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Abstract. Many developmental processes of multicellular organisms involve the patterning and growth of
two-dimensional tissues, so called epithelia. We have quantified the growth of the wing imaginal disk, which
is the precursor of the adult wing, of the fruit fly Drosophila melanogaster. We find that growth follows
a simple rule with exponentially decreasing area growth rate. Anisotropies of growth can be precisely
determined by comparing experimental results to a continuum theory. Growth anisotropies are to good
approximation constant in space and time. They are weak in wild-type wing disks but threefold increased
in GFP-Dpp disks in which the morphogen Dpp is overexpressed. Our findings indicate that morphogens
such as Dpp control tissue shape via oriented cell divisions that generate anisotropic growth.

PACS. 87.18.Fx Multicellular phenomena, biofilms – 87.17.Ee Growth and division – 82.70.Gg Gels and
sols

1 Introduction

During the development of multicellular organisms from
a fertilized egg, tissues form by repeated cell division and
attain complex morphologies [1,2]. Fundamental problems
are to understand how well-defined shapes and patterns
appear and how the final size of the organism is deter-
mined. An important model system for the study of the
interplay of patterning and growth is the developing wing
of the fruit fly Drosophila melanogaster.

The precursor of the adult wing, the so-called wing
imaginal disk, is an epithelium or two-dimensional sheet
of cells which is closed in spherical topology and forms a
double layer [3,4]. A schematic representation of the ge-
ometry of the wing disk is shown in fig. 1. About 24 hours
after fertilization, when the larva hatches, the wing disk
contains about 50 cells [5,6]. Five days later when the larva
enters the pupal stage, the wing disk has grown during 10
cell generations to about 50000 cells [5,7] and attained a
characteristic shape and size. Patterns of gene expression
are established with the help of morphogens. Morphogens
are secreted in localized sources (see fig. 1). They spread
in the tissue to form graded concentration profiles by the
interplay of unbiased spreading and degradation [8–12].
A key morphogen in the wing disk is Decapentaplegic
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(Dpp) [13,14]. It is secreted along a linear source region de-
fined by the boundary separating anterior from posterior
cells [15] (see fig. 1). Similarly, a source of the morphogen
Wingless (Wg) exists at the dorso-ventral compartment
boundary. In addition to providing positional information
to cells in the epithelium, morphogens such as Dpp are
also involved in the regulation of growth and thus cell di-
vision [12,13,16–22]. Several models have been proposed
to explain how graded Dpp signaling could mediate spa-
tially homogeneous proliferation in the wing imaginal disk.
One hypothesis is that cells interpret the slope of the gra-
dient [18,19]. Alternatively, cells could read absolute Dpp
concentrations, but mechanical stresses or other feedback
could make growth regulation spatially uniform [20–22].
Quantitative evidence for either model is lacking, and thus
the principles underlying growth control are still under de-
bate. Here we present a quantitative study of growth in
developing epithelia and show that in the wing imaginal
disk, Dpp influences growth anisotropies.

From the point of view of physics, growing tissues are
a form of active soft matter [23–26] which is dynamically
remodeled by cell division and cell death. The resulting
pattern of cell packing and shape of the multicellular sys-
tem emerges as a collective behavior of many cells and
their interactions. Cell division and its stochastic prop-
erties plays a crucial role in controlling the morphology
of the resulting tissue. Different physical approaches have
been used to describe tissue dynamics and reorganization
at different length scales [27–33]. When discussing the
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Fig. 1. Schematic view of a third instar wing imaginal disk
with lateral and transverse sections (arrows). The disk is ori-
ented with anterior to the left. The columnar disk epithelium
(DE) is covered on the apical side by a squamous epithelium
of peripodial cells (PE). The morphogens Dpp and Wg are ex-
pressed in perpendicular stripes in the center of the disk and
form concentration gradients perpendicular to their axes of ex-
pression.

