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The cochlear amplifier is a nonlinear active process providing the mammalian ear with its
extraordinary sensitivity, large dynamic range and sharp frequency tuning. While there is much
evidence that amplification results from active force generation by mechanosensory hair cells, there
is debate about the cellular processes behind nonlinear amplification. Outer hair cell electromotility
has been suggested to underlie the cochlear amplifier. However, it has been shown in frog and turtle
that spontaneous movements of hair bundles endow them with a nonlinear response with increased
sensitivity that could be the basis of amplification. The present work shows that the properties of the
cochlear amplifier could be understood as resulting from the combination of both hair bundle
motility and electromotility in an integrated system that couples these processes through the
geometric arrangement of hair cells embedded in the cochlear partition. In this scenario, the cochlear
partition can become a dynamic oscillator which in the vicinity of a Hopf bifurcation exhibits all the
key properties of the cochlear amplifier. The oscillatory behavior and the nonlinearity are provided
by active hair bundles. Electromotility is largely linear but produces an additional feedback that
allows hair bundle movements to couple to basilar membrane vibrations.
© 2010 Acoustical Society of America. �DOI: 10.1121/1.3463804�
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I. INTRODUCTION

The extraordinary ability of the vertebrate ear to detect
sound stimuli relies on an active process which amplifies
weak stimuli and which permits the ear to operate over a vast
range of sound amplitude.1,2 Four key signatures have been
associated with this active process.1,3 �i� A high sensitivity to
weak signals,4,5 �ii� a compressive nonlinear response as a
function of signal amplitude,4–6 �iii� sharp frequency
tuning6,7 and �iv� the existence of spontaneous otoacoustic
emissions.8,9 All of these signatures are physiologically vul-
nerable and have been linked to cellular processes.4,5,7,10,11 It
has been suggested that these signatures are the consequence
of sets of dynamic oscillators acting in the hearing organs of
vertebrates to serve as nonlinear amplifiers, each operating
close to an oscillating instability or Hopf bifurcation and
tuned to a specific frequency.12–15 While this general prin-
ciple can account for the basic properties of the active pro-
cess, the precise nature of the active processes in vertebrate
hearing organs have remained a matter of debate and contro-
versy. There is a lot of evidence that the mechanosensory
hair cells of the ear exhibit active behaviors that generate the
auditory amplifier.1,2,16–20 Two mechanisms have been sug-
gested to underlie the active process in mammals: outer hair
cell electromotility and active hair bundle motility.

The discovery of the electromotility of mammalian outer
hair cells21–23 has stimulated many studies to elucidate the
role of this electro-mechanical coupling in the cochlear
amplifier.24 Electromotility is the ability of outer hair cells to
change their length upon a change in membrane potential.
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Interestingly, the piezoelectric coefficient which character-
izes electromotility is over four orders of magnitude larger
than that of any other material.25 It has been suggested that
outer hair cell electromotility provides a positive feedback
that reduces viscous damping in the ear and contributes to
active amplification.2,18,26,27 However, outer hair cell electro-
motility alone is not significantly nonlinear within the physi-
ological range of receptor potential changes.28,29 Further-
more, a direct demonstration that electromotility can
generate spontaneous oscillations is lacking.

Another important property of hair cells that could be
involved in auditory amplification is the ability of hair
bundles to generate spontaneous movements and forces.30–33

Hair bundles are the mechanosensory organelles of hair cells.
They are formed by groups of stiff, actin based stereocilia
which are linked by tiny filaments, so-called tip links that are
involved in the gating of transduction channels. Deflection of
the stereocilia triggers the opening of these channels. The
resulting ion flux generates a change in hair cell membrane
potential. Myosin motors mediate adaptation of the transduc-
tion machinery.16 Interestingly, hair bundles in turtle and frog
have been shown to exhibit spontaneous oscillations.30–32

The frequency of the observed oscillations range from a few
Hertz to over a hundred Hertz.32,34 These oscillations endow
the hair bundle with nonlinear amplification and three of the
signatures of the cochlear amplifier have been observed in
active hair bundles.31,35 However, individual hair bundles are
only modest amplifiers with an amplification gain �ratio of
maximum sensitivity to minimum sensitivity� that is limited
by fluctuations to about 10, much smaller than the observed

5,35
amplification in the mammalian cochlea of up to 1000. In
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mammals it has been shown that the hair bundle is active and
has a nonlinear response in the cochlea, but spontaneous os-
cillations have so far not been reported.33,36

The role of electromotility and active hair bundle motil-
ity in the cochlear amplifier and its compressive nonlinearity
remain a matter of debate. Genetic mutants, where the elec-
tromotile properties of the outer hair cell are reduced or lack-
ing, show that outer hair cell electromotility is required for
the function of the amplifier.37,38 However, there are concep-
tual difficulties associated with electromotility mediated am-
plification. For example, it has been remarked that although
the electromotile response is fast enough to function at high
frequencies39 it may not work effectively due to the low pass
filtering of the transmembrane receptor potential by the ba-
solateral membrane capacitance and resistance.28,40 This is
known as the RC time constant problem as this low pass
filtering may be described by a simple RC circuit. Solutions
to this problem have been suggested,24,41–43 but experimental
verification is lacking. The performance of hair bundles on
the other hand may be strongly limited by fluctuations, al-
though it is possible that collections of hair bundles coupled
by the tectorial membrane may respond synchronously to
enhance the amplificatory properties of the group.44 None-
theless, it has been questioned if hair bundles are positioned
in the cochlea such as to generate significant basilar mem-
brane displacements and thus drive the cochlear amplifier.45

The cochlea of the mammalian inner ear is a long fluid
filled chamber where sound stimulation is converted into an
electrical signal for transmission to the brain by the auditory
nerve.2,18,46 This chamber is bisected by the cochlear parti-
tion, housing the sensory hair cells. Acoustic stimulation re-
sults in a wave which travels along the partition and peaks at
a frequency dependent position which is determined by the
local properties of the partition. The cochlear traveling wave
is boosted in the proximity of this characteristic place by the
cochlear amplifier located in the partition.2,18,27 The sound
induced deformations of the cochlear partition result in the
deflection of the hair bundles of the sensory hair cells.

Many descriptions of cochlear mechanics have been pro-
posed ranging from passive models45,47–49 to active ones.50–54

In active models the activity is often introduced as a negative
damping element50,51 or by associating an active force with
outer hair cells.52,53 Moreover, particular phase relationships
between the components of the partition are often
hypothesized.52–54 In principle, it is possible to derive the
coupling between the outer hair cell electromotile force and
partition displacements from the observed geometrical and
viscoelastic properties of the cochlea.

Here we develop a theoretical description of the auditory
amplifier in the cochlear partition which combines outer hair
cell electromotility with active hair bundle motility. We con-
sider a slice through the cochlea at some longitudinal posi-
tion and analyze the interplay between the passive and active
mechanical properties of the hair cells and the other struc-
tural elements as well as the outer hair cell membrane poten-
tial. We show that the combination of hair bundle motility
and electromotility of outer hair cells results in a dynamic
oscillatory module that can be controlled to operate in the

vicinity of a Hopf bifurcation. This integrated system exhib-
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its many of the features of the auditory amplifier of the mam-
malian cochlea. In this picture, the active process is driven
by the activity of myosin adaptation motors in the hair
bundle as well as electrochemical gradients across the outer
hair cell membrane.

II. COCHLEAR MECHANICS AND HAIR CELL
DYNAMICS

We present a physical description of the mechanics of
the cochlear partition which takes into account outer hair cell
mechanics, electromotility, ion current dynamics as well as
hair bundle mechanics. We obtain the dynamical equations
starting from the known geometry of the partition and from
known properties of outer hair cells embedded in the parti-
tion.

