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Abstract. Active processes in biological systems often exhibit chiral asymmetries. Examples are the chi-
rality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and
flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive
material equations for active fluids which account for the effects of active chiral processes. We identify
active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes.
We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that
large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated
motors do not create a hydrodynamic far field.

1 Introduction

Biological matter is driven far from thermodynamic equi-
librium by active processes on the molecular scale. These
processes are usually driven by the chemical reaction of a
fuel and generate spontaneous movements and mechanical
stresses in the system. The prototype example are motor
molecules which play a key role for dynamic processes in
the cytoskeleton [1, 2]. Motors on the molecular scale are
involved in many important cellular processes, such as cell
locomotion [3], cell division [4–7], the beating of cilia [8,9]
and the swimming of microorganism [1, 10, 11]. Biolog-
ical materials driven by molecular motors often exhibit
fluid-like behaviors on long time scales and are thus called
active fluids [12, 13]. On large length scales, active fluids
can exhibit spontaneous flow patterns [14–16], active ma-
terial stresses [17] and unconventional material properties.
Many examples of active fluids are found in biology, such
as the cellular actomyosin cytoskeleton [18, 19], suspen-
sions of microswimmers [11, 20, 21] or tissues [13, 22] but
artificial examples such as granular systems on a vibrating
surface [23–25] have also been studied.

Most biomolecules and the structures they form are
chiral. In particular, this includes force-generating pro-
cesses on the molecular and cellular scale which have
been studied both experimentally [8, 11, 26] and theoret-
ically [9, 27–30]. As a consequence, microswimmers typi-
cally move on chiral trajectories [11, 31] and cilia can ex-
hibit helical beats [9,32,33]. In vertebrates, the chiral beat
of cilia generates fluid flows that participate in left-right
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symmetry breaking, an essential step in the development
of the whole organism [34–36]. Because chiral processes are
ubiquitous in biological systems, a complete description of
active fluids should include the effects of chirality [37–39].

Recently, several approaches have been developed to
describe the physical properties of active fluids both on
mesoscopic [40, 41] and macroscopic scales [42–44]. The
generic features of active fluids are found in the hydrody-
namic limit at large length and time scales. In this limit,
the dynamics of active fluids can be obtained systemati-
cally using non-equilibrium thermodynamics [45], relying
only on conservation laws, broken symmetries and local
thermodynamic equilibrium. Such theories take into ac-
count local polar or nematic order, which allows for the
existence of anisotropic active stresses. The correspond-
ing hydrodynamic equations are a generalization of liquid
crystal hydrodynamics [46–49] to active systems. While
there exists a broad understanding of the main properties
of active fluids and gels, studies of the effects of chiral
asymmetries of active processes are lacking.

In this paper, we present a generic description of active
fluids that takes into account active chiral processes. Ac-
tive force generation induces force dipoles in the material.
If all forces are internal, the total force and torque vanish
as required by the conservation of momentum and angu-
lar momentum. The density of force dipoles is an active
stress in the material [13,14,17]. In addition, active chiral
processes allow for the existence of active torque dipoles,
which enter the conservation of angular momentum.

We start our analysis in sect. 2 by discussing the con-
servation of momentum and angular momentum for chiral
systems. We identify four different types of elementary
chiral motors that are generated by distributions of active
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torque and force dipoles in the fluid. In sect. 3, we present
the general theory of active chiral fluids. We keep the spin
angular momentum density as a separate hydrodynamic
variable generalizing previous work on passive liquid crys-
tals [49] to active systems. We identify conjugate pairs
of thermodynamic variables and write general constitu-
tive material relations. A simplified model is discussed in
sect. 4, where active antisymmetric stresses and active an-
gular momentum fluxes are considered. Using this model,
we discuss two examples: A) the hydrodynamic flow fields
generated by isolated elementary motors and B) the force
an active chiral fluid exerts on two plates between which
it is confined. We conclude the paper with a discussion in
sect. 5.

2 Active chiral fluids

We express the force and the torque balance in fluids by
conservation laws for momentum and angular momentum.
Based on simple symmetry arguments, we show that ac-
tive angular momentum fluxes and antisymmetric stresses
exist in active chiral fluids.

2.1 Antisymmetric stress and angular momentum flux

Consider a fluid described by many small-volume elements
in the continuum limit. The mass density is denoted by
ρ and the velocity of the centers of mass of individual
volume elements by v. The momentum density g = ρv
obeys the conservation law

∂tgα = ∂βσtot
αβ + φext

α . (1)

The total stress σtot
αβ is the momentum flux and the force

density φext describes externally applied forces. Greek in-
dices denote the three spatial coordinates x, y, z. Ein-
stein’s summation convention over repeated indices is im-
plied. The total stress can be split into three parts

σtot
αβ = σ̃tot

αβ + σtot,a
αβ − Pδαβ . (2)

Here, the isotropic pressure is P =−(1/3)σtot
γγ , σ̃tot

αβ =(1/2)
(σtot

αβ + σtot
βα) + Pδαβ denotes the symmetric traceless part

of the total stress and σtot,a
αβ = (1/2)(σtot

αβ − σtot
βα) is the

antisymmetric part of the total stress.
In the frame of reference characterized by the posi-

tion vector r, the total angular momentum density ltotαβ is
conserved,

∂tl
tot
αβ = ∂γM tot

αβγ + τ ext
αβ + rαφext

β − rβφext
α . (3)

Here, M tot
αβγ denotes the total flux of angular momentum

and τ ext
αβ is the externally applied bulk torque. The to-

tal angular momentum density ltotαβ consists of an orbital
contribution rαgβ − rβgα due to the center-of-mass mo-
tion of individual volume elements and a spin contribu-
tion lαβ = ltotαβ − (rαgβ − rβgα), which describes the an-
gular momentum in the rest frame of local volume ele-
ments. The spin angular momentum can thus be written

as lαβ = IαβγδΩγδ, where Iαβγδ is the moment of inertia
density and Ωγδ is an intrinsic rotation rate of local vol-
ume elements. Note that the antisymmetric tensors Ωαβ

and lαβ can be equivalently represented by axial vectors,
Ωα = εαβγΩβγ/2 and lα = εαβγ lβγ/2, where lα = IαβΩβ

with Iαβ = εαδγεβμνIδγμν . In the following, we will use
both notations interchangeably for convenience. The total
flux of angular momentum can be written as

M tot
αβγ = Mπ

αβγ + Mσ
αβγ , (4)

where Mπ
αβγ and Mσ

αβγ = rασtot
βγ − rβσtot

αγ are the fluxes
of spin and orbital angular momentum, respectively. Note
that ltotαβ and its flux M tot

αβγ are explicitely coordinate sys-
tem dependent, whereas the spin angular momentum den-
sity lαβ and its flux Mπ

αβγ do not depend on the choice of
the origin of the coordinate system. Using eqs. (1) and (3),
we express the balance equations for the spin and the or-
bital angular momentum densities

∂t (rαgβ−rβgα)−∂γMσ
αβγ =2σtot,a

αβ +rαφext
β −rβφext

α , (5)

∂tlαβ − ∂γMπ
αβγ = −2σtot,a

αβ + τ ext
αβ , (6)

which reveal that the antisymmetric stress σtot,a
αβ describes

the rate of conversion of spin to orbital angular momen-
tum [45].

