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Abstract. We study the mechanics of tissue growth via cell division and cell
death (apoptosis). The rearrangements of cells can on large scales and times
be captured by a continuum theory which describes the tissue as an effective
viscous material with active stresses generated by cell division. We study the
effects of anisotropies of cell division on cell rearrangements and show that
average cellular trajectories exhibit anisotropic scaling behaviors. If cell division
and apoptosis balance, there is no net growth, but for anisotropic cell division
the tissue undergoes spontaneous shear deformations. Our description is relevant
for the study of developing tissues such as the imaginal disks of the fruit fly
Drosophila melanogaster, which grow anisotropically.
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1. Introduction

Multicellular organisms develop from a fertilized egg by repeated rounds of cell divisions. As a
result of this process, spatial cell packings are formed, mostly in two-dimensional (2D) sheets
such as epithelia, or in 3D mesenchymal tissues. Besides cell division, cell death (apoptosis)
can play an important role during development [1, 2]. As the tissue grows by cell divisions,
its proper size and patterning are ensured by cell signaling events which confer specific cell
identities at certain positions in space. A prominent example of such signaling molecules
involved in tissue patterning are morphogens, which are secreted from localized sources and
form graded concentration profiles in the target tissues. Thus, positional information is conveyed
to target cells based on their position within the morphogen concentration gradient [3]–[5].
Understanding the precise mechanisms which underlie tissue patterning and growth, however,
remains an important challenge in the field of developmental biology [6]–[9].

Developing tissues can be considered as soft materials with visco-elastic properties [10].
Since active processes take place in cells, such as the cytoskeleton dynamics and cell division,
such tissues can be described as active complex fluids. The generic physical properties of such
active fluids have recently been discussed in the hydrodynamic limit by continuum descrip-
tions [11, 12]. The most striking feature of a developing tissue that results from active processes
is growth. Cells undergo a cell cycle during which they double in size and then divide into two
daughter cells. Cell division thus involves forces and mechanical work performed to move the
neighboring cells in order to create space for the newly produced daughter cells [13]–[16]. In
addition, apoptosis leads to the removal of cells, and the liberated space is then occupied by
neighboring cells. As a consequence of cell division and apoptosis, cells move relative to each
other so that cellular packings are remodeled and cells change their nearest neighbors [17].

Important model systems for the study of tissue growth and patterning during development
are the imaginal disks of the fruit fly Drosophila melanogaster. These essentially 2D larval
structures are precursors of adult organs, such as the wings, legs or eyes [18, 19]. It has been
observed that cell division in the imaginal disks is oriented. This implies that the cell division
axis has a preferred orientation and can be characterized by an angular distribution [20, 21].
An important open question is the role of oriented cell division for shape changes of a
growing tissue.
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Here, we present a coarse-grained physical description of cell movements in growing
tissues which takes into account oriented cell division and the physical properties of cells in
the tissue, in particular, tissue viscosity. By first developing a continuum description, we study
the general features of the system and discuss the flow profiles of cell movements that result
from oriented cell division and apoptosis in 2D epithelia. We furthermore perform numerical
simulations of a discrete model in which individual cells are described as elastic objects that
can slide relative to each other subject to friction forces. In the discrete model, fluctuations
resulting from cell division and apoptosis are taken into account. Finally, we use the numerical
results for the discrete cellular system to test the applicability of the continuum description.

2. Continuum description

Our continuum theory of anisotropic tissue growth is based on balances of cell number and
forces, and extends earlier approaches [13, 14] by taking anisotropic stresses into account. This
description allows us to study the flow profiles of cell rearrangements in growing tissues with
oriented cell division.

2.1. Balances of cell number and forces

We introduce the cell density ρ(r, t) at position r and time t as the number of cells per area
(volume) in d = 2 (d = 3) dimensions within an area (volume) element. These elements are
large compared to the size of a single cell, but small compared to the size of the tissue. The
velocity v(r, t) is defined as the averaged velocity of cells situated in the corresponding area
(volume) element at r. In a growing tissue, cell number balance is given by

∂tρ + ∂k(ρvk) = (kg − ka)ρ. (1)

Here, kg(ρ, r, t) and ka(ρ, r, t) are the growth and apoptosis rates which account for cell
division and cell death, respectively. In general, both rates can depend on cell density, space and
time. Forces in the tissue are captured by the stress tensor σik and pressure P , which depends
on cell density according to P(r, t) = χ(ρ(r, t) − ρp)/ρp, where χ is the bulk elastic modulus
and ρp a reference cell density. Force balance implies that

∂k(σik − Pδik) + f ext
i = 0, (2)

where f ext
i is an external force density. Inertial forces are small as compared to other forces and

have been neglected.