A. Cochlear geometry and micromechanics

The mechanics of a passive slice of the cochlear parti-
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FIG. 1. Simplified model of the cochlear partition. We represent some struc-
tural elements by rigid beams, and others as elastic springs. �a� Rigid ele-
ments are: TM–tectorial membrane, HB–hair bundle, RL–reticular lamina,
AZ–arcuate zone of the basilar membrane, PZ–pectinate zone of the basilar
membrane, IPC–inner pillar cell and OPC–outer pillar cell. The following
structures are represented by elastic springs: OHC–outer hair cells, DC–
Deiters’ cells and HC–Hensen’s cells. The circles indicate pivot points. The
positions of two pivot points are fixed: S. Lim.–the point where the TM
meets the spiral limbus, S. Lam.–point where the basilar membrane meets
the spiral lamina. The relevant displacement variables are indicated by ar-
rows. �b� Geometric parameters for the cochlear partition. The geometric
parameters describing the cochlear partition are defined here with parameter
values given in Table IV. The parameters corresponding to fixed lengths are:
ztm–length of the TM connection between the HB and the S. Lim.,
zhb–distance between the apex of Corti’s arches and the HB, zrl–length of the
RL from the apex of Corti’s arches to the HC, zipc–radial distance between
the S. Lim. and the S. Lam., zaz–length of the AZ, zohc–distance between the
base of the OPC and the base of the DC, zpz–half the length of the PZ,
lhb–length of the HB and yooC–vertical distance between the S. Lim. and the
S. Lam. The parameters corresponding to fixed angles are: �ipc–the angle
between the IPC and the AZ and �opc–the angle between the OPC cell and
the AZ. The length of the DC is xdc

ref in the reference state. The rigid beam
angles in the reference state are: �tm

ref–the angle between the TM beam and
the horizontal, �hb

ref–the angle between the HB and the RL perpendicular,
�az

ref–the angle between the AZ and the horizontal, �pz
ref–the angle between the

PZ and the AZ and �rl
ref–the angle between the RL and the AZ.
tion containing one row of outer hair cells is described as a
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system of springs attached to rigid beams, which may pivot
about their ends �Fig. 1�. For simplicity, we represent the
three outer hair cells in this slice by one effective outer hair
cell element. Our description is based on the cochlear struc-
ture and observed deformations during stimulation.55–62 We
define the deformation relative to a resting reference state
corresponding to a quiescent cochlea using the set of vari-
ables shown in Fig. 1. These variables are the deflections of
the tectorial membrane xtm, the reticular lamina xrl and of the
hair bundle xhb. We describe basilar membrane deflections
with two independent variables, xaz and xpz, corresponding to
deformations of the arcuate and the pectinate zones, respec-
tively. In addition, we introduce the change in length of the
outer hair cells xohc, of the Deiters’ cells xdc and of Hensen’s
cells xhc. Geometric constraints due to the rigid beam ele-
ments in Fig. 1 imply that deformation variables cannot vary
independently. We choose to express these constraints such
that the variables xtm, xrl, xdc and xhc are determined from the
values of xhb, xohc, xaz and xpz. These relations are nonlinear
and follow from the geometry depicted in Fig. 1 �see Appen-
dix A�. For the small angular changes that result from sound
stimuli in the physiological range, nonlinearities are unim-
portant and a linearized version of these constraints is suffi-
cient. In this linearized regime, the constraints can be written
as

�
xtm

xrl

xdc

xhc

� = � ·�
xhb

xohc

xaz

xpz

� , �1�

where � is a matrix of dimensionless coefficients describing
the geometry of the cochlear partition. This matrix has the
form

� =�
�11 0 �13 0

�21 0 �23 0

�31 − 1 �33 �34

�41 0 �43 �44

� . �2�

Several matrix elements vanish because of independence be-
tween certain variables and one entry is �32=−1, reflecting
the geometric relation between outer hair cells and Deiters’
cells. For the system shown in Fig. 1, we express force bal-
ances involving inertial forces, friction forces, forces due to
elastic elements as well as the externally applied force ex-
erted through the pressure difference Pext, acting on the par-
tition. Using the constraints described above, this force bal-
ance can be expressed as �see Appendix A�

�
m1ẍhb − m2ẍaz + �ẋhb

�ohcẋohc

mazẍaz − m2ẍhb + �azẋaz

mpzẍpz + �pzẋpz

� = K ·�
xhb

xohc

xaz

xpz

� +�
0

0

�az

�pz

�Pext.

�3�

The left hand side of this equation describes inertial and
friction forces, where maz, mpz, m1 and m2 denote masses,

and �, �ohc, �az and �pz are friction coefficients. In deriving
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these equations, we have introduced the inertia of the basilar
membrane and the tectorial membrane. The geometric con-
straints generate the inertial terms m1, m2, which depend
upon the tectorial membrane mass. The term maz depends on
both the tectorial membrane mass and the basilar membrane
mass. The effects of elastic elements in the cochlear partition
are described by the symmetric matrix

K =�
− K11 K12 K13 K14

K12 − K22 − K23 − K24

K13 − K23 − K33 − K34

K14 − K24 − K34 − K44

� �4�

of elastic coefficients. Furthermore, the coefficients �az and
�pz are the effective areas relating the pressure Pext to the
forces that act on the cochlear partition. The force balance
�Eq. �3�� describes the passive dynamics of the model shown
in Fig. 1, taking into account geometric constraints, elastic
elements, inertia and friction. For simplicity, we only include
friction coefficients associated with the variables xhb, xohc, xaz

and xpz. These friction coefficients include contributions
from the variables xtm, xrl, xdc and xhc due to the constraints
of Eq. �1�. In particular, � includes contributions from the
hair bundle, the fluid in the subtectorial space, the tectorial
membrane, the reticular lamina, Deiters’ cells and Hensen’s
cells and can be much larger than the friction coefficient
associated with an isolated hair bundle. More generally, fric-
tion could also couple different variables, an effect we ne-
glect here. The coefficients of the matrices � and K defined
in Eq. �2� and Eq. �4� are calculated explicitly in terms of the
geometric and elastic properties of the cochlear partition.

B. Hair bundle mechanics

We describe the dynamics and mechanics of the hair
bundle with two degrees of freedom: the deflection of the
hair bundle xhb, and the displacement of myosin adaptation
motors xa. These variables obey the equations32,63,64

�hbẋhb = − Kgs�xhb − xa − DPo� − Kspxhb + fext, �5�

�aẋa = Kgs�xhb − xa − DPo� − �fmax�1 − SPo� . �6�

Equation �5� describes the force balance for the hair
bundle subject to an external force fext. The dynamics of
adaptation motors given by Eq. �6� is based on a linear force-
velocity relation. Here fmax is the maximum force the motors
can produce, �hb and �a are damping coefficients, and Kgs

and Ksp are the stiffnesses of gating springs and of the ste-
reociliary pivots, respectively. The hair bundle displacement
associated with transduction channel opening is denoted by
D, � is a dimensionless geometric factor and S is a dimen-
sionless measure of the strength of the calcium feedback
which controls motor activity. Finally, Po is the open prob-

ability of the transduction channels
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Po�xhb − xa� = �1 + A exp�−
�xhb − xa�

�hb
��−1

, �7�

where 1 / �1+A� is the open probability when the gating
springs are severed and �hb is a characteristic distance over
which channels open.

It has been shown previously that this model can de-
scribe active hair bundle motility observed in different sys-
tems including frog, turtle and rat.63,64 The hair bundle model
given by Eq. �5� and Eq. �6� is characterized by a state dia-
gram as a function of the control parameters fmax and S.
There exists a region of this state diagram where the hair
bundle oscillates spontaneously.63

C. Outer hair cell electromotility and ion currents

Outer hair cell electromotility is described as a linear
piezoelectric system which couples mechanics to membrane
potential

F = − Kohcxohc − pQ , �8�

V = pxohc +
Q

Cohc
. �9�

Here F is the variation of the mechanical force exerted by the
outer hair cells, V is the change of the membrane potential
and Q is the charge displaced across the outer hair cells’
membranes. The length change xohc of the outer hair cells has
been introduced in Section II A. The stiffness of these outer
hair cells is denoted Kohc=K22, Cohc is the capacitance of the
outer hair cells’ membranes and p is the piezoelectric coef-
ficient describing the electromotile response.

The current flow through the outer hair cells involves
several ion types.40,65 For simplicity we describe the flow of
charge through the outer hair cells with a single effective ion
species of positive charge as most of the current through the
outer hair cell is carried by potassium.65 We consider the
scala media and scala tympani to be large reservoirs of ions
where the ion concentrations are approximately constant. In
other words, we assume that the endocochlear potential is
approximately constant so that the changes in the electro-
chemical gradients across the outer hair cell membranes are
given by the change in the outer hair cell electrochemical
potential. In general, the current from outside to inside the

outer hair cell Q̇, is a function of the open probability of the
mechanoelectrical ion channels Po, the electric potential of
the interior of the outer hair cell Vohc, and the intracellular
concentration of the effective ion species ��ohc�. Expanding
this relationship to linear order near a reference state where
Po= Po

ref, Vohc=Vohc
ref and ��ohc�= ��ohc

ref � yields

Q̇ = Q̇ref − �ghbPo
ref + gohc��Vohc − Vohc

ref �

+ ����ohc� − ��ohc
ref �� + Ihb

max�Po − Po
ref� . �10�

Here ghb and gohc are conductances associated with the apical
and basolateral membranes of the outer hair cell, respec-
tively. The coefficients � and Ihb

max describe the linear re-

sponse corresponding to changes in the ion concentration
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and the open probability of the mechanoelectrical channels,
respectively.