Note that it is always possible to symmetrize the stress
tensor by performing a variable transformation introduc-
ing a different velocity variable [46], see appendix D. Here,
we choose to keep the antisymmetric stress for clarity and
conceptual simplicity.

2.2 Force and torque dipoles with chiral asymmetry

In active chiral fluids, both the antisymmetric stress σtot,a
αβ

and the spin angular momentum flux Mπ
αβγ in general

have active contributions that correspond to the existence
of force and torque dipoles, which typically have a chiral
asymmetry and are generated by active processes on mi-
croscopic scales. Biological examples for active processes
generating torque dipoles are chiral microswimmers, such
as E. coli [11, 31] or Volvox [50], and the rotation of fil-
aments induced by the action of molecular motors [26].
Note that in the absence of external forces and torques,
no force and torque monopoles can exist due to momen-
tum and angular momentum conservation. The existence
of these active dipoles leads to novel material properties
with chiral asymmetry.

We first consider a torque dipole consisting of two
torque monopoles with torque qαβ separated by a dis-
tance a in a direction given by a unit vector d, where
qαβ = qεαβνtν denotes a point torque that acts along the
unit pseudo-vector t with strength q. The torque dipole
located at position r0 generates a torque density

ταβ = qαβ

(
δ
(
r − r0 +

a

2
d
)
− δ

(
r − r0 −

a

2
d
))

(7)

� aqεαβνtνdγ∂γδ(r − r0), (8)
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Fig. 1. Schematic representation of chiral torque and force dipoles as well as elementary motors. We distinguish two types of
torque dipoles, (i) and (ii), and introduce a chiral force dipole paired with torque monopole to balance torques (iii). Here gray
arrows indicate torques. Their sense of rotation is indicated by curved black arrows. Forces are indicated by blue arrows. The
dipoles (i)-(iii) can be used to create the elementary motors (a)-(e) of higher symmetry. For details see text.

where eq. (8) describes the limit a → 0 with qa con-
stant. From eq. (6) we see that this active torque density
ταβ(r) = ∂γMπ,act

αβγ corresponds to a localized flux of an-
gular momentum Mπ,act

αβγ (r) = aqαβdγδ(r − r0) along the
axis defined by d.

We distinguish two different types of torque dipoles:
(i) t parallel to d, i.e. t ·d = 1, and (ii) t perpendicular to
d, i.e. t ·d = 0 (see fig. 1(i), (ii)). A general torque dipole
can be expressed as a superposition of torque dipoles of
type (i) and (ii). A suspension of N dipoles of type (i) with
positions r(k) and orientations d(k), where k = 1, . . . , N ,
generates an angular momentum flux

Mπ,act
αβγ = qa

N∑
k=1

εαβδd
(k)
δ d(k)

γ δ(r − r(k)). (9)

Averaging over ensembles of torque dipoles with different
symmetries, we distinguish three cases: a) If the orienta-
tions of the torque dipoles are randomly distributed, the
averaged active angular momentum flux becomes isotropic
Mπ,act

αβγ ∼ εαβγ ; b) in the special case that torque dipoles
are exactly aligned along a unit vector p, the angular mo-
mentum flux has the form Mπ,act

αβγ ∼ εαβδpδpγ ; c) finally,
if the orientations d(k) are orthogonal to the unit vector
p and randomly distributed in the plane perpendicular to
p, we have Mπ,act

αβγ ∼ εαγδpδpβ − εβγδpδpα. In general, a
distribution of torque dipoles of type (i) with a single axis
of anisotropy defined by the vector p generates an angu-
lar momentum flux which is a superposition of these three
cases.

These three cases differ by their symmetry. We intro-
duce three elementary motors that locally generate the

momentum fluxes with the symmetries of case (a), (b)
and (c), respectively. The isotropic chiral motor corre-
sponds to case a) and creates the local angular momen-
tum flux Mπ,act

αβγ = εαβγδ(r − r0), see fig. 1(a). Simi-
larly, the chiral rod motor and chiral ring motor with
Mπ,act

αβγ = εαβδpδpγδ(r − r0) and Mπ,act
αβγ = (εαγδpδpβ −

εβγδpδpα)δ(r − r0) correspond to cases (b) and (c), see
fig. 1(b), (c). Note that the angular momentum fluxes of
both, the chiral rod and the chiral ring motor, are invari-
ant under the transformation p → −p. They therefore
have a nematic symmetry.

Dipoles of type (ii) can be discussed using the same
arguments. We again focus on the case where all dipoles
are aligned with respect to a single axis of anisotropy p.
A new case (d) is generated by torque dipoles of type
(ii) if we consider the ensemble where p = t(k) × d(k)

for all dipoles. In this case, Mπ,act
αβγ ∼ δαγpβ − δβγpα.

Note that this angular momentum flux, although gener-
ated by chiral objects, is not chiral. The elementary motor
which corresponds to case (d) is the polar ring motor with
Mπ,act

αβγ = (δαγpβ − δβγpα)δ(r − r0), see fig. 1(d).

Finally, active chiral processes can also involve chiral
force dipoles. A force dipole consists of two opposing force
monopoles separated by a distance a in direction d,

φα = fα

(
δ
(
r − r0 +

a

2
d
)
− δ

(
r − r0 −

a

2
d
))

(10)

� fαadβ∂βδ(r − r0). (11)

The force dipole generates an active stress with antisym-
metric part σa,act

αβ = a(fαdβ − fβdα)δ(r − r0)/2. Angu-
lar momentum conservation implies that this force dipole
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is combined with a torque monopole qαβ = a(fαdβ −
fβdα)δ(r−r0), which we call dipole type (iii), see fig. 1(iii).
Averaging ensembles of such force dipoles combined with
torque monopoles generates active antisymmetric stresses
in the system. We consider case (e) where p ∼ d(k) × f (k)

for all k. The resulting antisymmetric stress has the form
σa,act

αβ ∼ εαβδpδ. The corresponding elementary motor is
the polar chiral motor with σa,act

αβ = εαβδpδδ(r − r0), see
fig. 1(e). In the next section, we show that the four ele-
mentary motors (a)-(c) and (e) exactly correspond to the
possible terms generated by active chiral processes of dif-
ferent symmetry in a polar chiral fluid.

