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Abstract. We develop a hydrodynamic theory of active permeating gels with
viscoelasticity in which a polymer network is embedded in a background
fluid. This situation is motivated by active processes in the cell cytoskeleton
in which motor molecules generate elastic stresses in the network, which
can drive permeation flows of the cytosol. Our approach differs from earlier
ones by considering the elastic strain in the polymer network as a slowly
relaxing dynamical variable. We first present the general ideas for the case of
a passive, isotropic gel and then extend this description to a polar, active gel.
We discuss two specific cases to illustrate the role of permeation in active gels:
self-propulsion of a thin slab of gel relative to a substrate driven by filament
polymerization and depolymerization; and non-equilibrium deswelling of a gel
driven by molecular motors.
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Living cells are highly dynamic systems that are able to move, to divide and to generate forces.
This dynamics originates from the cytoskeleton, a gel-like network of elastic filaments. The
cytoskeleton is an active material in which specialized motor molecules use the hydrolysis of
a chemical fuel, adenosine triphosphate (ATP), to generate directed movements and forces.
Because of this internal activity, novel types of material properties arise, such as active
stresses [1] and spontaneous flows [2].

Cell shape and cell mechanics are governed by the actin cytoskeleton, which serves as a
motivation for the hydrodynamic theory presented in this paper. Actin networks are crosslinked
by passive and active linkers, resulting in short-time elastic and long-time viscous properties.
Typical short-time shear moduli are in the range of 103–104 Pa; the gel flows on time scales
greater than 10–100 s [3]. In addition, the cytoskeletal gel is permeated by a cytosol consisting
of water and solutes. Since filaments are polar structures with two different ends, they can align
on average, giving rise to an anisotropic or polar gel. In a polar gel, ATP-driven polymerization
and depolymerization reactions can lead to polymer flow relative to the cytosol, a process known
as treadmilling. Finally, active stresses are generated by the action of motors, which can lead to
gel contraction and the expulsion of cytosol and, in polar gels, to anisotropic active stresses that
induce complex flow patterns.

Theoretical approaches to describing the physics of active gels have been introduced that
either start at the filament scale from basic interaction rules between filaments and motors [4–6]
or take a phenomenological approach and derive dynamic equations in the hydrodynamic
limit based on conservation laws and symmetries [7–12]. In these hydrodynamic approaches,
the physical description of viscoelasticity and permeation in active gels poses fundamental
challenges. The goal of this paper is to develop a generic hydrodynamic theory of active, polar,
viscoelastic polymer networks in a solvent that describes permeation flow generated by elastic
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stress in the network. Our approach differs from the one-component theory of [7], applicable to
situations in which cytosolic flow causes no dissipation or in which the gel and solvent move
together. We extend the multi-component theory of [9] to cases in which elastic stresses and
permeation flows persist on long times even in viscoelastic systems, because of steady state
active stresses. As an example, cell locomotion on a substrate involves flow of the actin polymer
network and the cytosol in opposite directions, and thus permeation flow.

We show here that viscoelasticity can be introduced systematically via an internal degree
of freedom that describes local elastic deformations and which relaxes during the viscoelastic
relaxation time. A key result stemming from this approach is the appearance of an effective
viscous stress in the polymer network at long times, which drives solvent flow and leads to
couplings with the other hydrodynamic variables. Our approach provides a formal basis for the
two-phase theory of [12, 13], in which the cytoskeleton is composed of a highly viscous polymer
phase interpenetrated by a solvent. At the same time, our work shows that such a two-phase fluid
requires viscoelastic material properties.

This paper is organized as follows. In section 1, the hydrodynamic equations of a passive,
two-component viscoelastic gel consisting of a polymer network in a solvent are derived. This
example reveals how the Maxwell model for the polymer component (section 2) arises from
a general approach based on irreversible thermodynamics. Following the same strategy, in
section 3 we present the hydrodynamics of a multi-component, active, polar viscoelastic gel,
identifying novel couplings that are unique to a polar gel. We then use this description to study
two problems motivated by cell biophysics: in section 4 we consider the movement of a thin
active gel layer driven by filament treadmilling, and in section 5 we describe the non-equilibrium
deswelling of an isotropic active gel under contractile stress. We discuss our results in section 6.

1. Hydrodynamics of a two-component passive viscoelastic gel

We first consider a passive viscoelastic gel to illustrate how the standard hydrodynamic
approach [14, 15] can be extended to include the elastic strain in the polymer component as
a slowly relaxing yet non-hydrodynamic variable. Our approach generalizes those of [16–18]
by using Onsager theory to obtain generic constitutive relations that describe solvent permeation
and elastic strain relaxation in a gel at long times.

1.1. Slow variables and continuity equations

In a two-component viscoelastic fluid, there are three conserved quantities: the masses of the two
components and the total momentum. The corresponding continuity equations for the polymer
and solvent mass densities, ρp and ρs, and the total momentum density, gα, are

∂tρp + ∂α(ρpv
p
α)= 0, (1)

∂tρs + ∂α(ρsv
s
α)= 0, (2)

∂t gα − ∂βσ
tot
αβ = f ext

α , (3)

where vp
α is the polymer velocity, vs

α is the solvent velocity, σ tot
αβ is the total stress tensor and f ext

α

is an external force density. In the following, we suppose that f ext
α = 0. Introducing the total

mass density ρ = ρp + ρs and the center-of-mass velocity

vα =
ρp

ρ
vp
α +

ρs

ρ
vs
α, (4)
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the momentum density is given by gα = ρvα. The polymer and fluid velocities can be expressed
in terms of vα and the relative flux, jα:

vp
α = vα +

jα
ρp

(5)

and

vs
α = vα −

jα
ρs
. (6)

A two-component viscoelastic fluid is also characterized by the amount of elastic energy stored
in its polymer component. As a result, the relaxation of long-wavelength disturbances of the gel
will depend not only on gradients of the conserved variables, but also on the amount of elastic
strain, given by the symmetric tensor uαβ . In a perfect elastic solid, in which a reference state
is well defined, uαβ would be the elastic strain tensor. In a viscoelastic fluid, uαβ is a slowly
relaxing quantity, and as a result one can divide the gel volume into small elements, each of
which is in a state of local equilibrium described by the free energy density f (ρp, ρs, uαβ). We
can then define uαβ as the quantity conjugate to the more physically tangible elastic stress, σ el

αβ :

σ el
αβ =

∂ f

∂uαβ
. (7)

1.2. Fluxes and forces

To find the constitutive relations for the gel, we first identify the fluxes and forces that cause
dissipation; to do this we follow the formalism of irreversible thermodynamics [14]. The total
free energy of the gel is obtained by integrating f and adding this to the kinetic energy contained
in the fluid volume V :