2.2. Constitutive relation for anisotropic tissue growth

The stress tensor is related to the velocity field by a constitutive material relation. We focus on
the long time limit where the tissue behaves as a viscous fluid. In addition, we take into account
the anisotropic active stresses which are on average generated by oriented cell division. The
stress tensor can be written as

σik = η

(
∂ivk + ∂kvi − 2

d
δik∂lvl

)
+ ζ δik∂lvl − µkg

(
pi pk − 1

d
δik

)
. (3)

Here, η and ζ are the shear and bulk viscosity, respectively. The vector p is a unit vector which
describes the preferred axis of cell divisions, see figure 1. Hence, σik is invariant with respect
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Figure 1. Cellular arrangement in the xy-plane presented as a Voronoi diagram
(a) and by circular disks (b). The vector p (here p = ex ) defines the preferred
orientation of cell division. The angle ϕ describes the orientation of the cell
division axis with respect to the preferred axis. In our simulations, we divide
a cell by generating a new cell and placing both cells (gray) at a distance ε in
opposite directions of the original position of the mother cell.

to p → −p. The anisotropic stress results from oriented cell division. Therefore, we assume
this stress to be proportional to the growth rate kg. The strength of the anisotropic stress is
characterized by the coefficient µ! 0 which has units of viscosity. The special case µ = 0
describes isotropic cell divisions. Considering a constant external pressure Pext, we furthermore
impose the boundary conditions

σnn = P − Pext and σnt = 0, (4)

where the indices n and t denote the components of the stress tensor normal and tangential to
the tissue boundary, respectively. The equations (1)–(4) describe the full dynamics of growing
tissues.

2.3. Growth of incompressible tissues

We now focus on 2D epithelia. In order to provide some general insights into the anisotropic
growth, we consider the incompressible limit in which the cell density is constant, ρ(r, t) = ρ0.
Furthermore, we do not consider external forces acting on the tissue, i.e. f ext

i = 0, and we
assume for simplicity that the growth rate kg, the apoptosis rate ka, the preferred orientation
of cell division p, the magnitude of the anisotropic stress µ and the viscosities η and ζ are
independent of position but could be functions of time. We choose a coordinate system such
that cell division is oriented preferentially along the x-axis, i.e. p = ex . In that case, the dynamic
equations (1) and (2) together with the constitutive relation (3) are given by

∇ · v = kg − ka, (5)

η*v = ∇ P. (6)

Cell division and cell death generate a non-vanishing divergence of the velocity field. The
pressure P plays the role of a Lagrange multiplier to impose the condition (5) for ∇ · v. Note that
the anisotropic stress of equation (3) disappears in the force balance (6) since it is homogeneous
in space so that its divergence vanishes. However, the boundary conditions for the stress given
by equation (4) do involve the anisotropy of the stress and depend on p. For arbitrary tissue
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shapes, the resulting flow field is given by

v =
(

(k0 + k1)x
(k0 − k1)y

)
, (7)

where k0 = (kg − ka)/2 and k1 = kgµ/(4η), and the pressure P = Pext + ζ(kg − ka) which is
independent of position. Interestingly, we find that the anisotropy of tissue growth characterized
by k1 is not only determined by the anisotropy of cell division, but also depends on the tissue
viscosity η.

In general, the shape of the tissue is deformed under this flow. For the simple case of
an elliptical tissue boundary, the shape stays elliptical during growth. However, the lengths
lx and ly of the two main axes change with time as lx(t) = l(0)

x exp(
∫ t

0 dt ′[k0(t ′) + k1(t ′)]) and
ly(t) = l(0)

y exp(
∫ t

0 dt ′[k0(t ′) − k1(t ′)]), where l(0)
x and l(0)

y are the initial lengths. For kg, ka and µ

constant in time, the area A of the tissue grows as A(t) = A0 e(kg−ka)t . The growth rate kg − ka is
therefore related to the effective cell doubling time t2 = ln 2/(kg − ka).

