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Abstract. We study the dynamics of oscillatory hair bundles which are coupled elastically in their deflection
variable and are subject to noise. We present a stochastic description capturing the dynamics of the hair
bundles’ mean field. In particular, the presented derivation elucidates the origin of the previously described
noise reduction by coupling. By comparison of simulations of the approximate dynamics and the full system,
we verify our results. Furthermore, we demonstrate that the specific type of coupling considered implies
coupling-induced changes in the dynamics beyond mere noise reduction.

1 Introduction

Oscillatory processes in biological systems are ubiquitous,
serving a multitude of functions. Periodic variations in
gene expression are key to the generation of circadian
rhythms [1]. Oscillatory activity of cardiac pacemaker cells
triggers contractions of the heart muscle [2]. In neuro-
science, stochastic oscillations in the firing of neural pop-
ulations play an essential role in diverse signal processing
tasks [3–5]. Mechanical oscillations of sensory hair bundles
are thought to be essential for the operation of hearing
organs [6]. Theoretical analysis has helped in elucidating
the diverse mechanisms responsible for the generation of
oscillations as well as their functional roles [7–9].

The precision and regularity of periodic processes on
cellular length and time scales is often perturbed by un-
avoidable fluctuations. As a consequence, the amplitude
and phase of the oscillation turn into stochastic variables.
In experimental data, this becomes manifest, for instance,
in a considerable variability of the interbeat interval of
isolated cardiac pacemaker cells [10] or in broadly peaked
power spectra of hair-bundle oscillations [11].

Oscillations at large scales often rely on coupling of os-
cillatory or excitable elements on the cellular scale. For in-
stance, the primary circadian clock in mammals consists of
many cells, each of which is exhibiting oscillatory changes
in the expression levels of certain genes [12]. Coupling, in
this case, is realized by diffusion of signaling molecules.
Another example is provided by the hair bundles of outer
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hair cells in the mammalian cochlea, which are coupled in
a direct mechanical manner [13]. Bi-directional coupling
has been shown to have the potential to reduce the detri-
mental effects of noise [10,14,15], as evidenced, for ex-
ample, by an increase of the regularity of the oscillatory
behavior.

From a theoretical point of view, coupled noisy biolog-
ical oscillators are described by high-dimensional, nonlin-
ear, stochastic dynamics, which is in general challenging
to analyze. One popular way to approach this problem
is to abstract from the oscillatory process under study
and to consider a more generic situation instead, namely
the dynamics of coupled noisy phase oscillators (reviewed
in [16]). Such ensembles of oscillators have lent themselves
to numerical as well as analytical treatments. For instance,
it has been shown that a synchronization transition occurs
when coupling exceeds a certain threshold strength [8,17,
18]. In particular, theoretical results related to coupling-
induced noise reduction could be derived [19]. While this
approach can reveal general principles as to the effect of
coupling on noisy oscillators, it cannot resolve dynamic
effects due to system-specific nonlinearities and types of
coupling realized in actual biological systems.

Here, we aim at an analysis of the effects of coupling
on a specific biological oscillator: the sensory hair bun-
dle. In the inner ear of vertebrates, the hair bundle serves
as the transducer of mechanical stimuli into electrical sig-
nals. Hair bundles from various inner ear organs have been
shown to possess the ability to actively oscillate even in the
absence of any stimulation [11]. Mechanical hair bundle os-
cillations mark an out-of-equilibrium process that is pow-
ered by active force production of molecular motors [20].
Moreover, the hair bundle has been shown to nonlinearly



Page 2 of 15 Eur. Phys. J. E (2012) 35: 37

amplify external periodic stimuli in a frequency selective
way and has been attributed a key role in cochlear amplifi-
cation [21,22]. However, the amplification performance of
a single hair bundle is limited by intrinsic fluctuations [23].
In many inner ear organs, however, hair bundles do not
operate in isolation. Within the mammalian cochlea, the
hair bundles of outer hair cells are attached to the over-
lying tectorial membrane, a gelatinous structure which is
mostly elastic but also shows signs of internal friction [24].
Estimates of its material properties suggest that it intro-
duces a strong coupling among hair bundles [25,26]. Sim-
ilarly, in the sacculus of the bullfrog, hair bundles are at-
tached to the otolithic membrane. Its reported material
properties suggest that hair bundles are strongly elasti-
cally coupled by the otolithic membrane [27,28]. In the
basilar papilla of many lizard species, the hair bundles of
the high-frequency region are coupled by tectorial struc-
tures, either in the form of a continuous membrane or in
the form of a chain of so-called tectorial sallets [29]. It has
been pointed out that a lizard species with incomplete
tectorial structures, has an increased hearing threshold as
compared to a different species that possesses those struc-
tures [29].

Recent theoretical and experimental work has shown
that coupling can synchronize hair bundle movements, can
increase the regularity of spontaneous oscillations, and as
a consequence can enhance the sensitivity of hair bun-
dles to external periodic stimulation [15,30]. As of today,
however, a theoretical understanding of the origin of the
observed noise reduction is still lacking.

In the following, we discuss the dynamics of systems
of coupled hair bundles in the framework of a stochas-
tic mean-field approach. To this end, we make use of an
established biophysical description of single hair bundle
dynamics [23,31], expressed in the form of a system of
two coupled stochastic differential equations. This model
was initially developed to capture the dynamics of bull-
frog saccular hair bundles, an important biological model
system. It has, however, also been successful in describ-
ing the behavior of hair bundles in other amphibian and
mammalian systems, in particular the turtle inner ear and
the rat cochlea [31].

When systems of coupled hair bundles are considered,
an elastic coupling, as realized in the cochlea by the tec-
torial membrane or in the sacculus by the otolithic mem-
brane, leads to a coupling term in only one of the two de-
grees of freedom. Motivated by the mammalian cochlea,
where an overall morphological gradient exists but where
nearby hair bundles have similar properties, we consider
systems of coupled hair bundles with identical properties.
We discuss how under such conditions an effective noise
reduction comes about. Furthermore, we show that this
specific type of coupling induces additional dynamic ef-
fects, such as changes in the underlying bifurcation struc-
ture. In particular, our approach gives reasonable results
for all choices of system sizes, i.e. it does not presuppose
an infinitely large number of coupled hair bundles.

This article is organized as follows. In sect. 2, we re-
view the biophysical description of hair bundle motility

and the type of coupling considered. Also, we briefly sum-
marize previously reported effects of elastic coupling on
the spontaneous and driven dynamics of systems of cou-
pled hair bundles. In sect. 3, assuming strong coupling,
we derive a set of stochastic differential equations approx-
imating the dynamics of the mean field. In sect. 4, we
compare simulations of the derived stochastic mean-field
dynamics, of the full model of coupled hair bundles, and of
a single hair bundle with reduced noise. In particular, we
show that our mean-field approach is able to capture dy-
namic effects beyond simple noise reduction. We conclude
in sect. 5 with a discussion of our results.

2 Model of coupled hair bundles

In this section, we recall the biophysical description of
individual hair-bundle dynamics introduced in [23,31] and
discuss the type of coupling among hair bundles studied
in the following.