mechanics and dynamics of tissues during development,
a key question concerns the effective material properties
that are relevant for a tissue on scales involving many
cells. Individual cells behave as elastic bodies, however in
a tissue cells can rearrange and neighborship relations can
change. This implies that stresses in the tissue may relax
as cell packings are remodeled. A simplified description of
cell packings represents cells as elastic objects. They are
subject to friction forces when cells slide relative to each
other. In such a description, we have shown that at large
scales, a hydrodynamic limit exists in which a growing tis-
sue can be described as an active anisotropic visco-elastic
fluid [33]. This limit results in particular from stress relax-
ation due to cell rearrangements triggered by cell division.
In addition, it was shown that anisotropies in the system
such as those imposed by morphogen gradients or planar
cell polarity [34,35] can, via oriented cell division, induce
anisotropic stresses and flow fields [33]. Here oriented cell
division can refer to both a preferred orientation of the mi-
totic spindle during cell division [36] or to a reorientation
of the daughter cells after cell division.

In this paper, we quantify the shape changes as a func-
tion of time of the wing imaginal disk. We compare two
situations: i) wild-type wing disks (WT disks) and ii) wing
disks in which Dpp labelled by Green Fluorescent Protein
(GFP) is expressed in addition to the endogenous Dpp
(GFP-Dpp disks). In the second case, Dpp is expressed at
higher levels. We study the average growth rate as well
as the anisotropy of growth and compare our results to a
hydrodynamic theory. We show that the observed shape
changes during time correspond to a homogeneous and

Fig. 2. Average contours R(ϕ) of wing disks at different times
during larval development. (A) Wild-type (WT) disks at 36 h,
48 h, 60 h, 69 h, 84 h and 96 h after hatching. (B) GFP-Dpp
disks at 24 h, 36 h, 48 h, 60 h, 72 h, 84 h, 96 h and 120 h after
hatching. The origin of the coordinate system is the center of
the area of the disks. The error bars given are standard de-
viations. (C) Representative WT disk at the end of larval de-
velopment (96 h after hatching), stained with DAPI. The inset
shows nuclei on one z-frame at higher magnification. (D) Rep-
resentative GFP-Dpp disk at the end of development (120 h
after hatching for GFP-Dpp larvae).

anisotropic growth, the anisotropy of which depends on
the Dpp level. This implies that both size and shape of
the tissue are controlled via oriented cell division.

2 Quantification of tissue shapes during

growth

Wing disks were dissected from larvae at different times
after hatching, see appendix A. Shapes of wing disks of
different ages are shown in fig. 2. The center of area of
all contours is located at the origin of the xy-plane. The
contours R(ϕ), where R is the distance of the contour line
from the origin and ϕ is the polar angle, are oriented such
that the y-axis corresponds to the largest diameter. While
at early times the shapes of WT (fig. 2A) and GFP-Dpp
disks (fig. 2B) are similar, they differ visibly at later times.
Inspection of fig. 2 suggests that the GFP-Dpp disks grow
more anisotropically as compared to WT disks.

Growth of the disks can be quantified by determining
the area A as a function of time. The area as a function of
time during growth is shown in fig. 3A. We fit this data by
a function which describes the simplest possible scenario
of finite growth. Since growth stops eventually, the area
growth rate k(t) changes with time and vanishes for long
times. We find that a growth rate which is initially (at
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Fig. 3. (Colour on-line) Area growth, cell density and linear
growth. (A) Growth of the area A for WT (red) and GFP-Dpp
disks (blue). (B) Nuclear density of the disk epithelium (DE,
see fig. 1 and appendix A) of WT (red) and GFP-Dpp disks
(blue) as a measure of cell density. (C) Disk diameters lx and
ly along x- and y-axes for WT disks. (D) Diameters lx and ly
for GFP-Dpp disks. Each data point is the average of about 10
disks (121 disks in total for each genotype). The solid lines in
(A) are fits of eq. (2) and in (C, D) of eq. (3) to the data, see
main text and table 1. The dashed line in (B) indicates that
the nuclear density stays approximately constant after 60 h.

t = t0) given by k(0) and which then decays exponentially
with a single relaxation time τ , can quantitatively account
for the data. We therefore write

k(t) =
Ȧ

A
= k(0)e−(t−t0)/τ , (1)

where the dot denotes a time derivative. The correspond-
ing time dependence of the area is

A(t) = A(0) exp(k(0)τ(1 − e−(t−t0)/τ )), (2)

where A(0) is the initial area at t = t0. This function is fit
to the data in fig. 3A.

