1. Additionally, we study the detachment dynamics gi-
ven by the fast parameter set. (a) Forces as a function of time,
as derived in appendix D.1.3. (b) Survival probability of indivi-
dual pili to not detach from the substrate. (c) Probability density
function of survival times.

case where two pili of a single cell are attached on one side and pull
against one pilus, attached to the other side. How to compute these
forces is shown in appendix D.1.3 and visualized in figure 3.12a. The
detachment rate y4 then follows from equation 3.2. The probability
for each pilus on both sides to detach can be obtained from

Psurv(t) = —va(t)Psurv(t), (3-32)
Psurv(o) =1 (333)

The solution of this equation is given by

t
Psurv(t) = exp |:_ JO dt’ Yd (t/):| (334)

and the result is shown in figure 3.12b. The probability density function
of detachment times is then given by

t
Psurv(t) = _Psurv(t) =v4(t) exp |:_ JO dt’ Yd (t/):| . (3'35)

The resulting distribution is shown in figure 3.12¢. This distribution of
detachment times does not follow an exponential distribution, as one
would expect if the detachment would be described by a Poisson pro-
cess, but has a more complex shape with peaks around 0.01 —0.02 s.
If we now estimate the corresponding mean detachment rates of the
individual pili, we see that they are in the order of 100 Hz. For a pilus
under a load Fg,;1 = 180 pN, the detachment rate reaches more than
5000 Hz for the fast parameter set in our stochastic model with in-
stantaneous dynamics. Thus, the pili in the computational model are
not getting detached from the substrate with such high rates as the
ones in the stochastic model. Such a process may be able to reduce
the motility of the cell and will reduce its persistent motion.

To summarize this section, we have shown that our models pre-
dict an increase of the characteristic time and diffusion coefficient of
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bacteria for increasing numbers of pili. The characteristic length scale
of motion can exceed the characteristic length of the pili and for cells
with 20 — 30 pili it can reproduce the experimentally observed beha-
vior [27], assuming that in experiments the counted number of pili
gives a considerably smaller number than the real number of pili a
cell possesses. The origin of this discrepancy may be the sample pre-
paration process for the transmission electron microscope or the fact
that only attached pili are counted and free pili are ignored.

3.3 SUMMARY

In this chapter, we presented two different approaches to investigate
the motion of individual cells of the bacterium Neisseria gonorrhoeae
on a substrate. We compared the results of our simulations to publis-
hed experimental data. We were able to show that the computational
model agrees with the experiments.

Previously, it was suggested that the persistent motion of indivi-
dual cells and the increasing motility with higher numbers of pili re-
quires a mechanism of directional memory, provided by re-elongation
of fully retracted pili or bundling of pili [34]. Here, we show that these
mechanisms are not needed to generate persistent motion over distan-
ces that are larger than the mean length of the pili. In agreement with
previous experiments [27], our model is also able to reproduce a incre-
asing motility with higher numbers of pili. This is particularly true
for fast binding and unbinding dynamics, suggesting that pili bind
weakly to a substrate, but therefore frequently with high attachment
rates, compared to the other times scales involved.

The mechanism that is driving the persistent motion of cells is re-
miniscent of a tug-of-war, a process that was earlier investigated for
bidirectional transport by molecular motors [38]. When a single pilus
is trying to pull against the side with the larger number of pili, it will
feel a larger force and, due to the exponential form of the detachment
rate (see equations 3.1 and 3.2), more easily detach on its “weaker”
side. Thus, one side will win for a certain time interval, in which the
cell moves in this direction. During this time, new pili can attach to
the winning side, while shorter pili may detach or switch to the op-
posite side and detach. This way, there are constantly pili attached on
the winning side and the cell moves persistently into one direction.
The cell can only escape such an attracting state (many pili on the
winning side, no pili on the other side) by stochastically decreasing
the number of pili on the winning side such that the pili on the losing
side have a chance to take the leading role. While the tug-of-war me-
chanism is closely related to the one suggested by Miiller et al. [38],
we expanded their model by introducing a new length scale. This
length results from the displacement a pilus can mediate and allows
us direct characterization of persistent motion.

In our simulations we found that for fast binding and unbinding
dynamics (described by the fast parameter set), cells often do not have
any pili attached to the substrate. In vivo, the cells and colonies are
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confronted with strong flows and thus will need to be constantly at-
tached to the substrate. Thus, it may be preferential to bind stronger
to the substrate. In this case, slow binding and unbinding dynamics
and stronger attachment (described by the slow parameter set) may
be a better choice to describe the behavior of single cells moving on a
substrate due to their pili.

When several bacteria come close to each other, their pili can bind
and the cells will form microcolonies. In the next chapter, we will
study the dynamics of such colonies and the internal dynamics of
cells within such colonies.
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COALESCENCE AND INTERNAL DYNAMICS OF
BACTERIAL MICROCOLONIES

When two microcolonies of N. gonorrhoeae are moving over a substrate
and reach immediate vicinity, they can interact due to the binding of
their pili. In this case, the pili will mediate an attractive force between
the colonies that will lead to their coalescence: two smaller colonies
merge and form a new, larger colony (see figure 4.1). This is a fun-
damental step during the formation of microcolonies [59]. Due to the
fact that the merging of two microcolonies is accompanied by a rear-
rangement of cells within the colony, studying coalescence will also
help us to learn about the internal dynamics of colonies.

One way to characterize the dynamics of the coalescence is to quan-
tify the properties of the bridge (also called “neck”) forming between
the two colonies (see figure 4.1). In particular, the bridge height h is
defined as the diameter of the bridge. For viscous liquid droplets it
was shown by Frenkel [104] and Eshelby [105] that the initial closure
of the bridge can be described by

h(t) = ho \/E (4.1

with the characteristic time

hon
t, = ——. .

h= (4-2)
Here, 1 is the viscosity of the liquid droplet and  its surface tension.
While equation 4.1 is only valid for the initial closure of the bridge,

a more general equation describing the full coalescence was given by

wiN
SRS

Flenner et al. [106],
1+ex b :
p 2ty

h(t) = Zgho\/[Z—exp <_2‘t>} :
h

This equation corresponds to an relaxation of the area of the bridge.
Here, we analyze the coalescence of N. gonorrhoeae microcolonies and
estimate the time scales, characterizing the bridge closure. This allows
us to check whether bacterial colonies exhibit properties similar to
those of viscous liquid droplets.