F =

∫ [
1

2
ρv2 + f (ρp, ρs, uαβ)

]
dV . (8)

In a non-equilibrium, isothermal change the time derivative of F is
dF

dt
= −

∫
∂V

jF
α dSα − T

∫
V
θdV, (9)

where jF
α is the free energy flux through an element dS of the bounding surface ∂V and θ is the

rate of internal entropy production. The time derivative of F is obtained using the differential
of f ,

d f = µpdn p +µsdns + σ el
αβduαβ, (10)

where µi = ∂ f/∂ni , i = p, s, are the chemical potentials and ni = ρi/mi and mi are the number
density and molecular mass of component i , respectively. Using this relation and the continuity
equations, we obtain

dF

dt
=

∫ [
1

2
v2∂α (ρvα)+ vα∂βσ

tot
αβ −µp∂α(n pvα)−µs∂α (nsvα)−µ∂α jα + σ el

αβ∂tuαβ

]
dV, (11)

where µ=
µp

m p
−

µs

ms
is the exchange chemical potential. Introducing the pressure P = − f +

µpn p +µsns , using equation (10) and integrating by parts, the above can be simplified to

dF

dt
=

∫ [
−
(
σ tot
αβ + ρvαvβ + Pδαβ

)
∂βvα + jα∂αµ+ σ el

αβ

(
∂tuαβ + vγ ∂γuαβ

)]
dV + surface terms.

(12)
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Noting that the antisymmetric part of the total stress, σ tot,a
αβ , is zero (see appendix A), we obtain

the entropy production rate

T θ = σαβvαβ − jα∂αµ−
Duαβ

Dt
σ el
αβ . (13)

In equation (13), σαβ is the symmetric, deviatoric stress given by

σαβ = σ tot
αβ + ρvαvβ + Pδαβ, (14)

vαβ =
1
2(∂αvβ + ∂βvα) is the symmetric part of the velocity gradient tensor,

Duαβ
Dt

=
∂uαβ
∂t

+ vγ ∂γuαβ +ωαγuγβ +ωβγuαγ (15)

is the convected, co-rotational time derivative of uαβ and ωαβ =
1
2(∂αvβ − ∂βvα) is the vorticity

tensor.
The entropy production rate given by equation (13) is a sum of terms, each consisting of

a thermodynamic flux multiplied by its conjugate force. The deviatoric stress, σαβ , is conjugate
to the symmetrized velocity gradient, vαβ . The relative polymer current, jα, is conjugate to the
gradient of the exchange chemical potential, ∂αµ. Finally, the elastic strain rate, Duαβ/Dt , is
conjugate to the elastic stress, σ el

αβ .
To help enumerate flux–force pairs, the product of a rank two tensorial flux and a rank two

tensorial force can be decomposed into scalar (trace) and tensorial (traceless) terms. In our case,

σαβvαβ = σ̃αβ ṽαβ + 1
3σv, (16)

Duαβ
Dt

σ el
αβ =

Dũαβ
Dt

σ̃ el
αβ +

1

3

du

dt
σ el, (17)

where Ãαβ ≡ Aα β −
1
3 Aγ γ δαβ is the traceless part of a tensor Aαβ , A ≡ Aγ γ is its trace and

d
dt =

∂

∂t + vα∂α is the convected time derivative. As a result, the conjugate flux–force pairs are

Flux ↔ Force

σ̃αβ ↔ ṽαβ

σ ↔
1
3v (18)

jα ↔ − ∂αµ

Dũαβ
Dt

↔ − σ̃ el
αβ

du

dt
↔ −

1

3
σ el.

1.3. Constitutive relations

The constitutive relations for the passive gel are obtained by expanding the fluxes to linear
order in the forces, writing all terms allowed by symmetry [14]. We note that each flux contains
a dissipative part and a reactive part, i.e. σ̃αβ = σ̃ d

αβ + σ̃ r
αβ , etc. The dissipative part contributes to

the entropy production rate, while the reactive, or reversible, part does not. The dissipative and
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reactive parts are identified by their signatures under time reversal. Noting that the forces ṽαβ
and v/3 are odd under time reversal and −σ̃ el

αβ , −σ el/3 and −∂αµ are even, the dissipative parts
of the fluxes are given by

σ̃ d
αβ = 2ηṽαβ, (19)

σ d
= 3ηv, (20)

jd
α = −γ ∂αµ+χ1∂β σ̃

el
αβ +

χ1

3
∂ασ

el, (21)

Dũd
αβ

Dt
= −χ1

(
∂α∂βµ−

1

3
∂2
γµδαβ

)
−0σ̃ el

αβ +
01

2

(
∂α∂γ σ̃

el
βγ + ∂β∂γ σ̃

el
αγ −

2

3
δαβ∂ρ∂γ σ̃

el
ργ

)

+
0′

1

3

(
∂α∂βσ

el
−

1

3
∂2
γσ

elδαβ

)
, (22)

dud

dt
= −χ1∂

2
αµ+0′

1∂α∂β σ̃
el
αβ −0σ el +

01

3
∂2
ασ

el. (23)

These relations contain several Onsager coefficients, in addition to the shear and bulk viscosities
η and η, already arising in a simple fluid. Filament diffusion through the solvent is related to the
osmotic mobility, γ , in equation (21). Elastic forces drive flow of polymer relative to solvent, in
proportion to the mobilities χ1 and χ1 appearing in equation (21). Finally, viscoelastic relaxation
in the polymer network is described by the coefficients 0, 01, 0′

1, 0 and 01 in equations (22) and
(23). Onsager reciprocity for dissipative couplings has been respected in equations (19)–(23),
noting that the χ1-terms in equations (21) and (22), when multiplied by their conjugate force,
only differ by a partial integration whose boundary term is irrelevant to the entropy production
rate. The same is true for the χ1 terms.