The area attained for large times is A(f) =
A(0) exp(k(0)τ). We fit eq. (2) to the data, using t0, k(0)

and τ as fit parameters. As initial area, we use A(0) =
264μm2 (estimated from [6]). From the fit displayed in
fig. 3A, we obtain for WT disks k(0) = 0.22 ± 0.02 h−1

and τ = 29.7 ± 4.0 h and for GFP-Dpp disks k(0) =
0.18 ± 0.01 h−1 and τ = 38.1 ± 2.2 h. The area increase
A(f)/A(0) = exp(k(0)τ) is thus 714 for WT and 997 for
GFP-Dpp disks, see table 1.

In order to quantify the anisotropy of growth, we mea-
sured the linear growth rates kx and ky along two per-
pendicular axes. We define the diameters lx(t) and ly(t)
of the disk contours along the x- and y-axis, respectively.
The time dependence of linear growth along the x- and
y-axes is shown in fig. 3C and D. In WT disks, both di-
ameters start at different values but grow at similar rates.

In the case of GFP-Dpp disks, where Dpp is overexpressed,
the length lx(t) grows significantly faster than the length
ly(t). For both WT and GFP-Dpp disks, the growth of
the lengths lx(t) and ly(t) is again well described by the
functions

lx,y(t) = l(0)x,y exp
(

k(0)
x,yτx,y

(

1 − e−(t−t0)/τx,y

))

, (3)

where l
(0)
x,y is the tissue diameter at the initial time t0

and τx,y is the characteristic time of growth in x- and y-
direction, respectively. We define the linear growth rates
kx(t) = l̇x(t)/lx(t) and ky = l̇y(t)/ly(t) along the x- and

y-axis, respectively. Here, the parameters k
(0)
x,y denote the

initial growth rates and

kx,y(t) = k(0)
x,y e−(t−t0)/τx,y . (4)

We fit eq. (3) to the data, using l
(0)
x,y, k

(0)
x,y and τx,y

as fit parameters. We use the value of t0 obtained from
the analysis of the area growth, see table 1. We find that
for both WT and GFP-Dpp disks the characteristic time
constants τx and τy describing the growth along the two
main axes are the same (τx = 31.9±4.2 h and τy = 30.3±
3.9 h for WT disks and τx = 39.5 ± 2.5 h and τy = 36.8 ±

2.1 h for GFP-Dpp disks). We thus also perform fits using
a single time constant τ̃ . The characteristic time τ̃ during
which growth occurs is larger for GFP-Dpp disks than for
WT disks (see table 1), consistent with the observed longer
growth period of GFP-Dpp disks (see fig. 2). We find that
more growth occurs along the x-direction as compared

to the y-direction (see values of l
(f)
x /l

(0)
x as compared to

l
(f)
y /l

(0)
y in table 1). Furthermore, this growth anisotropy

is larger for GFP-Dpp disks as compared to WT disks.
A quantity that characterizes the anisotropy of growth

is the rate k1(t) = (kx(t)−ky(t))/2 that can be compared
to the average growth rate k0(t) = (kx(t)+ky(t))/2. From
eq. (4) it follows that

k0,1(t) =
k

(0)
x ± k

(0)
y

2
e−(t−t0)/τ̃ , (5)

where the plus sign holds for k0 and the minus sign for
k1. The dimensionless ratio ǫ = k1/k0 characterizing the

anisotropy of growth is independent of time, ǫ = (k
(0)
x +

k
(0)
y )/(k

(0)
x − k

(0)
y ). On the basis of our data analysis (see

table 1), we find ǫ = 0.063 ± 0.067 for WT disks and
ǫ = 0.143±0.033 for GFP-Dpp disks. We thus find that the
anisotropy depends on the Dpp expression level. Note that
the errors in determining ǫ are significant and the analysis
cannot rule out that wild-type disks grow isotropically.
We now compare our data to a continuum description of
growth which allows us to quantify growth anisotropies
more reliably.