3 Generic theory of active chiral fluids

We discuss the generic theory of active chiral fluids using
general principles of irreversible thermodynamics of liq-
uid crystals [45–47]. We focus on isothermal systems and
ignore heat transport. From a general expression of the lo-
cal rate of entropy production, we identify conjugate pairs
of thermodynamic fluxes and forces. Closely following the
logic outlined in refs. [43,44] to describe active processes,
we obtain constitutive material equations and dynamic
equations for the active chiral fluid. In order to account
for all effects relevant to active chiral processes, we keep
the spin angular momentum density l explicitly as a slow
variable [49].

3.1 Slow variables

Conservation laws and broken continuous symmetries give
rise to slow, or hydrodynamic, variables. Relevant slow
variables discussed here are the momentum density g and
the spin angular momentum density l. Because of mass
conservation,

∂tρ + ∂α(ρvα) = 0, (12)

the mass density ρ is also a slow variable. Here, we discuss
a single component fluid with ρ = mn, where m is a molec-
ular mass and n the number density. The full description
of a multi-component fluid is given in appendix B. The
hydrodynamic variables g, l and n are completed by the
polarization field p, which characterizes the macroscopic
anisotropy of the fluid. In a suspension of active swim-
mers, p describes the direction of swimmers averaged in a
small volume element. In the case of the cytoskeleton, it
corresponds to the local average orientation of cytoskele-
tal filaments. In the following, we choose |p| = 1 since
only the direction of p is a slow variable.

3.2 Free energy and hydrostatic properties

We consider a fluid that is divided in small volume ele-
ments, which are individually in equilibrium but not with
each other. Therefore, the system globally evolves in time.
Local equilibrium implies the existence of a well-defined

free energy of volume elements. In the continuum limit,
the free-energy density is given by

f(gα, lα, pα, ∂βpα, n) =
gγgγ

2ρ
+

I−1
γδ

2
lγ lδ + f0(pα, ∂βpα, n).

(13)
The first two terms of eq. (13) denote the translational
and the rotational kinetic energy density and f0 is the free
energy density in the local rest frame. We introduce the
chemical potential μtot = ∂f/∂n and the polar distortion
field htot = −δF/δp, where F =

∫
V

d3xf is the total free
energy of a volume V of fluid. Note that μtot and htot

are different from the equilibrium chemical potential μ =
∂f0/∂n and the equilibrium distortion field h = −δF0/δp
by kinetic energy contributions. Here, F0 =

∫
V

d3xf0. The
hydrostatic stress is given by

σe
αβ = (f −nμtot−gγvγ − lγΩγ)δαβ −

∂f

∂(∂βpγ)
∂αpγ . (14)

It is the generalization of the hydrostatic pressure to
anisotropic fluids and is known as the Ericksen stress, see
appendix A. The Gibbs-Duhem relation of the system is

∂βσe
αβ = −gγ∂αvγ − lγ∂αΩγ − htot

γ ∂αpγ − n∂αμtot (15)

and links gradients of the hydrostatic stress to gradients
of the other intensive variables of the fluid. In general, the
Ericksen stress has an antisymmetric part,

σe,a
αβ =

1
2
∂γMe

αβγ +
1
2
(htot

α pβ − htot
β pα)− 1

2
(Ωαlβ −Ωβlα),

(16)
where Me

αβγ = ∂f
∂(∂γpβ)pα − ∂f

∂(∂γpα)pβ is the equilibrium

angular momentum flux related to the polarity field.

3.3 Entropy production and constitutive relations

In an isothermal system, the total entropy production rate
Θ̇ can be expressed as

TΘ̇ = −Ḟ + Ẇ − J (F ), (17)

where dots denote time-derivatives, W =
∫

dV (τ ext
αβ Ωαβ/

2 + vαφext
α ) is the work exerted on the system and J (F )

denotes the outflux of free energy at the boundaries. Fol-
lowing the steps outlined in appendix B, we find

TΘ̇ =
∫

dx3

{
σαβuαβ + σa

αβ(Ωαβ − ωαβ)

+
1
2
Mαβγ∂γΩαβ + htot

α

D

Dt
pα + rΔμ

}
. (18)

The fluid is driven out of equilibrium by the consumption
of a chemical fuel at a rate r. The chemical energy differ-
ence between the fuel and its reaction products is denoted
Δμ. Here, we assume local coupling to a reservoir of fuel
and reaction products such that Δμ is a constant. The
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entropy production associated with fuel consumption is
rΔμ/T . A more general case is discussed in appendix B.

From eq. (18) we identify the following thermodynamic
fluxes: the deviatoric shear stress,

σαβ = σtot
αβ − σe

αβ − σa
αβ + gαvβ , (19)

the deviatoric antisymmetric stress,

σa
αβ = σtot,a

αβ − σe,a
αβ , (20)

the deviatoric angular momentum flux,

Mαβγ = Mπ
αβγ − Me

αβγ + vγ lαβ , (21)

the co-rotational time derivative of p,

D

Dt
pα =

d
dt

pα + Ωαβpβ , (22)

with the total time derivative (d/dt)pα = ∂tpα +∂β(vβpα)
of p, and the rate of fuel consumption r.

The conjugate thermodynamic forces are, respectively,
the symmetric strain rate tensor uαβ = (1/2)(∂αvβ +
∂βvα), the rotational strain rate Ωαβ − ωαβ , the gradi-
ent of the intrinsic rotation rate ∂γΩαβ/2, the polar dis-
tortion field htot and the free-energy difference between
fuel molecules and their reaction products Δμ. Here,
ωαβ = (1/2)(∂αvβ − ∂βvα) is the vorticity.

