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Abstract. We discuss the motion of colloidal particles relative to a two-component fluid consisting of
solvent and solute. Particle motion can result from i) net body forces on the particle due to external
fields such as gravity; ii) slip velocities on the particle surface due to surface dissipative phenomena. The
perturbations of the hydrodynamic flow field exhibit characteristic differences in cases i) and ii) which
reflect different patterns of momentum flux corresponding to the existence of net forces, force dipoles or
force quadrupoles. In the absence of external fields, gradients of concentration or pressure do not generate
net forces on a colloidal particle. Such gradients can nevertheless induce relative motion between particle
and fluid. We present a generic description of surface dissipative phenomena based on the linear response of
surface fluxes driven by conjugate surface forces. In this framework we discuss different transport scenarios
including self-propulsion via surface slip that is induced by active processes on the particle surface. We
clarify the nature of force balances in such situations.

PACS. 65.20.De General theory of thermodynamic properties of liquids, including computer simulation
– 05.60.-k Transport processes – 47.10.-g General theory in fluid dynamics – 87.16.Uv Active transport
processes

1 Introduction

Motion of colloidal particles immersed in a fluid can be
driven by gradients of concentration even in the absence of
net body forces on the particle. In such situations, particle
motion results from relative motion between particle and
fluid induced by surface slip [1]. As a result, the particle
moves relative to the fluid without net force.

Physical mechanisms that underlie colloidal transport
in a fluid can also be used to drive the swimming of self-
propelling particles. Recently, several scenarios have been
discussed by which colloidal objects can self-propel. In the
case of self-electrophoresis, swimming in a fluid is driven
by self-generated electric dipole fields, acting at the fluid
particle interface [2,3]. Phoretic swimmers are driven by
a chemical reaction that is catalyzed in an asymmetric
manner on the particle surface [4–6]. The surface reaction
generates a concentration field near the particle which is
asymmetric. The propulsion results from surface slip gen-
erated by a local concentration gradient at the particle
surface. Active processes on a surface also propel many
cells and microorganisms. An important example is mo-
tion driven by motile cilia and other active cellular pro-
cesses [7]. In a coarse-grained description, the beating mo-
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tion of many cilia on a surface effectively generates surface
slip velocities that drive propulsion [8,9].

Here, we discuss a general theoretical framework to de-
scribe the motion of colloidal particles in a systematic and
controlled way. Our hydrodynamic description is based on
conservation laws and linear irreversible thermodynamics
in a two-component fluid. Extension to multicomponent
fluids is straightforward. The basic concepts discussed here
are well established [10–12]. However, some confusion in
the literature calls for clarification [13–15].

In Section 2, we review the general hydrodynamic
equations of a two-component fluid. We express the con-
servation laws for mass, energy and momentum and iden-
tify the conjugate fluxes and forces. The hydrodynamic
equations follow from a description of dissipative fluxes
driven by conjugate thermodynamic forces. In Section 3,
we discuss conditions for which concentration gradients
and pressure gradients can be generated and the time
scales during which they persist. A generic theory of dis-
sipative processes associated with slip velocities on a solid
surface that is in contact with a two-component fluid is
discussed in Section 4. Section 5 describes the motion of
a colloidal particle in pressure gradients and concentra-
tion gradients. Self-propulsion of a colloidal object due
to self-generated concentration gradients as well as due
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to active surface processes are discussed in Section 6. We
conclude our work with a discussion.

2 Hydrodynamics of a two-component fluid:
Concentration gradients and force balances

In order to define all basic concepts clearly, we first review
the hydrodynamics of a two-component fluid character-
ized by a hydrodynamic flow field and diffusive fluxes. Us-
ing the systematic formulation of hydrodynamic equations
based on irreversible thermodynamics [10], we follow the
discussion presented in [16]. The fluid consists of solvent
a and solute b with concentrations (numbers of molecules
per unit volume) na and nb. The molecular masses of the
two components are ma and mb, respectively. We consider
the incompressible case where the molecular volumes va

and vb are constant.

Conservation laws and entropy production

The molecular concentrations satisfy the conservation
laws

∂ni

∂t
+ ∇ · Ji = 0, (1)

with i = a, b, where Ji denote particle currents. The mass
density of the fluid is ρ = (1−φ)ma/va+φmb/vb. Here φ =
nbvb is the volume fraction of the solute. Incompressibility
implies that nava + nbvb = 1. Mass conservation can be
expressed as

∂ρ

∂t
+ ∇ · (ρv) = 0, (2)

where the hydrodynamic flow velocity v is the velocity of
the center of mass of local volume elements. The particle
currents can be decomposed in a center-of-mass flux and
a relative flux j = jb = −ja:

Ji = niv +
ji

mi
. (3)

Momentum conservation is described by the balance equa-
tion for the momentum density ρv

∂t(ρvα) − ∂βσαβ = −ρgδαz, (4)

where the stress tensor σαβ is the (negative) momen-
tum flux tensor and the momentum source corresponds to
gravitational forces with gravitational acceleration g. The
z-axis is oriented along the vertical direction, opposite to
the gravitational field.