SONEIN

Figure 4.1: Definition of the bridge height.

(4-3)
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38 min

Figure 4.2: (a) Coalescence of colonies of N. gonorrhoeae. The red lines show
the detect edges of the colonies. Bar = 10 um. (b) Coalescence of
differently labeled colonies of N. gonorrhoeae. The green colonies
consists of cells labeled with YFP, the red colony consists of cells
labeled with tdtomato. Bar = 10 pm.

In order to study the dynamics within a microcolony, we then apply
our computational model (see chapter 2) and characterize quantities
that are not accessible experimentally. We sampled over a wide range
of parameters, in particular the detachment forces, detachment times
and the attachment rate of pili. The simulation and their results were
previously published in [60].

4.1 EXPERIMENTS ON MICROCOLONY COALESCENCE AND THEIR
INTERNAL DYNAMICS

We studied the coalescence and internal dynamics of Neisseria go-
norrhoeae microcolonies by performing experiments of colony coales-
cence and single cell tracking within microcolonies. Therefore, we
applied the experimental protocols, depicted in appendix B and the
algorithms described in appendix E to analyze the experimental ima-
ges. The experimental coalescence data were contributed by the Ni-
colas Biais (Brooklyn College), the experiments studying the motility
of cells within colonies were performed by the author of this thesis
in the lab of Nicolas Biais. The analysis of the data was performed by
the author.



4.1 EXPERIMENTS ON MICROCOLONY COALESCENCE

Figure 4.3: Quantification of the time scales involved in N. gonorrhoeae co-
lony coalescence. (a) Detected edges of the midplane of two co-
alescing colonies as described in appendix E.1. (b) Image of the
bridge detected in the binary image of two coalescing microco-
lonies. (c) image of the ellipse fitted to the binary image of two
coalescing microcolonies and of its short and long axis a and b.
Bar = 10 um.

4.1.1  Coalescence of N. gonorrhoeae microcolonies

In order to study how bacterial colonies coalesce, the microcolonies
tirst self-assembled and were then brought on top of a BSA coated
coverglass. The coating was used to minimize the interactions of the
pili with the substrate. Then, the colonies were brought close to each
other, either by their own motion over the substrate, or by using an
optical tweezer. We used a DIC microscope to image the midplane
of two equally sized microcolonies performing a coalescence (see fi-
gure 4.2a).

From these experiments we made two important observations. Initi-
ally, the colonies approach each other rapidly until they collide. This
process takes only a few minutes. Afterwards, the coalescence ap-
pears to be either slowed down or arrested and the colony exhibits
the ellipsoidal shape.

Additionally, we mixed colonies made from two distinctly labeled
cells. Specifically, colonies formed by cells labeled with YFP and td-
tomato were brought together. Besides of the labeling of the cells,
they exhibit the same behavior as wildtype cells. When two colonies
consisting of the two cell populations came close to each other, they
started to coalesce (see figure 4.2b). We observe that the cells of the
colonies almost do not mix and exhibit a flat contact region.

To quantify these observations, we characterized the time scales of
coalescence by measuring the time-dependence of two quantities: the
height of the bridge forming between the two colonies and the ratio of
the short and long axis of an ellipse fitted to the shape of the detected
edge of the colonies. The way how we determined this quantities is
depicted in appendix E and figure 4.3.
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The time-dependence of the bridge height h of two coalescing mi-
crocolonies is shown in figure 4.4a. We fitted two different functions
to describe the time-dependent behavior of the bridge height,

2
-3 -3
h(t) = Z%ho {Z—exp <—t;;())] [1 +exp <—t;:)>]

e ()]

hy(t) = ho\/l — xexp (—;) —(1—o)exp (—;) (4-5)

For both equations, the bridge height converges towards the diame-
ter of a sphere having the combined volume of both initial aggregate
large times t. Equation 4.4 is similar to the function determined by
Flenner et al. (see equation 4.3). When two colonies attract each ot-
her due to bundling of their pili, they will approach each other until
they collide and during this process start the closure of their bridge.
In figure 4.2a one can see that after this initial collision the bridge
is already closed considerably within 10 s. In order to reduce the ef-
fect of this initial collision, we introduced the offset time ty in equa-
tion 4.4. Equation 4.5 assumes that the closure of the bridge has two
time scales, the initial approach of the colonies that takes time t; and
the closure of the bridge, t,. The equation corresponds to a exponen-
tial relaxation of the area. Here, the parameter o guarantees that the
bridge converges towards hy.

We fitted these two functions to the experimental data, as shown
in figure 4.4a, and present the fitting parameters in table 4.1 for two
different experiments.

We observe that the relaxation time t,, as predicted by Flenner et
al. [106] for the closure of the bridge corresponds to the larger time
scale t, of the double exponential function and is the order of 5 — 10
minutes. The lower time scale t; is only in the order of a few seconds
and corresponds to the initial collision of the colonies. Because of this
collision, the offset time ty was introduced and is also in the order of
a few minutes.

In order to estimate the time scale of the relaxation of the ellipsoidal
colony, forming after the coalescence of the two colonies, towards
the final spherical shape, we fitted an ellipse to the midplane of the
colony and computed the axis ratio of the short axis a and the long
axis b (see figure 4.3c). For the late coalescence, we assume that the
ratio converges towards 1, following the equation

and

a

t
b= 1—Bexp <_ty) . (4.6)

The fitted parameters for the same experimental movies as for the
bridge height are shown in table 4.1. The behavior of the axis ratio
is shown for one experiment in figure 4.4b. The relaxation time t, is

’Y:
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Figure 4.4: (a) Bridge height during the coalescence of N. gonorrhoeae mi-
crocolonies. Here, experimental data for the movie shown in fi-
gure 4.2 are presented and the fitting results for t; and t;. (b)
Axis ratio of the short and long axis of a ellipse fitted to the mid-
plane of two coalescing colonies of N. gonorrhoeae microcolonies.
Additionally, the time scale of the bridge closure is estimated by
an exponential function (see green line and equation 4.6).
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EXPERIMENT 1 EXPERIMENT 2

ho [um] 18.7 £0.1 19.1 £0.1
ty [s] 230.3 £ 6.6 4471+ 64
to [s] 468.4 £ 14.1 400.6 £ 8.2
ho [um] 23.9£0.1 24.240.1

o 0.67 £0.01 0.41£0.01
ty [s] 7.6+0.2 35+0.3

t [s] 635.2+19.3 9254 +14.0
8 0.37+£0.02 0.43 +£0.01
ty [s] 4304 + 21 4597 + 16

Table 4.1: Fitting results of the bridge closure and axis ratio relaxation para-
meters for N. gonorrhoeae microcolonies. The fitting functions are
given in equation 4.4, 4.5 and 4.6.

larger than one hour and thus considerably larger than the bridge clo-
sure time ty. The fact that a relaxation time can be defined suggests,
that the colony will finally approach a spherical shape.