Each individual hair bundle is formed by a number
of actin filled protrusions, so-called stereocilia, which em-
anate from the apical surface of specialized sensory cells,
so-called hair cells. Stereocilia are arranged in rows of
increasing height, thus defining an axis X along which
mechanotransduction takes place. Stereocilia confer a piv-
otal stiffness KSP to the hair bundle. Small filaments, so-
called tip links, connect each row of stereocilia to the next
taller row of stereocilia. Upon a deflection of the hair bun-
dle in the positive X-direction, the open probability Po of
mechanically gated ion channels, attached on one or both
sides of each tip-link, is increased. Tip-links introduce
a gating stiffness KGS to the hair-bundle system. Upon
opening of ion channels, a transduction current can flow
into the underlying hair cell. The resulting modulation of
the membrane potential affects the release of neurotrans-
mitter at the basal side of the hair cell and thus influences
the generation of action potentials in the afferent neuron
connected to the hair cell. The opening probability of ion
channels also depends on the position of adaptation mo-
tors, denoted by Xa, which are presumably attached on
the inside of stereocilia to the complex consisting of ion
channel(s) and tip-link. More specifically, the open proba-
bility has a sigmoidal dependence on the relative position
of X with respect to Xa and is for a simple two-state
channel given by

Po(X,Xa) = 1/(1 + A exp(−(X − Xa)/δ).

Here, A = exp[(ΔG +KGSD2/2Ne)/kBT ], where D is as-
sociated with channel gating and kBT is the thermal en-
ergy. Furthermore, δ = NekBT/KGSD, where Ne is the to-
tal number of transduction elements within the hair bun-
dle. The dynamic equations governing the evolution of the
deflection X and the motor position Xa for an individual
hair bundle read

λẊ = fX(X,Xa) + F (t) + ξ(t),

λaẊa = fXa
(X,Xa) + ξa(t), (1)
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Table 1. Table of standard parameters.

Parameter Definition Value

λ Friction coefficient 2.8 μN s m−1

of hair bundle

λa Friction coefficient 10.0 μN s m−1

of adaptation motors

KGS Combined stiffness 0.75 mNm−1

gating-spring stiffness

KSP Combined stiffness 0.6 mNm−1

of stereociliary pivots

D Gating-swing 62.14 nm
on channel opening

Ne Number of transduction 50
elements

T Ambient temperature 300K

Ta Effective temperature 1.5 T

ΔG Intrinsic energy change 10kBT
on channel opening

Fmax Maximal motor force 49.23 pN

S Feedback strength 0.65

where λ and λa are friction coefficients and the right-hand
sides are given by

fX(X,Xa) = −KGS(X − Xa − DPo) − KSPX,

fXa
(X,Xa) = KGS(X − Xa − DPo) + Fmax(SPo − 1).

(2)

Note that the force exerted by the gating springs depends
on the open probability of the ion channels. Effectively,
this gating compliance, which is related to a change in
tip-link tension upon opening and closing of the ion chan-
nels, renders hair-bundle stiffness a nonlinear function of
displacement [32]. Molecular motors can produce a max-
imal force Fmax. However, upon opening of ion channels,
inflowing calcium inhibits the motor. The strength of this
negative feedback is set by the dimensionless parameter
S. The hair bundle is subject to fluctuations, stemming
from the Brownian motion of the tip of the hair bundle in
the surrounding bath, the stochastic opening and closing
of ion channels, and a stochastic component due to the
force production of molecular motors. In order to account
for these fluctuations, eq. (2) contains zero mean Gaus-
sian white noise terms ξ(t) and ξa(t), respectively, with
correlation functions 〈ξ(t)ξ(t + τ)〉 = ε2λkBTδ(τ) and
〈ξa(t)ξa(t + τ)〉 = ε2λakBTaδ(τ). Note the effective tem-
perature Ta ≈ 1.5T , appearing in the correlation function
of ξa(t), is related to the presence of out-of-equilibrium
fluctuations in the motor force [23]. Furthermore, for later
use we have introduced a dimensionless noise reduction
factor ε. An external mechanical force acting on the tip of
the hair bundle is included by the term F (t).

When choosing parameters according to table 1 and
considering S and Fmax as free parameters, the hair-
bundle model in the undriven deterministic case, i.e. for
F (t) = 0 and ε = 0, was shown to exhibit a parameter

p=1 p=N

p=(N-1)N+1 p=N²

X

Y

Fig. 1. Schematic of a system of N ×N coupled hair bundles.
Starting from the left lower corner, each row of hair bundles is
labeled with a running index, p. Mechanical oscillations of hair
bundles occur along the X-axis. Movements along the Y -axis
are not considered. Grey lines indicate elastic springs mediat-
ing coupling among hair bundles.

region bounded by Hopf bifurcation lines, in which the
system performs limit-cycle oscillations (cf. sect. 4). When
placed in or near this region, in the presence of noise
the system thus shows noisy limit cycle oscillations. For a
choice of parameters corresponding to table 1, these oscil-
lations quantitatively resemble hair bundle oscillations as
observed for isolated hair bundles from the sacculus of the
bullfrog [23]. Furthermore, also the response of this hair
bundle system to external driving matches quantitatively
the behavior observed experimentally [23]. We have cho-
sen a set of parameters studied previously [23,30,33] (see
table 1), which we will refer to as standard parameters.
Unless indicated otherwise, simulations were performed
using these standard parameters.

We now turn to systems of coupled hair bundles. We
will assume the same type and topology of coupling as
introduced in [30]. Hair bundles with identical parameters
are arranged on a square lattice with lattice spacing d. We
restrict our attention to quadratic systems of N ×N hair
bundles with system size N2. For notational purposes, it
is useful to label hair bundles in a different manner as
compared to [30], namely by a single index, p = 1 . . . N2,
as shown in fig. 1. Thus, for each hair bundle there exists
a unique pair (i, j) with 1 ≤ i ≤ N and 1 ≤ j ≤ N , such
that p = (j − 1)N + i. The dynamic state of each hair
bundle is now given in terms of its deflection Xp and motor
position Xa,p. Note, we are ignoring deflections along the
Y -axis. Hair bundles are subject to pairwise independent
noise terms ξp(t) and ξa,p(t). In the coupled system, we
exclusively consider the case ε = 1.

The response of the tectorial membrane with respect
to a shearing stimulus exhibits both elastic and viscous
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components [24]. Measurements of its shear impedance,
however, suggest that deviations from a purely elas-
tic material are negligible for frequencies below at least
2 kHz [24]. Therefore, in the following we neglect viscous
contributions in the coupling and describe coupling by
elastic springs of stiffness K, which connect nearest and
next-nearest neighbors (cf. fig. 1). More specifically, the
hair bundle with label p = (j − 1)N + i is coupled to
all hair bundles with labels q = (j − 1 + l)N + (i + k),
where k, l = −1, 0, 1 and 1 ≤ (j + l) ≤ N as well as
1 ≤ (i + k) ≤ N . The corresponding spring force, Fp,q, is
then given by

Fp,q = K

(
1 − L0√

(ΔXp,q + kd)2 + (ld)2

)
(ΔXp,q + kd),

(3)
where

ΔXp,q = Xq − Xp

and
L0 =

√
(k2 + l2)d2

is the spring’s resting length.
The full dynamics of the hair bundle with label p in a

system of coupled hair bundles is given by

λẊp = fX(Xp,Xa,p) +
∑

q

′Fp,q + F (t) + ξp(t),

λaẊa,p = fXa
(Xp,Xa,p) + ξa,p(t), (4)

where the prime in eq. (4) indicates that summation is
restricted to nearest and next-nearest neighbors [30]. We
will consider open boundary conditions only.