3 Continuum theory of anisotropic growth

In a continuum theory, the two-dimensional tissue is char-
acterized by a cell number density ρ and a cellular flow
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Table 1. Parameters describing area and linear growth of WT and GFP-Dpp wing disks, see fig. 3. For all quantities, the
optimized fit parameters and standard errors obtained by least square fits of eqs. (2) and (3) to the measured data are displayed.

Additionally, the ratios A(f)/A(0) = exp(k(0)τ) and l
(f)
x,y/l

(0)
x,y = exp(k

(0)
x,y τ̃) are shown.

t0 (h) A(f)/A(0) l
(0)
x (µm) l

(f)
x /l

(0)
x l

(0)
y (µm) l

(f)
y /l

(0)
y

WT 24.9 ± 1.5 714 13.0 ± 1.5 33 29.6 ± 3.2 22

GFP-Dpp 19.6 ± 0.8 997 10.5 ± 0.8 62 30.3 ± 2.0 22

k(0) (h−1) τ (h) k
(0)
x (h−1) k

(0)
y (h−1) τ̃ (h)

WT 0.22 ± 0.02 29.7 ± 4.0 0.112 ± 0.011 0.099 ± 0.010 31.2 ± 2.9

GFP-Dpp 0.18 ± 0.01 38.1 ± 2.2 0.107 ± 0.005 0.080 ± 0.004 38.5 ± 1.7

field v = (vx, vy) which obey the balance equation

∂tρ + ∇ · (ρv) = kρ. (6)

Here k = kg − ka is the effective cell doubling rate and
kg and ka denote the rates of cell division and cell death,
respectively. We consider in the following the simple case
where the cell area is incompressible and the cell density is
constant, i.e. ρ = ρ0 and ∇ · v = k. This implies that the
effective cell doubling rate equals the local area growth
rate. This simplification is motivated by the observation
that in both wild-type and GFP-Dpp disks the increase in
cell density during development is small compared to the
overall increase in area (see fig. 3A, B).

Equation (6) is complemented by a constitutive mate-
rial relation and a force balance condition. In the viscous
limit, which we consider here for simplicity, the constitu-
tive relation links the symmetric velocity gradient tensor
uαβ = (1/2)(∂αvβ + ∂βvα) to the stress tensor σαβ , with
α and β = x, y. It has been suggested that anisotropic
growth is a consequence of anisotropic active stresses gen-
erated in the growing tissue. In particular, oriented cell di-
vision in general gives rise to such anisotropic stresses [33].
Active anisotropic stresses due to cell division also enter
the constitutive material relation which reads

2ηũαβ = σ̃αβ + μkgq̃αβ . (7)

Here ũαβ = uαβ −uγγδαβ and σ̃αβ = σαβ −σγγδαβ are the
traceless parts of the velocity gradient and stress tensors,
respectively. The anisotropy is characterized by the trace-
less tensor q̃αβ = pαpβ − (1/2)δαβ where the unit vector p

defines the preferred axis of cell division. The tissue vis-
cosity is denoted η. Note that in general in an anisotropic
system the viscosity is also anisotropic [26]. Here, we ne-
glect such effects. The coefficient μ, which has dimension
of viscosity, characterizes the active anisotropic stress in-
duced by oriented cell division. Note that in general μ
depends on cell density. For small density, μ is expected
to be proportional to cell density, μ ∼ ρ.

