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Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
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We develop a stochastic description of feedback oscillators in which functional molecules are produced
by an assembly line consisting of many identical steps. The initiation rate of this assembly is regulated by
its products via a negative feedback. This model is motivated by genetic oscillators such as circadian
clocks. We show that precise oscillations of high quality are possible even when the number of product
molecules is low and the fluctuations of amplitude are large. We discuss parameter values which can
account for high quality oscillations as observed in single cells. Furthermore, we discuss effects of
stochastic amplification steps on precision to account for translational bursting.
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Many organisms possess circadian clocks which permit
them to anticipate the daily changes of environmental
conditions. Such clocks are implemented on the cellular
level by oscillators which generate periodic variations in
the levels of certain proteins with a period of approxi-
mately 24 hours [1]. Such oscillations can be achieved by
the transcriptional regulation of gene expression via a
delayed negative feedback [1,2]. Genetic oscillators play
an important role in various other cellular processes such as
in the segmentation oscillator involved in the patterning of
vertebrates [3] and oscillations in the tumor suppressor
gene p53, which have been observed in the cellular re-
sponse to DNA damage [4].

Molecular processes such as the regulation of gene
expression, transcription and translation, as well as protein
degradation and post-translational modifications are inher-
ently stochastic [5–8]. Both intrinsic and extrinsic noise of
gene expression have been identified and quantified [9,10].
Translational bursting has been implicated as an important
source of intrinsic fluctuations in protein numbers [11,12].
Fluctuations induce variations of the oscillation period T of
a genetic oscillator [13,14]. During subsequent periods
these variations accumulate, resulting in a finite time �
during which oscillations are phase coherent. This raises
the question of what limits the precision of genetic oscil-
lators in the presence of fluctuations. This precision can be
quantified by the quality of oscillations Q � �=T, which is
equal to Q � ��1f=�f, where f � 1=T is frequency and
�f describes the width of the spectral peak [15–17].

Genetic oscillators are often described by the feedback
regulation of the transcription of a single or of multiple
genes [18]; see Fig. 1(a). Spontaneous oscillations can be
obtained using kinetic models which involve mRNA levels
and protein numbers [19]. It has been shown that time
delays which can be attributed to translation, transcription,
intracellular transport, and other post-translational steps,
play a key role for the properties of oscillations [1,20–22].
Theoretical approaches to noisy genetic oscillators include
methods from stochastic chemical reaction kinetics with
Poissonian waiting time distributions [23]. Such descrip-
tions share many features with mesoscopic chemical oscil-

lators [24,25], and lead to high quality of oscillations in the
limit of large system size or molecule numbers [23,24].
Descriptions based on feedback between an activator and a
repressor have been shown to operate with good quality at
low molecule numbers [13,26]. More recently, determinis-
tic time delays have been introduced in stochastic descrip-
tions based on chemical kinetics [27].

In this Letter we introduce a simple but general descrip-
tion of genetic feedback oscillators where the kinetic pro-
cesses between initiation of gene expression and the
completion of the final product introduce stochastic time
delays. Our description is motivated by a single gene with
negative feedback, see Fig. 1(a). We represent this system
by an assembly line which leads to the production of
functional proteins via a stochastic, multistep process.
Functional products have a finite life time, their number
regulates the initiation of assembly, Fig. 1(b). The initia-
tion rate decreases with increasing molecule numbers,
introducing a negative feedback. We also consider the
case of a stochastic amplification step which could account
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FIG. 1 (color online). (a) Schematic representation of a genetic
oscillator based on a single gene and negative feedback.
Expression of the gene involves transcription to mRNA and
subsequent translation into a functional product (protein), which
then represses the gene. (b) Simplified representation by an
assembly line with negative feedback. Assembly is initiated at
a rate � which depends on the number N of functional products.
It requires S steps at a rate � until the product is complete.
Product molecules decay at a rate k. Our model can include a
stochastic amplification step R during assembly at which a single
molecule gives rise to m identical copies with probability ��m�.
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for translational bursting where a single mRNA gives rise
to several or many proteins.