For arbitrary tissue shapes and time independent kg, ka and µ, average cell trajectories
follow flow lines that are described by power-laws

y = y0

(
x
x0

)(k0−k1)/(k0+k1)

, (8)

where (x0, y0) denotes a reference position on the trajectory. There are two important cases
which we want to discuss: (i) ka = 0, where no apoptosis occurs and (ii) kg = ka, where cell
division and cell death are balanced. In case (i), equation (8) also holds for time-dependent
kg, because in this case the ratio (k0 − k1)/(k0 + k1) is independent of time. Several cases can
be distinguished. For µ = 0, it follows that k1 = 0, so that growth is isotropic and flow lines
are radial. For 0 < µ < 2η, the tissue grows at a higher rate along the x-axis than along the
y-axis. In the special situation, where µ = 2η the rates k1and k0 balance, and thus the tissue
grows only in one dimension. Finally, for µ > 2η, the tissue shrinks along the y-axis and grows
rapidly along the x-axis. In case (ii), the velocity field is v = (k1x, −k1 y) and the flow lines
obey y = y0(x/x0)

−1. This result also holds for time-dependent ka. In this case, the 2D tissue
undergoes so-called convergence–extension rearrangements which imply a spontaneous shear
deformation [22].

3. Discrete model

In order to test our continuum theory for anisotropic tissue growth, we define a discrete
representation of tissue growth in two dimensions following related approaches [16]. This
allows us to obtain solutions to equations (1)–(4) in more complex situations where parameters
are position-dependent. This discrete model generates robustly the large-scale features of cell
rearrangements in growing tissues, but it is not intended to capture details of deformations on
the cell scale as, e.g., discussed in [23, 24].

3.1. Dynamic equations

We represent cells as elastic objects with the center of the i-th cell located at position xi . Static
forces between the N cells are described by the potential function

U (x1, x2, . . . , xN ) =
∑

i, j
i< j

V (|xi − x j |), (9)
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where V (r) is a pair potential for the two cells with centers at distance r = |xi − x j |. The pair
potential describes adhesive forces as well as elastic forces which keep cell centers at a preferred
distance a. The potential force f = −dV/dr is chosen to be piecewise linear,

f (r) =






f0(1 − r/a), 0" r " a,
f1(r − a)/(b − a), a " r " b,
f1(r − d)/(b − d), b " r " d,
0, r ! d.

(10)

For r ! d the force vanishes. It is attractive for a < r < d with strongest attractive force f1 < 0
at r = b. It is repulsive if r < a with maximal force f0 > 0 at r = 0. The dynamics is described
by balancing potential forces with friction forces that account for tissue viscosity. Neglecting
for simplicity differences between compressional and shear viscosities, we write the balance of
forces acting on cell i as

η̄
∑

{ j;i}

(
dxi

dt
− dx j

dt

)
= − ∂

∂xi
U (x1, x2, . . . , xN ). (11)

Here, η̄ denotes the tissue viscosity on the scale of a cell, and the sum is over the cells j which
are neighbors of cell i . The neighbors of cell i are defined as the n nearest cells and, in addition,
all cells for which i is within the n nearest neighbors.

Equation (11) is a discrete form of the force balance equation (6). We can therefore
relate the parameters of the discrete model to the parameters and phenomenological quantities
used in equations (2) and (3). In the vicinity of the preferred cell density ρp % 2/(

√
3a2),

the pressure can be estimated as P % −
√

3V ′/a. The bulk elastic modulus is thus given by
χ %

√
3/2(V ′′ − V ′/a).

3.2. Oriented cell division and apoptosis

Cell division is implemented as a stochastic process. If cell i is dividing at time t , a new cell
is created and both cells are positioned with their centers on opposite sides of a circle with
radius ε = a/4 and center at the original position xi , see figure 1. The axis of cell division is
characterized by the angle ϕ ∈ [ − π/2, π/2] with respect to the x-axis. The cell division angle
ϕ is a random variable drawn from a distribution Q(ϕ). In the case of isotropic cell division,
Q(ϕ) = 1/π . Anisotropies of cell division are captured by a distribution Q with a peak at a
preferred orientation ϕ = 0, given by the x-axis, see figure 1. For simplicity, we use a piecewise
constant distribution function to describe anisotropies of cell division with Q(ϕ) = 1/(*ϕ) for
−*ϕ/2 < ϕ < *ϕ/2 and Q = 0 otherwise, i.e. *ϕ describes the spread of the division angles
around the x-axis. The anisotropic repositioning of the cell pair during division induces a force
dipole via the potential U (see equations (9) and (10)). On average, these force dipoles generate
the anisotropic active stress in the continuum limit described by equation (3).