We choose the reference state to be a stationary state of
the system for a particular set of parameter values such that

Q̇ref=0. Moreover, we ignore ����ohc�− ��ohc
ref ��, as it is small

within the physiological range of concentration changes.66

Defining g	ghbPo
ref+gohc and V	Vohc−Vohc

ref + Ihb
maxPo

ref /g, the
dynamics of the displaced change is written as

Q̇ = − gV + Ihb
maxPo. �11�

The coefficient Ihb
max is the current through a hair bundle with

open transduction channels when V is zero. This current is
driven by an electrochemical gradient across the outer hair
cell membrane which depends upon the endocochlear poten-
tial.

III. DESCRIPTION OF ACTIVE COCHLEAR
MECHANICS

A. Full description of the integrated system

We now combine the components discussed above into
an integrated description of the cochlear partition. This de-
scription includes the passive mechanics of the partition �Eq.
�1� and Eq. �3��, the active motility of the hair bundles �Eq.
�5� and Eq. �6��, the electromotile response of the outer hair
cells �Eq. �8� and Eq. �9�� and the dynamics of outer hair cell
charge �Eq. �11��. The resulting dynamical equations are

m1ẍhb − m2ẍaz + �ẋhb = − Kgs�xhb − xa − DPo� − �Ksp + Kcp�xhb

+ K12xohc + K13xaz + K14xpz, �12�

�aẋa = Kgs�xhb − xa − DPo� − �fmax�1 − SPo� , �13�

Q̇ = −
gQ

Cohc
− gpxohc + Ihb

maxPo, �14�

and

� �ohcẋohc

mazẍaz − m2ẍhb + �azẋaz

mpzẍpz + �pzẋpz
� = K� ·�

xhb

xohc

xaz

xpz

� + � − pQ

�azPext

�pzPext
� .

�15�

The geometric constraints �Eq. �1�� complete the description
of the system. Here K� is a 3	4 matrix of elastic coeffi-
cients which is obtained by removing the first row of the
matrix K defined in Eq. �4�. The effective stiffness of the hair
bundle is K11 �Eq. �4�� and depends upon the stiffness of the
hair bundle, the tectorial membrane, the reticular lamina,
Deiters’ cell and Hensen’s cell �Appendix A�. We introduce
the contribution to this stiffness from the cochlear partition
Kcp	�11

2 Ktm+�21
2 Krl+�31

2 Kdc+�41
2 Khc. such that K11=Kgs

+Ksp+Kcp. Equations �12�–�15� and Eq. �1� describe the ac-
tive mechanics of the cochlear partition driven by the pres-
sure difference Pext. A discussion of this complete system is

given in Appendix B.
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B. Elimination of fast variables

In order to extract the main properties of this system and
to keep the analysis simple we consider the overdamped
limit and adiabatically eliminate rapidly relaxing variables
�xohc, xaz and xpz�. In the overdamped limit the relaxation
time of the mechanical variables 
hb, 
a, 
ohc, 
az and 
pz

depend upon the damping coefficients. As the values of the
damping coefficients �ohc, �az and �pz are not known we may
choose them such that 
hb, 
a and 
Q�
ohc, 
az and 
pz, where

Q is the relaxation time of the charge displacement. The
overdamped limit is first obtained by neglecting the inertial
terms in Eqs. �12�–�15�. Then we set ẋohc=0, ẋaz=0 and ẋpz

=0 and use Eq. �15� to eliminate the fast variables xohc, xaz

and xpz. In this limit the time evolution of the three slowest
variables is described by

�ẋhb = − Kgs�xhb − xa − DPo� − Kxhb + �hbPext − �1pQ ,

�16�

�aẋa = Kgs�xhb − xa − DPo� − �fmax�1 − SPo� , �17�

Q̇ = − gp�1Pext −
g

Ceff
Q − gp�1xhb + Ihb

maxPo. �18�

Equation �16� is similar to the equation for an isolated hair
bundle �Eq. �5�� except for one additional term, −�1pQ,
which describes the effect of electromechanical feedback on
the hair bundle. The stiffness K, depends on the stiffnesses of
all of the structures in the partition and is much larger than
the stiffness of an isolated hair bundle due to the fact that it
can be dominated by the stiffnesses of the other components
of the partition such as the basilar membrane. The effective
external force due to the pressure difference across the basi-
lar membrane is �hbPext, where �hb is an effective area. The
equation describing the adaptation motors �Eq. �17�� is the
same as Eq. �6�. Equation �18� describes the change in the
charge displacement of the outer hair cells. This may be
driven by Pext due to the electromechanical coupling. More-
over, electromotility and the coupling of mechanical ele-
ments in the cochlear partition introduce a linear dependence

of Q̇ on the hair bundle displacement xhb, in addition to the
nonlinear dependence associated with the open probability of
the transduction channels. Finally, there is a contribution
from electromotility to the effective capacitance Ceff= �Cohc

−1

+�1p2�−1, where the coefficient �1 is described below.
The dynamics of the other mechanical degrees of free-

dom x= �xohc ,xaz ,xpz ,xtm,xrl ,xdc ,xhc�, are linearly dependent
on Pext, Q and xhb. This can be expressed as

x = �Pext + �pQ + �xhb, �19�

where �, � and � are coefficient vectors. The coefficients K,
�hb, �i, �i and �i are determined by the geometry and stiff-
nesses of the cochlear partition.

The elimination of inertial effects is a dramatic simpli-
fication. As a result, the dynamics of the system is described
by fewer degrees of freedom and a smaller number of coef-
ficients �Eqs. �16�–�18��. However, these coefficients now

have a much more complex dependence on the bare physi-
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ological parameters. Note that the inertial effects neglected
here become important at the high frequency end of the co-
chlea �see Appendix B�.

C. Electromotile feedback

The effect of electromotility on the dynamics of the hair
bundle is described by the feedback term, −�1pQ, in Eq.
�16�. This feedback is effectively nonlinear due to the depen-

dence of Q̇ on xhb associated with Po�xhb−xa� in Eq. �18�. In
order to understand the nature of this feedback we linearize
Eqs. �16�–�18� in the absence of external pressure. To linear
order we find

�ẋhb

ẋa

Q̇
� = � − 
hb Kc/� − �1p/�


a − 
a 0

Ihb
maxPo� − Ihb

maxPo� − 
Q
��xhb

xa

Q
� . �20�

Here we define Po�	dPo�x� /dx, Kc	Kgs�1−DPo�� is the gat-
ing spring stiffness between the hair bundle and the adapta-
tion motors and 
hb	�K−KgsDPo�� /�, 
a	�Kgs�1−DPo��
+�fmaxSPo�� /�a and 
Q	g /Ceff are characteristic frequen-
cies associated with xhb, xa and Q, respectively. We examine
the effect of the dynamics of Q on the dynamics of the hair
bundle by writing Eq. �20� in the time Fourier domain de-
fined by

x̃�
� = 

−�

�

e−i
tx�t�dt . �21�

Elimination of the Fourier amplitude of the charge displace-

ment Q̃, yields an expression for the Fourier amplitude x̃hb,
of the hair bundle displacement given by

i
�x̃hb = − �i
�em�
� + Kem�
� + 
hb��x̃hb

+ �i
�em�
� + Kem�
� + K�x̃a. �22�

Here �em�
� and Kem�
� are a frequency dependent friction
and stiffness, respectively, which result from the electromo-
tile feedback and have the form

�em�
� = −
�1pIhb

maxPo�


2 + 
Q
2 , �23�

Kem�
� = − 
Q�em�
� . �24�

Note that �em�
� has necessarily the opposite sign of Kem�
�
and that their signs are determined by �1, which is in turn set
by the stiffnesses and geometry of the cochlear partition. For
a given geometry, we find that the sign of �1 is determined
by the ratio Ktm /Kaz, of the tectorial membrane stiffness and
the stiffness of the arcuate zone of the basilar membrane
�Fig. 2�a��. Thus we have two possible feedback scenarios to
examine, classified by the sign of the feedback. In case A,
with �1�0, the electromotile feedback contributes negative
damping and positive stiffness to the hair bundle while in
case B, with �1�0, the electromotile effect contributes posi-
tive damping and negative stiffness to the hair bundle.