The reactive parts of the fluxes are

σ̃ r
αβ = π1

(
∂α∂βµ−

1

3
∂2
γµδαβ

)
+ νσ̃ el

αβ +
ν2

2

(
∂α∂γ σ̃

el
βγ + ∂β∂γ σ̃

el
αγ −

2

3
δαβ∂ρ∂γ σ̃

el
ργ

)

+
ν2

3

(
∂α∂βσ

el
−

1

3
∂2
γσ

elδαβ

)
, (24)

σ r
= π 1∂

2
γµ+

ν ′

2

3
∂α∂β σ̃

el
αβ + νσ el +

ν ′

2

3
∂2
γσ

el, (25)

j r
α = −π1∂β ṽαβ −

π 1

3
∂αv, (26)

Dũr
αβ

Dt
= νṽαβ +

ν2

2

(
∂α∂γ ṽβγ + ∂β∂γ ṽαγ −

2

3
δαβ∂ρ∂γ ṽργ

)
+
ν ′

2

3

(
∂α∂βv−

1

3
∂2
γ vδαβ

)
, (27)

dur

dt
= ν2∂α∂β ṽαβ + νv +

ν ′

2

3
∂2
γ v. (28)
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These relations contain all possible reactive couplings of a passive viscoelastic gel up to
second derivatives in the exchange chemical potential, the elastic stress and the symmetrized
velocity gradient. We note that Onsager reciprocity for reactive couplings has been respected.
We observe first that the elastic stress contributes reactively to the deviatoric stress, with
coefficients ν and ν in equations (24) and (25). The reciprocal couplings, that is, the ν- and
ν-terms in equations (27) and (28), describe convection of the elastic strain by the center-
of-mass velocity. We note also that a non-homogeneous center-of-mass velocity gradient
contributes to the polymer flux. This effect, described here by the coefficients π1 and π 1, has
been obtained earlier from kinetic theory arguments for flexible polymers in a solvent [19].
The remaining terms, and terms involving second derivatives of µ and σ el

αβ in the dissipative
relations, have been included here because they are relevant for obtaining a simple Maxwell
model.

The physical elastic stresses that contribute to the total stress, σ tot
αβ , are νσ̃ el

αβ and νσ el, with
conjugate strains ũαβ/ν and u/ν. As a result, we may write Onsager relations for ũαβ/ν and
u/ν and simply renormalize the Onsager coefficients as follows: χ1 → χ1/ν, χ1 → χ1/ν, 0 →

0/ν2, 01 → 01/ν
2, 0′

1 → 0′

1/(νν), 0 → 0/ν2, 01 → 01/ν
2, ν2 → ν2/ν, ν ′

2 → ν ′

2/ν, ν2 →

ν2/ν and ν ′

2 → ν ′

2/ν. We may therefore take ν = ν = 1 without loss of generality.
The constitutive relations for the passive, two-component, viscoelastic gel are obtained by

adding the dissipative and reactive parts of each flux, i.e. σ̃αβ = σ̃ d
αβ + σ̃ r

αβ , etc. These constitutive
relations, together with the continuity equations, (1)– (3), complete the description of the passive
viscoelastic gel. When inertial terms are neglected in the momentum conservation equation, the
force balance condition

∂β(σαβ − Pδαβ)= 0 (29)

is obtained. Note that the pressure P is different from the hydrostatic pressure P − σ el.
To summarize, Onsager relations, given by equations (19)–(23) and (24)–(28), have been

obtained that describe strain relaxation and permeation in an isotropic, passive, two-component
viscoelastic fluid. By treating uαβ as a slow dynamical variable, viscoelastic relaxation in the
polymer component of the gel is contained in the dissipative relations for Dũd

αβ/Dt and dud/dt .
When elastic stresses are not fully relaxed, the flux of polymer relative to the center-of-mass is
seen to be driven by the elastic force ∂β σ̃ el

αβ , in addition to the osmotic force ∂αµ.
Equations (19)–(23) and (25)–(28) are completely general relations describing a

viscoelastic gel; if certain conditions are imposed among the Onsager coefficients, specific
model behaviors can be obtained. The simplest such model is the Maxwell model of
viscoelasticity. In the next section, we show how this model behavior arises from our general
description.

2. Maxwell model with permeation

The Maxwell model is a simple description of stress relaxation on a single time scale, τ , such
that the response of the viscoelastic fluid is solid-like on time scales shorter than τ and liquid-
like on time scales greater than τ . Some care, however, must be taken in writing down the
Maxwell model for stress relaxation in the polymer network, since in general the polymer
velocity and the center-of-mass velocity are different. The Maxwell model for the polymer
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component is written as(
1 + τ

D

Dt

)
σ̃ el
αβ = 2ηpṽ

p
αβ, (30)(

1 + τ
d

dt

)
σ el

= ηpv
p, (31)

where ηp and ηp are the shear and bulk polymer viscosities and ṽp
αβ and vp are the traceless part

and trace of the polymer velocity tensor vp
αβ =

1
2

(
∂αv

p
β + ∂βvp

α

)
. In equations (30) and (31), we

have distinguished shear and isotropic relaxation by the two relaxation times τ and τ .

2.1. Simplification of Onsager relations

To obtain equations (30) and (31) from our theory, we first assume Hookean elasticity:

σ̃ el
αβ = 2Gũαβ, (32)

σ el
= K u, (33)

where G and K are the shear and bulk moduli. The Maxwell model is then obtained from the
constitutive equations for Dũαβ/Dt and du/dt . Using the Onsager relations equations (21)–(23)
and (26)–(28), we obtain(

1 +
1

2G0

D

Dt

)
σ̃ el
αβ =

ṽ
p
αβ

0
+

1

0

[(
ν2

2
+
π1

2ρp0

)(
∂α∂γ ṽβγ + ∂β∂γ ṽαγ −

2

3
δαβ∂ρ∂γ ṽργ

)
+

(
ν ′

2

3
+
π 1

3ρp0

)(
∂α∂βv−

1

3
∂2
γ vδαβ

)
+

(
γ

ρp0
−χ1

)(
∂β∂αµ−

1

3
δαβ∂

2
γµ

)
+

(
01

2
−

χ1

2ρp0

)(
∂α∂γ σ̃

el
βγ + ∂β∂γ σ̃

el
αγ −

2

3
δαβ∂ρ∂γ σ̃

el
ργ

)
+

(
0′

1

3
−
χ1

3ρp0

)(
∂α∂βσ

el
−

1

3
∂2
γσ

elδαβ

)]
, (34)

(
1 +

1

K0

d

dt

)
σ el

=
vp

0
+

1

0

[(
ν2 +

π1

ρp0

)
∂α∂β ṽαβ +

(
ν ′

2

3
+
π1

3ρp0

)
∂2
γ v

+

(
γ

ρp0
−χ1

)
∂2
αµ+

(
0′

1 −
χ1

ρp0

)
∂α∂β σ̃

el
αβ +

(
01

3
−
χ1

3ρp0

)
∂2
ασ

el

]
. (35)

To obtain the above, we have used vαβ ' v
p
αβ − (∂α jβ + ∂β jα)/2ρp0 and the constitutive relation

for jα to rewrite the first term on the right-hand side of equation (27) and the second term on the
right-hand side of equation (28) in terms of gradients of the polymer velocity. Here, ρp0 is the
polymer mass density at equilibrium.