Up to now we did not discuss the role of cell divisions during the
bridge closure and the shape relaxation of microcolonies. The divi-
sion time tq;, of N. gonorrhoeae has been shown to be in the order of
2-4 hours for conditions similar to those of our experiments [59, 107]
and thus exceeds the characteristic time of coalescence. Additionally,
when the change of volume of a sphere is given by the time tg;,, the
radius of the same colony follows R oc V173 and will grow with a cha-
racteristic time 3tg;,, thus being in the order of multiple hours. Such
a time is larger than any other time characterizing the coalescence
dynamics.

In order to understand the reason for the discrepancy between the
time the colony needs to close its bridge (which is in the order of a
few minutes) and the time the late ellipsoidal colony relaxes towards
the spherical shape (which is in the order of hours) we need to study
the internal dynamics of the microcolonies.

4.1.2  Motility of cells within N. gonorrhoeae colonies

To study the dynamics of individual bacteria within microcolonies,
we were tracking those cells and analyzed their motility as a function
of their position within the colony.

We mixed wildtype cells and a small fraction of fluorescently labe-
led cells (around 5-10 %). The cells were labeled with tdtomato and
otherwise exhibit completely similar properties as the wildtype cells.
Then, we allowed the cells to self-assemble into microcolonies and
used a fluorescence microscope to track the cells within the midplane
of the colonies (see appendix B). Next to the fluorescence channel
which allowed us the tracking of the cells, we also recorded the co-
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Figure 4.5: (a) Representation of the detection of fluorescently labeled cells.
The upper image highlights the detection the fluorescently labe-
led cells. The lower image shows the position of individual cells
relative to microcolony. Bar = 10 um. (b) In order to be able to
reduce the effect of rotations of the microcolonies on the trajec-
tories of single cells, we computed the mean squared relative
distance of cell pairs. Both cells were defined to be a pair if they
could be found in a similar region, defined by their distance from
the surface Rq.

lony on a DIC channel to detect the shape of the colony and to es-
timate the distance of the tracked cells from the colony surface (see
figure 4.5a).

The colonies we were looking at interact, analogous to single cells,
with the substrate due to their pili. Thus, they exhibit motion over
the surface (see chapter 3). This affects the detected trajectories of
the cells. Due to this process, it is not justified to just compute the
mean squared displacement of the cells to quantify their motility (see
section 1.2). Instead, we computed a quantity we call the mean squa-
red relative distance dysrp, the mean squared displacement of the
scalar distance d of two cells. In appendix G we show that the time
averaged mean squared distance of two particles exhibiting each a
diffusive motion, each with diffusion coefficient D, and having an
absolute distance d is given by

Smsrp(A) = ([d (t+ At) — d (t)]%)¢ = 4DAt. (4.7)

It is important to highlight that this quantity is not dependent on the
initial distance of the two cells. The last step needed to estimate the
diffusion coefficient of cells as a function of their distance Rg from the
surface of the colony Rs is to group cells, depending on Rs. Therefore,
we define four regions with increasing distances from the surface (see
figure 4.5b) and only compute the diffusion coefficient of cells within
the same region (see figure 4.6a). We observe that cells on the surface
are highly motile, while cells within the bulk of the colony do not
exhibit any detectable motility. The offset 5y in the mean squared
relative distance, as seen in figure 4.6a, is originating from tracking
errors [108] and corresponds to displacements in the order of one
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Figure 4.6: dypsrp as a function of time and diffusion coefficient D from the
experimental data as a function of the distance Rs from the sur-
face.

to two pixel (equivalent to 0.13 —0.26 pm). In order to compute the
diffusion coefficients, we fit a function of the form

dmsrp(At) = 4DAt + b (48)

and observe a pronounced gradient of the diffusion coefficient as a
function of the distance from the surface of the colony (see fig. 4.6).
Cells at the surface of the colony exhibit a considerable motility, while
cells within the bulk, specifically being more than one cell size (around
1 um) away from the colony surface, do not show any measurable
motility.

Thus, our main experimental observation are the gradient of moti-
lity within a colony and the appearance of multiple time scales during
the coalescence of colonies. Now we want to find some rational expla-
nation of these effects and choose our computational model as ideal
tool for investigating these processes.

4.2 MODELING MICROCOLONY COALESCENCE AND INTERNAL DY-
NAMICS

We first show that our model (see chapter 2) is able to reproduce the
behavior observed in experiments and summarized in the previous
section and check how it depends on the chosen parameters of the
simulation. Afterwards, we study the motility of cells within the colo-
nies and look for correlating gradients of multiple quantities related
to the properties of the pili network, the structure of the colony or the
involved force fluctuations.

For our simulations, we sampled over a wide range of parameters
to study the coalescence and the internal dynamics of microcolonies
(see table F.3 and F4). Particularly, we studied the role of the pili-pili-
detachment time tq pp, the detachment force Fqpp, and the attachment
rate Yat,pp. Here, we will only present the dynamics of colonies for
two parameter sets (see table 4.2). The sets are named after the ratio
of their detachment forces Fqpp, and the stalling force Fgray = 180 pN.
For the parameter set called weak, the stalling force is larger than the



4.2 MODELING MICROCOLONY COALESCENCE AND INTERNAL DYNAMICS

STRONG WEAK

Fa,pp [pN] 360 120
ta,pp [pNI] 50 50
Yatt,pp (Hz] 0.5 0.5

Table 4.2: Definition of weak and strong pili-pili-interactions parameter sets.

a 0s 100 s 500 s 1700 s

-10 0 10 -10 0 10 -10 0 10 -10 0 10

Figure 4.7: Coalescence of in silico microcolonies for the (a)strong and (b)
weak parameter set. The two initial colonies consist of 1000 cells
each.

detachment force, and the pili are expected to unbind more easily. For
the parameter set called strong, the pili-pili-bonds are stronger.
All other parameters used in our simulations, are given in table 2.1.