Dissipation in the system is related to entropy produc-
tion. The balance of the entropy density s reads

∂s

∂t
+ ∇ · Js = θ, (5)

where Js is the entropy flux and θ ≥ 0 is the local rate
of entropy production per unit volume. Since energy is
conserved, the energy density u obeys

∂u

∂t
+ ∇ · Ju = 0, (6)

where Ju denotes the energy flux. The balance of the free-
energy density f = u − Ts therefore reads

∂f

∂t
+ ∇ · (Ju − TJs) = −Tθ. (7)

This implies that for an isothermal system, which we con-
sider here for simplicity, the rate of entropy production is
related to the rate of change of the free energy up to sur-
face terms. Considering a free-energy density of the form
f(na, nb,v, z) = (1/2)ρv2 +ρgz + f0(na, nb), the total en-

tropy production rate Ṡ =
∫

d3rθ is then given by

T Ṡ = −

∫

d3r

(

∂

∂t

[

1

2
(ρv2) + ρgz

]

+
∑

i

∂ni

∂t
μi

)

+

∫

∂Ω

dAn · (TJs − Ju)

=

∫

d3r
(

σd
αβuαβ − j · ∇μ̄

)

, (8)

where μi = ∂f0/∂ni are the chemical potentials of the
components [10,16]. The last line can be obtained by us-
ing the conservation laws and the Gibbs-Duhem relation
dP = nadμa + nbdμb. Boundary terms generated by par-
tial integrations cancel the surface term in the first line
of equation (8). Here, ∂Ω denotes the boundary surface
of the volume and n a vector normal to the boundary
pointing out of the volume. The hydrostatic pressure is
denoted P .

The conjugate thermodynamic fluxes and forces are
thus the pairs σd

αβ , uαβ and j, −∇μ̄, where uαβ = (∂αvβ +

∂βvα)/2 is the symmetric part of the tensor of velocity gra-
dients and the dissipative part of the stress tensor is given
by σd

αβ = σαβ + Pδαβ + ρvαvβ . The relevant chemical po-

tential is the difference μ̄ = μb/mb − μa/ma. Expressions
for μa and μb in a simple model are given in Appendix A.

To linear order, the dissipative fluxes σd
αβ , jα depend

on the thermodynamic forces uαβ , ∂αμ̄ as

jα = −γ∂αμ̄, (9)

σd
αβ = 2η

(

uαβ −
1

3
uγγδαβ

)

+ η̄uγγδαβ . (10)

Here, the viscosities η, η̄ and the dissipative coefficient γ
have been introduced.

Hydrodynamic equations

Using equation (9), the solute current can be expressed as

Jb = −D∇nb − γ̃∇P + vnb. (11)

Here, D = (γ/mb)∂μ̄/∂nb|P is the diffusion coefficient of
the solute and γ̃ = (γ/mb)∂μ̄/∂P |nb

≃ (γ/mb)(va/ma −
vb/mb) describes the effects of pressure gradients on so-
lute molecules. In the limit of small solute concentration
nbvb ≪ 1, the dissipative coefficient scales as γ ≃ ξm2

bnb,
where ξ is a mobility of solvent molecules. This scaling
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implies that solvent molecules contribute independently
to dissipation, no interactions occur. In this limit, equa-
tion (11) becomes a drift-diffusion current for independent
solute molecules, see Appendix B.

From the force balance (4) and relation (10) there fol-
lows the hydrodynamic equation of the barycentric flow
field

ηΔv +
(

η̄ −
η

3

)

∇(∇ · v) = −∇P + ρgêz, (12)

where êz is a unit vector in the z-direction and inertial
forces have been neglected. Incompressibility of the fluid
implies that the molecular volumes va and vb are constant
parameters. Since the density ρ = (1−φ)ma/va +φmb/vb

depends on the solute volume fraction φ, the divergence

∇ · v = −
Δρ

ρ

(

∂

∂t
+ v · ∇

)

φ (13)

does not vanish. Here, Δρ = mb/vb − ma/va is the den-
sity difference of pure solute and solvent. In the incom-
pressible system, the pressure profile P plays the role of
a Lagrange multiplier function that is determined such
that the corresponding flow satisfies the incompressibility
condition (13).

Thermodynamic equilibrium

The two-component fluid settles and eventually reaches
an equilibrium state. At equilibrium, both the flow ve-
locity v and current Jb vanish. The hydrostatic pressure
obeys ∂zP = −gρ(z). The solute height profile nb(z) at
equilibrium satisfies the relation

μ̄(nb(z), P (z)) = const (14)

and is independent on the dissipative coefficients. In the
limit of small solute concentration nbvb ≪ 1, the solute
height profile becomes a barometric distribution nb(z) =
n̄e−z/ℓ with characteristic length ℓ = kBT/(Δρgvb), see
Appendix B.

3 Steady-state gradients

We now consider a simple geometry to discuss the
main features of steady flows and concentration gradients
which can be maintained stationary over long times in a
two-component fluid but are intrinsically nonequilibrium
states. A fluid-filled channel of height e along the x-axis,
and infinite extension in the y-direction, is connected at
both ends to reservoirs with different solute concentra-
tions nb or volume fractions φ = nbvb, see Figure 1. The
left reservoir is filled with fluid of solute volume fraction
φ1 up to a height h1, the right reservoir up to a height h2

at volume fraction φ2. We consider well-stirred reservoirs
such that the solute volume fraction φ is uniform in each
reservoir. Under such circumstances, φ is also constant in
time for short enough times as discussed below.

Fig. 1. Fluid channel of height e and length L between two
reservoirs of width w, filled with fluid of volume fractions φ1

and φ2 and heights h1 and h2. In such a setting, gradients of
pressure or concentration can be maintained over long times.
Such gradients can drive the motion of an immersed colloidal
particle P .