Equations (34) and (35) represent a generalized Maxwell model with the polymer
viscosities ηp = 1/(20) and ηp = 1/0 and the viscoelastic relaxation times τ = ηp/G and
τ = ηp/K . To recover the simplified Maxwell model, we set the osmotic and mechanical
mobilities equal to each other: χ1 = χ1 = γ /ρp0, a choice made in two-fluid models of
polymer solutions [20]. If, furthermore, 01 = 0′

1 = 01 = γ /ρ2
p0, ν2 = ν2 = −π1/ρp0 and ν ′

2 =

ν ′

2 = −π 1/ρp0, all but the first terms on the right-hand sides of equations (34) and (35) vanish,
and we recover equations (30) and (31).
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2.2. Two-fluid description of permeation

With these choices of Onsager coefficients and π1 = π 1 = 0, we obtain a two-fluid description
of permeation in the gel. From the constitutive relation for jα,

∂β(σ
el
αβ − ρp0µδαβ)−

ρ2
p0

γ
(vp
α − vα)= 0. (36)

Equation (36) can be interpreted as the force balance equation on the polymer component of
the gel, where the first bracketed term contains the elastic and osmotic forces and the second
bracketed term contains the drag force between the polymer and the solvent and describes
permeation. Subtracting equation (36) from the total force balance, equation (29), we obtain
the force balance on the solvent:

∂β(2ηṽαβ + ηvδαβ − Psδαβ)−
ρ2

p0

γ
(vα − vp

α)= 0, (37)

where Ps = P − ρp0µ is identified as the solvent pressure. For small polymer mass fractions,
vs
α ' vα, and it becomes clear that in equation (37) the first bracketed term contains the viscous

forces and the pressure force on the solvent, and the second bracketed term contains the reaction
force of the polymer network on the solvent. We see that the Onsager approach generates a
Maxwell model of the polymer component of the gel, equations (30) and (31), whose elastic
stresses drive permeation of a solvent, described by equations (36) and (37).

3. Hydrodynamics of an active, polar, viscoelastic gel with permeation

In this section, we account for two key features of active gels: polar order and active processes
driven by ATP hydrolysis [7, 9]. Active processes in the cytoskeleton, whether forces exerted
by myosin motors or filament turnover, are introduced via the difference in chemical potentials
between ATP and ADP and inorganic phosphate, Pi,1µ= µATP −µADP −µP. When1µ> 0 a
free energy 1µ is released per molecule of hydrolyzed ATP. We suppose for simplicity that the
concentrations of ATP, ADP and Pi are uniform in space and time in the cell, and therefore 1µ
is also constant.

In the hydrodynamic description presented below, several new couplings arise due to the
elastic stress in the network and to filament turnover that were not considered in earlier theories
of active, polar gels [7, 9, 21, 22]. To find these couplings, we follow the same procedure as that
used in section 1.

3.1. Continuity equations and polar order parameter

To account for filament turnover, we introduce the monomer mass density, ρm, in addition to the
polymer and solvent densities, ρp and ρs. The continuity equations are then given by

∂tρp + ∂α(ρpv
p
α)= −s, (38)

∂tρm + ∂α(ρmv
m
α )= s, (39)

∂tρs + ∂α(ρsv
s
α)= 0, (40)

∂t gα − ∂βσ
tot
αβ = 0, (41)
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where s describes polymerization and depolymerization reactions that lead to an exchange
of monomers between polymer filaments and the solvent. The total mass density is ρ =

ρp + ρm + ρs, the center-of-mass velocity is vα = (ρpv
p
α + ρmv

m
α + ρsv

s
α)/ρ, and hence the total

momentum density is gα = ρvα. Next, the polymer and monomer relative fluxes jp
α and jm

α are
defined by

vp
α = vα +

jp
α

ρp
, (42)

vm
α = vα +

jm
α

ρm
, (43)

vs
α = vα −

( jp
α + jm

α )

ρs
. (44)

Polymer filaments that make up active gels are generally polar, which can give rise to local
anisotropy in the gel. Polar order is described here by the vector order parameter pα, similar to
the director in nematic liquid crystals [15]; as it represents broken rotational invariance of the
gel, pα is a hydrodynamic variable.

3.2. Fluxes and forces

The free energy for the multi-component, polar fluid is given by

F =

∫ [
1

2
ρv2 + f (ρp, ρm, ρs, uαβ, pα, ∂α pβ)

]
dV . (45)

The time derivative of F is obtained using the differential of f ,

d f =

∑
i=p,m,s

µi dni + σ el
αβduαβ − hαdpα + ∂α(παβdpβ), (46)

where µi = ∂ f/∂ni , i = p,m, s, are the chemical potentials, ni = ρi/mi and mi are,
respectively, the number density and molecular mass of component i , παβ =

∂ f
∂(∂α pβ )

and hα =

−
∂ f
∂pα

+ ∂βπβα is the field conjugate to pα [15]. Using equation (46), the continuity equations
and integrating by parts, we find that
dF

dt
=

∫
dV

[
− (σ tot

αβ + ρvαvβ)∂βvα + jp
α∂αµp + jm

α ∂αµm −

∑
i=p,m,s

µi∂α (nivα)

+σ el
αβ∂tuαβ − hα∂t pα − r1µ− s1µpm

]
+ surface terms, (47)

where µi =
µi

mi
−

µs

ms
, i = p,m, are exchange chemical potentials, r is the number of

ATP molecules hydrolyzed per unit time and 1µpm = µp −µm. Introducing the pressure
P = − f +

∑
i=p,m,s µi ni and using equation (46), the above can be simplified to

dF

dt
=

∫
dV
[
− σ s

αβvαβ +
(
σ a
αβ + 2σ el

αγuγβ + hα pβ
)
ωαβ + jp

α∂αµp + jm
α ∂αµm

+σ el
αβ

Duαβ
Dt

− hα
Dpα
Dt

− r1µ− s1µpm

]
+ surface terms. (48)

In equation (48), σ s
αβ and σ a

αβ are the symmetric and antisymmetric parts of the deviatoric stress

σαβ = σ tot
αβ + ρvαvβ − σ e

αβ + Pδαβ, (49)
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where σ e
αβ = −πβγ ∂α pγ is the Ericksen stress [15], and

Dpα
Dt

= ∂t pα + vβ∂β pα +ωαβ pβ (50)

the convected, co-rotational time derivative of pα. The Ericksen stress is an equilibrium stress
that generalizes the hydrostatic pressure to anisotropic fluids [15]. Since no dissipation occurs
in a rotational flow (vαβ = 0) in which the fields uαβ and pα move and rotate with the fluid
(Duαβ/Dt = 0, Dpα/Dt = 0), it follows that