Assembly line with negative feedback.—We denote the
number of products by N, which depends on time t.
Assembly of new products occurs via S identical inter-
mediate substeps � � 1; . . . ; S, Fig. 1(b). The stepping
rate of the assembly line is denoted by �. A stochastic
amplification step � � R can be included, for which a
single molecule is replaced by m identical copies. Here
we choose a geometric distribution ��m� � �m�1�1�
�m�1�m�1 for the amplification factor m [28,29]. It is char-

acterized by a single parameter, the mean value �m; the
variance of m is �m� �m� 1�. Note that for �m � 1 no ampli-
fication occurs. Assembly is initiated with a probability per
unit time � � �g�N�, which we assume to depend only on
the number N of products. Here � is the initiation rate for
N � 0, and g�N� is a monotonously decreasing function of
N, with g�0� � 1. We choose g�N� � 1=�1� �N=N0�

h�,
where N0 is the number of products for which the rate of
initiation of assembly is repressed by a factor of 2, and h is
a Hill coefficient which characterizes the cooperativity of
the feedback. Finally, we assume that the number N of
functional products decays at a rate k.

This assembly line with negative feedback and stochas-
tic amplification can be described as a Markov chain. The
state of the system at any given time t is unambiguously
specified by the number of products N�t� and the numbers
M��t� of unfinished products that are at the intermediate
stage � � 0; . . . ; S in the assembly line. The stochastic
process can be described by the probability distribution
P �N;M; t� to find the system in state (N, M), as well as the
conditional probability distribution P �N;M; tjN0;M0; t0�
to find the system in this state at time t under the conditions
that it was in state (N0, M0) at earlier time t0. Here we have
defined M � fM0; . . . ;MSg. Both distributions obey the
master equation
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where we have introduced the step operators a� and b�� ,
which act according to a�P �N;M; t� � P �N � 1;M; t�
and b��P �N;M; t� � P �N; . . . ;M� � 1; . . . ; t�. The condi-
tional distribution satisfies the initial condition
P �N;M; tjN0;M0; t� � �N;N0�M;M0 . The first line in
Eq. (1) accounts for the initiation of assembly at rate
�g�N�. The second to fourth lines account for the sequence
of steps in the assembly line including the amplification
and final step. The last line describes degradation of prod-

ucts. Note that the generalization to situations where sub-
steps are not identical is straightforward.

Stochastic simulations.—We have performed numerical
simulations of the system described by Eq. (1) using a
standard Gillespie algorithm [30]. Since all events obey
Poissonian statistics the Gillespie algorithm generates op-
timal time steps. Two examples of simulation results in the
absence of an amplification step ( �m � 1) are displayed in
Fig. 2 for Sk=� � 11 and S � 440. The period of oscil-
lations in this case is T ’ 24 h for k ’ 1 h�1. The top row
corresponds to �=k � 20, which leads to noisy oscillations
of low quality Q ’ 3, Figs. 2(a) and 2(e), and a mono-
modal distribution Ps�N� of product numbers in the steady
state, Fig. 2(c). The coherence time � can be determined
from the two-point cumulant function C�t� �
hN�t�N�0�i � �N2, where �N � hNi, which decays for large
t as C�t� 	 e�t=� cos�!t�, where ! � 2�=T. The bottom
row in Fig. 2 shows the corresponding simulation results
for �=k � 60. In this case, oscillations are of high quality
with Q ’ 160. Note that the distribution Ps�N� is now
bimodal. Strong amplitude fluctuations remain, and the
average number of products �N ’ 25 is still small. The
period of oscillations T and the corresponding quality
values Q are displayed in Fig. 3 as a function of the step
number S for different values of �=k. Note, that while T is
approximately independent of �=k, the quality depends
strongly on this ratio. For small �=k < 25, Q saturates
for large S at finite values. For large �=k, such a saturation
cannot be seen in the data and the quality becomes very
large for large S. The effects of the amplification step are
shown in Fig. 4. Increasing the average burst size �m, the
quality exhibits a maximum at an optimal value of �m. As
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FIG. 2. Numeric simulations of the stochastic feedback oscil-
lator for T ’ 24 h and no amplification step. Low quality (top
row, �=k � 20, Q ’ 3) and high quality (bottom row, �=k �
60, Q ’ 160) oscillations are shown. (a),(b) Number N�t� of
products as a function of time t, normalized to the average period
T of oscillations. (c),(d) Histogram of product numbers N. The
probability Ps�N� to find N products at any given time during a
long run is shown. (e),(f) Two-point cumulant function C�t� �
hN�t�N�t� ��i � hNi2 of the product number. Parameters are
k � 1 h�1, �=k � 40, S � 440, �m � 1, N0 � 10, and h � 2.
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Fig. 4(a) reveals, the value of �m for which Q is maximal
increases if the amplification step occurs earlier in the
assembly line. If the initiation rate is increased, quality
increases, but amplification noise is also enhanced such
that high quality occurs for smaller �m, see Fig. 4(b).