4.2.1  Coalescence of in silico colonies

We first apply the computational model (see chapter 2) to study the
coalescence of two, equally sized, colonies that consist of up to 1500
cells each (see figure 4.7). In these simulations, we ignore the inte-
ractions with a substrate. The reason for this simplification is the fact
that in the experiment we use a substrate with reduced interactions.
Additionally, in experiments we observe that colonies have spheri-
cal shapes and are wetting the substrate only weakly. Thus, the pili-
mediated interactions between cells are considerably stronger than
those with the substrate, allowing us this simplification. More infor-
mation how the simulations were initialized and analyzed are given
in appendix F.2.

For the strong parameter set, we observe properties similar to those
observed experimentally. After coalescence, the two colonies only we-
akly mix and they exhibit a sharp interface between the initial colo-
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Figure 4.8: (a) Bridge height during the coalescence of in silico microcolonies
for the weak (red) and the strong (blue) parameter set. Here, data
for the movie shown in figure 4.7 are presented and the fitting
results for t1 and t;. (b) Axis ratio of the short and long axis of
a ellipse fitted to the midplane of two coalescing colonies of N.
gonorrhoeae microcolonies. The time scale of the bride closure is
estimated by an exponential function (see green line and equa-
tion 4.6).



4.2 MODELING MICROCOLONY COALESCENCE AND INTERNAL DYNAMICS

STRONG WEAK
ho [um] 125£0.1  13.940.1
ty [s] 241.5+£55 284+1.2
to [s] 103.8+52 44+14
ho [um] 16.1£0.1  175+0.1
x 0.30+£0.01 0.13£0.03
t1 [s] 28£3 3.6t64
t [s] 655.7+£5.2 57.2+£3.0
3 0.50+£0.01 0.55£0.03
ty [s] 1514 +£88  98.0+8

Table 4.3: Fitting results of the bridge closure and axis ratio relaxation para-
meters for in silico microcolonies. The fitting functions are given
in equation 4.4, 4.5 and 4.6.

nies (see figure 4.7a). To study the dynamics of the bridge closure,
we fitted, similarly to our analysis of the experiment, the two functi-
ons given in equation 4.4 and equation 4.5 to the bridge height (see
figure 4.8a) and we observe a fast initial time scale t7, corresponding
to the initial approach of the colonies and a slower time scale, t; or ty,
that are the same for both functions and corresponds to the closure of
the bridge (see table 4.3). For the strong parameter set they are, similar
to the experimental results, in the order of minutes. To characterize
the late coalescence towards the spherical shape, we again assume
that the axis ratio of an ellipse, fitted to the midplane of the ellipsoi-
dal colony (similar to figure 4.3), is relaxing exponentially towards 1,
with the characteristic time t, (see equation 4.6). For the strong pa-
rameter set we observe the same discrepancy of the time scales as
the one observed experimentally (see figure 4.8b), the bridge closure
time is roughly three times smaller than the relaxation time towards
the spherical shape (see table 4.3).

For the weak parameter set we observe that the coalescence takes
place much faster (see figure 4.7b) than the coalescence of the strong
parameter set. The two colonies do mix and do not exhibit a clear in-
terface, as observed experimentally. For the bridge closure, we also
observe two time scales tj, corresponding to the initial approach,
and a second time scale corresponding to the closure, t; or ty (see
figure 4.8a). The times are in the order of one minute, making them
considerably smaller than those of the experiment or the simulations
with strong pili-pili-interactions.

4.2.2  Internal dynamics of in silico colonies

With the help of our computational model, we can study the moti-
lity of individual cells within microcolonies and different quantities
that may affect the behavior of the cells. Analogously to the simu-

57



58

COALESCENCE AND INTERNAL DYNAMICS OF BACTERIAL MICROCOLONIES

lations of microcolony coalescence (see subsection 4.2.1), we ignore
interactions with a substrate. Again, we only present the results for
two different parameter sets characterizing the pili-pili-interactions,
weak and strong, as defined in table 4.2.

We started with computing the time-averaged mean-squared dis-
placement (MSD)

Smsp(At) = ([r (t+ At) —r (1)]%)¢ = 6DAt, (4.9)

of individual cells, where r is the position of the cell in three dimen-
sions and D is its diffusion coefficient. Additionally, we measured
the mean-squared relative distance (MSRD, see equation 4.7 and ap-
pendix G) of cell pairs. The time-dependence of both quantities was
studied as a function of the cell distance from the surface of a microco-
lony. Therefore, cells were grouped in multiple regions, that differ in
their distance from the surface of the in silico microcolony (see appen-
dix E3 for more details). The MSD exhibits a linear time-dependent
behavior, corresponding to diffusive motion (see figure 4.9a and fi-
gure 4.9b). Additionally, the MSD shows a higher motility of cells
close to the surface of the colony, compared to cells within the colony
bulk for both parameter sets (see figure 4.9a-d).

By computing the MSD and the MSRD it is possible to estimate the
diffusion coefficient D of the cells as a function of their distance from
the colony surface. In both cases, we observe similar results, as can
be seen in figure 4.9e and figure 4.9f.

One can define the characteristic length scale lp of the gradient of
the diffusion coefficient D, by fitting a function of the type

D =Dy +D,exp <1> , (4.10)
b

where Dy is the offset of the diffusion coefficient, D, is the magnitude

of the gradient and lp is the characteristic length scale of the gradient

of motility. The fitting of this function is visualized in figure 4.9e and

figure 4.9f. The resulting values of Dy, D; and lp are given in table 4.4.

For the weak parameter set the diffusion offset Dy and the magni-
tude of the gradient D, are larger than for the strong parameter set,
corresponding to a stronger motility of the cells within and on the
surface of the colony. It appears that the characteristic length scale Ip
is independent of the chosen parameter set and in the order of the
size of an individual cell.