σ a
αβ = σ̃ el

βγ ũγα − σ̃ el
αγ ũγβ + 1

2(pαhβ − pβhα) (51)

and that the entropy production rate is given by

T θ = σ s
αβvαβ − jp

α∂αµp − jm
α ∂αµm −

Duαβ
Dt

σ el
αβ +

Dpα
Dt

hα + r1µ+ s1µpm. (52)

From equation (52), we identify the flux–force pairs new to this section. Firstly, the relative
monomer current, jm

α , is conjugate to the gradient of the monomer exchange chemical potential,
∂αµm. Secondly, the convected, co-rotational time derivative of the polarity vector, Dpα/Dt ,
is conjugate to the molecular field, hα. Thirdly, the reaction rate of the chemical fuel, r , is
conjugate to the chemical potential difference between the fuel and its products, 1µ. Finally,
the polymer–monomer exchange rate, s, is conjugate to the difference in chemical potential
between polymer and monomer. We note that in a passive system, a nonzero1µpm will relax in
a finite time. In non-equilibrium steady states, the chemical potential difference 1µpm will be a
function of 1µ.

The flux–force pairs for the gel may thus be summarized as

Flux ↔ Force

σ̃ s
αβ ↔ ṽαβ

σ s
↔

1
3v

j i
α ↔ − ∂αµi

Dũαβ
Dt

↔ − σ̃ el
αβ

(53)
du

dt
↔ −

1

3
σ el

Dpα
Dt

↔ hα

r ↔1µ

s ↔1µpm,

where i is equal to p or m.

3.3. Constitutive relations

In a polar gel, fluxes and forces of different tensorial order may couple to each other by allowing
the Onsager coefficients to be functions of pα. Based on the flux–force pairs, equation (53),
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a number of dissipative and reactive couplings arise; see appendix B. Here, we only list the
couplings that are relevant for the discussion of active, polar, viscoelastic gels. The dissipative
relations are

j i,d
α = χi pβ σ̃

el
αβ +

χ i

3
pασ

el + κi pα1µ+ κ ′

i pα1µpm + o.c., (54)

Dũd
αβ

Dt
=

∑
i=p,m

χi

2

(
pα∂βµi + pβ∂αµi −

2

3
pγ ∂γµiδαβ

)
+
ω1

2

(
pαhβ + pβhα −

2

3
pγ hγ δαβ

)
+ψ q̃αβ1µ+ψ ′q̃αβ1µpm + o.c., (55)

dud

dt
=

∑
i=p,m

χ i pα∂αµi +ω1 pαhα +ψ1µ+ψ1 pα pα1µ+ψ
′

1µpm +ψ
′

1 pα pα1µpm + o.c., (56)

Dpd
α

Dt
= −ω1 pβ σ̃

el
αβ −

ω1

3
pασ

el + λ′

1 pα1µpm + o.c., (57)

r d
= −ψ q̃αβ σ̃

el
αβ −

ψ

3
σ el

−
ψ1

3
pα pασ

el +3′1µpm + o.c., (58)

sd
= −

∑
i=p,m

κ ′

i pα∂αµi −ψ ′q̃αβ σ̃
el
αβ −

ψ
′

3
σ el

−
ψ

′

1

3
pα pασ

el + λ′

1 pαhα +3′1µ+311µpm, (59)

where q̃αβ = pα pβ −
1
3 pγ pγ δαβ and ‘o.c.’ stands for other couplings that have already been

presented in section 1 or in earlier studies [7, 9]. Note that there are no new reactive couplings as
compared with section 1 and those found earlier for active, polar fluids [7, 9]. The constitutive
equations are obtained by adding the dissipative and reactive parts of each flux given in
equations (B.1)–(B.16), i.e. σ̃ s

αβ = σ̃
s,d
αβ + σ̃ s,r

αβ , etc. The hydrodynamic behavior of the gel is then
fully described by these equations and the continuity equations, equations (38)–(41). Neglecting
inertial terms in the momentum conservation equation, the force balance condition is given by

∂β(σ
s
αβ + σ a

αβ + σ e
αβ − Pδαβ)= 0. (60)

We discuss now the physical meaning of the couplings in equations (54)–(59). Firstly, in a polar
gel, the relative fluxes couple directly to the elastic stress in equations (54), with coefficients
χi and χ i . Onsager reciprocity indicates that terms with the same coefficients appear in the
constitutive relations for the elastic strain rate, equations (55) and (56). Secondly, the ω1- and
ω1-terms in equations (55) and (56) describe elastic strain relaxation or production caused by the
molecular field, hα. The reciprocal terms in equation (57) account for alignment of the polarity
vector by the elastic stress. Thirdly, active elastic stresses arise from terms proportional to 1µ
in the elastic strain rate equations, equation (55) and (56). There are isotropic and anisotropic
active terms in these equations, and they describe relaxation or production of elastic strain
by active processes, such as polymer assembly and disassembly and the effects of molecular
motors. Next, the elastic stress couples to the reaction rate of chemical fuel, r , in equation (58),
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Figure 1. A thin film of active gel positioned between two pistons sets itself
into motion.

with coefficients ψ , ψ , and ψ1. Finally, equation (59) contains couplings, with coefficients
ψ ′, ψ

′

and ψ
′

1, that describe at linear order the effects of elastic stress on the polymerization
rate s.

Polymer treadmilling is a biologically relevant phenomenon in which filaments polymerize
at one end and depolymerize at the other end at constant length [23, 24]. It requires asymmetric
filaments and ATP consumption, and is described here by the active current κp pα1µ. The
term κ ′

p pα1µpm describes polymerization and depolymerization reactions driven by chemical
potential differences between polymers and monomers. This current could also exist as a
transient effect in a passive, polar gel. In an active, polar gel, treadmilling may arise even if
the net turnover rate, s, is zero, as might occur in a uniform, steady state.

4. Self-propulsion of a thin active gel

In this section, we present a simple model of self-generated motion of an active gel. This
problem is motivated by cell locomotion on a solid substrate. We consider a thin layer of an
incompressible, active, polar gel between two parallel surfaces located at y = −h and y = h;
see figure 1. The active gel is bounded in the x-direction by two pistons separated by a distance
L much greater than h, and is spatially homogeneous in the z-direction. The layer of gel could,
for instance, represent the thin film-like lamellipodium of a crawling cell [25], while the pistons
represent the trailing cell body and a load at the leading edge that the lamellipodium moves
against. The fluid is assumed to be polarized in the x-direction with unit magnitude: |p| = 1.