We obtain constitutive equations by expanding the
thermodynamic fluxes as linear functions of the thermo-
dynamic forces respecting the symmetries of the system
and Onsagers reciprocity principle. Here, we include all
terms allowed by symmetry up to second order p. Be-
cause of chiral asymmetry, the tensor εαβγ can be used to
create couplings that change sign under inversions of the
coordinate system, i.e. r → −r. For simplicity, we ignore
anisotropic viscous terms and passive chiral terms, which
are not the focus of this work. The constitutive equations
then read

σαβ = 2ηuαβ +
ν1

2
(
pαhtot

β + pβhtot
α

)
+ ν̄pγhtot

γ δαβ

+ζ̄δαβΔμ + ζpαpβΔμ, (23)

σa
αβ = 2η′ (Ωαβ − ωαβ) +

ν2

2
(
htot

α pβ − htot
β pα

)

+ζ̃Δμεαβγpγ , (24)

Mαβγ = κ0∂γΩαβ + ζ1εαβγΔμ + ζ2Δμεαβδpδpγ

+ζ3Δμ(εαγδpδpβ − εβγδpδpα)
+ζ4Δμ(δαγpβ − δβγpα), (25)

Dpα

Dt
=

1
γ

htot
α + λ1pαΔμ − ν1pβuαβ − ν̄uββpα

−ν2 (Ωαβ − ωαβ) pβ , (26)

r = ΛΔμ + λ1pαhtot
α + ζ̄uαα + ζpαpβuαβ

+ζ̃ (Ωαβ − ωαβ) εαβγpγ +
ζ1

2
εαβγ∂γΩαβ

+
ζ2

2
εαβδpδpγ∂γΩαβ +

ζ3

2
(εαγδpδpβ − εβγδpδpα)

×∂γΩαβ +
ζ4

2
(δαγpβ − δβγpα)∂γΩαβ . (27)

We have introduced the viscosities η, η′ and γ. The co-
efficients ν1, ν̄, and ν2 describe the coupling between the
polarity vector and velocity gradients. The coeffient κ0 ac-
counts for dissipative angular momentum fluxes generated
by gradients of local rotation rates Ωαβ . The coefficient λ1

describes magnitude changes of the vector p due to active
processes.

The coefficient ζ̄ describes the isotropic active stresses,
ζ the anisotropic active stress and ζ̃ the active antisym-
metric stress. Active antisymmetric stresses and active an-
gular momentum fluxes appear as a result of the action of
chiral motors. These contributions are represented by the
coefficients ζ1, ζ2, ζ3 and ζ̃ which describe the strength
and densities of isotropic, nematic rod, nematic ring and
polar chiral motors, respectively, see fig. 1(a)-(c),(e). The
coefficient ζ4 describes the strengths of polar ring motors,
see fig. 1(d).

Combining the conservation laws with the constitutive
equations, we obtain the dynamic equations for the sys-
tem. Momentum conservation implies

∂tgα = ∂β

(
σαβ + σa

αβ + σe
αβ − gαvβ

)
+ φext

α . (28)

Angular momentum conservation leads to

∂tlαβ = ∂γ (Mαβγ − vγ lαβ) − 2σa
αβ − (hαpβ − hβpα)

+(Ωαlβ − Ωβlα) + τ ext
αβ . (29)

These equations are complemented by mass conservation
eq. (12) and eq. (26) for the polarity dynamics. In the
limit of a Newtonian fluid, we recover the Navier-Stokes
equation with higher-order correction terms describing the
effects of rotational strain, see appendix C.

4 Simple chiral fluids

The basic features of active chiral fluids can be highlighted
by a simple case of an incompressible gel with ∂αvα =
0 in which we only consider the active chiral stress and
active angular momentum fluxes. In particular, we ignore
all passive cross-couplings for simplicity. The constitutive
equations then read

σαβ = 2ηuαβ , (30)

σa
αβ = 2η′ (Ωαβ − ωαβ) + ζ̃Δμεαβγpγ , (31)

Mαβγ = κ0∂γΩαβ + ζ1εαβγΔμ + ζ2Δμεαβδpδpγ

+ζ3Δμ(εαγδpδpβ − εβγδpδpα)
+ζ4Δμ(δαγpβ − δβγpβ). (32)

In the low Reynolds number limit, where inertial terms
are neglected, the dynamic equations are

∂αP̄ = (η + η′)∂2
γvα + 2η′∂βΩαβ + ∂β(ζ̃Δμεαβγpγ), (33)

0 = κ0∂
2
γΩαβ + ∂γ(ζ1εαβγΔμ) + ∂γ(ζ2εαβδpδpγΔμ)

+∂γ (ζ3Δμ(εαγδpδpβ − εβγδpδpα))
+∂γ (ζ4Δμ(δαγpβ − δβγpα)) − 4η′(Ωαβ − ωαβ)

−2ζ̃εαβγpγΔμ. (34)
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Here, the hydrostatic pressure P̄ plays the role of a La-
grange multiplier. Taking the divergence of eq. (33), we
find ∂2

γP̄ = 0. Therefore, the pressure P̄ = const if no
external pressure gradients are applied. From eqs. (33)
and (34) we obtain a differential equation for the flow
field

2η∂2
γvα = −∂β∂γ {(ζ2 + ζ3)εαβδpδpγΔμ}

−∂α∂β(ζ4Δμpβ) + ∂2
γ(ζ4Δμpα)

+
κ0

2η′

(
(η + η′)∂4

γvα+∂2
δ∂β(ζ̃εαβγpγΔμ)

)
.

(35)

4.1 Elementary motors

The active terms in eqs. (31) and (32) result from active
processes that generate force and torque dipoles in the
system. Following the arguments of sect. 2.2 these active
contributions to the antisymmetric stress and the angu-
lar momentum flux can be interpreted as the contribu-
tions stemming from elementary motors in the material.
To characterize individual elementary motors we intro-
duce a localized activity Δμ = Δμ0δ(r) in an otherwise
passive fluid. For each active term, this local activity cre-
ates the characteristic pattern of momentum and angular
momentum flux of the corresponding elementary motor,
see sect. 2.2. In particular, the elementary chiral motors
shown in fig. 1(a)-(c),(e) are described by the coefficients
ζ̃ and ζ1, ζ2 and ζ3, while the coefficient ζ4 describes the
polar ring motor shown in fig. 1(d). In the following we de-
scribe the velocity fields v and the intrinsic rotation fields
Ωαβ generated by these elementary motors as solutions of
eqs. (33) and (34) with the boundary conditions that Ωαβ

and v vanish at infinity.

4.1.1 Isotropic chiral motor

The isotropic chiral motor (fig. 1(a)) is described by ζ1,
with ζ̃ = ζ2 = ζ3 = ζ4 = 0. Because ζ1 does not enter
in eq. (35), the velocity field vanishes everywhere, vα = 0.
From eq. (34) we find that the intrinsic rotation rate obeys
an inhomogeneous Helmholtz equation

Ωαβ − κ0

4η′ ∂
2
γΩαβ =

ζ1Δμ0

4η′ εαβγ∂γδ(r). (36)

In spherical coordinates, the intrinsic rotation field Ωαβ is
thus given by Ωrθ = Ωrφ = 0 and

Ωθφ = −ζ1Δμ0

4πκ0
e−2|r|/�

(
2
|r|� +

1
|r|2

)
, (37)

which decays on the length � = (κ0/η′)1/2. Note that in
the near field, for r � �, the intrinsic rotation rate Ωαβ

is different from the vorticity ωαβ of the flow and that it
vanishes for � � r.