In order to study the origins of the gradient of the diffusion coef-
ficient, we studied multiple quantities connected to the dynamics of
the pili. For the number of attached and actively pulling pili of a cell,
we observe a slight decrease close to the surface of the colony, as
shown in figure 4.10a. Additionally, the mean number of pulling pili
is lower for weaker pili-pili-interactions. For the total number of pili
a cell possesses, we do not observe any spatially dependent gradient
within the colony. Instead, the cells possess roughly 15 pili, correspon-
ding to the maximal number Np,,x (see section 2.1 and table 2.1). This
is a result of the average life time of the pili (see figure 4.10b), which
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Motility of cells within in silico microcolonies for the strong para-
meter set (a,c.e) and the weak parameter set (b,d,f). (a,b) Double-
logarithmic representation of the time-dependent mean-squared
displacement for cells with different distances from the center
of the colony. The MSD exhibits a linear, diffusive, behavior.
The black line gives the slope of a linear function. (c,d) MSD
for both parameter sets, but with linear axes instead of double-
logarithmic ones. (e f) Diffusion coefficient D of the cells as a
function of their distance from the center of the colony. D was
computed by measuring the MSD (filled circles) and by measu-
ring the MSRD (hollow circles). The gradient can be characteri-
zed by equation 4.10, as shown by the black line, with the cha-
racteristic length scale lp. The vertical lines s show the average
colony size Ry, estimated by the cell number density (equa-
tion 4.11).
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Figure 4.10: Internal dynamics of in silico microcolonies. Here, the red data
highlights the weak parameter set and the blue data the strong
parameter set. The vertical lines that can be seen in most plots
show the average colony size R.y, estimated by the cell num-
ber density (equation 4.11). (a) Mean of the number of all pili
(hollow circles), and of the pili which generate a pulling force
on cells as a function of deom. (b) Mean life time of the pili of
cells within a microcolony. (c) Variance of the number of acti-
vely pulling pili as a function of the distance of the cells from
the colony center dcom. (d) Cell number density of cells within
a colony. The lines highlight a fit with the function 4.11. (e) Ne-
matic order parameter S (see equation 4.12) of the cell main axis
relative to the vector pointing from the center of the colony to
the center of the cell as a function of the distance from the cen-
ter of the colony deom. (f) Pair correlation function g(r) of bulk
cells as a function of the distance r between the cells. The graph
agrees for both parameter sets. (g,h) Variance of the absolute va-
lues of the tangential force F; and the normal net force F, acting
on a cell relative to the surface of the colony.



4.2 MODELING MICROCOLONY COALESCENCE AND INTERNAL DYNAMICS

STRONG WEAK
Dy [um?/s] (6.6440.95) x 1075 (1.97 +£0.46) x 103
D, [um?/s] (197 £231)x 1077 (5.7+15.3) x 106
I [um] 0.98 +0.19 1.07 +£0.38
polum=3] 0.80 + 0.03 0.74 +0.03
Reol [wm] 7.97 +0.02 8.19 +0.02
w [um] 0.18 +0.03 0.40 £ 0.02

Table 4.4: Parameters characterizing the internal dynamics of in silico micro-
colonies.

is for both parameter sets much larger than the time corresponding to
the pili production rate of 15 Hz (see table 2.1). Not surprisingly, for
the weak pili-pili-interactions, the average life time is smaller than the
life times for the strong interactions. We observe a pronounced gra-
dient of life times. Pili on the surface possess a considerably smaller
life time, compared to pili within the bulk of the colony.

Next to the spatially dependent number of pili and their life time,
we can also measure the fluctuations of the number of actively pulling
pili that a cell has as a function of the position of the cell within the
colony. We observe a weak increase of the standard deviation of the
pili number near the surface for the weak and the strong parameter set
(see figure 4.10c).

Besides the dynamics of the pili network, we were also studying
the structure of the colony and the arrangement of the cells. An im-
portant measure to characterize the structure is the density p of cells
(see figure 4.10d). We can compare its profile to the density profile
of liquid-liquid or liquid—vapor interfaces [109—111], which has the
form

_ @ . dcom — Reol
p(deom) = ) (1 tanh [ " ]) , (4.11)

with deom being the distance from the center of the colony, w the
width of the density profile and po the density within the colony
bulk. For the strong parameter set, the colony possesses a slightly
smaller radius and a slightly higher density (see table 4.4), compared
to weak pili-pili-interactions for the same number of cells in the colony.
Additionally, stronger interactions reduce the width of the interface.
The higher density may reduce the motility of cells in the colony and
thus contribute to the observed gradient of motility by reducing the
available volume for motion and by introducing jamming effects.

For the strong interactions, we observe a pronounced peak of the
cell density near the surface of the microcolonies which originates
from the nematic order of the diplococcus-shaped cells close to the
colony surface (see figure 4.10e). The nematic order parameter was
determined by computing the angle « between the axis connecting
the two cocci of a cell and the vector pointing from the center of the
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colony to the center of the cell. Then, the nematic order parameter
S [112] is defined to be

3cos? o —1
S:<2>. (4.12)

Within the microcolonies, the cells possess an overall random distri-
bution of their directions, which corresponds to a nematic order pa-
rameter S close to 0. At the surface of the colonies, we observe a
bias towards a tangential orientation of cells with S < 0 and that may
cause the peak of the spatially dependent cell density p.

In order to learn more about the arrangement of cells within the
colonies, we were computing the pair-correlation function g(r) [113]
of the bulk cells (see appendix F.3 for more information). We observe
an almost identical shape of the pair correlation function for the two
parameter sets with correlations only reaching up to 34 um, corre-
sponding roughly to distance to the centers of the next neighbors and
pointing towards more fluid-like properties of colonies [110].

The pili forces are directly translated into the motion of cells. Here,
we computed the absolute values of the normal and tangential com-
ponents of the sum of the pili-mediated and the excluded volume
forces, relative to the vector pointing from the center of the colony
to the center of the cell. Then, we computed the square root of the
variance (see figure 4.10g and figure 4.10h). In both cases and for
both parameter sets we observe an increase of the force fluctuations
near the surface of the colonies, which is translated into the higher
motility of the cells. Additionally, for strong pili-pili-interactions the
force fluctuations are smaller than for weak interactions. This is a con-
sequence of the shorter pili life times and the resulting more frequent
rearrangement of the pili network.