The division and death events occur at stochastic times. Each cell has an internal clock
which measures its lifetime tL after which the cell divides with probability p and dies with
probability 1 − p. If cell i undergoes apoptosis, it is simply removed from the system. In our
simulations, the cellular lifetime obeys a Gaussian probability distribution R(tL) with average t̄L

and variance σL ( t̄L. The effective cell doubling time is t̄2 = t̄Lln 2/ln(2p). The growth rate kg

and the apoptosis rate ka in the continuum limit are related to the probability p and the average
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cell lifetime t̄L by

kg = p
2p − 1

ln 2p
t̄L

, (12)

ka = 1 − p
2p − 1

ln 2p
t̄L

. (13)

Therefore, the probability p for cell divisions obeys p = kg/(kg + ka).
After the repositioning or removal of cells corresponding to division and apoptosis, the

system relaxes according to the dynamic equation (11). In the absence of cell division and
apoptosis, there are no fluctuations in this model. As a consequence, the system relaxes in this
case to a stable configuration with elastic properties. As soon as cell division and apoptosis are
introduced, fluctuations appear as a consequence of stochastic events. The growing and dividing
system then behaves like a fluid where cells can change their neighbors. The resulting flow field
can on large scales be described by the continuum equations introduced above.

We solve the force balance equation (11) numerically for all cells i = 1, . . . , N with
stochastic cell division and cell death events drawn randomly from the probability p and
the distributions R(t) and Q(ϕ). At each time step, the velocities dxi/dt are calculated from
equation (11) using a matrix inversion, and the positions xi of all cells are updated. At the
boundary of the tissue, no external forces are imposed. All forces in equation (11) are internal
forces. Therefore, the motion of the center of mass x̄ = (1/N )

∑
i xi needs to be specified, and

x̄ is fixed in our simulations. As parameter values, we choose for all simulations the average cell
lifetime t̄L = 8 h, with standard deviation σL = 0.5 h, length ratios b/a = 1.25, d/a = 1.75, cell
diameter a = 2.6 µm, | f0/ f1| = 10 (see equation (10)), and nearest-neighbor number n = 6.
The spread *ϕ of the division angles around the x-axis is varied in our simulations and
specified in the figures below. Note that the viscosity η̄ as well as the forces f0 and f1 are not
themselves simulation parameters, because only the ratios f0/η̄ and f1/η̄ occur in the dynamic
equation (11). Together with the values given here, these ratios are specified by the values for
the dimensionless parameter ξ = η̄a/(t̄L f0), which are given in the figure captions. Simulations
in the absence of apoptosis (p = 1) start with a single cell at time zero. For simulations with
p < 1, we start with an initial configuration of 512 cells generated by isotropic growth.

3.3. Results of numerical simulations

We discuss shape changes and average cell trajectories obtained in our growth simulations. We
first consider the case where no apoptosis occurs (p = 1). The anisotropic shape of an epithelium
can be characterized by the variances of cell distributions Iab = (1/N )

∑
i(x (i)

a − x̄a)(x (i)
b − x̄b),

where x (i)
a denotes the components a = x and y of the vector xi . Figure 2 shows the increase

of the linear dimensions lx =
√

Ixx and ly =
√

Iyy as functions of time for two different angular
variations of cell division *ϕ. The tissue grows exponentially with different growth rates kx and
ky which depend on *ϕ, consistent with equation (7). Indeed, kx + ky % kg where kg = ln 2/t̄2,
independent of *ϕ, see figure 3 (inset). The dependence of k1 = (kx − ky)/2 as a function
of *ϕ is shown in figure 3 for three different values of the parameter ξ . Since χ % f0/a,
the dimensionless parameter ξ % η̄/(χ t̄2) characterizes the ratio of growth rate and cellular
relaxation rate. The anisotropic component of growth is given by k1/kg % α(π − *ϕ), where
α is the slope of the curves in figure 3. The coefficient α(ξ) depends weakly on ξ in a non-
monotonous manner, see figure 3. Since k1 % kgµ/(4η), we can determine µ/η % 4α(π − *ϕ)
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Figure 2. Anisotropic growth for different fluctuation amplitudes *ϕ of the
orientation of the cell division axis without apoptosis (p = 1). The characteristic
lengths lx and ly of the simulated tissue in x- and y-directions normalized by the
cell diameter a are displayed as functions of time t relative to the average cell
doubling time t̄2 = t̄L. Ten independent realizations are shown for each value of
*ϕ. The black lines represent linear fits from which the growth rates kx and ky