4.1.2 Polar chiral motor

The polar chiral motor (fig. 1(d)) is described by ζ̃ and
ζ1 = ζ2 = ζ3 = ζ4 = 0. In this case the flow field does not
vanish. Integrating eq. (35) yields

vα − κ0

4Φ
∂2

γvα =
ζ̃Δμ0

2η
εαβγpγ∂βδ(r), (38)

where Φ = ηη′/(η + η′) is the harmonic mean of the vis-
cosity and the rotational viscosity. For the velocity field v
we find

vα = − ζ̃Δμ0

2πη

Φ

κ0

(
1
r3

+
Φ

κ0

1
r2

)
e−|r|/�εαβγpγrβ . (39)

The polar motor also generates an intrinsic rotation field,

Ωαβ =
ζ̃Δμ0

2πκ0|r|
εαβγpγe−2|r|/�

− 4
�2

∫
e−2|r−r′|/� ωαβ

|r − r′|d
3r′. (40)

The velocity field v and the intrinsic rotation rate Ωαβ

both decay on the length scale �, see eqs. (38) and (40).
Therefore, the polar chiral motor has no far field. Note
that Ωαβ = ωαβ = 0 for r � �. Interestingly, Ωαβ �=
ωαβ in the near field for r � �, i.e. the rate of intrinsic
rotations differs from the vorticity of the flow.

4.1.3 Nematic chiral motors

Two nematic chiral motors exist (fig. 1(b), (c)). The chi-
ral rod motor corresponds to ζ2 �= 0 and ζ3 = 0 while the
chiral ring motor corresponds to ζ3 �= 0 and ζ2 = 0 with
ζ̃ = ζ1 = ζ4 = 0. The velocity fields of these two motors
are identical because ζ2 and ζ3 enter eq. (35) by the same
term. The velocity field can be determined numerically by
solving eqs. (33) and (34) using a periodic box and spatial
Fourier transformations and is displayed in fig. 2(a), (b).
Both nematic chiral motors induce a velocity field con-
sisting of two opposing vortices in front and behind the
motor. At the position r = 0 the velocity field vanishes,
implying that the motors do not move. The far field can
be written analytically and is given by

vα � (ζ2 + ζ3)Δμ0

4πη

p · r
|r|5 εαβγrβpγ (41)

for r � �. This is the same as the far field of two counter-
rotating spheres separated along the vector p by a small
distance.

The chiral rod motor and the chiral ring motor gen-
erate different intrinsic rotation fields Ωαβ since ζ2 and
ζ3 enter eq. (34) by different terms. The far field of Ωαβ

is given by Ωαβ = ωαβ , where ωαβ is the vorticity of the
velocity field given by eq. (41). Figure 2(c,d) and (e,f) dis-
play Ωαβ−ωαβ for the chiral rod motor and the chiral ring
motor. This difference is finite only in the near field.
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Fig. 2. Flow v and rotation field Ω − ω of the nematic el-
ementary motors (fig. 1(b) and (c)). Both elementary motors
share the same velocity v shown in (a) and (b). Velocity vec-
tors as well as surfaces of constant |v| are indicated in (a). The
flow in the (x, z)-plane for y = 0 is shown in (b). The rotation
fields differ for both elementary motors. The rotation field of
the chiral rod is shown in (c) and (d). The rotation field of the
chiral ring is shown in (e) and (f). The rotation vectors Ω −ω
are indicated as cones and surfaces of constant magnitude are
indicated in (c) and (e). Cross-sections in the (x, z)-plane at
y = 0 are shown in (d) and (f). The black scale bar indicates
the length �. The parameters are η/η′ = 1. The size of the
periodic box is 26�.

4.1.4 Polar ring motor

The polar ring motor is defined by ζ4 and ζ̃ = ζ1 = ζ2 =
ζ3 = 0. Unlike the other motors we discussed, this motor
is not chiral. We determine the velocity field and the in-
trinsic rotation field of the polar ring motor numerically.
The velocity field is displayed in fig. 3(a), (b). The motor
generates a velocity field v that does not vanish in the
limit of small r. This implies that the polar ring motor
is a swimmer, which propels itself in the direction set by
the vector p. The polar ring motor generates a velocity far

Fig. 3. Flow v and rotation field Ω − ω of the polar ring
motors (fig. 1(b) and (c)). The velocity field v is shown in (a),
where velocity vectors as well as surfaces of constant |v| are
indicated. The flow in the (x, z)-plane for y = 0 is shown in
(b). The rotation field of the polar ring motor is shown in (c)
and (d). The rotation vectors Ω − ω are indicated as cones
and surfaces of constant magnitude are also indicated. Cross-
sections in the (x, z)-plane at y = 0 are shown in (d). The black
scale bar indicates the length �. The parameters are η/η′ = 1.
The size of the periodic box is 26�.

field in the limit � → 0 that can be determined analytically

vα � ζ4Δμ0

8πη

(
3rα

|r|5 r · p − pα
1
|r|3

)
. (42)

The polar ring motor also generates intrinsic rotations.
The field of intrinsic rotations is Ωαβ �= ωαβ in the near
field, r � �, and becomes equal to the vorticity in the
far-field, r � �, see fig. 3(c), (d).

4.2 Ensembles of chiral motors

We now discuss an example of spontaneous flows created
by an ensemble of active chiral motors. We consider an
active chiral fluid confined between two solid surfaces in
the (x, y)-plane at distance d, see fig. 4(a). We choose no-
slip boundary conditions and impose vanishing rotation
fields, Ωαβ = 0, on both surfaces. We assume the lower
surface at z = 0 to be immobile, v(z = 0) = 0. The
upper surface moves at velocity Δv in the y-direction,
v(z = d) = Δvêy. We choose the direction of the polarity
p on both surfaces to point parallel to the surface in the x-
direction. The polarity field is governed by a free-energy
functional that is minimized if the polarity p is locally
aligned and we impose the constraint |p| = 1.
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Fig. 4. Chiral shear flows generated by active chiral processes with a constant polarity vector, enclosed between two surfaces of
distance d. (a) Schematic representation of the system. (b) Velocity difference Δvy between upper and lower plate as a function
of external shear stress σext

zy , applied to the surfaces for difference values of the parameter ζ̃Δμ. (c) Profile of velocity vy and
rotation rate Ωyz as a function of position z between the plates for fixed plates, Δv = 0. (d) Profile of velocity vy and rotation
rate Ωyz as a function of position z between the plates for σext

zy = 0. Parameter values are ζ̃Δμ = 1, η/η′ = 1 and �/d = 0.1.