For these conditions, the mass densities in the reser-
voirs are ρ1,2 = (1−φ1,2)ma/va+φ1,2mb/vb. The pressures
in the reservoirs are given by P1 = ρ1g(h1 − z) + P0 and
P2 = ρ2g(h2 − z)+P0, where P0 denotes the outside pres-
sure. For h1,2 ≫ e, the pressure gradient in the channel
generated by the reservoirs is given by

∂xP ≃ g(ρ2h2 − ρ1h1)/L. (15)

We consider in the following two complementary cases.

Case (A): concentration gradient in the absence of
barycentric flows

In this case, the pressures on each side are balanced,
h1ρ1 = h2ρ2, and therefore, ∂xP = 0, and no flow ex-
ists, v = 0. In this case, after an initial relaxation process
of duration tr ≃ L2/D, the concentration profile in the
channel becomes a linear gradient

∂xφ = (φ2 − φ1)/L. (16)

The corresponding diffusion current is

(Jb)x = −D
φ2 − φ1

Lvb
. (17)

This current is maintained on time scales short com-
pared to the equilibration time between reservoirs td ≃
hwL/(eD), where w and h are reservoir width and height,
respectively. This time can be made arbitrarily long. This
linear concentration gradient also applies to good approx-
imation for weak flows if D/vx ≫ L. For larger flow ve-
locities, nonlinear concentration fields occur.

Case (B): flow without concentration gradient

In this case, the volume fractions and mass densities are
equal in both reservoirs, φ1 = φ2 and ρ = ρ1 = ρ2. For
h1 �= h2, a pressure gradient and a corresponding hydro-
dynamic flow exist: v = (vx, 0, 0) with ∇ · v = 0. The
corresponding solution to equation (12) is

vx(z) ≃
1

2

gρ(h2 − h1)

ηL
z(z − e). (18)
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In this situation, the solute concentration nb in the chan-
nel is constant. A solute current exists, (Jb)x = nbvx(z) +
γ̃∂xP , which consists of a convective part and a dissipative
flux relative to the fluid flow. This barycentric flow and
solute current are maintained during the shortest of the
times td ≃ hwL/(eD) and tc ≃ wLη/(e3ρg). Note again
that these times can be arbitrarily large.

4 Dissipative interfacial processes: Surface
slip velocities

A colloidal particle that is immersed in a two-component
fluid as described above can be set in motion as a result
of nonequilibrium conditions provided by either a pres-
sure gradient or a solute gradient. In order to determine
the velocity of the bead relative to the flow, and the cor-
responding perturbation of the flow field, the hydrody-
namic equations of the fluid are solved with appropriate
boundary conditions applied at the particle surface. These
boundary conditions can be systematically derived by ex-
pressing surface dissipation at the fluid particle interface
and writing generic Onsager relations for conjugate forces
and fluxes at the interface.

We consider a solid substrate in contact with a two-
component fluid. We use a coordinate system with z de-
noting the distance from the solid surface along the normal
direction. In the interface, we average all quantities over
the thickness d in which properties differ from bulk prop-
erties. This procedure is valid when d ≪ R, where R−1 is
a local curvature of the interface. The interface dissipation
rate reads (see App. D)

T Ṡ =

∫

dA

(

1

2
σs

izv
s
i − js

i ∇iμ̄
s + rsΔμ

)

. (19)

Here, the indices i, j denote directions parallel to the
interface. The superscripts s indicate that surface fields
are considered, vs

i = vi(z = 0) and σs
iz = σiz(z = 0).

Note that we have neglected for simplicity surface viscos-
ity and js

i is a surface current with units of mass per length
and time. To keep our discussion simple, we consider here
the case where the interface equilibrates rapidly with the
fluid [1], μ̄s = μ̄(z = 0) and material exchange between
interface and fluid can be neglected, vz(z = 0) = 0 and
jz(z = 0) = 0.

In addition to the two conjugate fluxes and forces al-
ready discussed, we have added here the term rsΔμ which
describes an active process on the interface which can pro-
pel a swimmer. An example from biology would be a large
number beating of cilia on the particle surface. The active
process is driven by a chemical fuel (which in a living cell
would be ATP) with chemical potential difference between
fuel and product Δμ. The conjugate flux rs denotes the
rate of fuel consumption per unit area of the surface. The
active process can only contribute to net motion genera-
tion if the surface has a vectorial asymmetry which, for
example, determines the direction of the active stroke of
a cilium along the surface. This direction is characterized
by a normalized vector pi tangent to the surface.

The three pairs of conjugate fluxes and forces are re-
lated to linear order by

vs
i = νσs

iz − α∇iμ̄
s + piζΔμ, (20)

js
i = −ασiz − γs∇iμ̄

s + piζ
′Δμ, (21)

rs = ζpiσ
s
iz + ζ ′pi∇iμ̄

s + ΛΔμ, (22)

where the coefficients satisfy Onsager symmetry relations.
We observe that there exists in general a finite slip velocity
vs

i at the surface. The coefficient ν can be characterized
by the related “slip length” b = νη, which is the distance
from the surface at which an effective no-slip boundary
condition applies. The coefficient γs is related to surface
diffusion and α is a dissipative coefficient which couples
surface flows to relative fluxes between solvent and solute.
The coefficients ζ and ζ ′ describe the coupling of the active
process on the surface to the two-component fluid.