The force balance reads ∂βσαβ − ∂αP = 0, where
the pressure P plays the role of a Lagrange multiplier
to impose the incompressibility constraint uγγ = k. These
equations together with the boundary conditions σnn =
P − Pext and σnt = 0, where Pext is an external pressure,

y

x

R(ϕ(t),t)R (ϕ )  0       0

ϕ(t)

Fig. 4. Shape change of an epithelium boundary due to
anisotropic tissue growth. The tissue boundary is shown at
the initial time t0 and the later time t. The preferred orienta-
tion of the cell division axis is p = ex. The position of a cell
which is situated at the tissue boundary is marked by a dot and
described by the radial distances R0(ϕ0) and R(ϕ(t), t). The
polar angle describing the position of the marked cell changes
from the initial angle ϕ0 = ϕ(t0) to the later angle ϕ(t).

determine the flow field. For homogeneous growth, with
values of k, η and μ that are independent of position, the
velocity field reads

v =

(

(k0 + k1)x

(k0 − k1)y

)

. (8)

Here k0 = (kg − ka)/2 and k1 = kgμ/(4η). Note that this
form of the flow field is independent of the shape of the
system but applies only inside the contour line that defines
the tissue boundary R(ϕ, t).

4 Shape changes and angle-dependent

growth rates

We consider the effects of anisotropic growth on the time
evolution of the tissue boundary R(ϕ, t), see fig. 4. A
cell on the boundary at time t = t0 with coordinates
X0 = R0 cos ϕ0, Y0 = R0 sin ϕ0 moves as a consequence
of growth along a trajectory X(t), Y (t) with dX/dt =
vx(X,Y ) and dY/dt = vy(X,Y ). In polar coordinates,

(

X(t)
Y (t)

)

= R(ϕ(t), t)

(

cos(ϕ(t))
sin(ϕ(t))

)

, (9)
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Fig. 5. Averaged effective growth rates for young and old wing
disks as functions of the polar angle ϕ. The rates for both WT
and GFP-Dpp disks are shown. The dots and corresponding er-
ror bars represent k̄eff determined from the experimental data,
see text. The solid lines represent the theoretical curves (12) of
k̄eff(ϕ) in which we inserted the growth rates k0(t) and k1(t)
which were quantified by our analysis of the measured lengths
lx,y(t), see fig. 3 and eq. (5). The time interval for the young
disks (A) was chosen as [24 h, 60 h], and for the old disks we
have chosen the time interval as [60 h, 96 h] for both WT and
GFP-Dpp disks.

where tan ϕ(t) = Y (t)/X(t). From the cell trajectories

X(t) = X0 exp(
∫ t

t0
(k0 + k1)dt′), Y (t) = Y0 exp(

∫ t

t0
(k0 −

k1)dt′), it follows that tanϕ(t) = tanϕ0 exp(−2
∫ t

t0
k1dt′).

We obtain an equation for the contour of the tissue bound-
ary

R(ϕ, t) = R0(ψ)e
R

t

t0
k0dt′

×

(

sin2 ϕe
2

R

t

t0
k1dt′

+ cos2 ϕe
−2

R

t

t0
k1dt′

)

−1/2

,

(10)

where ψ(ϕ, t) = arctan(tan(ϕ) exp(2
∫ t

t0
k1dt′)). The ini-

tial shape is R0(ϕ) and ϕ(t0) = ϕ0.
We define the effective growth rate at an angle ϕ by

keff(ϕ) = Ṙ(ϕ)/R(ϕ). Using eq. (10), we find

keff(ϕ, t) ≈ k0 − k1
sin2 ϕe

2
R

t

t0
k1dt′

− cos2 ϕe
−2

R

t

t0
k1dt′

sin2 ϕe
2

R

t

t0
k1dt′

+ cos2 ϕe
−2

R

t

t0
k1dt′

,

(11)
where we used the approximation ϕ(t) ≈ ϕ0. Equa-
tion (11) shows that the effective growth rate along an
angle ϕ is determined by the average growth rate k0(t)
and modulated by the anisotropic part of the growth rate

k1(t). The time average k̄eff(ϕ) = 1
t2−t1

∫ t2
t1

keff(ϕ, t)dt of

the effective growth rate during a time interval [t1, t2] is
thus given by

k̄eff(ϕ) ≈
1

t2 − t1

[
∫ t2

t1

k0dt

−
1

2
ln

(

sin2 ϕe2ǫ
R t2

t1
k0dt+cos2 ϕe−2ǫ

R t2
t1

k0dt
)

]

,

(12)

where we used k1 = ǫk0.