In the remainder of this section, we will shortly re-
port on some of the previously observed effects of elas-
tic coupling on hair-bundle dynamics [30,15]. Given a
N × N system of hair bundles, in the absence of cou-
pling, i.e. for K = 0pN/nm, hair bundle oscillations are
pairwise uncorrelated (see fig. 2a, upper panel). Upon a
sufficient increase of the coupling strength, oscillations
progressively synchronize (see fig. 2a, middle and lower
panel). Along with synchronization, oscillations become
more regular. This is, e.g., evidenced by the power spec-
tral densities S(f) shown in fig. 2b. The latter is defined by
S(f) = limT→∞〈|X̃|2〉/T , where X̃(f) =

∫ T

0
dt X(t)e2πift

is the Fourier transform of a hair bundle’s deflection and
〈. . .〉 denotes the average over a stationary ensemble. For
various N , we show the power spectral density of the cen-
tral hair bundle, i.e. the hair bundle located at position
p = (N2 +1)/2 in the case of odd, and p = N2/2−N/2 in
the case of even N . Note that, all systems have been poised
in the tightly synchronized regime (K = 100 pN/nm).
For each system size, a well-defined peak is present in
the power spectrum, defining a characteristic frequency
f0 of the oscillation. Note that, with increasing N , the
frequency of oscillation undergoes a slight change. More
importantly, with increasing N , a pronounced sharpening
of the spectral peak can be discerned. One way to quan-
tify the regularity of noisy oscillations is by means of the
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Fig. 2. (Colour on-line) Review of coupling-induced effects
on hair-bundle dynamics. In (a), for three coupling strengths
(upper panel, K = 0 pN/nm; middle panel, K = 0.3 pN/nm;
lower panel, K = 100 pN/nm) trajectories of three hair bun-
dles in a 10 × 10 systems (black, p = 1; red, p = 50; green,
p = 100) are shown. With increasing coupling strength, hair
bundle oscillations exhibit progressive synchronization. In (b),
power spectra of the central hair bundle in systems of different
sizes are displayed (legend in (c)). With increasing system size,
a pronounced sharpening of the spectral peak at the charac-
teristic frequency f0 is found. For the same system sizes as in
(b), the sensitivity of the central hair bundle for a sinusoidal
driving at the respective characteristic frequency is shown in
(c) as a function of driving amplitude. In (d), the quality factor
and gain of the central hair bundle are shown as a function of
system size, exhibiting a linear increase. Coupling strengths in
(b), (c), and (d) are K = 100 pN/nm. All simulations of cou-
pled hair bundles here and throughout the rest of the paper
were performed with a time step dt = 0.001 ms. System param-
eters, when not indicated otherwise, were chosen as standard
parameters (see table 1).

quality factor, Q, which is defined as

Q = f0/Δf,

where Δf is the width of the power spectrum at half its
height. As shown in fig. 2d, the quality of spontaneous
oscillations increases almost linearly with N2.

Coupling also enhances the sensitivity of a hair bundle
to weak periodic driving. In particular, we will consider a
time-dependent driving of the form

F (t) = F0 cos(2πνt),

where we will refer to F0 as the driving amplitude and to
ν as the driving frequency. The sensitivity |χν |(F0) of a
hair bundle is defined as

|χν |(F0) = |〈X̃(ν)/F̃ (ν)〉|,

where F̃ (ν) =
∫ T

0
dt F (t)e2πiνt is the Fourier transform of

the forcing. In the following, we will be interested in the
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sensitivity at the characteristic frequency of the sponta-
neous oscillations, i.e. the case ν = f0. In fig. 2c, we show
the sensitivity as a function of driving amplitude for vari-
ous system sizes. Note that, while coupling has almost no
effect on sensitivity in the limit of strong driving ampli-
tudes, sensitivity is increased for weak driving amplitudes.
Plotting the so-called amplification gain, i.e. the ratio of
sensitivity in the limit of weak driving to sensitivity in the
limit of strong driving, a linear increase as a function of
system size is found (see fig. 2d).

Both the linear increase of quality factor and amplifi-
cation gain as a function of system size have been inter-
preted as being due to an effective coupling-induced noise
reduction. A hair bundle in a strongly coupled system of
hair bundles has been argued to obey the same dynamic
equations as a single hair bundle [33], albeit with a noise
strength that is reduced in proportion with system size,
corresponding to a choice ε = 1/N2. In the following,
we show in what sense coupling indeed leads to an ef-
fective noise reduction. Furthermore, we show that, since
coupling is only present in one degree of freedom, i.e. mo-
tor variables are not directly coupled, besides an effective
noise reduction coupling also leads to qualitative changes
in hair-bundle dynamics.

3 Stochastic mean-field dynamics

3.1 Approximating mean-field dynamics in the limit of
strong coupling

Assuming that the coupling constant K is chosen suffi-
ciently large, hair bundles do oscillate in near synchrony
(see fig. 2a). Concerted hair bundle movements give rise
to a non-zero average deflection, i.e. it creates a non-zero
mean field. The latter is given in terms of the average de-
flection X̄ and the average motor position X̄a of all hair
bundles in the system, i.e.

X̄ =
1

N2

N2∑
p=1

Xp and X̄a =
1

N2

N2∑
p=1

Xa,p. (5)

We will refer to these new dynamic variables as mean-
field variables or simply as the mean field. The deviations
δp of the individual deflections and δa,p of the individual
motor positions from the respective mean-field variables
are given by

δp = Xp − X̄ and δa,p = Xa,p − X̄a. (6)

Note that the above definitions imply that

N2∑
p=1

δp = 0 and
N2∑
p=1

δa,p = 0. (7)

In the tightly synchronized regime, the deviations δp

are generally small (note the sharply peaked densities in
fig. 3c, middle panel), implying that the deflection Xp(t)
of a single hair bundle within the network is close to the
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Fig. 3. (Colour on-line) Coupling-induced oscillations of the
mean field. For a 50 × 50 system of coupled hair bundles, in
the upper panels, we show trajectories of the respective mean-
field variables X̄ (black) and X̄a (red). For vanishing coupling
strength (see (a)), the mean field shows mere finite-size fluctu-
ations about a mean value. With increasing coupling strength
(see (b) and (c)) synchronization of hair bundles is reflected
in an oscillatory behavior of the mean field, reminiscent of sin-
gle hair bundle dynamics. Below, histograms of the individual
hair bundle deflections, Xp (middle panels), and motor posi-
tions, Xa,p (lower panels), are shown for three points in time,
respectively. Time points are indicated in the upper panel as
circles of corresponding color. In the absence of coupling, his-
tograms fluctuate about a stationary distribution. For weak
coupling, modulations of the respective bimodal histograms
reflect the emergence of a time-dependent mean field. In the
limit of strong coupling, hair bundle deflections are tightly syn-
chronized and the corresponding histograms are unimodal and
sharply peaked. As motors are not coupled directly, histograms
retain a finite width. As hair bundle deflections, however, are
virtually identical at each point in time, motor variables are
driven towards a preferred position on the limit cycle, evi-
denced by a non-constant time-dependent population average.
All simulations were performed with standard parameters (see
table 1).

mean field X̄(t) at any time. Consequently, in this regime,
knowing the deflection dynamics of the mean field is equiv-
alent to knowing the dynamics of each hair bundle in the
system. Note, however, that, as motor variables are not
coupled directly, also in the limit of infinite coupling, the
deviations δa,p will remain finite (see fig. 3c, lower panel).
In the following, we derive approximate dynamic equa-
tions for the mean-field variables. It will turn out that
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motor deviations lead to qualitative changes in mean-field
dynamics as compared to a single isolated hair bundle with
reduced noise.