Averages and correlation functions.—Using the master
Eq. (1), simplified expressions for the time dependent
averages and correlation functions of the product number
N can be obtained. The average number of products hN�t�i
at time t, and the average number hM��t�i of unfinished
products at intermediate stage �, where the brackets h. . .i
denote ensemble averages, can be expressed in terms of the
distribution P�N;M; t�. Similarly, the two-point functions
hN�t�N�t0�i and hM��t�N�t

0�i can be expressed using the

joint probability distribution P �N;M; t;N0;M0; t0� �
P �N;M; tjN0;M0; t0�P�N0;M0; t0�. The master Eq. (1)
then defines dynamic relations between these functions.
From these expressions for hN�t�i and hN�t�N�t0�i all de-
pendencies on the numbers M� of unfinished products can
be eliminated because those variables effectively generate
a distribution G�t� � �S�1tSe��t=S! of delay times t be-
tween the start of assembly and the completion of the
products. The average number of products satisfies for
long times

 

d
dt
hN�t�i ’ �khN�t�i � �m�

Z t

0
hg�N�s��iG�t� s�ds: (2)

On the right-hand side of Eq. (2), we have neglected terms
which are proportional to t�e��t for � � 1; . . . ; S. These
terms vanish for times long compared to ��1 and do not
contribute to the long-time limit in which we are interested
here. Note that the distribution ��m� of the stochastic
amplification enters explicitly only via its average �m.
According to Eq. (2), the average hN�t�i relaxes after a
relaxation time to a constant steady state value �N � hNi
with dhNi=dt � 0 and constant hg�N�i � �Nk=� �m. By the
same method, and again neglecting terms proportional to
t�e��t, we obtain an equation for the two-point cumulant
C�t� � hN�t�N�0�i � �N2 valid for long times, which reads

 

d
dt
C�t� ’ �kC�t� � �m�

Z t

0
Cg�s�G�t� s�ds: (3)

Here Cg�t� � hg�N�t��N�0�i � hg�N�i �N, where averages
are taken in the steady state. Interestingly, only the average
�m of the distribution ��m� enters explicitly in Eq. (3). Note

however that the variance hN2�t�i as well as correlation
functions of higher order depend on the variance and
higher order moments of the distribution ��m�.

When one expresses the function Cg�t� in terms of
averages and correlation functions of N, the nonlinearities
of g�N� become important. We can expand g�N� in a series
around the average �N as g�N� � g0 �

P
gn�N � �N�n=n!,

where g0 � g� �N�, gn � dng=dNnjN� �N . This expansion
reveals that Cg�t� depends on cumulants of all orders and
thus also on the shape of the distribution ��m� of the
amplification step. We can obtain an approximative ex-
pression for Cg�t� by neglecting all contributions of order
higher than three. This approximation is valid in situations
where the distribution Ps�N� is monomodal, close to a
Gaussian and sharply peaked, which typically occurs for
small quality of oscillations. This simple approximation
leads to Cg�t� 
 � �gC�t�, where we have introduced the
effective feedback strength �g 
 �g1 � g3C�0�=2. The ef-
fective feedback strength �g is not a fixed parameter, but
depends itself on the variance C�0� � h�N � �N�2i of prod-
uct numbers. Note, that C�0� and �g depend on the variance
of the distribution ��m�.