We first assume p = êx also in the volume. Using
eqs. (33) and (34), we then find Ωxz = Ωxy = 0 and
vx = vz = 0. The velocity vy and the intrinsic rotation
rate Ωyz obey

(η + η′)∂2
zvy + 2η′∂zΩyz = 0, (43)

(κ0∂
2
z − 4η′)Ωyz − 2η′∂zvy − 2ζ̃Δμ = 0. (44)

The dynamics of the polarity p is given by

∂tpα =
1
γ

htot
α − vγ∂γpα − Ωαβpβ . (45)

Because for constant p = êx, htot = 0 and thus p is
stationary. The active fluid exerts a wall shear stress,

σtot
yz |z=d =

{
(η + η′)∂zvy + ζ̃Δμ

}∣∣
z=d

. (46)

Figure 4(b) shows the profiles of velocity vy and intrinsic
rotation rate Ωzy obtained by the numerical solution of
eqs. (33) and (34) as a function of z/d for two immobile
plates, Δv = 0.

For the boundary condition σtot
yz |z=d = 0, i.e. no shear

stress between the plates, the plates move relative to each
other, i.e. Δv �= 0. The flow profile for this boundary con-
dition is displayed in fig. 4(d). The system acts as a motor
because Δv depends linearly on the imposed shear stress.
The resulting stress-velocity relationships for different val-
ues of ζ̃Δμ are displayed in fig. 4(c). Note that it is the
polar chiral term ζ̃ that generates this relative motion of
the plates. Interestingly, even though an individual polar
chiral motor does not generate a far field, homogeneous

distributions of such motors create relative flows at large
separation. These flows are created in a thin boundary
layer. The stress between the plates does not depend on d
for � � d.

5 Summary and discussion

Our study of active chiral fluids is related to earlier work
on the physics of passive liquid crystals with chiral asym-
metry such as cholesterics, where passive chiral terms gov-
ern chiral effects in the fluid [47]. However, here we ignore
passive chiral effects for simplicity and focus on the physics
of active chiral processes, which we expect to be dominant
in biological systems. We have presented a generic theory
for complex fluids in which active processes with chiral
asymmetry drive the non-equilibrium dynamics. In such a
fluid the chiral asymmetry of the active processes gener-
ates active chiral force and torque dipoles. Such force and
torque dipoles give rise to active contributions to antisym-
metric stresses and to angular momentum fluxes, which
can be described by elementary chiral motors.

Following previous work on intrinsic rotations in liquid
crystals [49], our theory accounts for angular momentum
fluxes and describes both the center-of-mass velocity field
as well as the field of intrinsic rotations. In the presence
of active chiral processes, the intrinsic rotation can differ
from the vorticity of the flow even in steady state, while in
passive fluids both become equal after a relaxation time,
which usually is short [49]. This effect, however, only exists
within a length scale � and therefore disappears in the
hydrodynamic limit.
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Fig. 5. Sketch of a cytoskeletal torque dipole showing a myosin mini-filament (black and white) acting between two antiparalel
actin filaments (red). The motor-heads walk along the actin filaments following a helical path (black arrows). This induces
counter-rotations of the two actin filaments and gives rise to two opposed torque monopoles exerted on the fluid (green curved
arrows).

We identified four types of elementary chiral mo-
tors generated by distributions of chiral force and torque
dipoles. These motors differ by their near and far fields:
(a) isotropic chiral motors, (b) chiral rods, (c) chiral rings
and (e) polar chiral motors. Isotropic motors (a) generate
a field of local intrinsic rotations but no flow field. This
rotation field decays on the length scale �. Chiral rods (b)
and rings (c) both have nematic symmetry. They gener-
ate the same hydrodynamic far field with a velocity that
decays as v ∼ |r|−3. Their intrinsic rotation fields differ
at short distances but become both equal to the vorticity
of v in the far field. The polar chiral motor (e) does not
generate a hydrodynamic far field but both a flow and a
intrinsic rotation field at short distances. We also showed
that a related non-chiral polar ring motor (d) is a swimmer
that generates a hydrodynamic far field.

Active processes resulting from a homogeneously dis-
tributed collection of aligned polar chiral motors introduce
an active contribution to antisymmetric stresses that is
constant throughout the fluid. Interestingly, even though
individual polar chiral motors do not generate a hydro-
dynamic far field, a collection at sufficient density gives
rise to flow at large distance from a surface, induced by a
boundary layer of thickness �. As a result, an active chi-
ral fluid with polar order confined between two plates can
generate spontaneous relative motion of the plates and
shear stresses between the plates, see fig. 4. The direction
of the motion Δv is proportional to p × n, where n is
the vector normal to the plate. We have shown that the
stresses on the plates are linear in the density of chiral
motors and do not depend on the distance between plates
for � � d.

The main motivation of this study of active chiral pro-
cesses in soft matter is the cell cytoskeleton. In particular
the actin-myosin networks in cells form dense cross-linked
gels for which the continuum approach developed here is
well suited to describe large-scale dynamics [19]. Because
actin filaments are helical objects, the interaction between
actin and myosin is chiral. This is most clearly seen in glid-
ing assays where myosin heads are attached to a substrate.
Myosin motors set actin filaments in motion. In addition
to translation, it was shown that actin filaments also ro-
tate [26]. This implies that the motor performs a helical
movement on the filament while translocating. The heli-

cal trajectory of the motor with respect to the filament
can be described by a radius r and a pitch p. Such a heli-
cal movement of motors gives rise to a counter-rotation of
two filaments which interact via a myosin mini-filament,
see fig. 5. The relative sliding of filaments implies the exis-
tence of a force dipole, while the counter-rotation implies
the existence of a torque dipole. We estimate this torque
dipole using eq. (8). The magnitude of the torque dipole
is aq � 2πfar2/(4π2r2 + p2)1/2. Here, a is the distance
between the filaments, f is a characteristic motor force, r
is the radius of the myosin trajectory (estimated as the ra-
dius of the actin filament) and p is the pitch of the helical
path of the myosin along the actin.