We now consider the case ζ = 0 and ζ ′ = 0. We further-
more assume that the slip length vanishes, ν = 0, which
implies that there is no slip in the absence of a chemical
potential gradient. There remains a surface slip velocity
driven by chemical potential gradients and pressure gra-
dients, which as in the bulk can be expressed as

vs
i = −κ∇in

s
b − κ′∇iP

s. (23)

Here κ = (α/mb)(∂μ̄/∂nb)|z=0 and κ′ = (α/mb)(∂μ̄/
∂P )|z=0. For a specific interface model, the coefficient κ
has been expressed as κ ≃ kBTλ2/η [1], where the length
scale λ is related to the range of the potential describ-
ing interactions between solute molecules and the particle
surface and is of the order of the interface thickness d.

5 Colloidal transport

We now consider a spherical colloidal particle of radius a
which is subject to the solute concentration gradient or
pressure gradient. We are interested in the particle veloc-
ity vp = vx+Δv in the x-direction in the laboratory frame
where Δv is the velocity difference between particle and
flow. These velocities can be determined by solving the
Stokes equation (12) with the appropriate slip boundary
conditions on the particle surface.

In the following, we consider the case where the par-
ticle is far from any walls which allows us to ignore the
effects of boundaries of the channel in which the particle
is placed. We ignore sedimentation of the particle in the
gravitational field in the z-direction. We discuss two cases
(A) and (B) described above.

(A) Concentration gradient in the absence of barycen-
tric flows

In the presence of a constant concentration gradient
∂xnb = (φ1−φ2)/(Lvb), a slip velocity at the particle sur-
face is generated. We consider the case of zero slip length
b = 0 and no active process Δμ = 0. In spherical coor-
dinates of the particle r, θ, where θ measures the angle
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with respect to the gradient direction along the x-axis,
and r is the radial distance from the particle center, the
slip velocity vs = vs(θ)eθ, is given by

vs(θ) = −κ sin(θ)∂xnb, (24)

where eθ is a unit vector in the θ direction tangential to
the sphere. Using the boundary conditions vθ(r = a, θ) =
vs(θ) and vr(r = a, θ) = 0, the flow field around a spheri-
cal particle is given by (see App. E)

vr(r, θ) = −Δv

(

1 −
a3

r3

)

cos(θ),

vθ(r, θ) =
Δv

2

(

2 +
a3

r3

)

sin(θ), (25)

where we have used for simplicity the condition ∇ · v = 0
which is, according to equation (13), satisfied if va/ma =
vb/mb. The relative velocity between particle and fluid far
from the particle is

Δv = (2κ/3)∂xnb. (26)

There is no body force acting on the particle, fp = 0, see
Appendices E and F. The flow field perturbation decays
as ∼ 1/r3 for increasing r and thus faster than a Stokeslet
which decays as ∼ 1/r and is the signature of a net force.
The decay ∼ 1/r3 corresponds to a source doublet and
implies that a force quadrupole is exerted by the particle
on the fluid. Here, no force dipole exists. In more general
situations, a force dipole also exists, which correspond to
a decay of the velocity ∼ 1/r2, see Appendix E. Note that
a force dipole does not contribute to propulsion but domi-
nates the far field. Note also that there are no forces due to
osmotic pressures acting on a particle in a concentration
gradient, see Appendix C.

(B) Flows in the absence of concentration gradients

In the presence of a pressure gradient ∂xP , a parabolic
flow profile (18) is generated. If we can ignore the effects
of walls, and if no surface slip occurs, the relative velocity
of the particle with respect to the flow Δv1 = vp − vx can
be determined by Faxens law as [17] (see App. E)

Δv1 =
3a2∂xP

4η
. (27)

Surface slip induces an additional component Δv2 to the
relative motion between fluid and particle. For vanishing
slip length b = 0, the only contribution to the slip is
vs

i = −κ′∇iP
s. The boundary conditions in a coordinate

frame co-moving with the particle are vr(θ, r = a) = 0 and
vθ(θ, r = a) = −κ′ sin(θ)∂xP . The flow field perturbation
generated by surface slip is given by equation (25) with
Δv = Δv2 = (2κ′/3)∂xP .

On dimensional grounds, one expects κ′ ≃ −d̄2/η,
where the length d̄ is of order d. By superimposing the

flow field (18) with the perturbation by the particle Δv1

and Δv2, the overall particle velocity is

vp ≃ −

[

e2

8η
−

a2

12η
+

2d̄2

3η

]

g(ρ2h2 − ρ1h1)

L
, (28)

which is entirely driven by the pressure gradient. No net
body force fp acts on the particle, see Appendix F. Note
that the convective term is large compared to Δv1 which
is in turn large compared to Δv2. The existence of Δv1 is
yet important since it can lead to separation of particles
according to their size.

6 Self-propulsion

Propulsion by self-generated concentration gradients

A chemical reaction catalyzed on the particle surface can
generate local concentration gradients which propel the
particle [4,5]. To describe situations where the particle
catalyzes a reaction involving two solvent species, at least
a three-component fluid description is required. However,
the basic physics of self-propulsion can be captured by our
two-component fluid if we assume that a surface reaction
transforms molecules of type a into molecules of type b. In
this case, we consider two components with equal molec-
ular masses ma = mb to satisfy mass conservation. The
molecular volumes va and vb can in general differ. A lo-
cal reaction rate S per unit area at which a molecules are
transformed in b molecules on the particle surface implies
the boundary conditions for the molecular fluxes normal
to the particle surface

(Jb)z(z = 0) = −(Ja)z(z = 0) = S (29)

in the reference frame where the particle is at rest. The
corresponding boundary condition for the center-of-mass
velocity is vz(z = 0) = 0.