We also find that the feedback is low pass filtered with a
corner frequency 
Q. This low pass filtering of the feedback

28,40
is the RC time constant problem. However, due to cou-
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pling to the surrounding cochlear partition and the electro-
motile response the corner frequency can in principle be ei-
ther larger or smaller than g /Cohc depending upon the sign of
the coefficient �1. We find that �1 is negative and dependents
on Kohc and Kdc �Fig. 2�b��. The corner frequency is thus
reduced by electromotility.

If the system described by Eqs. �16�–�18� undergoes a
Hopf bifurcation, its oscillatory frequency at the bifurcation
is fc=
c /2� with


c
2 = 
hb
a + 
hb
Q + 
a
Q −

Kc
a

�
+

�1pIhb
maxPo�

�
. �25�

Equation �25� shows that the resonance frequency of the sys-
tem is not limited by the slowest internal frequency and in
particular can be much larger than the corner frequency 
Q.
The resonance frequency is not set by the properties of the
hair bundle alone. The parameters 
hb and �1 are strongly
dependent upon the stiffness of the basilar membrane and the
tectorial membrane �see Fig. 2�a� and the next section�.
Moreover, the friction coefficient � could be dominated by
damping due to the deformation of Hensen’s cells or the
tectorial membrane rather than friction associated with the
hair bundle alone. In addition, the electromotile feedback
described by p can be used to adjust the critical frequency fc.

D. Parameter values

We now consider a 10 �m slice of the cochlear partition
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Kdc[N/m]
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FIG. 2. �Color online� �a� The dimensionless parameter �1 describes the
coupling of outer hair cell length changes to hair bundle deflections. The
sign and magnitude of this parameter determines the nature of the electro-
motile feedback to the hair bundle. The parameter �1 is shown as a function
of the ratio Ktm /Kaz of elastic coefficients for different values of Kaz. De-
creasing values of Kaz result in curves intersecting the �1 axis at higher
values of �1. The Kaz stiffness values used are: Kaz=1.0 N /m, 0.1 N/m, 0.05
N/m and 0.01 N/m. �b� The parameter �1 describes the effect of the elec-
tromotile feedback on the effective capacitance Ceff. The parameter −�1 is
shown as a function of the Deiters’ cell stiffness Kdc for different values of
Kohc. These stiffness values are from top to bottom: Kohc=0.05 N /m, 0.01
N/m, 0.005 N/m, 0.001 N/m and 0.0005 N/m.
at the 4 kHz place where most parameter values are well
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constrained by experimental observations. Many of the pa-
rameter values are known from experimental observations,
though not in one animal or at all places along the length of
the cochlea. We use parameters consistent with observations
from the rat, Mongolian gerbil, mouse and guinea pig. Pa-
rameter values associated with the dynamical equations Eqs.
�16�–�18� are given in Tables I and II. The parameter values
for Eq. �19� are given in Tables II and III.

We examine the two feedback cases A and B described
above. The value of �1 is positive in case A and is negative in
case B due to different values of the tectorial membrane
stiffness Ktm �Tables II and III, and Fig. 2�a��. Moreover, we
use different values of three other parameters in case A ver-
sus B, namely �, �a and Ihb

max �Table II�. The values of � and
�a chosen result in slow hair bundle dynamics in case A and
fast hair bundle dynamics in case B. The differences between
other parameter values in cases A and B result from the
change in Ktm �Tables II and III�. A more detailed discussion
of the parameter values used is given in Appendix C

IV. SPONTANEOUS OSCILLATIONS AND RESPONSE
TO PERIODIC FORCING

A. Case A: Electromotility provides negative damping

1. State diagrams

The state diagrams as a function of S and fmax without
electromotility �p=0� and with electromotility present �p

TABLE I. Parameter values for cochlear partition description. Footnotes
indicate relevant references.

D 60 nma

�hb 0.518 nm
A 3.22	1029

g 40 nSb

Kgs 8	10−3 N /ma

� 0.25a

p 16 kV/mc

Cohc 20 pFb

aReference 64.
bReferences 28 and 92.
cReference 25.

TABLE II. Cochlear partition parameter values for case A and case B.
Footnotes indicate relevant references. Parameter values for �hb, K, �1, �1

and �1 are derived from the geometry and elastic properties of the cochlear
partition and are different in cases A and B as the values of Ktm are not the
same in these cases.

Case A Case B

� 2	10−5 Ns /m 5	10−7 Ns /ma

�a 2	10−5 Ns /mb 5	10−7 Ns /mc

Ihb
max 3 nAd 25 nA

�hb 1.05 nm/Pa 1.89 nm/Pa
K 0.103 N/m 0.391 N/m
�1 �6.91 nm/Pa �3.88 nm/Pa
�1 �8.12 m/N �4.40 m/N
�1 0.530 �0.506

aReference 45.
bReference 63.
cReference 64.
d
Reference 70.
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=16 kV /m� are shown in Fig. 3 for case A. Both diagrams
have three primary regions where the system is bistable �BI�,
monostable �MONO� or oscillatory �OSC�. The solid lines
separating the oscillatory regions from the monostable re-
gions are Hopf bifurcation lines. The transduction channels
respond most sensitively to hair bundle motion along the
dashed lines where Po=1 /2. We consider the behavior of the

system at the operating points Oi and Ōi �circles�. The oper-

TABLE III. Elastic and geometric coefficients for cases A and B. The dif-
ferent values in A and B result from the difference in Ktm only.

Case A Case B

�2 5.57 nm/Pa 2.23 nm/Pa
�3 6.15 nm/Pa 7.32 nm/Pa
�4 �3.54 nm/Pa �1.42 nm/Pa
�5 �12.8 nm/Pa �5.12 nm/Pa
�6 �0.0691 nm/Pa �0.0388 nm/Pa
�7 �17.3 nm/Pa �10.8 nm/Pa
�2 6.86 m/N 2.74 m/N
�3 1.61 m/N 3.06 m/N
�4 �4.36 m/N �1.74 m/N
�5 �15.8 m/N �6.31 m/N
�6 0.919 m/N 0.956 m/N
�7 �16.4 m/N �8.53 m/N
�2 1.07 2.21
�3 0.206 �0.197
�4 1.21 0.485
�5 1.35 �1.29
�6 0.00530 �0.00506
�7 1.13 �1.08

MONO

BI

OSC

Po = 1/2

p = 0 kV/m

(a)

1.6
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1.9
2.0
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p = 16 kV/m

(b)
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FIG. 3. State diagrams for the dynamical system given in Eqs. �16�–�18�
describing the active mechanics of the cochlear partition in case A, where
�1�0. The system behavior in the absence of an external stimulus is shown
as a function of the maximal force of adaptation motors fmax and the strength
of the calcium feedback S of hair bundles. Three regions can be distin-
guished: a region OSC of spontaneous oscillations, a monostable region
MONO and a region where the system is bistable BI. The solid line loop
indicates a line of Hopf bifurcations. The points O1 to O3 are different
operating points of the system discussed in the text. �a� State diagram in the
absence of electromotility �p=0�. �b� Same state diagram but with electro-
motility present �p=16 kV /m�. The operating points correspond to the fol-

lowing parameter values: S=1.76 and fmax=1.44 nN �O1 and Ō1�, S

=1.793 and fmax=1.593 nN �O2 and Ō2�, S=1.77 and fmax=1.44 nN �Ō3�.
The dashed line in �b� and �c� indicates operating points with Po=1 /2. �See

Tables I and II for parameter values.�
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ating points Oi correspond to specific values of S and fmax

with p=0, while the Ōi are corresponding operating points
with electromotility present.

2. Electromotility increases the spontaneous
oscillation frequency and the resonance frequency

The spontaneous displacements of the basilar membrane
xbm�t�=xaz�t�+xpz�t�, as a function of time are shown in Fig.