4.3 DIFFERENCES BETWEEN EXPERIMENT AND SIMULATION

We need to discuss a discrepancy between our simulations and the
experimental results. While the simulations for the strong parameter
set exhibit qualitative similarities for the coalescence dynamics to the
experimental data, the observed gradient of motility predicts values
for the diffusion coefficient which are one order of magnitude lower
than those observed experimentally (see figure 4.6 and 4.9). However,
the gradient of the diffusion coefficients exhibits similar properties
for the weak parameter set. For this parameter set the complete coa-
lescence dynamics have time scales of a few minutes or less, which
are considerably smaller to those observed in the experiment (see fi-
gure 4.4 and figure 4.8). We suggest that this behavior originates from
the fact that the pili network within a colony is more complex than
described by our computational model. While pili within a bacterial
colony form dense networks where multiple pili can interact with
each other, in our simulation we consider binary interactions only.
While the pili of cells on the surface form less bonds to other pili and
are thus less efficiently embedded into the pili network within our



4.4 THE LAYER-BULK MODEL AND ITS ORIGIN

1. Two single colonies 2. Colonies attracted by pili 3. Bulks of colonies touch
fast fast
Loosely packed layer Inner bulk with lower
of higher mobility mobility
4. The bridge closes 5. The bridge is closed 6. Relaxation to a sphere
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Figure 4.11: Sketch of the layer-bulk model and how it affects the coales-
cence of microcolonies. The cells within the bulk region of the
colony (gray) possess a weak motility only, cells at the outer
layer of the colony (yellow) are weakly packed and highly mo-
tile. The shown image represents an idealization of two distinct
regions. In our experiments and simulations, the motility is cha-
racterized by a gradient (see subsections 4.1.2 and 4.2.2).

simulation, cells within the bulk of the colony are tightly embedded
into the network and exhibit a considerably weaker motility.

After showing that our computational model can reproduce our ex-
periments qualitatively and allows us to learn more about the proper-
ties of the pili network and the involved forces within a microcolony,
we will now discuss the connection between the observed gradient of
motility and the peculiar behavior of the colony coalescence.

4.4 THE LAYER-BULK MODEL AND ITS ORIGIN

During the coalescence of microcolonies, the colonies initially appro-
ach each other within seconds, followed by the closure of the bridge
(with a time scale in the order minutes) and finally followed by the
relaxation from an ellipsoidal towards a spherical shape with a time
scale on the order of one hour or more.

We suggest that these dynamics are mediated by the gradient of
motility, where a colony possesses an outer layer of highly motile
cells and an inner bulk consisting of cells that exhibit a weak motility
only.

How such a gradient can mediate the observed dynamics of colony
coalescence is visualized in figure 4.11. Initially, both colonies attract
each other due to pili-pili-interactions and will collide within seconds.
This approach continues until the outer layer regions intersect and the
bulk regions of both colonies touch. Then, the two colonies are no lon-
ger able to continue the fast approach. Cells at the outer layer move
towards the intermediate region of the dumb-bell shaped colony and
close the bridge, so that the bridge closes and the colonies reaches
a more ellipsoidal shape. The time scale of this process is in the or-
der of minutes. This appears reasonable, because our measurements

63



64

COALESCENCE AND INTERNAL DYNAMICS OF BACTERIAL MICROCOLONIES

of the MSRD and the MSD show that cells of the outer layer move
over distances in the order of 1 pm within 1-2 minutes. In order to
close the bridge of a colony having a diameter of 20 um, they need to
move a comparable distance. Finally, the resulting ellipsoidal colony
relaxes towards a spherical shape. This process is no longer governed
by the dynamics of the outer layer, but by the properties of the bulk.
Due to the weak motility of the cells within the bulk, which possess
a diffusion coefficient that is at least one order of magnitude smaller
than those for the surface cells, the characteristic time scale for this
process is in the order of one hour for colonies having a diameter
of roughly 20 um. In the next chapter we show how the size of the
colonies affects the discussed time scales.

In order to study the origin of the gradient of motility within a co-
lony, responsible for the coalescence dynamics, we studied multiple
quantities from our computational model that are, to the present day,
not accessible experimentally (see figure 4.10). While these quantities
allow us to learn more about the origin of the gradient of motility,
it remains to be unraveled what the general properties of the bulk
regions are, more specifically if the bulk exhibits more fluid-like or
more solid-like properties. From the measurement of the MSD and
the MSRD we found that for large times of At = 100 s cells exhibit a
diffusive motion. For the pair-correlation function of cells within in
silico microcolonies we observe only correlations for direct neighbors,
pointing towards fluid-like behavior. By calculating the nematic order
parameter of the cells, we observe a lack of order of the cells which
does also points towards a fluid-like behavior of the bulks. Another
observation which points towards more fluid-like properties is the
fact that we can define a time scale of the relaxation of ellipsoidal
colonies towards a spherical shape, which is reminiscent of the coa-
lescence of liquid droplets and their relaxation towards a spherical
drop. We do not observe an arrest of the coalescence. Thus, we sug-
gest that a bacterial microcolony exhibits fluid-like properties with a
gradient of motility of the individual cells within the colony.

To estimate whether a chemical gradient of nutrients, oxygen or
waste metabolic products is involved the formation of the gradient of
motility, we estimate the effective diffusion coefficient of these mo-
lecules within a colony. Therefore, we assume that a microcolony
has properties of a porous medium. From the dependence of the co-
lony radius from the number of cells (see appendix F.3.2) and the
volume of the single cells we could estimate the volume fraction
¢ = 0.65 —0.7. The effective diffusion coefficient D¢ of a solute in
a porous medium with such a volume fraction is estimated by

B et
1—IIn(1—¢)’

as shown in [114]. Here, D,gq is the diffusion coefficient of the solute
in water. For bacterial microcolonies we then find

Deff = Daq (4.13)

Degr = 0.18 —0.23 Dyq. (4.14)



4.5 COLONY SIZE DEPENDENT COALESCENCE

The diffusion coefficient of a wide range of different solutes associa-
ted with biofilms, for example oxygen, glucose or urea, were found
to follow Dag > 100 um?/s [115]. Thus, the lower limit of the effective
diffusion coefficient within a microcolony is given by Dg > 18 um?/s.
From the mean squared displacement

Ar? = 6D AL (4.15)

we find for the length corresponding to the characteristic colony size
Ar =15 um the time At = 2.1 s. Within only a few seconds nutrients,
oxygen or waste metabolic products are able to diffuse out of or into
the colony. Thus, we exclude chemical gradients as origin of the ob-
served gradient of motility.