The nonlinear convective term in the flux equa-
tion (11), couples the concentration and flow fields. In
the limit of small Peclet number Pe = Δv a/D, we can
neglect this convective nonlinearity. The stationary con-
centration field is then solution to the diffusion equation
∇2φ = 0 [4,5]. For the simple choice of an asymmetrically
distributed reaction rate S(θ) = S0 cos(θ), the solution for
the boundary conditions specified above is given by

nb(r, θ) =
S0a

3

2Dr2
cos(θ) + n∞

b , (30)

where n∞

b denotes the concentration far from the parti-
cle. This concentration field induces, according to equa-
tion (23), the surface slip velocity

vs(θ) =
κS0

2D
sin(θ), (31)

which is independent of particle radius. The corresponding
hydrodynamic flow field for the case va = vb for which
∇ · v = 0 is given by equation (25) with

Δv =
κS0

3D
. (32)
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The pressure P is constant and there is no net body force
fp acting on the particle.

For finite Peclet number, there exist no simple solu-
tions to this nonlinear problem since the convection veloc-
ity in equation (11) is given by the hydrodynamic flow field
described by equation (12). The latter in turn is coupled
to the concentration field nb via the surface slip driven
by the chemical reaction. Here, we focus on the scaling
behavior of the propulsion velocity for large Pe. The hy-
drodynamic flow relative to the particle is of order Δv.
This defines a length scale ℓ ≃ (Da/Δv)1/2 ≪ a which
characterizes the thickness of the boundary layer near the
particle in which the concentration field is different from
n∞

b by a variation of order Δnb ≃ ℓS0/D. The resulting
slip velocity is of the order Δv ≃ κΔnb/a. By combining
these expressions, we obtain

Δv ≃
κ2/3S

2/3
0

D1/3a1/3
. (33)

The velocity thus increases for large Pe less than linearly
as a function of S0 and becomes dependent on the particle
size a. For Pe = 1, the relations (32) and (33) match,
except for a dimensionless prefactor.

Propulsion by active surface processes

Many microorganisms swim by using a large number of
cilia attached to the surface which generate periodic beat-
ing movements that are driven by molecular motors that
consume a chemical fuel [7]. In a coarse-grained picture
where the cilia are active elements within the interface
between swimmer and fluid, the motion of the cilia ef-
fectively generates a surface slip velocity of the flow. In
our generic description this surface slip is captured by the
term vs

i ≃ piζΔμ in equation (20). Here, the tangent vec-
tor pi describes the direction along which the cilium gen-
erates a flow and ζ is a coupling coefficient between the
free energy Δμ driving the motors and the surface flow.
In this scenario, the slip pattern on the surface of the
swimmer is determined by the ciliar beat direction and
strength.

For given surface slip pattern and corresponding hy-
drodynamic flows with ∇·v = 0, the velocity of the swim-
mer can be determined without explicit calculation of the
flow field. For a spherical particle it is given by [18]

Δv =
1

4πa2

∫

dAvs. (34)

Similarly, the rotation rate and axis (which can exist for
a surface slip velocity field lacking axial symmetry) are
described by [18]

Ω =
3

8πa3

∫

dAn × vs, (35)

where n is a unit vector normal to the surface and Ω

points in the direction of the rotation axis. Again, this
translational and rotational motion occur relative to the

fluid without a net body force and torque acting on the
swimmer. For the simple example with pi a unit tan-
gent vector in the θ direction and ζ = ζ0 sin(θ), we have
Δv = (2/3)ζ0Δμ and again the flow field perturbation of
equation (25).

7 Discussion

We have presented a generic description of colloidal trans-
port to clarify the force balances involved and the role
of interfacial slip. The simplest form of transport occurs
if relative external body forces fp are applied to a par-
ticle. External body forces, such as those due to grav-
itation, correspond to source terms in the momentum
balance (4). As a result, the particle moves at a speed
Δv relative to the fluid and experiences Stokes friction
fp = 6πηaΔv. The corresponding perturbation of the fluid
flow at large distances is given by a Stokeslet which decays
as 1/r.

In the absence of external fields, a colloidal particle
in a fluid is force free, fp = 0, even if concentration or
pressure gradients exist. In this case a colloidal particle
nevertheless moves relative to the fluid at a velocity Δv if
there is a slip of the flow at the surface of the particle. Such
slip is generated by surface dissipative phenomena [1]. We
have shown that Onsager relations on the solid surface
determine the boundary conditions for the hydrodynamic
equations in the bulk. This description can account for a
variety of phenomena, including a slip length, slip induced
by concentration or pressure gradients as well as slip due
to active processes on the particle surface, within a unified
framework.

Our generic description can be generalized to elec-
tric fields, which requires replacing chemical potentials
with electrochemical potentials and using a multicompo-
nent description which keeps track of the different ion
species and electrostatics. Effects in the presence of elec-
tric fields include electrophoresis of charged particles.
Since a charged particle is screened beyond an electric
double layer of counter ions, it is effectively neutral. Elec-
trophoresis is thus another example where no force acts on
a particle (including the layer of counter ions) and elec-
trophoretic motion results thus from surface slip [1,19].

For simplicity, we have limited our discussion to
isothermal systems. A generalization to situations where
temperature gradients occur is straightforward [10]. It im-
plies the existence of an additional pair of conjugate ther-
modynamic variables, namely the temperature gradient
and the heat flux. As a consequence, additional dissipa-
tive couplings exist in equations (20) and (21). Tempera-
ture gradients ∇iT tangential to the interface can directly
generate surface slip vs

i and currents js
i . Therefore, tem-

perature gradients also contribute to propulsion, a phe-
nomenon called thermophoresis or Soret effect [10].