4�a� at the operating points O1 and Ō1 which lie in the oscil-
latory region of the state diagrams shown in Fig. 3. The
basilar membrane oscillates spontaneously with a frequency
of 0.64 kHz when p=0 and with a frequency of 3.98 kHz
when electromotility is present with p=16 kV /m. The natu-
ral frequency of the system as a function of p can be deter-
mined analytically at the Hopf bifurcation with Po=0.5 from
Eq. �25� �Fig. 4�b��. This critical frequency behaves as fc

� p1/2 for large p.
If the system is stimulated with a sinusoidal pressure

difference across the basilar membrane P̃ext, at a frequency f ,
it elicits a vibration of the basilar membrane x̃bm, at the same

frequency. The sensitivity �= �x̃bm / P̃ext� is displayed in Fig.
5�a� for different operating points in the non-oscillatory re-

gion at �P̃ext�=20 �Pa �We refer to this as 0 dB sound pres-
sure level �SPL� for simplicity�. There is an increase in the
frequency where maximum sensitivity occurs when electro-
motility is present from 0.89 kHz at operating point O2 to

4.06 kHz at operating point Ō2.

3. Hair bundle motility and electromotility affect the
sensitivity

Introducing electromotility at operating point O2, with-
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FIG. 4. �Color online� �a� Spontaneous oscillations of the basilar membrane.
The displacement of the basilar membrane xbm=xaz+xpz is shown as a func-
tion of time t when the operating point is in the oscillatory region when
there is no electromotility �operating point O1� and when electromotility is

present �operating point Ō1�. �b� Spontaneous oscillation frequency. The
square of the frequency of spontaneous oscillations at the Hopf bifurcation
fc

2, when Po=1 /2, is shown as a function of the electromotility coefficient p
for cases A and B.
out changing the other parameters, reduces the sensitivity
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�Ō2, Fig. 5�a��. This reduction is the result of operating point

Ō2 being further from the Hopf bifurcation than operating
point O2 �Fig. 3�. This can been seen by noting that the
relaxation time 
, of the system decreases when moving from

O2 �
=100 ms� to Ō2 �
=0.8 ms�. However, if we compare

O2 to Ō3, where the relaxation time is the same, we find that
electromotility increases the sensitivity.

For a passive hair bundle �fmax=0� with electromotility

present �Ō4�, the system is bistable. The maximum sensitiv-
ity is now much smaller than at other operating points and
there is no peak of sensitivity as a function of frequency
�Fig. 5�a��.

4. Nonlinear response

The sensitivity �, is shown for operating point Ō3 in Fig.
5�b� as a function of stimulus frequency for various sound

pressure levels. For �P̃ext� between 0 dB and 90 dB SPL, �
exhibits a peak at the resonance frequency. As the intensity
of the stimulus increases, the magnitude of the peak and the
resonance frequency decrease while the width of the peak
grows. At intensities larger than 90 dB SPL there is no well
defined peak in the sensitivity and the frequency dependence
of the sensitivity is similar to the case when adaptation mo-
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FIG. 5. �Color online� Sensitivity to external sinusoidal pressure stimuli � in
case A as a function of frequency. �a� The sensitivity for a stimulus pressure

amplitude of �P̃ext�=20 �Pa is shown as a function of frequency f , for
different operating points described in Fig. 3. Operating point O2 is for the

case with no electromotility. Operating points Ō2, Ō3 and Ō4 correspond the
case with electromotility �p=16 kV /m�. The adaptation motors are turned

off fmax=0 at operating point Ō4 and in this case the system is bistable. We
show the sensitivity at the closed state here. The sensitivity is largest when
electromotility is present and when the operating point is near the Hopf

bifurcation �operating point Ō3�. �b� The sensitivity with electromotility

present and adaptation motors on �operating point Ō3� is shown as a func-
tion of the stimulus frequency f for different sound pressure levels �0 dB
SPL corresponds to 20 �Pa.�. The frequency at which the peak of the sen-
sitivity occurs and the symmetry of the sensitivity curve decrease as the
sound pressure level increases until the curves no longer have a well defined
maximum.
tors are turned off �fmax=0� �Fig. 5�a��.
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The sensitivity as a function of stimulus amplitude ex-
hibits a compressive nonlinearity �Fig. 6�a��. At 4 kHz the

sensitivity at operating point Ō3 obeys ���P̃ext��, over sev-
eral orders of magnitude with �=−2 /3 due to the proximity
to a Hopf bifurcation.14,15 In contrast, the range of the com-
pressive nonlinearity is significantly reduced when the sys-

tem is stimulated at 3.5 kHz Ō3, or when the operating point

is Ō2 �further from the bifurcation� and the system is stimu-
lated at 4.04 kHz.

Calculated tuning curves at O2 and Ō3 are shown in Fig.
6�b�. They display the SPL that elicits a basilar membrane
vibration of 0.4 nm in amplitude as a function of frequency.
The minimum threshold is 23 dB SPL smaller when electro-

motility is present �Ō3� than when it is absent �O2�. Further-
more, the quality of the resonance increases from about 20 to
240 and its frequency shifts from 0.89 kHz to 4 kHz as a
consequence of the electromotile feedback �Resonance qual-
ity is the ratio of the frequency at the minimum threshold to
the curve width 10 dB SPL above the minimum�.

5. Cochlear partition vibrations

The vibration patterns of the sinusoidally stimulated sys-
tem are represented using phasor diagrams in Fig. 7. Without
electromotility the movement of the mechanical degrees of
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FIG. 6. �Color online� �a� Basilar membrane sensitivity as a function of
stimulus sound pressure level. The sensitivities at different operating points
and stimulus frequencies are shown as a function of sound pressure level as
solid lines. The stimulus frequencies in kHz are shown in parentheses for
each operating point. The dashed line indicates the slope of a power law
function of the external pressure with a power of �2/3. The largest change
in sensitivity over the range of sound input levels shown occurs when the
system is stimulated at the resonance frequency corresponding to an oper-

ating point close to the Hopf bifurcation �operating point Ō3 �4��. �b� Basilar
membrane tuning curves. The threshold sound pressure levels needed to
drive basilar membrane vibrations with �xbm��0.4 nm are shown as a func-
tion of frequency f at two different operating points. One curve corresponds
to the case without electromotility �operating point O2� and has a minimum
at a frequency of 0.89 kHz. The second curve corresponds to the case with

electromotility �p=16 kV /m� �operating point Ō3� and has a minimum at a
higher frequency of 4 kHz.
freedom are in phase with one another Fig. 7�b�. Electromo-
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tility introduces relative phase differences between these
variables �Fig. 7�a��. Negative hair bundle damping results
from outer hair cell elongation being in phase with the ve-
locity of the hair bundle �velocity leads displacement by
90°�. The mechanical displacement variables move into
phase with respect to one another for large stimuli �Fig.
7�c��, similar to the case without electromotility.

B. Case B: Electromotility provides negative stiffness

1. State diagrams

State diagrams of case B for various values of p are
shown in Fig. 8. For p=0 there is no oscillatory region due to
the large tectorial membrane stiffness used �Fig. 8�a��. As p
is increased from zero, an oscillatory region appears and
grows in size due to the negative stiffness provided by the
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FIG. 7. �Color online� Vibration pattern of the cochlear partition in case A.
The vibration pattern of the components of the cochlear partition is shown
using phasor diagrams. Each arrow represents the motion of a component of
the cochlear partition defined in Fig. 1�a� relative to a sinusoidal sound
pressure stimulus. The length of each arrow indicates the amplitude of the
corresponding displacement and the angle relative to 0° indicates the phase
of the displacement with respect to the stimulation. The circular dashed lines
indicate the magnitude of mechanical displacements in nm or the magnitude
of charge displacement in units of 10−14 C. �a� Vibration pattern with elec-

tromotility present �operating point Ō3� for a 0 dB SPL amplitude and 4 kHz
frequency stimulus. The elongation of the outer hair cell leads the displace-
ment of the hair bundle by about 90°. �b� Vibration pattern without electro-

motility present �operating point Ō2� for a 0 dB SPL amplitude and 0.89 kHz
frequency stimulus. All of the mechanical displacements are in phase with
one another. �c� Vibration pattern with electromotility present �operating

point Ō3� for a 120 dB SPL amplitude and 4 kHz frequency stimulus. All of
the mechanical displacements are approximately in phase with one another.
electromotile feedback.
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2. Both electromotility and hair bundle motility tune
the oscillation frequency

The critical frequency fc at the bifurcation, for Po=1 /2,
is shown as a function of p in Fig. 4�b�. The frequency grows
initially due to the increase in the values of fmax and S re-
quired to maintain the operating point on the Hopf bifurca-
tion line at Po=1 /2. However, fc attains a maximum at p
=42 kV /m and vanishes at p=100 kV /m as electromotility
decreases fc when �1�0 �see Eq. �25��. At the operating

point Ō5 in Fig. 8�d� the resonance frequency is 4.05 kHz. At
this operating point near the bifurcation the system exhibits
the same generic features of high sensitivity, compressive
nonlinearity and sharp frequency tuning described in case A.