4.5 COLONY SIZE DEPENDENT COALESCENCE

We can use the computational model (see chapter 2) to predict how
the size of the coalescing colonies affect the involved time scales. Here,
we only investigate the strong parameter set and study cases in which
the initial colonies were consisting of 50 to 1500 cells each.

By computing the bridge height and the axis ratio of the ellipse
fitted to the midplane of the colonies we were able to estimate the
involved time scales.

By plotting the time scales t, as a function of the number of cells
within the colony N, we found that t, N2/3 (see figure 4.12a and fi-
gure 4.12b). The radius R of the colony scales with the colony volume
N « R3, so that t, RZ, the relaxation time is proportional to the
surface of the colonies. We can use this scaling to study the behavior
of the bridge closure for colonies of varying size (see figure 4.12c).
By estimating the final size of the colonies after relaxation h,, (see
appendix F.3.2), we could rescale the final height of the colony. Addi-
tionally, we were rescaling the time of the closure of the bridge with
the relaxation time t,. By rescaling these two quantities, we observe
a collapse of the time-dependent bridge height on a single master
curve. Thus, the bridge closure time ty, is proportional to the surface
of the colonies,

ty o< RZ. (4.16)

For liquid droplets the time scale of bridge closure scales with the
colony radius [104, 116],

tp < R. (4.17)

Such a relation was also found to explain the fusion of cellular ag-
gregates [106, 117, 118]. For bacteria, it appears that such models of
viscous liquid droplet coalescence are not able to explain the coales-
cence of N. gonorrhoeae microcolonies.

We suggest that this behavior originates from the gradient of moti-
lity within the microcolonies. Additionally, the colonies may possess
viscoelastic properties. In this case, the scaling of droplets of different
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Figure 4.12: [Colony-size dependent coalescence of in silico microcolonies.
(a) Ratio of short and long axis 'y for colonies consisting of dif-
ferent numbers of cells as a function of time. Here, we assume
that 1 —+y can be described by equation 4.6, which allows us
to compute the relaxation time t,. (b) Colony shape relaxation
time t as a function of the number of cells in the colony. It fol-
lows ty o< N2/3 (red line). The green line corresponds to ty o R,
the blue line to t, R3. () Bridge height as a function of time
for different cell numbers of the initial two of colonies. (d) Res-
caling of the bridge height with the final colony radius, h, (see
figure F.2a), and of the time with the relaxation time t, o R%.In
this case, the curves collapse.



4.6 SUMMARY

sizes can differ from the previous predictions [119-121] and show
a more complex behavior, that for example depend on the material
properties.

4.6 SUMMARY

In this chapter we studied the dynamics of pili-mediated microco-
lony fusion and how the internal dynamics of the colonies can af-
fect the coalescence. Our experiments and simulations suggest that,
while the colonies exhibit fluid-like behavior locally, the resulting ag-
gregates exhibit a more complex behavior. Particularly, we observe a
gradient of motility where cells near the colony surface are more mo-
tile than cells in the bulk. Additionally, the size-dependent scaling of
the colonies cannot be explained by simple models of liquid droplet
coalescence.

In order to study the internal properties more detailed in the future
and to find clear evidence whether bacterial colonies exhibit fluid-like
behavior, it is necessary to study its rheological properties with the
help of experiments and simulations [122, 123] . Such experiments
will help to study the role of the viscoelastic properties of the cells and
colonies and the adaptation of colonies and their internal dynamics
towards different mechanical cues.

After studying the dynamics of colonies consisting of only one po-
pulation of cells with similar properties, in the following chapter we
will study the behavior of colonies of different cell populations with
altered properties of their pili dynamics.

67






DEMIXING OF BACTERIAL MICROCOLONIES

In the previous chapter, we studied the motion of individual cells
within bacterial aggregates and how they drive the coalescence of
microcolonies. Pili-mediated forces play a fundamental role in the
dynamics of microcolonies.

Here, we will study how the dynamics of colonies are altered after
manipulating the pili-mediated forces. In experiments we see that
within minutes microcolonies, consisting of not just one type of cells
but of cells with pili having different properties, are capable of mixing
or demixing. We will present and discuss previously published and
new experiments and compare the outcome of these experiments to
our computational model. The resulting behavior exhibits qualitative
similarities to the differential adhesion hypothesis.

Our results concerning mixtures of ApilT (cells that are not capable
to retract their pili) and wildtype cells were previously published [60,

124].
5.1 DEMIXING OF WILDTYPE AND MUTANT BACTERIA

Oldewurtel et al. [57] have extensively investigated the cell sorting
of mixtures of wildtype cells and different mutants (see figure 5.1).
In their experiments, two cell populations were labeled fluorescently.
They started with individual cells of the two populations on top of
a glass surface and analyzed the structure of the microcolonies af-
ter 3-5 hours of assembly. We will start with discussing mixtures of
cells that, besides of their fluorescent labeling, have the same proper-
ties as wildtype cells of Neisseria gonorrhoeae. Here, we refer to those
cells as "wildtype cells”. For such mixtures, uniform mixing of the
cell populations within the colony was observed (see figure 5.1a) [57,
124]. For a mixture of wildtype cells and mutant cells that do not
possess pili, called ApilE, the wildtype cells form microcolonies. The
mutant cells are not able to move on the substrate or to interact with
each other, thus they are not incorporated within any microcolonies
(see figure 5.1b). Additionally, it was possible to study the mixture of
wildtype cells and hyperpiliated cells, having a higher mean number
of pili. The hyperpiliation was realized by using strains with three
copies of the pilE gene. In this case, the cells with the lower number
of pili formed the outer shell of the microcolonies, the mutant cells
were found within the bulk. By post-translational modification of the
major subunit of the pili, Oldewurtel et al. were able to create mu-
tants with altered pili-pili detachment forces. They were able to show
that for those mutants, the detachment forces of wildtype-wildtype
and mutant-mutant pili bonds were considerably higher than those of
wildtype-mutant bonds. In this case, the wildtype and mutant cells
each form colonies on their own. While these colonies can also in-
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Figure 5.1: Confocal microscopy images of mixing and demixing of different
types of Neisseria gonorrhoeae cells. The figure was taken from [57].
(a) Mixture of two differently labeled populations of wildtype
cells. (b) Mixture of wildtype cells (red) and mutant cells without
any pili (green). (c) Mix of wildtype cells (green) and hyperpili-
ated cells (red), possessing a higher mean number of pili. (d)
Mixture of wildtype cells (red) and cells with altered pili-pili in-
teractions (green). The individual cell populations form distinct
colonies that are also able to interact with each other.