Period and quality of oscillations.—In the limit of large
step numbers S, the delay distribution approaches a
Gaussian G�t� ’ exp���t� t0�2=2	2�=�2�	2�1=2, where
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FIG. 4 (color online). Probing the effects of an amplification
step. Quality factor as a function of burst size �m. (a) Symbols
are: R � S (squares), R � S=2 (triangles), R � 1 (circles), for
�=k � 20. (b) Symbols are: �=k � 10 (diamonds), �=k � 20
(squares), �=k � 30 (down triangles), �=k � 40 (pentagons),
for R � S. Other parameters are k � 1 h�1, �=k � 10, S � 256,
N0 � 10 and h � 2.
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FIG. 3 (color online). The quality of the oscillators vs number
of steps S. Dots stand for stochastic numerical simulations, and
dotted lines are fits using the theory (numerical solution of
Eq. (4)), with effective parameters �g as indicated below. The
solid line corresponds to �g�=k � 1 in Eq. (4). When not shown,
error bars are smaller than the dots. Inset: Period of the oscil-
lators vs number of steps S in the assembly line, for several
values of �=k. Dots correspond to numerical simulations, and
the black line to Eq. (5). Symbols: down triangles �=k � 15
( �g � 0:0507), squares �=k � 20 ( �g � 0:0445), diamonds
�=k � 25 ( �g � 0:0393), circles �=k � 30, up-triangles �=k �
40, pentagons �=k � 60. Other parameters: k � 1 h�1, �=k �
10, �m � 1, N0 � 10 and h � 2.
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the mean time delay is t0 � S=� and the variance is 	2 �
S=�2. We obtain from Eq. (3) a simple characteristic
equation for the complex number z which describes the
long-time decay of the cumulant function C�t� ’ C0e�zt.
For t0 � 	 we find

 z� k ’ � �m �g ezt0�z
2	2=2: (4)

For given �g and set of parameters, the complex zeros z �
��1 � i! of this equation determine the period T � 2�=!
and quality Q � �=T of noisy oscillations. Oscillations of
high quality are typically found for k�1 � t0. Using this
separation of time scales, we find a simple expression for
the oscillation period to first order in �kt0��1

 T 
 2t0�1� 1=kt0�: (5)

Note that T depends neither on �=k nor on the effective
feedback �g. In the inset of Fig. 3, the period of oscillations
is displayed for different values of�=k as a function of S �
t20=	

2 with � � t0=	
2 kept constant. The solid line corre-

sponds to Eq. (5), which is in excellent agreement with the
simulation results.

A simple expression for the quality Q can be found
using Eq. (4) for t0 � 	. Neglecting �kt0��1 it is given by

 Q 
 ��2	2=t20 � 2 ln�� �m �g =k���1: (6)

According to Eq. (6) the quality depends on the ratio �=k.
This is indeed the case as discussed above; see Fig. 3.
Furthermore, Q depends on the burst size �m and the
effective feedback strength �g, which is a function of all
parameters.

Discussion.—We can choose parameter values which
could correspond to oscillations with a period of T ’
24 h using, e.g., t0k � 11 and k � 1 h�1; see Fig. 2. Our
simulations show that high quality oscillations with Q ’
160 are generated by negative feedback control with
�=k � 60 using an assembly line of 440 steps without
the stochastic amplification step. This leads to precise
oscillations with small phase fluctuations even though
there are on average N0 ’ 25 product molecules and high
amplitude noise, see Fig. 2(b). While the required delay
time of about 11 hours seems long compared to typical
times of protein synthesis, which are of the order of tens of
minutes, it has been suggested that in the circadian clock of
Drosophila longer delays of about 10 hours result largely
from post-translational events [1].

Stochastic amplification can enhance quality. For ex-
ample, using �=k � 20 and an amplification of �m � 10
the quality exceeds Q ’ 200 for only S � 256 steps.
While amplification enhances the feedback strength, it
also involves additional burst noise and noise amplifica-
tion. As a consequence the quality can decrease for large
amplification factors; see Fig. 4. Interestingly, if the am-
plification occurs for R � 1, the quality becomes large and
we do not see a decrease for large �m. The mechanism
presented here, which permits high precision of oscilla-
tions for small molecule numbers comes at a cost, namely,

the relatively high turnover of the products. During one
cycle, the total number of molecules produced and de-
graded is of the order of �m�t0. Cells might have additional
mechanisms to reduce this cost, such as interlinked posi-
tive and negative feedback loops, post-translational mod-
ifications, and complex degradation pathways [1,13,31].

We thank A. Oates for introducing us to genetic oscil-
lations, and S. Ares, N. Becker, T. Bollenbach, L. Herrgen,
K. Kruse, F. Peruani, C. Schröter, and C. Svaneborg for
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