To this end, as a first step we linearize the coupling
term describing elastic hair-bundle interactions in eq. (4).
Note that typical deflection amplitudes of hair bundles
are on the order of several tens of nanometers. The lattice
constant, however, which also sets the rest length of the
springs mediating the elastic coupling, was chosen to be
d = 50μm. It is therefore reasonable to expand coupling
forces up to linear order in relative deflections ΔXp,q =
Xq − Xp of interacting hair bundles, leading to

Fp,q ≈

⎧⎪⎨
⎪⎩

KΔXp,q for springs in X-direction,
1
2KΔXp,q for diagonal springs,

0 for springs in Y -direction.

In particular, note that springs in Y -direction in this
approximation do not add to the elastic interactions in-
duced by coupling and that these forces are independent
of the lattice spacing d. Using these linearized coupling
forces, the deflection dynamics for a hair bundle in the
coupled system reads

λẊp = fX(Xp,Xa,p) + Fext(t) + ξp(t)

+K
1∑

m,n=−1

′
(

1 − |n|
2

)
|m|ΔXp,p+nN+m.

In order to further simplify the notation, we introduce the
coupling matrix C = (cp,q). It is uniquely defined by the
requirement that for all p with 1 ≤ p ≤ N2

1∑
m,n=−1

′
(

1 − |n|
2

)
|m|ΔXp,p+nN+m =

N2∑
q=1

cp,qXq. (8)

Because ΔXp,q = Xq − Xp, the matrix elements cp,q can
be obtained from eq. (8) by equating coefficients. In par-
ticular, note that C is symmetric and that

N2∑
q=1

cp,q = 0 (9)

for all p with 1 ≤ p ≤ N2. The full dynamics for a hair
bundle in the coupled system can thus be written as

λẊp = fX(Xp,Xa,p) + K
N2∑
q=1

cp,qXq + Fext(t) + ξp(t),

λaẊa,p = fXa
(Xp,Xa,p) + ξa,p(t).

In order to obtain equations for the mean field, we ex-
press the right hand sides of these equations in terms of
the mean-field variables X̄, X̄a and the deviations δp, δa,p.
To this end, we expand the nonlinear functions fX , fXa

around the mean field and simplify the coupling term

using eq. (9)

λẊp =
∞∑

i,j=0

1
i!j!

[∂i,jfX(X̄, X̄a)]δi
pδ

j
a,p

+K

N2∑
q=1

cp,qδq + Fext(t) + ξp(t),

λaẊa,p =
∞∑

i,j=0

1
i!j!

[∂i,jfXa
(X̄, X̄a)]δi

pδ
j
a,p + ξa,p(t),

where we define

∂i,jfX(X̄, X̄a) =
∂i+jfX(X,Xa)

∂Xi∂Xj
a

∣∣∣∣
X=X̄,Xa=X̄a

.

We can therefore derive the following dynamic equations
for the mean field:

λ ˙̄X =
1

N2

N2∑
p=1

λẊp

= fX(X̄, X̄a) + Fext(t) +
1

N2

N2∑
p=1

ξp(t)

+
1

N2

N2∑
p=1

∞∑
i,j=0
i+j>1

1
i!j!

[∂i,jfX(X̄, X̄a)]δi
pδ

j
a,p,

λa
˙̄Xa =

1
N2

N2∑
p=1

λaẊa,p

= fXa
(X̄, X̄a) +

1
N2

N2∑
p=1

ξa,p(t)

+
1

N2

N2∑
p=1

∞∑
i,j=0
i+j>1

1
i!j!

[∂i,jfXa
(X̄, X̄a)]δi

pδ
j
a,p. (10)

Note that the coupling term and the linear terms in the
Taylor expansion drop out because of eq. (9) and eq. (7),
respectively. For the noise term in the first equation one
finds〈

1
N2

N2∑
q=1

ξq(t)
1

N2

N2∑
p=1

ξp(t′)

〉
=

1
N4

N2∑
p=1

〈ξp(t)ξp(t′)〉

=
2λkBT

N2
δ(t − t′),

as the white noise terms ξp(t) are pairwise uncorrelated
and ε = 1 in the coupled case. A similar argument holds
true for the sum of noise sources appearing in the equa-
tion for X̄a. As the sum of Gaussian variables is again
Gaussian, we can therefore substitute the sums of noise
sources appearing in eq. (10) by two effective white noise
terms

√
1/N2ξ̄(t) and

√
1/N2ξ̄a(t) with respective au-

tocorrelation functions
〈
ξ̄(t)ξ̄(t′)

〉
= 2λkBTδ(t − t′) and〈

ξ̄a(t)ξ̄a(t′)
〉

= 2λakBTaδ(t − t′).
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In order to simplify eq. (10), we note that deviations
δp can be made arbitrarily small, if K is chosen sufficiently
large. To illustrate this point, we consider the dynamics
of the δp (all terms divided by the coupling strength):

λ

K
δ̇p =

1
K

[
λẊp − λ ˙̄X

]
=

1
K

fX(X̄ + δp, X̄ + δa,p)

− 1
KN2

N2∑
q=1

fX(X̄ + δq, X̄a + δa,q)

+
1
K

⎛
⎝ξp(t) −

1
N2

N2∑
q=1

ξq(t)

⎞
⎠ +

N2∑
q=1

cp,qδq. (11)

Because fX and fXa
are continuous and for large argu-

ments approach linear functions, their contribution be-
comes negligible when K becomes large. The remain-
ing terms correspond to a multidimensional Ornstein-
Uhlenbeck process, for which one can show that the vari-
ance and the correlation time scale inversely with K.
Hence, in the limit of infinite K, the contribution of δp

in eq. (10) can and will be neglected.
When considering the equivalent dynamic equation for

δa,p, i.e.

λaδ̇a,p = λaẊa,p − λa
˙̄Xa

= fXa
(X̄ + δp, X̄a + δa,p)

− 1
N2

N2∑
q=1

fXa
(X̄ + δq, X̄a + δa,q)

+

⎛
⎝ξa,p(t) −

1
N2

N2∑
q=1

ξa,q(t)

⎞
⎠ , (12)

no such argument applies, because the coupling is only in
the deflection variables and, consequently, the large pa-
rameter K does not appear here. This becomes manifest
in the histograms in fig. 3, lower panels, which retain a
finite variance even in the limit of large values of K. The
variance of the δa,p in this limit is set by the effective tem-
perature Ta, which determines the noise strength acting
on the motor variables. In particular, for vanishing Ta, we
expect that also the δa,p become arbitrarily small.