5.2 APPLICATION OF THE COMPUTATIONAL MODEL TO STUDY DEMIXING

teract with each other and form larger colonies, from figure 5.1d it
becomes clear that the cells prefer to be close to cells of the same
kind.

Next to reporting about the the work of Oldewurtel et al. [57], we
also studied the mixture of wildtype cells of Neisseria gonorrhoeae and
mutant cells with ApilT mutants after three hours of assembly. The
presented experimental data was contributed by Prof. Nicolas Biais
(Brooklyn College, New York, USA). While the ApilT mutant cells
are able to create pili which are able to protrude from the cell mem-
brane and bind to other pili, they are no longer able to retract and the
cells are not able to actively create forces on their own. For these cells,
we do not observe motion on a substrate. For the mixture of wild-
type cells and the ApilT mutants we observe that the mutant cells
are concentrated at the outer shell of the colonies, while the wildtype
cells are found within the bulk of the colonies (see figure 5.2b). In
order to quantify this behavior, we measured the intensity profile of
the two fluorescently labeled cell populations, giving us quantitative
evidence of demixing (see figure 5.2d). In a agreement with the expe-
riments of Oldewurtel et al. [57], we observed uniform mixing of two
differently labeled populations of wildtype cells (see figure 5.2a and
5.2¢). Details of the labeling of these cells are given in appendix B.

5.2 APPLICATION OF THE COMPUTATIONAL MODEL TO STUDY
COLONY DEMIXING

Now, we want to apply the computational model, introduced in chap-
ter 2, to investigate the sorting dynamics for mixtures of different cell
populations. The parameters used for our simulations are given in
table 2.1.

If not stated otherwise, we pick for the pili-substrate interactions a
detachment force Fqps = 180 pN, a detachment time ty,s = 10 s and
an attachment rate vy, = 0.5 Hz. This corresponds to the slow para-
meter set, defined in table 3.1. For the pili-pili-interactions we set
the detachment force Fq 5, = 360 pN, the detachment time typs = 50 s
and the attachment rate yatpp = 0.5 Hz, corresponding to the strong
parameter set of table 4.2. Here, we are not interested in a direct repro-
duction of experimental data, but we want to investigate whether, for
given cell-cell-interactions, similar mechanisms lead to comparable
internal structures of microcolonies . Thus, the parameters describing
the pili-pili- and pili-substrate interactions may differ from the values
expected experimentally.

For wildtype cells, we found that colonies form within one hour
and remain stable after formation, as can be seen in figure 5.5a.

Next, we simulated a 50:50 mixture of WT and ApilT mutant cells.
For ApilT mutant cells, the pilus retraction velocity was set vyt = 0.
In figure 5.3b we show the initial state and the microcolonies that for-
med after one hour. We observe a behavior that agrees with experi-
mental results: while the mutant cells are concentrated at the surface
of the colonies, the wildtype cells are mainly found in the bulk of
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Figure 5.2: Demixing of a mixture of wildtype cells and a ApilT mutant
of Neisseria gonorrhoeae. The figure was adapted from [124]. (a)
DIC (differential interference contrast microscopy) and fluores-
cence images allowed to detect the positions of two populations
of WT cells. Here, green represents labeling with YFP, and red
represents tdtomato labeling. (b) DIC and fluorescence images
allowed to detect the positions of a colony formed from wild-
type cells (labeled with YFP) and ApilT mutants (labeled with
mcherry). The mutant cells are concentrated at the edge of the
colonies. (c,d) We quantify the intensity profile along the red li-
nes in (a,b). The intensity is assumed to be directly proportional
to the concentration of the cells. For a mixture of two wildtype
populations we do not see any demixing, for a mixture of wild-
type cells and ApilT mutants, the demixing is observed.
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Figure 5.3: Top view of the assembly of in silico microcolonies of wildtype
cells and ApilT mutant cells. The figure was adapted from [60].
(a) Assembly of 1200 cells on a substrate. After initializing cells
homogeneously on the substrate (left), colonies begin to form af-
ter a few minutes. They grow by single cells colliding with the
less motile colonies. After one hour, almost all cells are assem-
bled into colonies. (b) Mixture of normal cells (green) and ApilT
mutants (red). These mutants have pili which cannot pull. The
colonies form within one hour. The inset depicts a close-up in of
a typical colony and shows that the mutant cells accumulate at
the surface of the colony.
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Figure 5.4: Ratio of surface and bulk cells for in silico wild-type and ApilT
cells. If a cell is part of the colony surface or bulk was estimated
by computing the alpha shape of the cells. The figure was adap-
ted from [60]. (a) Ratio of wild-type (WT) cells at the surface
(orange) and inside of the colony (yellow). The colonies form
such that within 10 minutes (600 s), the wild-type cells can be
found preferentially inside of the colonies. (b) Ratio of mutant
cells identified as surface (orange) and bulk (yellow) cells. A lar-
ger fraction of ApilT mutants can be found on the surface of the
colonies.

the colonies. We could also quantify this behavior by directly iden-
tifying which cells are surface cells of a colony and which cells can
be found within the bulk of the colony. We determined surface cells
by computing the alpha shape of the in silico microcolony [125, 126]
(alpha radius Ry = 1 pm). More information about how the alpha
shape helps us to identify surface cells and technical details are gi-
ven in appendix F.4. For the wildtype cells and the mutant cells we
computed the fraction of cells that belong to the colony surface and
the fraction that belongs to the bulk (see figure 5.4). We observe that
wildtype cells are preferentially located in the bulk of colonies, the
ApilT mutant cells are located at the surface of the colonies.

Next to the demixing of wildtype cells and ApilT mutants, we
could also simulate the demixing dynamics for the cell populations
investigated by Oldewurtel et al. [57] (see figure 5.1). Similarly to
the experiment, in the simulations we do not observe any demixing
of two populations of wildtype cells (see figure 5.5a). When we mix
wildtyp