We describe the gel flow at steady state using a two-component description in which free
monomers are included in an effective solvent; for simplicity, we do not consider polymerization
and depolymerization at the surfaces but instead consider filament treadmilling in the bulk. The
fluid is described by the following constitutive relations, simplified from section 3:

σαβ = 2ηvαβ + σ el
αβ, (61)

jα = −γ ∂αµ+χ1∂βσ
el
αβ + κpα1µ, (62)

0 = −σ el
αβ + 2ηpv

p
αβ, (63)

where we have used the notation jα = jp
α , γ = γp, µ= µp, χ1 = χ1p = χ1p, κ = κp and have

used the simple case η = 2η/3 and ηp = 2ηp/3.
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Mass conservation, force balances and the incompressibility condition of the medium read

d

dy

(
ρpv

p
y

)
= 0, (64)

dσxy

dy
− ∂x P = 0, (65)

dσyy

dy
− ∂y P = 0, (66)

dvy

dy
= 0. (67)

In the above, we have assumed that the system is homogeneous along the x-direction. As a
result, the stresses, velocities and densities are independent of x . Note that we neglect the
dependence of the exchange chemical potential µ on pressure, which is valid if the specific
volumes of the solvent and polymer components are equal [9, 26]. Integrations of equation (65)
with respect to x and y imply that P = P0 +α(y)x and σxy = σ0 +

∫
dy α(y), where P0 and σ0

are integration constants. Integrations of equations (64) and (67) with respect to y and using
no-flux conditions at the surfaces show that vy = vp

y = 0. It follows that σyy = 0 and ∂y P = 0,
implying that α is a constant. Furthermore, the no-flux condition at y = ±h leads to jy = 0; as
a result, µ and, therefore, ρp are constants.

Integrating the force balance equation, equation (65), twice along x leads to the
condition ηvx + ηpv

p
x = σ1 + σ0 y +αy2/2, where σ1 is another integration constant and σ0 = 0,

by symmetry with respect to y. Using the definition jx = ρp(v
p
x − vx) we obtain

χ1ηp
d2vp

x

dy2
− ρp

(
1 +

ηp

η

)
vp

x = −κ1µ−
ρp

η

(
σ1 +

α

2
y2
)
. (68)

The boundary conditions at y = −h and at y = h specify how momentum is transferred between
the surfaces and the gel. Assuming that the gel is linked to the surfaces by adhesion molecules
that bind and detach, we introduce a surface friction coefficient for polymer, ξ , which implies

σ el
xy(±h)= ∓ξvp

x(±h). (69)

For simplicity we assume that the solvent can slip on the surface, leading to

dvx

dy
(±h)= 0. (70)

The solution to equations (68)–(70) is

vp
x(y)= −

αh

ξ
+

α

2(η + ηp)
(y2

− h2)+
αh

q

η

ηp(η + ηp)

[
cosh(qy)− cosh(qh)

sinh(qh)

]
, (71)

where q2
= ρp(η

−1 + η−1
p )/χ1. The permeation length q−1 is related to the mesh size of the

gel, λ, and to the persistence length, Lp, of the gel’s filaments. Assuming that η� ηp and
taking χ1 = γ /ρp (see section 2), we first obtain q2

= ρ2
p/(ηγ ). Since γ = ρ2

p D/5, where
D ≈ kBT/(ηλ) is the cooperative filament diffusion constant, kB is Boltzmann’s constant, T
is the temperature and 5 is the osmotic compression modulus, we find that q2

≈ λ5/(kBT ).
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For semiflexible polymers with λ� Lp, 5≈ kBT (λ/Lp)
1/5/λ3 [27, 28], and we finally obtain

q−1
≈ λ(λ/Lp)

−1/10. Below, we consider separately the limits qh � 1 and qh � 1.
In the limit of small qh, where the solvent freely permeates the polymer network, we obtain

from equation (71) Poiseuille flow with pressure gradient α for the polymer component:

vp
x(y)'

α

2ηp

(
y2

− h2
)
−
αh

ξ
; (72)

the barycentric velocity is then given by

vx(y)' −
κ1µ

ρp
−
α

q2

(
1

η
+

1

ηp

)
, (73)

which implies a plug-flow profile of the solvent.
In the limit of large qh, in which the solvent moves with the polymer network, we find that

vp
x(y)'

α

2(η + ηp)

(
y2

− h2
)
−
αh

ξ
, (74)

vx(y)' −
κ1µ

ρp
+

α

2(η + ηp)

(
y2

− h2
)
−
αh

ξ
. (75)

The as yet unknown pressure gradient α is found from the condition of mechanical equilibrium
at the two pistons, which move with a velocity U =1P/(2ξp), where ξp is the piston friction
coefficient and 1P is the pressure drop across the piston. This implies that ξpU = αL/4; in
steady state U =

1
2h

∫ h
−h vxdy. From this argument, we finally obtain the slab velocity

U = −
κ1µ/ρp

1 + 4ξpχ1/(Lρp)
, for qh � 1, (76)

U = −
κ1µ/ρp

1 +
4ξph

L

(
1

ξ
+

h

3(η + ηp)

) , for qh � 1. (77)

The two expressions are qualitatively similar and become identical for an infinitely long gel
layer, in which the pressure gradient vanishes and forced permeation is absent.

This simple model demonstrates that a bulk treadmilling current generates center-of-mass
gel motion in the opposite direction. The scenario that we have discussed could be realized
experimentally by confining a film of actin gel between two surfaces. In the presence of ATP,
filament treadmilling could give rise to center-of-mass motion of the film, as predicted by our
model.

5. Deswelling of an active gel

Myosin motors interacting with actin filaments are known to actively contract the network [1],
[29–31]. In this section, we describe the active deswelling of the polymer-rich phase of a phase-
separated isotropic gel. We ignore polymerization and depolymerization in the following.

In an isotropic gel with no center-of-mass flow (vα = 0), the constitutive equations,
equations (B.3)–(B.16), at steady state simplify to

jα = −γ ∂αµ+
χ 1

3
∂ασ

el, (78)

New Journal of Physics 13 (2011) 093027 (http://www.njp.org/)

http://www.njp.org/


16

0 = −χ1∂
2
αµ−0σ el +ψ1µ, (79)

where χ1 ≡ χ1p and the remaining notation is the same as in section 4.
We first consider equilibrium conditions, i.e. 1µ= 0. In the uniform bulk of the network,

we find that σ el
= 0. We assume a gel with spherical symmetry. Setting jr = 0 in equation (78)

and integrating along the radial direction, r , we obtain the condition of chemical equilibrium
between inside and outside of the polymer-rich region:

µ= µ0, (80)

where µ0 is an integration constant.
Including ATP hydrolysis,1µ> 0, from equation (79) we find a spatially constant, steady-

state value of σ el in the polymer-rich region:

σ el
=
ψ1µ

0
. (81)

Integration of the force balance equation, ∂r(P − σ el)= 0, gives

P − σ el
= P0, (82)

where P0 is an integration constant corresponding to the pressure in the solvent-rich phase. This
shows that the hydrostatic pressure is the same inside and outside the gel.