Motivated by this, we will concentrate on the first non-
zero term in the expansions appearing in eq. (10), i.e.
terms of the order δ2

a,p. The equations for the mean field
accordingly reduce to

λ ˙̄X = fX(X̄, X̄a) + Fext(t) +

√
1

N2
ξ̄(t)

+
1
2
[∂0,2fX(X̄, X̄a)]Z̄, (13)

λa
˙̄Xa = fXa

(X̄, X̄a) +

√
1

N2
ξ̄a(t)

+
1
2
[∂0,2fXa

(X̄, X̄a)]Z̄, (14)

where we have introduced the new variable Z̄ as

Z̄ =
1

N2

N2∑
p=1

δ2
a,p

to denote the population variance of the deviations δa,p.
In the next step, we will derive the dynamic equations
governing the time evolution of Z̄. To this end, note that
to linear order in δa,p, we have

λaδ̇a,p = −a(t)δa,p + ξa,p(t) −
1

N2

N2∑
q=1

ξa,q(t). (15)

Here, we have introduced

a(t) = −∂0,1fXa
(X̄, X̄a).

A formal solution of eq. (15) is given by

δa,p(t) =

1
λa

eΦ(t)

∫ t

−∞
ds

⎛
⎝ξa,p(s) −

1
N2

N2∑
q=1

ξa,q(s)

⎞
⎠ e−Φ(s), (16)

where

Φ(t) = −
∫ t

0

ds
a(s)
λa

.

Note that, for positive t, eq. (16) describes the stationary
properties of δa,p, which are independent of initial condi-
tions at t = −∞.

By definiton of the variable Z̄ we find

˙̄Z =
1

N2

N2∑
p=1

2δa,pδ̇a,p (17)

=
2
λa

⎛
⎝−a(t)Z̄ +

1
N2

N2∑
p=1

δa,pξa,p(t)

⎞
⎠ , (18)

where we have made use of eq. (7). This means that

λa

2
˙̄Z = −a(t)Z̄ + η(t), (19)

where we have introduced the noise term η defined as

η(t) =
1

N2

N2∑
p=1

δa,pξa,p(t).

In order to be able to utilize eq. (19) as a dynamic equa-
tion for Z̄ without having to keep track of the δa,p explic-
itly, one needs to determine the correlation function of the
noise term η(t). In appendix B, we show that the mean
value of η is given by

〈η(t)〉 ≈
(

1 − 1
N2

)
kBTa (20)
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and the correlation function of η is given by

〈η(t)η(t + τ)〉 ≈ (2kBTa)2
(

1
N2

− 1
N4

)
DZ̄δ(τ)

+
(

1 − 1
N2

)2

(kBTa)2 , (21)

where we have introduced the time-dependent noise
strength DZ̄ . The latter is given as the solution of the
deterministic differential equation

ḊZ̄ = − 2
λa

a(t)DZ̄ + 1.

Summing up, we have found an effective description of
the mean-field dynamics in terms of four differential equa-
tions, three of which contain noise terms. These equations
read:

λ ˙̄X = fX(X̄, X̄a) + Fext(t) +

√
1

N2
ξ̄(t)

+
1
2
[∂0,2fX(X̄, X̄a)]Z̄,

λa
˙̄Xa = fXa

(X̄, X̄a) +

√
1

N2
ξ̄a(t)

+
1
2
[∂0,2fXa

(X̄, X̄a)]Z̄

λa

2
˙̄Z = [∂0,1fXa

(X̄, X̄a)]Z̄ +
(

1 − 1
N2

)
kBTa

+2kBTa

√(
1

N2
− 1

N4

)
DZ̄ η̂(t)

ḊZ̄ =
2
λa

[∂0,1fXa
(X̄, X̄a)]DZ̄ + 1, (22)

where η̂(t) is delta-correlated white noise with

〈η̂(t)η̂(t + τ)〉 = δ(τ).

The noise terms ξ̄(t), ξ̄a(t), and η̂(t) are pairwise uncorre-
lated as shown in appendix A.

Note that the dynamics for Z̄(t) in eq. (22) can be-
come unstable as we have dropped stabilizing nonlineari-
ties from the Taylor expansion in eq. (10). Indeed, in sim-
ulations of eq. (22) for small N we observe that the popu-
lation variance can in rare cases go to unphysical ranges,
i.e. it can attain negative or very large positive values.
Therefore, we impose reflecting boundary conditions at
Z̄ = 0 and Z̄ = Z̄max, which mimic the effect of satu-
rating nonlinearities. In our simulations, we have chosen
Z̄max = 70nm2, a value that is well above the variance of
the motor positions in the uncoupled case.

For N = 1, the dynamics given in eq. (22) reduces to
the original description of hair bundle dynamics in eq. (1).
For N > 1, we find that the strengths of noise terms act-
ing on X̄ and X̄a, respectively, are reduced by N2, i.e.
inversely proportional to system size. This effect corre-
sponds to the observed noise reduction in systems of cou-
pled hair bundles.

However, our analysis reveals that coupling also leads
to additional terms in the dynamics of the mean field,
which are proportional to the variance Z̄ of motor devi-
ations δa,p. We emphasize that this additional degree of
freedom, Z̄, arises in the mean-field description because
only the deflection variables are elastically coupled. Con-
versely, if both hair bundle deflection and motor position
were coupled between hair bundles, the resulting mean-
field dynamics would correspond to the dynamics of a
single hair bundle with reduced noise, i.e. without the
additional degree of freedom Z̄.

For a pure coupling in the deflection variable, the ad-
ditional variable Z̄ does not scale with the inverse system
size and, in particular, remains finite for N → ∞. Thus,
while in the limit of infinite N , all noise terms in eq. (22)
vanish, the individual motor variables are still distributed
around a mean-field value. In sect. 4, we will show that in
the limit of infinite N qualitative differences of the dynam-
ics of the mean field as compared to a single deterministic
hair bundle emerge. These quasi-deterministic changes to
hair bundle dynamics due to coupling are shown to also
have an effect on the statistics of hair bundle dynamics in
the case of finite N .

3.2 When is this a good approximation?

In this subsection, we will discuss under what conditions
the stochastic mean-field dynamics in eq. (22) is expected
to give a good approximation to the mean field of a system
of coupled hair bundles. Note that an approximation was
necessary since for finite Ta the distribution of δa,p retains
a finite width, even for arbitrarily large coupling strengths
K. In the following, we give an estimate up to what ef-
fective temperature reasonable results are to be expected.
To this end, note first that because

∂Po

∂Xa
= −Po(1 − Po)/δ,

one has

∂nfXa

∂Xn
a

= (FmaxS − KGSD)
∂nPo

∂Xn
a

=
(−1)n

δn
(FmaxS − KGSD)Fn(Po)

and

∂nfX

∂Xn
a

= KGSD
∂nPo

∂Xn
a

=
(−1)n

δn
KGSDFn(Po),

where Fn(Po) =
∑n

k=1 Dn,kP k
o is a polynomial in Po of

order n + 1 and with coefficients Dn,k. Given the Tay-
lor expansions in eq. (10), the correction terms with no
dependence on δp can therefore be written as

1
n!

∂nfXa

∂Xn
a

〈δn
a,p〉 =

(−1)n

n!
C1Fn(Po)

〈(
δa,p

δ

)n〉
(23)
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and

1
n!