Our arguments are relevant for mechanisms of self-
propulsion of colloidal particles. Self-propulsion implies
that motion occurs in the absence of externally applied
forces. This is possible if a particle self-generates a surface
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slip velocity by active processes on or near the particle sur-
face. These include the action of cilia and flagella in the
case of swimming microorganisms [7] or the generation of
a concentration gradient by surface chemical reactions [6].
The main effect of the surface slip is to generate a rela-
tive motion between particle and fluid. In the general case,
this relative motion is associated with a flow field pertur-
bation that decays as ∼ 1/r2, corresponding to a force
dipole exerted by the particle on the fluid which however
does not contribute to propulsion. If no force dipole ex-
ists, such as in the case described by equation (25), the
flow perturbation decays as ∼ 1/r3. This flow perturba-
tion corresponds to a force quadrupole acting on the fluid.
In all cases there is no net external force acting on the
particle.

In a recent publication it has been claimed that self-
generated concentration gradients generate a force on a
particle by osmotic pressure gradients which is balanced
by Stokes friction [15]. Clearly, no force is exerted on a
particle in a concentration field by osmotic pressure, see
Appendix C. The scenarios proposed in [13–15] where a
net force is balanced by hydrodynamic friction violate mo-
mentum conservation, see Appendix F. Note that surface
tension gradients can also not generate net forces. Note
also that for a solid colloidal object with patterned sur-
face properties, gradients of surface tension can exist un-
der equilibrium conditions. Such surface tension gradients
correspond to surface stresses which are balanced by elas-
tic stresses in the solid but do not contribute to propulsion
(see App. D). Our generic description of colloidal trans-
port can serve to clarify these and related points in a sys-
tematic way.

We thank Ramin Golestanian for stimulating discussions and
Siegfried Dietrich for bringing references [13,14] to our atten-
tion. F.J. thanks Friederike Schmidt, Holger Stark and Andrej
Vilfan for stimulating discussions on the hydrodynamic flow
perturbations generated by colloidal particles and swimmers.

Appendix A. Entropy of mixing and chemical
potentials

The properties of the chemical potentials can be dis-
cussed using a simple model for a two-component fluid
with a free energy in the rest frame F0(Na, Nb, V ) =
V f0(Na/V,Nb/V ), where V denotes volume, with

f0(na, nb)=kBT

(

na ln
nava

nava+nbvb
+nb ln

nbvb

nava+nbvb

)

+
χ

2
(nava + nbvb − 1)

2
. (A.1)

Here, the first term describes the entropy of mixing of
two components with molecular volumes va and vb, the
second term describes the compressibility of the fluid by
the coefficient χ. Interactions between the two components
are neglected. The chemical potentials μi = ∂f0/∂ni are

given by

μa(na, nb) = kBT

(

ln
nava

nava + nbvb
+

nb(vb − va)

nava + nbvb

)

+vaχ(nava + nbvb − 1), (A.2)

μb(na, nb) = kBT

(

ln
nbvb

nava + nbvb
+

na(va − vb)

nava + nbvb

)

+vbχ(nava + nbvb − 1). (A.3)

The pressure P = −(∂F0/∂V )|Na,Nb
= −f0 +μana +μbnb

is

P (na, nb) =
χ

2
((nava + nbvb)

2 − 1). (A.4)

Using the pressure, the solvent density na can be elimi-
nated. In the incompressible limit of large χ, nava+nbvb =
1 and we obtain

μa(nb, P )≃kBT (ln(1−nbvb)+nb(vb−va))+Pva, (A.5)

μb(nb, P )≃kBT (ln(nbvb)+na(va−vb))+Pvb. (A.6)

Appendix B. Limit of small solute
concentration

The solute flux is driven by gradients of the chemical po-
tential difference μ̄ = μb/mb − μa/ma,

Jb = −
γ

mb
∇μ̄ + nbv. (B.1)

In the limit nbvb ≪ 1 of small solute concentration,

μ̄(nb, P ) ≃
kBT

mb
ln(nbvb) +

(

vb

mb
−

va

ma

)

P. (B.2)

For small nb, solute particles become independent of each
other and dissipation takes place independently for each
solute particle. Therefore, γ ≃ ξm2

bnb, where ξ is a mobil-
ity per solute molecule. We thus find

Jb ≃ −D∇nb − γ̄nb∇P + nbv, (B.3)

where

γ̄ ≃ ξmb(vb/mb − va/ma),

D ≃ ξkBT. (B.4)

In the limit of small nbvb, the pressure gradient is approx-
imately constant ∂zP = −ρg ≃ −gma/va. For v = 0, the
height profile is

nb = n̄e−z/ℓ, (B.5)

with ℓ = Dva/(γ̄mag). Using equation (B.4), we obtain
ℓ = kBT/(Δρgvb) and (B.5) is the barometric height dis-
tribution.
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Appendix C. Osmotic pressure

Osmotic pressures are a consequence of a semipermeable
interface which separates the fluid in two compartments
(1) and (2). The solvent passes this interface, which is
impermeable to the solute. As a consequence, across the
interface the chemical potential of the solvent is balanced,

μ
(1)
a = μ

(2)
a . However, the solute chemical potentials do

not balance μ
(1)
b �= μ

(2)
b .