We compare eq. (12) to the observed angular distribu-
tion of effective growth rates in the wing disk, see ap-
pendix B. Figure 5 shows the average effective growth
rates k̄eff during the time intervals [24 h, 60 h] after hatch-
ing (young disks) and [60 h, 96 h] after hatching (old disks).
This choice of time intervals yields a good statistics for
our analysis of the 121 wing disks. Consistent with a de-
crease in the growth rate, fig. 5 indicates that the av-
erage growth rate is larger in young disks (see fig. 5A)
than in old disks (see fig. 5B) for both WT and GFP-Dpp
disks. In both cases (WT and GFP-Dpp disks), the angu-
lar distribution of the growth rates has a maximum close
to the x-axis (corresponding to the angles ϕ = π, 2π) and
a minimum near the y-axis (corresponding to the angles
ϕ = π/2, 3π/2).

In order to quantify the anisotropy of growth, we fit
eq. (12) to the angular distribution of time-averaged ef-
fective growth rates using the growth rate k0(t) described
by eq. (5) with the parameters given in table 1. The
anisotropy of growth ǫ, which characterizes the amplitude
of the distribution of effective growth rates, is used as a
fit parameter. For disks of a given type (WT or GFP-
Dpp), the growth anisotropy ǫ is the same for young and
old disks, indicating that ǫ is time-independent. We find
ǫ = 0.051 ± 0.004 for WT disks and ǫ = 0.138 ± 0.003
for GFP-Dpp disks. Thus the anisotropy of growth ǫ can
be determined very precisely by the analysis based on our
continuum theory of growth.

5 Discussion

We have quantitatively analyzed the dynamics and aniso-
tropies of growth of the wing imaginal disk of the fruit
fly Drosophila melanogaster during development. We have
shown that the area growth exhibits a simple behavior
with exponentially decaying growth rate k, see eq. (1).
The growth rate is maximal at early times (k(0)

≃ 0.2 h−1)
and decays exponentially in a characteristic time τ of the
order of 35 hours. During growth the area increases by a
factor of about 1000, and the corresponding cell generation
number n = k(0)τ/ ln 2 is about 10.

The growth of the wing disk is anisotropic. Growth
anisotropies can be quantified very precisely on the ba-
sis of our continuum description of growth. We quantify
the angular growth rate keff(ϕ) which exhibits a sinu-
soidal modulation around the value k/2, see fig. 5. Us-
ing the continuum theory, the data can be fit with the
anisotropy ǫ being the single fit parameter. This growth
anisotropy can be related to two axes established during
development in the tissue. One axis is characterized by the
antereo-posterior (A/P) compartment boundary which is
a sharp and smooth interface dividing the wing disk into
two parts [37]. This boundary plays the role of an orga-
nizing center for patterning and growth. A narrow line
of cells along this compartment boundary expresses the
morphogen Dpp which spreads into the tissue and forms
graded concentration profiles which decay in the direction
perpendicular to the A/P boundary [15]. Interestingly, we
find that the axis along which growth is weakest coincides
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with the axis defined by the A/P compartment boundary.
The direction in which growth is strongest is the direction
in which Dpp forms a gradient. This finding indicates that
the Dpp gradient controls growth anisotropies, which is
interesting in view of earlier suggestions that Dpp gradi-
ents could control growth [18,19]. Our observations also
show that the axis of growth anisotropy remains fixed with
respect to the A/P compartment boundary. This implies
that the axis of cell division is controlled by the orientation
of the compartment boundaries. Since the dominant cell
division axis remains stable with respect to the compart-
ment boundaries, we do not need to describe cell polarity
as a separate dynamic variable.