∂nfX

∂Xn
a

〈δn
a,p〉 =

(−1)n

n!
C2Fn(Po)

〈(
δa,p

δ

)n〉
, (24)

respectively, where the average here is a population aver-
age over all hair bundles in the system, C1 = (FmaxS −
KGSD), and C2 = KGSD. A numerical investigation sug-
gests (not shown) that a constant C exists, such that

|Fn(Po)/n!| < C (25)

for all n and 0 ≤ Po ≤ 1. This implies that correction
terms are expected not to have an impact on mean-field
dynamics, when |δa|/δ � 1, i.e. loosely speaking, when
the distribution of motors is more narrow than the ef-
fective range of the nonlinearity in the function Po. As
pointed out above, Ta controls to what extend the en-
semble of motors is smeared out compared to δ. One
can get a rough estimate up to what effective tempera-
ture the proposed mean-field theory can be used. To this
end, in eq. (15) we neglect the contribution depending
on the mean field (specifically, the term proportional to
Po(X̄, X̄a)[1−Po(X̄, X̄a)] which is in the oscillatory regime
typically rather small) and also the effect of the second
noise term. We thus consider the dynamic equation

λaδ̇a = −KGSδa + ξa(t), (26)

where we have dropped the subscript p for notational clar-
ity. According to this equation, the variance of δa is given
by

〈δ2
a〉 =

kBTa

KGS
.

Consequently, we expect the mean-field equations to be a
good approximation, whenever

Ta � δ2KGS

kB
≈ 1000K.

For standard parameters, Ta = 450K, and thus Ta differs
from the right-hand side of the above inequality only by
a factor of two. Therefore, we can only expect limited
quantitative agreement of our theory with simulations of
systems of coupled hair bundles.

4 Comparison to the dynamics of coupled
hair bundles

In this section, we compare the spontaneous and driven
dynamics of the mean field of systems of strongly cou-
pled hair bundles (referred to as “coupled hair bundles
(CHBs)”), the dynamics of the stochastic mean field gov-
erned by eq. (22) (referred to as “stochastic mean field
(SMF)”), and the dynamics of a single hair bundle with
reduced noise (referred to as ”bundle with reduced noise
(BRN)”). In particular, we show that for all system sizes
N2, the SMF captures the dynamical effects of coupling
more faithfully than the BRN.
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Fig. 4. Comparison to simulations of coupled hair bundles.
Trajectories of the mean-field variables, X̄ and X̄a, and, where
applicable, of the population variance of motor deviations, Z̄,
are shown in (a) for a system of 10 × 10 coupled hair bundles
(CHBs) in the strong coupling regime (K = 25pN/nm), in (b)
for a single hair bundle with reduced noise (BRN, ε = 1/100),
and in (c) for the stochastic mean-field description (SMF, N2 =
100).

4.1 Spontaneous activity

We commence with an investigation of the spontaneous ac-
tivity. In fig. 4, time traces of the mean-field variables, X̄
and X̄a, are shown for 10×10 CHBs in the strong-coupling
regime (K = 25pN/nm), the BRN with ε = 1/100, and
the SMF with N2 = 100. In case of the CHBs and the
SMF, also the time courses of the variable Z̄ are displayed.
All three oscillators exhibit spontaneous oscillations of
their respective deflection variables, which are of higher
regularity than for a single hair bundle (see fig. 2a, up-
per panel). However, oscillations of the BRN are of larger
amplitude and lower frequency as compared to both the
CHBs and the SMF. The dynamics of the latter qualita-
tively agree, including the behavior of the new variable
Z̄. In both cases, spikes of comparable amplitude can be
discerned in Z̄ during switches of the deflections of the
CHBs and the SMF, respectively.

We extend our comparison in terms of spectral charac-
teristics in fig. 5. More specifically, in fig. 5a, power spec-
tral densities corresponding to the mean field of 5×5 CHBs
(K = 100 pN/nm), the BRN (ε = 1/25), and the SMF
(N2 = 25) are shown. In agreement with the statements
above, while the characteristic frequencies of the CHBs
and the SMF are almost identical, the frequency of the
BRN is markedly lower. Moreover, note that the shapes
of the spectra of CHBs and SMF are in good agreement.

In sect. 3.2, we have argued that for finite Ta, the dy-
namics given in eq. (22) are expected to only approximate
the mean-field dynamics of the CHBs. According to our
estimate, this approximation is expected to give reason-
able results for Ta � 1000K. In fig. 5b, we plot the char-
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Fig. 5. Power spectra, frequency, and quality of coupled HBs
(CHBs), stochastic mean field (SMF), and single HB with re-
duced noise (BRN), respectively. (a) Power spectra of the de-
flection variables, showing a pronounced difference in peak fre-
quency for the coupled system and the single HB with reduced
noise. (b) Peak frequencies of power spectra as functions of
the effective temperature Ta. The spectra in panel (a) corre-
spond to Ta = 450 K. (c) Quality factors of the first peak in
the spectra as functions of the system size.

acteristic frequency of the first spectral peak for CHBs,
BRN, and SMF, respectively, as a function of Ta. While
the frequency of the BRN with increasing effective tem-
perate Ta is slightly decreasing, for both CHBs and SMF
an increase can be discerned. For all Ta shown, the SMF
gives a good approximation to the results for the CHBs.

However, for effective temperatures Ta > 400K, small de-
viations start to appear, indicative of the approximate na-
ture of our mean-field approach. Hence, in particular for
standard parameters, for which Ta = 450K (see dashed
vertical line fig. 5b), our approach gives reasonable re-
sults, however with minor deviations from the mean-field
dynamics of CHBs.

Coupling-induced enhancement of the quality factor
of spontaneous oscillations has been discussed as one of
the important effects of elastic coupling [30]. In fig. 5, we
show that, indeed, the quality factor of CHBs, BRN, and
SMF increases in a linear fashion with system size. Here,
we consider a noise reduction in the BRN with ε = 1/N2.
However, the results of the BRN underestimate the qual-
ity of CHBs and SMF. The latter quantitatively agree,
again attesting that our approximate equations eq. (22)
give reasonable results in capturing the effect of motor
deviations on mean-field dynamics.

4.2 Sensitivity with respect to periodic forcing

In order to investigate whether our approximate mean-
field approach also captures the enhanced sensitivity of
systems of elastically coupled hair bundles, in this sec-
tion, we study the response to periodic driving. In fig. 6a,
we show the sensitivity to a sinusoidal driving (defined in
sect. 2) as a function of driving amplitude, F0, for CHBs
(5 × 5, K = 100 pN/nm), BRN (ε = 1/25), and SMF
(N2 = 25). In all cases, the driving frequency, ν, was cho-
sen to coincide with the characteristic frequency, f0, of
the respective spontaneous activity. In all cases, three re-
sponse regimes can be singled out: a high-sensitivity lin-
ear response regime for weak driving, a nonlinear decay
of sensitivity for intermediate driving amplitudes, and a
low-sensitivity linear response regime for strong driving.
However, while all dynamics share these qualitative fea-
tures, the CHBs and SMF quantitatively agree, with the
BRN showing deviations. In particular, sensitivity in lin-
ear response to weak driving is higher for CHBs and SMF,
respectively. As for the quality factor, for all three oscil-
lators, a linear increase along with system size is found
when the amplification gain (ratio of the two linear re-
sponse regimes, defined in 2) is plotted as a function of
system size (see fig. 6b). However, while the SMF cap-
tures the increase of the gain of the CHBs quantitatively,
the BRN gives an underestimate.