3. Cochlear partition vibrations

The vibration patterns of the system in response to ex-

ternal pressure stimuli at operating point Ō5 are shown in
Fig. 8. At low stimulus levels electromotile feedback pro-
vides negative stiffness to the hair bundle. However, at high
stimulus levels negative stiffness is reduced as the pressure
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FIG. 8. �Color online� ��a�–�d�� State diagrams for the dynamical system
given in Eqs. �16�–�18� describing the active mechanics of the cochlear
partition in case B, where �1�0. The system’s behavior in the absence of an
external stimulus is shown as a function of fmax and S for different values of
the electromotility coefficient p. �a� There is no Hopf bifurcation when p
=0. ��c� and �d�� A loop of Hopf bifurcations appears for p�0 and grows in
size as p increases. The operating point O5 is at S=1.80 and fmax

=1.61 nN corresponding to a system relaxation time of 
=100 ms. ��e� and
�f�� Vibration pattern of the cochlear partition in case B. Vibration pattern
with electromotility present �p=16 kV /m� �operating point O5� at a stimu-
lus frequency of 4 kHz. �e� The amplitude of the stimulus is 0 dB SPL. The
contraction of the outer hair cell is in phase with the displacement of the hair
bundle. �f� The amplitude of the stimulus is 120 dB SPL.
force �hbPext, dominates the electromotile feedback force
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−�1pQ �see Eq. �16��. Figure 8 shows the stimulus amplitude
dependence of the vibration pattern due to nonlinearities in
the system. The connection between negative stiffness and
the vibration pattern can best be seen at low levels of input
where the contraction of the outer hair cell results in a force
on the hair bundle in phase with its deflection �Fig. 8�e��.

V. CONCLUSIONS

In this work we address the interplay between active hair
bundle movements and electromotile feedback in a slice of
the cochlear partition, which is described by three coupled
differential equations �Eqs. �16�–�18��. We distinguish two
possible cases: in case A electromotility provides negative
damping to the hair bundle and in case B it results in nega-
tive stiffness. In case A spontaneous oscillations are possible
in the absence of electromotility. In this case the main role of
electromotility is to allow the combined system to achieve a
higher frequency of spontaneous oscillation and resonance as
compared to the hair bundle alone. Furthermore, electromo-
tility also increases the sensitivity to periodic stimuli and it
sharpens the frequency tuning. In case B both hair bundle
motility and electromotility are required for spontaneous os-
cillations to exist. In this case, electromotile feedback de-
creases the frequency of oscillations due to positive damp-
ing. If the system operates in the vicinity of a Hopf
bifurcation both cases A and B exhibit similar properties of
nonlinear amplification and frequency selectivity. Which
case is of relevance for the cochlea? There is experimental
evidence in support of case A. A decrease in the characteris-
tic frequency and a broadening of the frequency tuning have
been reported when electromotility is absent in a mutant
mouse.67 Moreover, some of the parameters chosen to gen-
erate case B appear to be unphysiological �see Appendix C�.
We therefore suggest that the cochlea operates, at least at the
4 kHz place, under conditions similar to case A, where elec-
tromotile feedback provides negative damping.

Although the electromotile feedback is limited by the
RC time constant we find that this is not a problem at the
characteristic place described here. The 4 kHz resonance fre-
quency of the partition is much larger than the corner fre-
quency 
Q / �2��=0.3 kHz in both case A and case B corre-
sponding to the membrane time constant. As a result the
electromotile feedback is attenuated, but it can still effec-
tively drive basilar membrane vibrations at 4 kHz and boost
mechanical amplification. Cochlear partition inertia could
play a role at higher frequency locations along the cochlea in
mitigating the attenuation of electromotile feedback �see Ap-
pendix B�.

The contractile electromotile force of the outer hair cell
soma has two opposing effects on the hair bundle. First, it
pulls Corti’s arch �formed by the two pillar cells�, toward the
tectorial membrane by acting directly on the basilar mem-
brane. This results in a force on the hair bundle in the posi-
tive direction, as the pivot point of the reticular lamina
moves closer to the tectorial membrane �Fig. 1�. Second, this
electromotile force pulls the reticular lamina downwards.
This induces a negative force on the hair bundle. The direc-

tion of the net force on the hair bundle depends on the rela-
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tive importance of these two effects, which in turn depend
upon the stiffnesses of the components to which the hair
bundle is coupled. In case B, where electromotility provides
negative stiffness and the tectorial membrane is stiff �Table
V�, the electromotile force acts in the direction of positive
hair bundle displacements, thus producing negative stiffness
�Fig. 8�e��. In case A the net force on the hair bundle due to
outer hair cell elongation is in phase with the velocity of the
hair bundle yielding negative hair bundle damping �Fig.
7�a��. Both of these scenarios differ from the previously hy-
pothesized effect of electromotility on the cochlear
partition.68 However, the relative motions of the reticular
lamina, tectorial membrane and basilar membrane with re-
spect to the change in length of the outer hair cell �Fig. 7�a�
and Fig. 8�e�� obtained here are consistent with experimental
observations of cochlear partition vibrations.60–62

Our work shows that the inertia of the partition is not
necessary for frequency tuning. This implies that a traveling
wave with a nonlinear response at a characteristic place can
result from inertialess Hopf oscillators,69 and that the reso-
nance frequency is set by the combination of hair bundle
dynamics and electromotility. Indeed, our description indi-
cates how tonotopic variation in the properties of the parti-
tion, such as the maximum hair bundle current Ihb

max or the
electromotility coefficient p, could regulate the place fre-
quency map within the cochlea �Eq. �25� and see Appendix
C�.

In our description, the cochlear amplifier gets its energy
input from the work of hair bundle adaptation motors as well
as the electrochemical gradients across the outer hair cell
membrane. In the presence of electromotility, it is possible to
turn the hair bundle motors off �fmax=0� and to choose sys-
tem parameters such that spontaneous oscillations occur for
passive hair bundles �see Appendix D�. However, for this to
be possible Ihb

max needs to be one to two orders of magnitude
larger than the physiological estimate70 �see Appendix C�.

The responses of the cochlear partition slice to external
sound stimuli discussed here are related to local experimen-
tal observations of the cochlear traveling wave �Figs. 5 and
6�.4–6,67 However, we overestimate the maximum sensitivity

and the sharpness of the resonance at operating point Ō3 as
we have not corrected for the gain of the middle ear71 and we
do not take the effects of fluctuations into account.63 In ad-
dition, the compressive nonlinearity we describe at this op-
erating point is modified by the traveling wave69 and by
fluctuations.44 Finally, the traveling wave can modulate
cochlear responses to be more asymmetric at low sound pres-
sure levels than the responses we calculate.4,5,49

In vivo a homeostatic mechanism may regulate the sys-
tem to operate in the proximity of a Hopf bifurcation.14 For
example, such a mechanism could be based on adjustment of
hair bundle motility by changing fmax or on regulation of
electromotility by varying p. Since outer hair cells receive
efferent nerve fibers from the brain such mechanisms could
be controlled by the central nervous system.1,2,72,73 Overall
our description indicates that electromotility and hair bundle
motility work together to provide the mammalian ear with its

remarkable signal detection properties.
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APPENDIX A: GEOMETRIC CONSTRAINTS AND
PASSIVE LINEAR MICROMECHANICS

1. Passive linear mechanics

Equation �3� can be derived systematically by writing
the Lagrange function for the system described by the geom-
etry of masses and springs shown in Fig. 1. This Lagrangian
is given by

L = 1
2 Mazẋaz

2 + 1
2 Mpzẋpz

2 + 1
2 Mtm��11ẋhb + �13ẋaz�2

− 1
2 �Ksp + Kgs�xhb

2 − 1
2Kohcxohc

2 − 1
2Kazxaz

2 − 1
2Kpzxpz

2

− 1
2Khc��41xhb + �43xaz + �44xpz�2 − 1

2Ktm��11xhb + �13xaz�2

− 1
2Krl��21xhb + �23xaz�2

− 1
2Kdc��31xhb − xohc + �33xaz + �34xpz�2. �A1�

Here Maz, Mpz and Mtm are the masses of the arcuate zone,
pectinate zone and tectorial membrane respectively and the
Kij are stiffness. In writing the Lagrangian, we have already
made use of geometrical constraints on the system �Eqs. �1�
and �2��.