We find significant differences in growth anisotropy
when comparing wild-type and GFP-Dpp wing disks. In
wild-type disks this anisotropy is weak with ǫ ≃ 0.05. The
GFP-Dpp disks in which both endogenous and GFP-Dpp
are produced and functional Dpp thus occurs in higher
levels, the growth anisotropy is increased threefold. Fur-
thermore, GFP-Dpp disks exhibit more area growth and
grow for a longer time at a slightly smaller rate as com-
pared to wild type.

In our analysis, we have ignored the three-dimensional
structure of the wing disk epithelium. Indeed, it is known
that the fully grown epithelium exhibits folds along lines
approximately parallel to the x-axis [4]. In our experi-
ments, we observe that folds begin to form at about 80 h
after hatching. Such folds could influence the apparent
area growth because the projected area discussed here
can differ slightly from the total area of the epithelium.
Since the observed growth anisotropy is constant in time
and does not change after 80 h when folds appear, we as-
sume the effect of folds on growth to be negligible. How-
ever, a quantification of the full three-dimensional struc-
tural changes during growth remains a challenge for future
work.

Since GFP-Dpp wing disks differ from WT disks both
in the duration of growth and in growth anisotropy, our
findings provide strong evidence that Dpp is involved in
the control of both size and shape of the wing disk by
controlling the area growth and growth anisotropies. Dpp
overexpression as in GFP-Dpp disks has pronounced ef-
fects on growth anisotropies. A natural interpretation of
this finding is that the Dpp gradient direction controls
the axis of cell divisions. Oriented cell division has indeed
been observed experimentally [36]. A theoretical study of
the effects of oriented cell division has demonstrated that
this leads effectively to anisotropic growth as described
by the continuum theory [33]. Experimental studies of cell
divisions on micropatterned substrates reveal that corti-
cal cues control the cell division axis via rotations of the
mitotic spindle [38]. We speculate that the Dpp gradient
could set up cortical anisotropies that bias cell division
orientation and thus control tissue shape.
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Appendix A. Materials and methods

Genotypes used: dpp-Gal4/UAS-GFP-Dpp. dpp-Gal4 is
described in Flybase; UAS-GFP-Dpp has been described
previously [39]. Six hour egg collections were grown at
25 ◦C and larvae were dissected at the indicated times
after hatching (see fig. 3). Wing disks were fixed with 4%
Paraformaldehyde, stained with DAPI, and imaged with
a 10× objective at a Zeiss confocal microscope.

To quantify the nuclear density, a z-stack through the
whole disk was taken with a 60× objective. A z-stack is
necessary because nuclei of the disk epithelium (DE, fig. 1)
are not located on one z-frame only. All nuclei in the DE
were counted. Nuclei of the peripodial epithelium (PE,
fig. 1) can be reliably excluded because they are more
widely spaced (in all but the youngest disks the PE is a
squamous epithelium) and separated from the nuclei of
the DE by a lumen (in all disks). The nuclear density of
the DE was then calculated as (number of nuclei)/(area
bounding the z-stack).

Appendix B. Quantification of averaged

effective growth rates in the wing disk

We discuss the quantification of the effective growth rates
keff(ϕm) = Ṙ(ϕm)/R(ϕm) in the wing disk for the angles
ϕm = m2π/400 (m = 0, 1, . . . , 399). Similar to our analy-
sis of the diameters lx and ly (see eq. (3)), we fit the func-

tion R(ϕm, t) = R0(ϕm) exp(k
(0)
eff (ϕm)τ̃ [1− e−(t−t0)/τ̃ ]) to

the observed radial positions R(ϕm, t) at each angle ϕm.
We choose t0 = 20h and τ̃ from table 1 and use R0(ϕm)

and k
(0)
eff (ϕm) as fit parameters. The effective growth rate

averaged during the time interval [t1, t2]

k̄eff(ϕm) =
1

t2 − t1

∫ t2

t1

keffdt =
1

t2 − t1
ln

R(t2)

R(t1)
(B.1)

is thus determined by k̄eff(ϕm) =
k
(0)
eff (ϕm)τ̃

tf−t0
(e−(t1−t0)/τ̃

−

e−(t2−t0)/τ̃ ).
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