4.3 Effects of coupling beyond noise reduction

As the results in the last two subsections show, the approx-
imate mean-field approach eq. (22) quantitatively cap-
tures the mean-field dynamics of systems of elastically
coupled hair bundles. In contrast, a single hair bundle
with reduced noise exhibits appreciable deviations from
both SMF and CHBs. This attests the fact that coupling
has additional dynamic effects beyond simple noise reduc-
tion. These effects will be investigated in this subsection.
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To this end, we will first consider the infinite N limit of
the SMF. In this limit, noise terms in the dynamic eq. (22)
vanish, rendering the SMF a deterministic dynamical sys-
tem. In fig. 7a, the bifurcation diagram of the resulting
system is shown in the Fmax-S-plane (orange lines). As a
comparison, also the bifurcation diagram of a single de-
terministic hair bundle is displayed (black lines) [23], cor-
responding to a choice ε = 0 in eq. (2). Note, the result-
ing system can also be viewed as the BRN in the limit
of infinite N . Both bifurcation diagrams were obtained
numerically with the help of the software package MAT-
CONT [34], which allows for parameter continuation of
equilibrium states and periodic orbits of autonomous sys-
tems of ODEs. Both systems show analogous regions in
their bifurcation diagram. First of all, regions with one
stable fixed point exist. Depending on the open probabil-
ity of ion channels in this stationary state, in fig. 7a these
regions are marked MO (mostly open) and MC (mostly
closed). Secondly, a region of bistable behavior (marked BI
in fig. 7a) can be discerned. Finally, within a bounded re-
gion of parameter space, both systems perform limit cycle
oscillations (marked OSC in fig. 7a). Along the boundary
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Fig. 7. (Colour on-line) Coupling-induced changes of the bifur-
cation structure. (a) Bifurcation diagram of the single HB and
the mean-field theory in the limit of infinite N . A region of os-
cillatory dynamics (OSC) is enclosed by Hopf bifurcation lines
(supercritical; solid lines; subcritical: dashed lines). (b) Vari-
ance when passing through the supercritical Hopf bifurcation
for coupled HBs (CHBs), the stochastic mean field (SMF), sin-
gle HB with reduced noise (BRN), deterministic hair bundle,
and deterministic mean field; path corresponds to the upper
red line in panel (a). (c) Variance when passing through the
subcritical bifurcation along the lower red line in panel (a).
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of this oscillating region Hopf bifurcations occur (super-
critical, solid lines; subcritical, dashed lines). While the
qualitative features of the bifurcation diagrams are analo-
gous, slight quantitative shifts of the bifurcation lines are
apparent. For one, in the vicinity of the supercritical Hopf
bifurcation, the oscillating region of the BRN extends to
larger values of Fmax and S as compared to the SMF. In
other words, there exists a small region in which the single
deterministic hair bundle is oscillating, the SMF, however,
is not. Coupling in this parameter regime is thus expected
to suppress oscillations. In contrast, close to the subcriti-
cal bifurcation, the oscillating region of the BRN is more
narrow than compared to the SMF. For parameter choices
from between the respective bifurcation lines, systems of
coupled hair bundles are expected to oscillate, even though
in the absence of coupling, the individual hair bundles the
system comprises are quiescent. We would like to empha-
size that these changes in the deterministic bifurcation
structure are caused by the finite fluctuations in the motor
variable, i.e. the changes are noise-induced. This is some-
what similar to the noise-induced oscillations theoretically
predicted by means of a cumulant expansion in [35]. The
main differences to our system are that in [35] i) the mul-
tiplicative nature of the noise is essential for the change in
the bifurcation structure of the mean field; ii) the noise
acts only in the dynamics of the coupled variable, i.e.
there is no finite variability in the uncoupled variable in
the strong-coupling limit as it is found in our system.

In order to show that our results for the infinite N limit
also bear significance for finite system sizes, in fig. 7b and
c, we plot the variances of the deflection variables of the
CHBs (5 × 5, K = 100 pN/nm), SMF (N2 = 25), and
BRN (ε = 1/25) along two lines in the (Fmax, S)-plane.
While one is traversing the supercritical Hopf bifurcation,
the other is intersecting the oscillating region via subcrit-
ical Hopf bifurcations (both paths are indicated as red
lines in fig. 7a). We compare the results of stochastic sim-
ulations with the results of the deterministic systems (de-
terministic HB, deterministic MF). Close to the super-
critical bifurcation, variances of CHBs and SMF coincide
within line width. Furthermore, far from the bifurcation,
where the variance is dominated by movements along the
limit-cycle, both curves agree with the result for the de-
terministic mean field. Close to the bifurcation, where the
amplitude of limit-cycle oscillations in the deterministic
case go to zero, fluctuations start to dominate, effectively
smearing out the bifurcation. However, also in this region
CHBs and SMF give similar results. As far as the BRN
is concerned, far from the bifurcation, it agrees with the
results for a deterministic HB, and deviates from the de-
terministic case close to the bifurcation. We conclude, that
all three stochastic systems in the limit of large N , will
approximate the curves for the respective deterministic
systems. In particular, hallmarks of the different bifurca-
tion structures of the two deterministic systems can also
be appreciated at finite N . Similar observations can be
made close to the subcritical bifurcation (see fig. 7c). Here,
however, minor deviations of the SMF with respect to the
CHBs emerge.
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Fig. 8. (Colour on-line) Dynamics in the vicinity of the sub-
critical Hopf bifurcation. (a) Trajectories of a single hair bun-
dle with reduced noise (red, ε = 1/100), stochastic mean field
(green, N2 = 100), and coupled hair bundles (blue, 10 × 10
CHBs, K = 100 pN/nm). (b) Quality as a function of N
near the subcritical bifurcation. Parameters, S = 0.65 and
Fmax = 51.1 pN/nm, are chosen such that the single hair bun-
dle resides outside the oscillatory regime, whereas the mean
field for N → ∞ is oscillating.

In the remainder of this subsection, we show that the
observed changes in the bifurcation structure of the de-
terministic limits of BRN and SMF, can have pronounced
effects when the statistics of the stochastic dynamics at
finite N are considered. To this end, we have chosen
an operation point close to the subcritical bifurcation
(Fmax = 51.1 pN/nm, S = 0.65). More precisely, for this
choice of parameters, while the deterministic mean field
oscillates, the deterministic hair bundle is quiescent. Sim-
ulations of CHBs (10 × 10, K = 100 pN/nm) and SMF
(N2 = 100) consequently result in noisy limit-cycle oscilla-
tions (see fig. 8a, color code in b), whose quality increases
linearly along with system size (see fig. 8b). The BRN
(ε = 1/100), however, being close to a subcritical Hopf
bifurcation, resides within an excitable regime, resulting
in large noise-induced excursions along the precursor of
a limit-cycle (see fig. 8a, red). The corresponding qual-
ity factor, when displayed as a function of system size,
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i.e. ε = 1/N2, goes through a shallow maximum, indica-
tive of coherence resonance [36,8]. At about N2 = 100
it drops below one, i.e. coherent oscillations are lost. In
other words, close to the subcritical Hopf bifurcation, elas-
tic coupling of hair bundles can lead to an increase of
regularity of oscillations. However, this enhancement does
not have its origin in noise-reduction alone, but also in
coupling-induced dynamic effects changing the overall dy-
namics of the system.