Equation (81) gives the isotropic elastic stress due to motor activity. Integration of the
relation jr = 0 with respect to r and the use of equation (81) leads to

µ−µ0 =
χ1ψ1µ

3γ0
. (83)

Equation (83) describes the chemical potential imbalance between the gel and solvent phases
due to motor activity.

Experiments indicate that motors exert contractile forces on actin filaments [29–35].
This means that motors put the gel under tension, with σ el > 0. According to equation (81),
contractile activity corresponds to ψ > 0. For positive mobility χ1, µ−µ0 > 0 and the polymer
volume fraction in the gel increases, given by δφ = K0(µ−µ0), where K0 is the osmotic
compressibility. This short example demonstrates the physics of active gel deswelling: motor
activity generates an isotropic stress in the polymer network, which drives out the solvent, thus
contracting the polymer component of the gel.

6. Discussion

Motivated by cytoskeletal dynamics in cells, we have developed a hydrodynamic theory
describing active, polar, viscoelastic gels. A key result of this work is that by introducing the
elastic deformation in the polymer component of the gel as a macroscopic variable, we obtained
constitutive relations that describe the effects of permeation of the solvent driven by elastic
stresses. In an active gel, these stresses can be generated by active processes, such as the action
of motor molecules [1].

We first tested our approach by deriving constitutive relations for a passive, two-
component, viscoelastic gel. Our generic approach based on Onsager theory leads to results that
are close to those of [17, 18, 36], in which polymer solution dynamics are described by force
balance equations for the solvent and polymer components. Our results show that the elastic
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stress in the polymer network generates permeation flow. We developed generic constitutive
relations and demonstrated that these relations contain the Maxwell model of viscoelasticity as
a simple case, provided certain relations between the Onsager coefficients hold. In the long-
time limit we found a description of the gel as two interpenetrating fluids, characterized by the
viscosities η and ηp and by a frictional force between them proportional to their difference in
velocities. This result provides a conceptual basis for the two-fluid models of the cytoskeleton
introduced previously [11, 12]. We showed that to obtain this limit one needs to explicitly
consider the elastic deformation in the polymer network of the gel.

Using the Onsager approach, we then developed constitutive equations for an active, polar
gel. By introducing ATP hydrolysis, our theory allows a hydrodynamic description of active
gels, such as the actin cytoskeleton, in which motor activity and filament treadmilling couple to
polar order, viscoelasticity in the network and permeation. Our treatment of viscoelasticity and
permeation generalizes an earlier active gel theory [9]. In [9], the network strain is not explicitly
considered as a macroscopic variable. Instead, viscoelasticity is introduced by assuming a
Maxwell model between the total stress and the center-of-mass strain rate. At long times, the
theory of [9] describes the active gel as a polar fluid containing multiple diffusing components.
There is no elastic stress-driven solvent permeation in this description.

We discussed two situations in which elastic stress-driven permeation plays an important
role. In our model of self-propulsion of a gel film, a treadmilling current powered by ATP
hydrolysis generates an elastic stress that squeezes the solvent through the polymer network
and generates center-of-mass motion of the film. Note that the boundary conditions on the
polymer and center-of-mass velocities at the surface are important. We discussed the simple
situation where surface friction is transmitted solely to the polymer network; a different choice
of boundary conditions gives similar results for the gel motion, with different elastic stress
profiles and permeation flows. This model corresponds to an experimental situation in which
an actin–myosin gel is confined in vitro between two surfaces. The physics contained in this
model is also relevant to the behavior of the lamellipodium of crawling cells. There, active
processes in the actin cytoskeleton and its adhesion to a substrate drive the flow of actin opposite
to the direction of cell motion, and thus permeation of cytosol through the actin meshwork
occurs [37]. We have identified the permeation length scale q−1

≈ λ(λ/Lp)
−1/10. For the actin

cytoskeleton, assuming a mesh size λ' 50 nm [38], a persistence length Lp ' 10µm [39]
and the lamellipodium thickness of h ' 200 nm [40], we find that qh ∼ 1. This suggests that
permeation of cytosol through the actin meshwork causes significant dissipation, which was
neglected earlier [7]. In our discussion of active gel deswelling, a steady-state elastic stress in
an isotropic gel results from the contractile action of motors and the remodeling of passive
crosslinks. We considered a gel coexisting with an outside solvent and found that a chemical
potential imbalance between the gel and the solvent is maintained by active processes. The
resulting contraction of the gel is related to the contractile instability of active gels recently
discussed in [41]. We note that the simplicity of our result hides the complex physics occurring
at the interface of the polymer-rich and solvent-rich phases. Future work is required in order to
investigate the role that interfacial dissipative phenomena play in active gel contraction.

The theory presented here is generic, and should be applicable to active systems containing
a polar viscoelastic component embedded in a solvent. It thus provides a suitable framework
for studying active biological gels such as the actin cytoskeleton in eukaryotic cells. In these
cells, processes such as cell motility and cell division involve flows and reorientations of actin
filaments, coupled to relative motion of the underlying cytosol.
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Appendix A. Rotational invariance for a passive, viscoelastic gel

In this appendix, we show that the antisymmetric part of the total stress, σ tot
αβ , is zero based on

rotational invariance of the free energy of a passive, isotropic gel. Introducing the convected,
co-rotational time derivative

Duαβ
Dt

=
∂uαβ
∂t

+ vγ ∂γuαβ +ωαγuγβ +ωβγuαγ , (A.1)

where ωαβ =
1
2(∂αvβ − ∂βvα) is the vorticity tensor, equation (12) can be rewritten as

dF

dt
=

∫ [
−σ s

αβvαβ + (σ a
αβ − σ el

αγuβγ − σ el
γαuγβ)ωαβ + jα∂αµ+ σ el

αβ

Duαβ
Dt

]
dV

+ surface terms. (A.2)

In equation (A.2) vαβ =
1
2(∂αvβ + ∂βvα) is the symmetric part of the velocity gradient tensor and

σ s
αβ and σ a

αβ are the symmetric and antisymmetric parts of the deviatoric stress tensor

σαβ = σ tot
αβ + ρvαvβ + Pδαβ . (A.3)

Recognizing that no change in free energy occurs if the field uαβ moves and rotates with the
fluid in a purely rotational flow (Duαβ/Dt = vαβ = 0), from equation (A.2) it follows that

σ a
αβ = (σ el

αγuβγ + σ el
γαuγβ)

a, (A.4)

where ()a denotes the antisymmetric part. Moreover, −(σ el
αγuβγ + σ el

γαuγβ)ωαβ is the change in
the free energy density, f , under an infinitesimal rotation dθα =

1
2εαβγωβγdt , which must also

be zero. Therefore, σ tot,a
αβ is zero.