Rayleigh’s dissipation function describes the friction
forces on the system and we write it as

F = 1
2�ẋhb

2 + 1
2�ohcẋohc

2 + 1
2�azẋaz

2 + 1
2�pzẋpz

2 , �A2�

where the � are friction coefficients. The dynamic equations
involving force balances of elastic, inertial, friction and ex-
ternal forces can be obtained from Lagrange’s equation as74

d

dt
�dL

dẋ
� −

dL

dx
+

dF

dẋ
= Fext, �A3�

Here, x is any of the independent dynamic variables
�xhb,xohc ,xaz ,xpz� and Fext is the corresponding element from
the force vector �0,0 ,�azPext ,�pzPext�. This leads to Eq.
�3� where the masses are given by m1=�11

2 Mtm,
m2=−�11�13Mtm, maz=Maz+�13

2 Mtm and mpz=Mpz. The
stiffnesses in Eq. �4� also result from Eq. �A3� and are
linear combinations of the stiffness parameters in the
Lagrangian. For example, K11=Kgs+Ksp+�11

2 Ktm+�21
2 Krl

+�31
2 Kdc+�41

2 Khc.

2. Geometric constraints

In this section we show how the geometric constraints
are obtained which are used in the Lagrangian for the passive
system �Eq. �A1��. The variables which describe the defor-
mation of the cochlear partition are the angles �tm, �rl, �hb,
�az and �pz and the spring lengths xohc, xdc and xhc. The an-
gular variables are related to the displacements xtm, xrl, xhb,
xaz and xpz:xtm=ztm sin��tm�, xrl=zrl sin��rl�, xhb= lhb sin��hb�,
xaz= �zaz+zpz�sin��az� and xpz=zpz sin��pz�, where the beam
lengths ztm, zrl, lhb, zaz and zpz are constant, see Fig. 1. The
geometry of the partition introduces the following geometric

relations:
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lhb
2 = �ztm cos��tm� − zhb cos��1� − zipc −

ypc sin��2�
sin��ipc�

�2

+ �ztm sin��tm� − zhb sin��1� + yooC −
ypc cos��2�

sin��ipc�
�2

,

�A4�

ztm
2 = �lhb sin��3� + zhb cos��1� + zipc +

ypc sin��2�
sin��ipc�

�2

+ �lhb cos��3� + zhb sin��1� − yooC +
ypc cos��2�

sin��ipc�
�2

,

�A5�

�xohc + xdc�2 = �ypc + zhb sin��rl� − z1 tan��pz��2

+ �zohc − z1
1

cos��pz�
�2

− 2�ypc + zhb sin��rl�

− z1 tan��pz�� 	 �zohc − z1
1

cos��pz�
�

	cos��/2 − �pz� , �A6�

xhc
2 = �ypc + zrl sin��rl� − z2 tan��pz��2 + �zpz − z2

1

cos��pz�
�2

− 2�ypc + zrl sin��rl� − z2 tan��pz��

	�zpz − z2
1

cos��pz�
�cos��/2 − �pz� , �A7�

where

ypc = zaz� 1

tan��ipc�
+

1

tan��opc�
�−1

, �A8�

�1 = �rl + �az, �A9�

�2 = �/2 − �ipc − �az, �A10�

�3 = �hb − �rl − �az, �A11�

z1 = zhb cos��rl� −
ypc

tan��opc�
, �A12�

z2 = zrl cos��rl� −
ypc

tan��opc�
. �A13�

These nonlinear geometric constraints can be linearized
around a reference state. Using the fact that the beam lengths
are constant, we find to linear order

0 =
�lhb

��tm
��tm +

�lhb

��rl
��rl +

�lhb

��az
��az, �A14�

0 =
�ztm

��hb +
�ztm

��rl +
�ztm

��az, �A15�

��hb ��rl ��az
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�xdc + �xohc =
��xdc + xohc�

��rl
��rl +

��xdc + xohc�
��pz

��pz,

�A16�

�xhc =
�xhc

��rl
��rl +

�xhc

��pz
��pz, �A17�

where ��tm=�tm−�tm
ref, ��rl=�rl−�rl

ref, ��hb=�hb−�hb
ref, ��az

=�az−�az
ref, ��pz=�pz−�pz

ref, �xohc=xohc−xohc
ref , �xdc=xdc−xdc

ref

and �xhc=xhc−xhc
ref. The reference state values for the angles

are defined in Fig. 1�b�. For small angular changes, the
changes in the beam displacements are: �xtm=ztm��tm, �xrl

=zrl��rl, �xhb= lhb��hb, �xaz= �zaz+zpz���az and �xpz=zpz��pz.
Using the relations Eqs. �A14�–�A17� we express the

displacements �xtm, �xrl, �xdc and �xhc in terms of the other
displacements, see Eq. �1�. In the main text, we drop the “�”
to simplify the notion. The parameters �ij in Eq. �2� are func-
tions of the geometric parameters in Eqs. �A4�–�A13� and
can be found using Eqs. �A14�–�A17�

APPENDIX B: FULL SYSTEM DYNAMICS

The full system dynamics, given by Eqs. �12�–�15�, may
be written in the Fourier domain as

Hhbx̃hb = Kgs�DP̃o + x̃a� −
H4

�A�K1K2

H5
�A� x̃hb − m2
2x̃az

−
H4

�B�K3

H5
�A� pQ̃ +

H4
�C�K4

H5
�A� �1P̃ext, �B1�

Hax̃a = − Kgs�DP̃o − x̃hb� − �fmax�2���
� − SP̃o� , �B2�

HQQ̃ = −
H4

�B�K3

H5
�A� gpx̃hb −

H4
�D�

H5
�A�gp2Q̃

−
H2

�A�K5

H5
�A� gp�2P̃ext + Ihb

maxP̃o, �B3�

and

x̃ohc =
H4

�B�K3

H5
�A� x̃hb +

H4
�D�

H5
�A� pQ̃ +

H2
�A�K5

H5
�A� �2P̃ext, �B4�

x̃az =
H5

�B�

H5
�A� x̃hb +

H2
�B�

H5
�A� pQ̃ +

H3
�A�K6

H5
�A� �3P̃ext, �B5�

x̃pz =
H3

�B�K7

H5
�A� x̃hb +

H2
�C�

H5
�A� pQ̃ +

H3
�C�K8

H5
�A� �4P̃ext. �B6�

Here Hhb=−m1
2+�i
+Kgs+Ksp+Kcp, Ha=�ai
+Kgs, HQ

= i
+g /Cohc, Hn=
j=0
n Aj�i
�j, Kn are stiffnesses and �n are

effective areas. The constants Aj are functions of the stiff-
nesses, masses and damping coefficients in Eqs. �12�–�15�.

Adiabatic elimination corresponds to the case where the
Hn are evaluated for 
=0 in Eqs. �B1�–�B6�. After taking the
overdamped limit and adiabatic elimination the Hn are con-

stants independent of masses and damping coefficients.
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The most general form of the electromotile feedback can
be found by substituting Eq. �B3� into �B1�. The force ex-

erted on the hair bundle by electromotility when P̃ext=0 is
given to linear order by

F̃em =
�gK3pH4

�B�/H5
�A� − Ihb

maxPo��K3pH4
�B�

�i
 + g/Cohc�H5
�A� + gp2H4

�D� x̃hb. �B7�

The force F̃em depends upon the masses maz, mpz and m2

as well as the damping coefficients �ohc, �az and �pz. We plot

�F̃em / x̃hb� as a function of frequency f =
 / �2��, in Fig. 9 for
three different values of the mass m where maz= �1+�13

2 �m,
mpz=m, and m2=−�11�13m for simplicity �see Appendix A�.
When m=0 the electromotile force is severely attenuated at 4
kHz due to the low pass filtering associated with the RC time
constant.

Experimental observations indicate that the bare values
of the basilar membrane mass and the tectorial membrane
mass are at most 7	10−8 g for a 10 �m slice of the
cochlear partition.56 Using m=7	10−8 g we find a reso-
nance at 6.2 kHz. However, the effect of basilar membrane
inertia on the electromotile feedback is negligibly small near
4 kHz. If we choose mbm=1.67	10−7 g there is an inertial
resonance at 4 kHz which compensates for the RC low pass
filtering. The frequency of this inertial resonance is most
sensitive to the value of the arcuate zone mass. Thus it may
be possible to overcome the RC time constant problem at
high frequencies if a basilar membrane resonance is close to
that of the active cochlear partition.