are determined. Parameter values are given in the text and ξ = 0.165.
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Figure 3. Anisotropic growth rate k1 = (kx − ky)/2 normalized by the total
growth rate kx + ky as a function of *ϕ for ξ = 0.00165 (red), ξ = 0.0165
(green) and ξ = 0.165 (blue). No apoptosis occurs (p = 1). The data points and
standard deviations are obtained from ten independent simulations for each set
of parameters. The inset shows the total growth rate kx + ky normalized by the
rate kg = ln 2/t̄2 defined by the average cell doubling time t̄2 = t̄L.

of the continuum limit. Figure 4 represents average trajectories of cells and their descendants in
the xy-plane. The double logarithmic plot reveals that the average positions exhibit a power law
as described by equation (8). We find that for each set of parameters, the slope of the linear fit
is indeed given by ky/kx .

We now consider the effects of apoptosis in tissues with anisotropic cell division. Figure 5
shows the shape changes of tissues for p = 0.5 and two different choices of *ϕ. In this case,
no net growth occurs since proliferation and apoptosis are balanced. Displayed are the relative
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Figure 4. Averaged cell trajectories in growing tissues without apoptosis (p =
1). The averages 〈log(x/x0)〉 and 〈log(y/y0)〉 of the positions (x, y) of all
descendants of an initial cell are displayed for different times during growth.
Coordinates are normalized with respect to the final positions (x0, y0). For three
values of *ϕ, two examples are displayed each. The black lines represent linear
fits which characterize the power law of equation (8). Simulations are performed
for ξ = 0.165 and cell trajectories are studied from the four-cell stadium on for
13 cell doubling times.

1. 0 
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l ,  ∆ϕ = π/6  x
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l ,  ∆ϕ = 5π/6  x
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  -t/ t   L 

0. 8 
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  l/ l   0 

Figure 5. Anisotropic tissue deformation for growth with balanced apoptosis
(p = 0.5). Data for two different fluctuation amplitudes *ϕ of the orientation
angles of cell division are shown. The lengths lx and ly normalized to their
corresponding initial values l(0)

x,y are plotted as a function of time t relative to
the average lifetime t̄L. For each value of *ϕ, ten independent realizations are
shown. The growth rates kx and ky are determined from linear fits (black lines),
and ξ = 0.00165 for all simulations.

changes in length of the principal axes lx/ l(0)
x and ly/ l(0)

y , where l(0)
x,y are the corresponding values

of the initial configuration. The logarithmic plot shows that the lengths lx and ly grow and
shrink exponentially with the rates kx and ky as described by equation (7). The total growth rate
kx + ky % 0, consistent with equal rates for cell division and cell death. As in the case without
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cell death, k1 = (kx − ky)/2 depends linearly on the variation of the cell division angle *ϕ (not
shown).

4. Discussion

In summary, we have shown that oriented cell division in a developing organ leads to anisotropic
tissue growth. The anisotropy of growth rates depends on biophysical properties of cells, in
particular, on tissue viscosity. Our continuum theory of an incompressible tissue predicts flow
fields and cell trajectories which describe well the average behaviors observed in stochastic
simulations of anisotropic growth. In our simulations, small differences between the observed
total growth rate kx + ky and the rate kg defined by the average cell doubling time arise as a result
of tissue compressibility.

The parameter values used in our growth simulations are motivated by studies of the wing
imaginal disk of the fruit fly. Key parameters are the bulk elastic modulus χ and the viscosity
η̄ of the 2D tissue. We estimate χ % χ3Dh % 6 10−3 N m−1, where χ3D % 200 Pa is the shear
modulus of a cell and h % 30 µm is the height of the epithelium. The choice ξ = 0.0165 thus
corresponds to a local two-dimensional tissue viscosity of η̄ % 3 N s m−1. Using the tissue height
h, this corresponds to a viscosity of η3D % 105 Pa s which is a typical value that has been reported
in experiments [10].

Our work shows that oriented cell division has interesting consequences for cell
rearrangements in a growing tissue. In the special case where apoptosis balances cell division,
the tissue does not grow but spontaneously undergoes a shear deformation similar to the
so-called convergence–extension transformations. Oriented cell division can therefore control
shape changes of tissues during development.
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