If we assume for simplicity that the motor follows the
helical pitch of the actin filament structure, we estimate
p � 72 nm. Using f � 10 pN, r � 5 nm and a � 100 nm, we
estimate qa � 10−27 Nm2. We can now estimate the mag-
nitude of the active angular momentum fluxes described
by the coefficients ζiΔμ with i = 1 . . . 4 in eq. (25), as
ζiΔμ � aqc. Here c denotes the torque dipole density. Us-
ing c � a−3, which corresponds to an actin network with
a mesh size of a � 100 nm, we have ζiΔμ � 10−6 N/m.
In addition to active contributions to angular momentum
fluxes, active chiral processes also contribute to antisym-
metric stresses with magnitude ζ̃Δμ. Generalizing our ar-
guments, we find ζ̃Δμ � qc, which leads to the estimate
ζ̃Δμ � 10N/m2. The ratio of the magnitudes of active
antisymmetric stresses and non-chiral active stresses can
be estimated as ζ̃Δμ/(ζΔμ) � q/(fa), which in the limit
of small pitch p approaches r/a. Therefore, in dense gels
with small pitches of myosin motion, effects of active chi-
ral processes could become substantial. The value of p
in actin-myosin gels depends in general on the particular
myosin motor used could vary widely. Note that in living
cells additional proteins that interact with actin and/or
myosin could regulate the key parameters, such as r and
p, giving rise to active chiral effects. Finally, the character-
istic length scale � introduced in eq. (37) is a microscopic
length which in actin gels we expect to be of the of the
order of the mesh size a � 100 nm.

Other examples of active chiral systems are provided
by suspensions of chiral swimmers. An important example
are bacteria such as E. coli, which consists of a cell body
to which about N = 10 rotating flagella are attached.
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This rotation is generated by rotational motors embedded
in the cell membrane. The stall torque of these motors
is of the order q � 10−18 Nm, see [11, 51]. For a freely
swimming bacterium, the torque is smaller and set by hy-
drodynamic friction. The bacterium therefore is a torque
dipole of strength Nqa, where a � 1 μm is the typical
size of the bacterium [1, 11]. Knowing the torque q and
the bacterium density c, one can estimate the magnitudes
of the angular momentum fluxes in a suspension of such
bacteria as ζiΔμ � Nqac as well as of the antisymmet-
ric stress ζ̃Δμ � Nqc. The characteristic length scale � is
expected to be of the order of the bacterium size a.

The active chiral effects we predict could in principle
be observed experimentally using the setup sketched in
fig. 4 using acto-myosin gel with polar order or an ordered
suspension of swimming bacteria. The stress σtot

yz exerted
on the surfaces due to active chiral processes is of the
order ζ̃Δμ estimated above, see eq. (46). This example
also illustrates that chiral effects become most prominent
near surfaces. In fact, active chiral processes have usu-
ally been observed experimentally near walls or surfaces.
For instance, chiral flows are seen in chiral granular gases
driven by a vibrating surface [24]. Moreover, many ex-
amples of thin films of chiral active fluids are found in
biology. During development, these are often tightly con-
nected with the breakage of left-right symmetry in organ-
isms [37]. For instance, surfaces covered with beating cilia,
which often exhibit a rotating component in their beating
motion can be described as chiral rods attached to a solid
substrate [32, 33]. Such cilia play a key role in the left-
right symmetry breaking of the morphology of developing
embryos [34, 35]. Another example of a thin active chiral
film is the actomyosin cell cortex, which is a thin film of
active material below the cell membrane [19]. This chiral-
ity becomes evident in chiral movements on the cell cortex
such as for instance in the fertilized egg of the frog Xeno-
pus [52]. Interestingly, the chiral motion of the cell cortex,
can generate active torque dipoles on the level of tissues
which are involved in the left-right symmetry breakage of
snails [53] and C. elegans [54]. Finally E. Coli attached
to a surface have been shown to generate chiral flows [55].
A logical extension of the work presented here would be
a theory of thin films of active chiral fluids, which is the
subject of a separate publication [56].

Finally, while in simple fluids the characteristic length
� on which intrinsic rotations matter is of a microscopic
scale, in biological systems such as the cytoskeleton this
length can be significant. Therefore, we expect that the
field of intrinsic rotations is relevant for such systems and
gives rise to new physics even on long time scales.

Appendix A. The Ericksen stress

Consider the variation of the free energy,

δF =
∫

∂V

[
fuαδαβ +

∂f0

∂(∂βpγ)
δpγ

]
dSβ

+
∫

V

dx3
[
vαδgα+Ωαδlα−htot

α δpα+μtotδn
]
, (A.1)

where vector u describes an infinitesimal displacement of
the boundary. If δgα = −uγ∂γgα and alike for δpα, δlα
and δn, δF is the free-energy change under a distortion of
the volume V and reads

δF =
∫

∂V

{
(f − nμtot − gγvγ − lγΩγ)δαβ

− ∂f

∂(∂βpγ)
∂αpγ

}
uαdSβ +

∫

V

dx3uγ

(
gα∂γvα

+lα∂γΩα + htot
α ∂γpα + n∂γμtot

)

+
∫

V

dx3
(
μtotn + gαvα + lγΩγ

)
∂γuγ . (A.2)

The Ericksen stress is given by the surface term eq. (14).
As a consequence of translation invariance the left-hand
side of eq. (A.2) vanishes for constant u. This leads to
the Gibbs-Duhem relation eq. (15). Finally, since the
free energy is invariant under rotations by an infinites-
imal angle θ, the left-hand side of eq. (A.2) also van-
ishes if uα = εαβγθβrγ , δpα = −uγ∂γpα + εαβγθβpγ ,
δlα = −uγ∂γ lα + εαβγθβlγ , δgα = −uγ∂γgα + εαβγθβgγ

and δn = 0. This leads to eq. (16).

Appendix B. The entropy production rate

We derive the entropy production rate of a fluid with k
components. Equation (A.1) is easily generalized to the
multi-component case. We consider the variation where
δF = Ḟ δt, uγ = vγδt, δgα = ∂tgαδt, δlα = ∂tlαδt, δpα =
∂tpαδt and δni = ∂tniδt. Here ni denotes the number
density of the i-th component of the fluid. In this case

Ḟ =
∫

∂V

[
fvαδαβ +

∂f0

∂(∂βpγ)
∂tpγ

]
dSβ

+
∫

V

dx3

[
vα∂tgα +

1
2
Ωαβ∂tlαβ − htot

α ∂tpα

+
∑

i

μtot
i ∂tni

]
. (B.1)

Using the force balance (1), the Gibbs Duhem relation (15)
and performing a partial integration

Ḟ =
∫

∂V

[
fvαδαβ +

∂f0

∂(∂βpγ)
∂tpγ

+
{

σtot
αβ − σe

αβ −
∑

i

(niμ
tot
i + Ωγ lγ)δαβ

}
vα

]
dSβ

+
∫

V

dx3

[
vαφext

α −
(

σtot
αβ − σe

αβ + gαvβ

−
∑

i

niμ
tot
i δαβ

)
∂βvα +

1
2
Ωαβ(∂tlαβ + ∂γ(lαβvγ))

−htot
α

d
dt

pα +
∑

i

μtot
i

d
dt

ni

]
. (B.2)
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The particle number conservation is given by