At low frequencies the electromotile feedback force has
the form

F̃em �
�1p�gp�1 − Ihb

maxPo��
i
 + g/Cohc + gp2�1

. �B8�

Equation �B8� may be simplified by using the approximation
Ihb

maxPo�−gp�1� Ihb
maxPo� yielding the electromotile feedback

terms in Eq. �22�. Electromotile feedback is low pass filtered

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

f [kHz]

|F
em
/x
hb
|[
N
/m
]

m = 0

m = 7×10-8 g

m = 1.67×10-7 g

~
~

FIG. 9. �Color online� Frequency dependence of the electromotile feedback.
The frequency dependence of electromotile feedback is shown by plotting

�F̃em / x̃hb� as a function of frequency f , where F̃em is the electromotile feed-
back force. Each curve corresponds to different values of the tectorial mem-
brane and basilar membrane masses. The masses of the basilar membrane
zones and the tectorial membrane are the same �denoted by m� such that the
inertial terms are given by maz= �1+�13

2 �m, mpz=m and m2=−�11�13m,
where the values of m are given in the figure. When m is not zero there is a
resonance in the electromotile feedback. This position of this resonance is
associated primarily with the arcuate zone of the basilar membrane. For all
curves we use the parameters from case A given in Tables I and II. In
addition we use �ohc=�az=�pz=10−7 Ns /m and Po=1 /2.
by the RC membrane time constant in this case, but the mag-
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nitude of the feedback is sufficiently large at 4 kHz to have a
big effect on the behavior of the cochlear partition.

APPENDIX C: DISCUSSION OF PARAMETER VALUES

1. Geometry

The geometry of this system is determined by a set of
experimental measurements on unfixed cochleae from the
Mongolian gerbil �Meriones unguiculatus�56–58 �Table IV,
Fig. 1�. We note that while there are unknown variations in
these geometric parameters the requirement of geometric
consistency serves to constrain their possible values.

2. Stiffnesses

The stiffnesses of the components of the system may be
estimated from experimental observations of their deflections
due to point probes.75–80 We interpret these measurements
within the context of our approximation for the movement of
the basilar membrane �up to its mid-point between the spiral
lamina and the spiral ligament� as two rigid beams which
pivot about the connection of the basilar membrane to the
spiral lamina and the base of the outer pillar cell �Fig. 1�.
Measurements of basilar membrane stiffness in the 4 kHz
region yield values in range from 5	10−2 N /m to 5
	10−1 N /m.75–80 We use the most recent values for basilar
membrane stiffnesses for the cochlea of the gerbil.80 Several
studies of the tectorial membrane point stiffness have been
made.81–84 However, the interpretation of these measure-
ments is difficult as the tectorial membrane appears to be
quite inhomogeneous.82 Assuming that the tectorial mem-
brane is homogeneous we estimate the tectorial membrane
stiffness range at the 4 kHz place to be 10−2 N /m to 5
	10−1 N /m.81–83 We examine the behavior of the system
when the tectorial membrane stiffness is 10−2 N /m �case A�

−1

TABLE IV. Cochlear partition dimensions. Lengths in �m. Parameters are
defined in Fig. 1.

zhb 40a

ztm 165a

zohc 25.6a,b

lhb 2.8a

yooC 97.2a

�ipc 76°b

�rl
ref 20°b

�az
ref 7.2°a,b

�tm
ref �0.3°a,b

zpz 92.5b

zipc 122b

zrl 90a,b

zaz 83.7b

xdc
ref 64.2a,b

�opc 47°b

�hb
ref 0°a

�pz
ref 0°d

aReference 58.
bReference 57.
cReference 56.
dAssumed.
and when it is 5	10 N /m �case B�. No measurements of
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the stiffness of Deiters’ cell are available. We choose its stiff-
ness in order to maximize the outer hair cell corner fre-
quency 
Q, �Fig. 2�b��. Order of magnitude estimates are
available for the stiffnesses of most of the other components
of the system �Table V�.

3. Damping

The values for the damping coefficients are uncertain. In
case A we choose �=2	10−5 Ns /m in order to take into
account additional damping of the cochlear partition. This
value is large compared to the values corresponding to free-
standing hair bundles.63,64 The value of �a=2	10−5 Ns /m
previously associated with adaptation motors is also used.63

In case B the damping coefficients �=5	10−7 Ns /m and
�a=5	10−7 Ns /m are chosen to be much smaller as com-
pared to case A in order to tune the system to 4 kHz, leading
to faster hair bundle dynamics, similar to the values used for
individual rat hair cells.64 The value for � used in this case is
also close in magnitude to an estimate of viscous damping in
the subtectorial space.45

4. Hair bundle

The parameter values we use for the hair bundles are
based on an application of the model described in Eqs.
�5�–�7� to describe experimental observations of isolated
outer hair cell bundles from the 4 kHz place of the rat
cochlea64 �Table I�. The values of fmax required for the sys-
tem to function at the operating points chosen are three times
or less than the maximum force that can be generated by an
individual rat hair bundle.33

In our description the open probability of the hair bun-
dle’s transduction channels Po, is much more sensitive to
hair bundle displacement than previous models allow and
experimental measurements indicate.33,64 However, the
sharpness of Po is underestimated and has not been measured
for conditions similar to those in vivo.70,85 Moreover, we
choose to make the hair bundle very sensitive to displace-
ments as we are coupling a single hair bundle to a stiff
cochlear partition, rather than three as in vivo.

5. Outer hair cell soma

We use values for the capacitance and conductance cor-

TABLE V. Stiffnesses in N/m.

Ktm 0.01�A�/0.5�B�
Kaz 0.05a

Ksp 0.005b

Krl 0.005c

Kdc 1
Kpz 0.05a

Khc 0.01d

Kohc 0.01e

aReference 80.
bReference 64.
cReference 94.
dReference 93.
eReferences 86 and 38.
responding to measurements of isolated outer hair cells from
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the second row of the 4 kHz region of the guinea pig
cochlea.25,28,86 The maximum current through the outer hair
cell hair bundle is on the order of a few nanoamperes in
vivo.70,87 The value of Ihb

max=3 nA used in case A is well
within this range. However, the value of 25 nA used in case
B is less consistent with experimental data �Table II�. In
addition, Ihb

max is proportional to the maximum transduction
channel conductance, which can vary tonotopically along the
cochlea,88 and thus it could regulate the place frequency
map.

Electromotility is nonlinear over a range of about 200
mV.29 However, the physiological range of receptor potential
changes is only about 5 mV.89 Thus, electromotility is ap-
proximately linear within the physiological range and is
characterized by the linear response coefficient p. We esti-
mate the value of the maximum electromotile response coef-
ficient, p, from measurements of the stiffness, capacitance
and the electromotile response of outer hair cells to be on the
order of 10 kV/m.25,28,86 In order to construct a system which
is resonant at about 4 kHz and to take into account three
outer hair cells per cochlear slice we use p=16 kV /m. The
value of p could vary tonotopically in the cochlea. For ex-
ample, p is a function of the unstimulated outer hair cell
length,90 which changes monotonically along the cochlea.91

APPENDIX D: ADAPTATION MOTORS OFF

Here we consider the system with the adaptation motors
turned off. The remaining source of activity associated with
the electrochemical gradients coupled with the nonlinearity
of the hair bundle allows for spontaneous oscillations under
certain conditions. The necessary conditions for oscillations
are satisfied in case B when the open probability Po of the
hair bundle transduction channels is described by �hb

=51.8 nm and A=2.0. The state diagram of the system as a
function of p and Ihb

max is shown in Fig. 10. Spontaneous
oscillations are possible for very large values of Ihb

max. How-
ever, these values are one to two orders of magnitude larger

MONO OSC

100 101 102 103 104 105 1060

0.05

0.10

Ihb
max [pA]

p
[k
V
/m
]

FIG. 10. State diagram for the dynamical system given in Eqs. �16�–�18�
describing the active mechanics of the cochlear partition in case A, where
�1�0, when the hair bundle adaptation motors are off �fmax=0�. The system
behavior in the absence of an external stimulus is shown as a function of the
maximal current through the hair bundle Ihb

max, and the electromotility coef-
ficient p. Spontaneous oscillations occur in the region labeled OSC and the
system is monostable in the region labeled MONO. The solid line between
these to regions is a line of Hopf bifurcations. A Hopf bifurcation is only
possible for very large values of Ihb

max. Our description of cochlear mechanics
is not valid in the shaded unphysiological region where it is necessary to
take into account additional nonlinearities.
then the physiological estimate �Table II�.
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