The solvent chemical potential is, according to equa-
tion (A.5), in the limit of small nbvb given by μa ≃
−kBTnbva +Pva. The balance of solvent chemical poten-
tials implies the existence of an osmotic pressure difference
across the semipermeable membrane

P (2) − P (1) = kBT
(

n
(2)
b − n

(1)
b

)

. (C.1)

Note that the hydrostatic pressure difference appears only
after the balance of the chemical potential of the solvent
is reached and that the corresponding momentum source
is provided by the membrane.

Appendix D. Force balance and dissipation
at an interface

We consider dissipation and force balances in an interfacial
region of thickness d between two phases in which mate-
rial properties differ from those in the two bulk phases.
The coordinate normal to the interface is denoted z. A
relative slip velocity can occur at an interface. The lo-
cal center-of-mass velocity tangential to the interface at
z = ±d/2 is denoted v±

i , respectively. Dissipation due to
interfacial slip

vs
i = v+

i − v−

i (D.1)

can be expressed as

T Ṡ ≃

∫

dA

∫ d/2

−d/2

dz
∂zvi

2
σiz ≃

1

2

∫

dAσs
izv

s
i . (D.2)

The interfacial shear stress σs
iz = ǫσ+

iz + (1 − ǫ)σ−

iz

is a weighted average of σ±

iz. The value of 0 < ǫ < 1
depends on the internal structure of the interface. The
conjugate thermodynamic variables are thus vs

i and σs
iz.

The corresponding Onsager relation reads

v+
i − v−

i = ν
(

ǫσ+
iz + (1 − ǫ)σ−

iz

)

, (D.3)

where ν is the corresponding dissipative coefficient.
The force balance in the interfacial region ∂βσαβ = 0

implies
∫ d/2

−d/2

dz (∂zσiz + ∂jσij) = 0. (D.4)

This implies the interfacial force balance

σ+
iz − σ−

iz = −∂iΣ, (D.5)

where the interfacial tension (for isotropic stresses in the
tangent plane) is

Σ =
1

2

∫ d/2

−d/2

dz σkk. (D.6)

In the absence of interfacial tension gradients ∂iΣ, the
shear stress is continuous across the interface σs

iz = σ+
iz =

σ−

iz and the slip velocity is simply given by vs
i = νσ+

iz as in
equation (20). For a liquid in contact with an inhomoge-
neous solid surface, gradients of surface tension can exist
at equilibrium where they do not contribute to flows. This
corresponds to ǫ = 1 for which at equilibrium σ+

iz = 0, no
shear stress is exerted on the fluid, and σ−

iz = ∂iΣ is bal-
anced by elastic stresses in the solid. In particular a col-
loidal particle grafted asymmetrically with an amphiphile
does not move. Note, however, that a drop deposited on a
substrate with a surface tension gradient does move: the
above described force balance breaks down at a triple line.

Appendix E. Hydrodynamic flow fields with
axial symmetry

Solutions to the Stokes equation (12) for axisymmetric
incompressible flows with ∇·v = 0 can be expressed using
the stream function ψ [17]. In spherical coordinates, the
velocity field is related to the stream function ψ(r, θ) by

vr = −
1

r2 sin θ

∂ψ

∂θ
, (E.1)

vθ =
1

r sin θ

∂ψ

∂r
. (E.2)

The stream function satisfies the differential equation
E4ψ = 0, where

E2ψ =

(

∂2

∂r2
+

sin θ

r2

∂

∂θ

1

sin θ

∂

∂θ

)

ψ. (E.3)

Simple solutions are given by

ψ = sin2 θ

(

A1r
4 + A2r

2 + A3r +
A4

r

)

, (E.4)

where A1, . . . , A4 are constant parameters determined by
boundary conditions. The corresponding pressure field is
given by P = −η cos θ(20A1r +2A3/r2)+P∞, where P∞

is the pressure far from the particle. The body force acting
on the particle which is balanced by forces exerted by the
hydrodynamic flow is fp = −8πηA3 [17].

In case (A), we determine a solution of the form
given by equation (E.4) with vθ(r = a) = vs(θ) and
vr(r = a) = 0 in the reference frame moving with the
sphere. For large r, we require motion at constant veloc-
ity Δv in the negative x-direction, vr ≃ −Δv cos(θ) and
vθ ≃ Δv sin θ. From the latter conditions, it follows that
A1 = 0, and 2A2 = −Δv. Because there is no external
force acting on the particle, fp = 0 and thus A3 = 0.
The boundary conditions on the particle surface imply
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A4 = −A2a
3 and 3A2 = −(κ/vb)∂xφ. The corresponding

flow is given by equation (25). The perturbation of the
flow velocity decaying as ∼ 1/r3 corresponds to a source
doublet [17,20] and implies that a force quadrupole is ex-
erted by the particle on the fluid.

In case (B), we superimpose the flow (18) driven by
an applied pressure gradient with the velocity Δv1 due
to the perturbation of the Poiseuille flow by the sphere
and the relative velocity Δv2 due to interfacial slip. The
velocity Δv1 can be estimated from Faxens theorem which
expresses the force on the particle as

fp
x = 6πηa(vp − v0

x) + πa3∇2v0
x, (E.5)

where v0
x denotes the unperturbed parabolic flow field. No

force acts on the particle, fp
x = 0, which determines the

relative velocity Δv1 = vp −v0
x. This flow is superimposed

with a flow driven by slip boundary conditions (25) as
described for case (A).