Appendix B. Onsager relations for an active, polar, viscoelastic gel

In this appendix, we present the linear couplings between the fluxes and forces in equation (53).
Noting that the molecular field hα and the forces 1µ and 1µpm are even under time reversal,
the dissipative parts of the fluxes are given by

σ̃
s,d
αβ = 2ηṽαβ, (B.1)

σ s,d
= 3ηv, (B.2)

j i,d
α = −

∑
j=p,m

γi j∂αµ j +χi pβ σ̃
el
αβ +χ1i∂β σ̃

el
αβ +

χ i

3
pασ

el +
χ1i

3
∂ασ

el

+λi hα + κi pα1µ+ κ ′

i pα1µpm, (B.3)
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Dũd
αβ

Dt
=

∑
i=p,m

χi

2

(
pα∂βµi + pβ∂αµi −

2

3
pγ ∂γµiδαβ

)
−

∑
i=p,m

χ1i

(
∂α∂βµi −

1

3
∂2
γµiδαβ

)

−0σ̃ el
αβ +

01

2

(
∂α∂γ σ̃

el
βγ + ∂β∂γ σ̃

el
αγ −

2

3
δαβ∂ρ∂γ σ̃

el
ργ

)
+
0′

1

3

(
∂α∂βσ

el
−

1

3
∂2
γσ

elδαβ

)
+
ω1

2

(
pαhβ + pβhα −

2

3
pγ hγ δαβ

)
+ψ q̃αβ1µ+ψ ′q̃αβ1µpm, (B.4)

dud

dt
=

∑
i=p,m

χ i pα∂αµi −

∑
i=p,m

χ1i∂
2
αµ+0′

1∂α∂β σ̃
el
αβ −0σ el +

01

3
∂2
ασ

el +ω1 pαhα

+ψ1µ+ψ1 pα pα1µ+ψ
′

1µpm +ψ
′

1 pα pα1µpm, (B.5)

Dpd
α

Dt
= −

∑
i=p,m

λi∂αµi −ω1 pβ σ̃
el
αβ −

ω1

3
pασ

el +
1

γ1
hα + λ1 pα1µ+ λ′

1 pα1µpm, (B.6)

r d
= −

∑
i=p,m

κi pα∂αµi −ψ q̃αβ σ̃
el
αβ −

ψ

3
σ el

−
ψ1

3
pα pασ

el + λ1 pαhα +31µ+3′1µpm, (B.7)

sd
= −

∑
i=p,m

κ ′

i pα∂αµi −ψ ′q̃αβ σ̃
el
αβ −

ψ
′

3
σ el

−
ψ

′

1

3
pα pασ

el + λ′

1 pαhα +3′1µ+311µpm, (B.8)

where q̃αβ = pα pβ −
1
3 pγ pγ δαβ . To keep the presentation simple, anisotropic viscosity and strain

relaxation terms, such as α1 pα pβ pγ pρ ṽγρ , etc, have not been included. The reactive parts of the
fluxes are

σ̃
s,r
αβ = −

∑
i=p,m

εi

2

(
pα∂βµi + pβ∂αµi −

2

3
pγ ∂γµiδαβ

)
+
∑

i=p,m

π1i

(
∂α∂βµi −

1

3
∂2
γµiδαβ

)

+ σ̃ el
αβ +

ν2

2

(
∂α∂γ σ̃

el
βγ + ∂β∂γ σ̃

el
αγ −

2

3
δαβ∂ρ∂γ σ̃

el
ργ

)
+
ν2

3

(
∂α∂βσ

el
−

1

3
∂2
γσ

elδαβ

)
+
ν1

2

(
pαhβ + pβhα −

2

3
pγ hγ δαβ

)
+ ζ q̃αβ1µ+ ζ1q̃αβ1µpm, (B.9)

σ s,r
=

∑
i=p,m

π 1i∂
2
γµi −

∑
i=p,m

3εi pγ ∂γµi +
ν ′

2

3
∂α∂β σ̃

el
αβ + σ el +

ν ′

2

3
∂2
γσ

el

+ 3ν1 pγ hγ + 3ζ1µ+ 3ζ ′ pγ pγ1µ+ 3ζ 11µpm + 3ζ ′

1 pγ pγ1µpm, (B.10)

j i,r
α = −εi pβ ṽαβ −π1i∂β ṽαβ − εi pαv−

π 1i

3
∂αv, (B.11)
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Dũr
αβ

Dt
= ṽαβ +

ν2

2

(
∂α∂γ ṽβγ + ∂β∂γ ṽαγ −

2

3
δαβ∂ρ∂γ ṽργ

)
+
ν ′

2

3

(
∂α∂βv−

1

3
∂2
γ vδαβ

)
, (B.12)

dur

dt
= ν2∂α∂β ṽαβ + v +

ν ′

2

3
∂2
γ v, (B.13)

Dpr
α

Dt
= −ν1 pβ ṽαβ − ν1 pαv, (B.14)

r r
= −ζ q̃αβ ṽαβ − ζ ′ pα pαv− ζv, (B.15)

sr
= −ζ1q̃αβ ṽαβ − ζ ′

1 pα pαv− ζ 1v. (B.16)

The constitutive equations for the active, polar, three-component viscoelastic gel are obtained
by adding together the dissipative and reactive parts of each flux, i.e. σ̃ s

αβ = σ̃
s,d
αβ + σ̃ s,r

αβ , etc. We
note that we have kept higher derivative forces (such as ∂α∂βµi ) in the constitutive relations for
the fluxes introduced in section 1, but have not included them in the relations for Dpα/Dt , r
and s. We remark that the above couplings between σ s

αβ and hα and between Dpα/Dt and vαβ
are the same as those occurring in the hydrodynamic theory of nematic liquid crystals [15]. The
couplings between σ s

αβ and ∂αµi , between σ s
αβ and 1µ, between jα and vαβ and between jα and

1µ were obtained earlier in the hydrodynamic description of multi-component, active, polar
fluids [9].
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