∂tni = −∂α

(
nivα +

ji
α

mi

)
+ Ri, (B.3)

where ji are the dissipative particle fluxes, mi are the par-
ticle masses and Ri are particle source terms, which de-
scribe chemical reactions between the fluid components.
We introduce μ̄i = (μtot

i mk − μtot
k mi)/(mimk) and sep-

arate the stress into a symmetric and an antisymmetric
part, writing that

(
σtot

αβ − σe
αβ

)
∂βvα =

{
σtot

αβ − σtot,a
αβ −

(
σe

αβ − σe,a
αβ

)}
uαβ

−
(
σtot,a

αβ − σe,a
αβ

)
ωαβ . (B.4)

Using the particle number conservation (B.3), the torque
balance (3), eq. (16) and that

∑k
i=1 ji = 0 by definition,

we find

Ḟ =
∫

∂V

[
fvαδαβ +

∂f0

∂(∂βpγ)
∂tpγ +

(
σtot

αβ − σe
αβ

−
(
niμ

tot
i + Ωγ lγ

)
δαβ

)
vα +

1
2
Ωαδ

{
M tot

αβγ − Me
αβγ

−
(
rασtot

βγ − rβσtot
αγ

)
+ lαβvγ

}
− ji

β

μtot
i

mi

]
dSβ

+
∫

V

dx3

(
1
2
Ωαβτ ext

αβ + vαφext
α

)

+
∫

V

dx3

[
−

{
σtot

αβ −σtot,a
αβ −

(
σe

αβ−σe,a
αβ

)
+ gαvβ

}
uαβ

−
(
σtot,a

αβ − σe,a
αβ

)
(Ωαβ − ωαβ)

−1
2

{
M tot

αβγ − Me
αβγ −

(
rασtot

βγ − rβσtot
αγ

)
+ lαβvγ

}

×∂γΩαβ − htot
α

(
d
dt

pα + Ωαβpβ

)

+
k−1∑
i=1

ji
α∂αμ̄i + Riμ

tot
i

]
. (B.5)

We are thus to identify the free-energy flux over the bound-
aries

−J
(F )
β = fvαδαβ +

∂f0

∂(∂βpγ)
∂tpγ +

(
σtot

αβ − σe
αβ

−(niμ
tot
i + Ωγ lγ)δαβ

)
vα

+
1
2
Ωαδ

{
M tot

αβγ − Me
αβγ −

(
rασtot

βγ − rβσtot
αγ

)

+lαβvγ

}
− ji

β

μtot
i

mi
, (B.6)

the rate of work performed on the system

Ẇ =
∫

V

dx3

(
1
2
Ωαβτ ext

αβ + vαφα

)
, (B.7)

and the entropy production rate

TΘ̇ =
∫

dx3

{
σαβuαβ + σa

αβ(Ωαβ − ωαβ)

+
1
2
Mαβγ∂γΩαβ + htot

α

D

Dt
pα

−
k−1∑
i=1

ji
α∂αμ̄i − μtot

i Ri

}
. (B.8)

To recover eq. (18) we consider a three-component system
consisting of the gel, the fuel molecules and their reac-
tion products. If the concentrations of fuel and reaction
products are kept constant by contact with an external
buffer ji = 0 and μtot

i Ri can be rewritten as rΔμ, where
r = Rproduct = −Rfuel and Δμ = μtot

fuel − μtot
product.

Appendix C. The Newtonian fluid

The constitutive equations for the Newtonian fluid are

σαβ = 2ηuαβ ,

σa
αβ = 2η′ (Ωαβ − ωαβ) ,

Mαβγ = κ0∂γΩαβ . (C.1)

The equations of motion (28) and (29) then read

∂tgα + ∂β(vβgα) = 2η∂βuαβ

+2η′∂β (Ωαβ − ωαβ) − ∂αP (C.2)

and

∂tlαβ + ∂γ(vγ lαβ) = κ0∂
2
γΩαβ − 4η′ (Ωαβ − ωαβ) , (C.3)

respectively, where we used the fact that the moment of
inertia tensor is diagonal for the Newtonian fluid. More-
over the fluid is incompressible, such that

∂αvα = 0. (C.4)

If we finally use that the moment of inertia tensor is iso-
tropic in the Newtonian fluid lαβ = IΩαβ and find

dgα

dt
= η∂2

γvα − ∂αP +
κ0

4η′

(
∂2

γ − I

κ0

d
dt

)

×
[
dgα

dt
− (η + η′)∂2

γvα + ∂αP

]
, (C.5)

For κ0 → 0 eq. (C.5) becomes the Navier-Stokes equation.
On length large comparated to the characteristic length
� =

√
κ0/η′ and times long compared to τ = I/η′, the

additional terms related to the dissipative coefficients κ0

and η′ can be neglected. In a passive Newtonian fluid the
dissipative contributions to the antisymmetric stress and
to Mαβγ become irrelevant in the hydrodynamic limit.
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Appendix D. Elimination of antisymmetric
stresses by variable changes

In the absence of bulk torques, the antisymmetric stress
can be eliminated using a variable change [46]. This result
is based on the invariance of mass conservation equation
∂tρ = −∂αgα, under a redefinition of the momentum den-
sity

g̃α = gα +
1
2
∂βlαβ , (D.1)

that also obeys
∂tρ = −∂αg̃α. (D.2)

The momentum density g̃ is also conserved

∂tg̃α = ∂β σ̃tot
αβ , (D.3)

where

σ̃tot
αβ = σtot

αβ − 1
2
(∂γMπ

αβγ − ∂tlαβ)

+
1
2
∂γ

(
Mπ

αγβ + Mπ
βγα

)
(D.4)

= σtot
αβ − σtot,a

αβ +
1
2
∂γ

(
Mπ

αγβ + Mπ
βγα

)
(D.5)

is symmetric by definition. The coarse-grained kinetic free
energy density,

f − f0 =
g2

2ρ
+

1
2
I−1
αβ lαlβ , (D.6)

implies that the momentum density g and the angular
momentum density l can be defined uniquely within each
coarse-graining volume element. Note that this coarse-
grained free-energy density is not invariant with respect to
replacing g by g̃ and also f−f0 �= g̃2/(2ρ). It follows from
these arguments that the hydrodynamic problem can be
expressed in terms of new variables such that the stress
tensor σ̃αβ is symmetric. However the entropy production
rate (18) as well as the constitutive equations (23)–(27)
do not change, and the physics remains exactly the same.
In particular the phenomenological coefficients of eqs. (24)
and (25) also occur in a representation in which stresses
are symmetric.
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Phys. Rev. Lett. 92, 078101 (2004).
43. K. Kruse, J.-F. Joanny, F. Jülicher, J. Prost, K. Sekimoto,
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