If a net body force fp acts on the particle with no slip,
the boundary conditions are vr(r = a) = 0 and vθ(r =
a) = 0 which require 3A4 = A3a

2 and A2 = −(2/3)A3.
From the asymptotic behavior, it follows that A1 = 0 and
2A2 = −Δv. This implies fp = 6πηaΔv and the flow field
is given by

vr(r, θ) = −Δv

(

1 −
3

2

a

r
+

a3

2r3

)

cos(θ),

vθ(r, θ) = Δv

(

1 −
3

4

a

r
−

a3

4r3

)

sin(θ). (E.6)

In addition to the force monopole, this flow contains again
a contribution from a source doublet implying a force
quadrupole.

The equation E4ψ = 0 for the flow also has the solu-
tion

ψ = − cos θ sin2 θ(B1 + B2/r2). (E.7)

The corresponding flow field is vr = (3 cos2 θ−1)(B1/r2 +
B2/r4) and vθ = B2 sin(2θ)/(2r4) [9]. The condition
vr(r = a) = 0 that the radial flow vanishes on the parti-
cle surface imposes B2 = −B1a

2. The decay of the radial
component proportional to ∼ 1/r2 corresponds to a stokes
doublet which implies the action of a force dipole on the
fluid [20]. This force dipole dominates in the far field over
the force quadrupole. For an arbitrary distribution of sur-
face slip vθ(r = a) = vs(θ), a force dipole exists in general.
The force dipole vanishes by symmetry if the surface slip
is a symmetric function vs(θ) = vs(π − θ) such as is the
case for vs ∼ sin(θ) described by equation (25). Note that
the flow perturbation corresponding to a force dipole does
not contribute to propulsion by symmetry.

Appendix F. General considerations
concerning the existence or non-existence
of a Stokeslet in a velocity field carrying a
particle

Consider a particle of any shape, including arbitrary topo-
logical genus, immersed in a multi-component fluid flowing

in a container of complex geometry possibly of non-trivial
topology. The fluid is submitted to an external force of
density gf,ext

α and the particle to the force density gp,ext
α .

The momentum flux in the fluid is characterized by a
stress tensor σαβ . The total force acting on the particle
reads:

f tot
α =

∫

Vp

gp,ext
α dV +

∫

Sp

σαβdAβ . (F.1)

Here, the integration volume Vp and surface Sp refer to
the particle and the surface elements dAβ are oriented to
point outward from the particle. The particle dynamics is
mẍα = f tot

α , where xα is the particle position and m is the
particle mass. In the Stokes limit where inertial terms can
be neglected or in stationary conditions f tot

α = 0, which
implies that in inertia-free regimes the total force acting
on a particle in a fluid vanishes. Momentum conservation
in the fluid implies

gf,ext
α + ∂βσαβ = 0, (F.2)

where inertial forces have again been neglected. In integral
form, this can be expressed as

∫

Sp

σαβdAβ +

∫

S

σαβdAβ = −

∫

V −Vp

gf,ext
α dV. (F.3)

Here the integration is over the particle surface Sp and an
arbitrary surface S enclosing a volume V which includes
the particle in the fluid. The surface elements are oriented
to point to the outside of the fluid volume V −Vp between
the surfaces Sp and S. The (vanishing) total force now
reads

f tot
α =

∫

Vp

gp,ext
α dV +

∫

S

σαβdAβ +

∫

V −Vp

gf,ext
α dV, (F.4)

or, equivalently,

f tot
α =

∫

Vp

(gp,ext
α − gf,ext

α )dV +

∫

S

σαβdAβ +

∫

V

gf,ext
α dV.

(F.5)
Consider now the stress σ0

ij in the fluid in the absence of
the particle (every other condition being kept identical).
For any volume and corresponding surface we have

∫

V

gf,ext
α dV = −

∫

S

σ0
αβdAβ . (F.6)

Therefore, for any surface S enclosing the particle in the
fluid

f tot
α =

∫

Vp

(gp,ext
α − gf,ext

α )dV +

∫

S

(σαβ − σ0
αβ)dAβ = 0.

(F.7)
We thus find that the relative external body force

fp
α =

∫

Vp

(gp,ext
α − gf,ext

α )dV (F.8)

which includes an Archimedian correction to the net body
force, is balanced by the stresses exerted by the perturba-
tion of the flow field on the particle

fp
α = −

∫

S

(

σαβ − σ0
αβ

)

dAβ . (F.9)
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Equation (F.9) is valid for arbitrary S enclosing the
particle. Therefore, for colloidal particles far from the
boundaries of the fluid, the total momentum flux through
any closed surface is constant and equal to fp

α. This im-
plies that the stress field perturbation σαβ − σ0

αβ ∼ 1/r2

for large r, where r is the distance from the particle center.
This result holds irrespective of the constitutive relation
linking stress and deformation or deformation rate. For
Newtonian fluids since σαβ − σ0

αβ ∼ (∂αvβ + ∂βvα), the

barycentric velocity perturbation scales as |v| ∼ 1/r which
implies the existence of a Stokeslet. If the relative external
body force fp

α vanishes, but a relative external torque acts
on the particle, a similar argument using angular momen-
tum conservation implies that in this case the stress scales
as ∼ 1/r3 and the velocity field like ∼ 1/r2.

If no external field acts on either the particle or the
fluid, there is neither external body force nor torque. The
far field of the hydrodynamic flow is dominated by a force
dipole or Stokes doublet with stress ∼ 1/r3 and velocity
∼ 1/r2. If the force dipole vanishes, the stress scales as
∼ 1/r4 and the velocity as ∼ 1/r3. As we have illustrated
in this work, the absence of external forces and torques
does not mean that there is no motion between particle
and fluid.
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