5 Discussion

On the basis of an existing stochastic biophysical descrip-
tion, we have developed in this paper a mean-field ap-
proach to the dynamics of systems of strongly coupled
hair bundles. From a dynamic systems point of view, single
hair bundle dynamics is described by a two-dimensional
limit-cycle oscillator. Coupling only acts on one mechan-
ical degree of freedom, i.e. the deflection variable. We
have derived dynamic equations, capturing the stochas-
tic dynamics of the mean field of such systems of strongly
coupled hair bundles. The arguments presented shed light
onto the dynamic origin of the effective noise reduction
in systems of coupled hair bundles reported earlier. In
particular, we have shown that in order to approximate
mean-field dynamics faithfully, a new dynamic variable,
namely the population variance of motor deviations from
the mean field, needs to be taken into account. We have
shown in numerical simulations, that this approach for all
system sizes quantitatively describes the mean-field dy-
namics of systems of coupled hair bundles and also cap-
tures dynamic effects beyond mere noise reduction. We
have argued, that e.g. close to the subcritical Hopf bifur-
cation of the deterministic hair-bundle system, qualitative
differences can appear between the dynamics of systems
of coupled hair bundles and a single hair bundle with re-
duced noise. These discrepancies are also reflected in the
dynamics of the stochastic mean field as presented here.

Here, we have used a specific biophysical description of
hair bundles that was shown to capture the essential char-
acteristics observed for hair bundles of the sacculus of the
bullfrog and the rat cochlea [31]. Other models for active
hair bundle motility have been proposed. It has been sug-
gested that calcium-mediated reclosure of mechanotrans-
duction channels plays an important role for active hair
bundle movements [37,38].

Motivated by measurements of the material proper-
ties of the tectorial membrane, we have focused here on a
purely elastic coupling among hair bundles. Other stud-
ies, concerned with the inner ear of the lizard [39] and
gecko [40], have considered coupling of hair bundles to
also have a viscous component.

Irrespective of the biophysical details, we expect hair-
bundle oscillations to synchronize when the deflection
variables are effectively clamped by a strong coupling
force, giving rise to an oscillatory mean field. Fluctuations
in the uncoupled variables are expected in general to lead
to modifications in the mean-field dynamics as compared
to the isolated hair bundle and can give rise to additional

degrees of freedom. The main effects of a strong coupling
of displacement variables, discussed in this paper, should
therefore also be relevant in other models of coupled hair
bundles.

We would like to thank Pascal Martin and Jérémie Bar-
ral for stimulating discussions on hair bundle coupling. This
work has been partly supported by the BMBF (grant FKZ:
01GQ1001A).

Appendix A. Cross-correlation of noise terms
in the stochastic mean-field dynamics

First we state, that

〈
ξ̄(t)ξ̄a(t′)

〉
≡ 0

for all t, t′, because ξ̄(t) and ξ̄a(t) are sums of distinct sets
of mutually independent noise sources ξp(t) and ξa,p(t),
respectively.

Next, we argue that the correlations between η(t)
and ξ̄a(t) can be neglected (an analogous argument holds
for the correlation between ξ̄(t) and η(t)). The cross-
correlation can be written and transformed as follows (us-
ing the formal solution eq. (16))

〈
η(t)

1
N2

N2∑
q=1

ξa,q(t + τ)

〉
=

〈
1

N2

N2∑
p=1

δa,pξa,p(t)
1

N2

×
N2∑
q=1

ξa,q(t + τ)

〉

=
1

N4

N2∑
q=1

N2∑
p=1

〈
1
λa

eΦ(t)

∫ t

−∞
ds

(
ξa,p(s)

− 1
N2

N2∑
r=1

ξa,r(s)

)
e−Φ(s)ξa,p(t)ξa,q(t + τ)

〉

≈ 1
N4

N2∑
q=1

N2∑
p=1

1
λa

eΦ(t)

∫ t

−∞
ds

(
〈ξa,p(s)ξa,p(t)ξa,q(t + τ)〉

− 1
N2

N2∑
r=1

〈ξa,r(s)ξa,p(t)ξa,q(t + τ)〉
)

e−Φ(s)

= 0, (A.1)

because the ξa,p(t) are pairwise independent, delta-
correlated, and third moments of Gaussian variables van-
ish. The step from the second to the third line is an ap-
proximation. For simplicity, here we treat Φ(t) as if it were
a deterministic external function. This is justified because
the time-scales relevant for the cross- and autocorrelations
discussed in this appendix are short. A similar argument
will be used below.
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Appendix B. Mean value and
auto-correlation of the effective noise η(t)

The average of the driving noise, η(t), in the dynamics
of Z̄(t) does not vanish as can be shown using again the
formal solution eq. (16)

〈η(t)〉 =
1

N2

N2∑
p=1

〈ξa,p(t)δa,p(t)〉

≈ 1
N2

N2∑
p=1

1
λa

eΦ(t)

∫ t

−∞
ds

〈
(ξa,p(s)

− 1
N2

N2∑
q=1

ξa,q(s))ξa,p(t)

〉
e−Φ(s)

=
1

N2

N2∑
p=1

1
λa

eΦ(t)

∫ t

−∞
ds2λakBTaδ(s − t)

×
(

1 − 1
N2

)
e−Φ(s)

=
(

1 − 1
N2

)
kBTa. (B.1)

Next, we calculate the auto-correlation function of η. For
clarity, in this calculation we drop the subscript a,

〈η(t)η(t + τ)〉 =

〈
1

N2

N2∑
p=1

δp(t)ξp(t)
1

N2

×
N2∑
q=1

δq(t + τ)ξq(t + τ)

〉

=
1

N4

∑
p

∑
q

〈δp(t)ξp(t)δq(t + τ)ξq(t + τ)〉

=
1

N4

∑
p

∑
q

〈
1
λa

eΦ(t)

∫ t

−∞
ds1

(
ξp(s1)

− 1
N2

N2∑
r=1

ξr(s1)

)
e−Φ(s)ξp(t)

· 1
λa

eΦ(t+τ)

∫ t+τ

−∞
ds2

(
ξq(s2)

− 1
N2

N2∑
l=1

ξl(s2)

)
e−Φ(s2)ξq(t + τ)

〉

≈ 1
N4λ2

a

eφ(t)+φ(t+τ)

∫ t

−∞

∫ t+τ

−∞
ds1ds2

×Ω(t, t + τ, s1, s2)e−φ(s1)e−φ(s2), (B.2)

where

Ω(t, t + τ, s1, s2)=
∑

p

∑
q

(
〈ξp(s1)ξq(s2)ξp(t)ξq(t + τ)〉

− 1
N2

∑
r

〈ξr(s1)ξq(s2)ξp(t)ξq(t + τ)〉

− 1
N2

∑
l

〈ξp(s1)ξl(s2)ξp(t)ξq(t + τ)〉

+
1

N4

∑
r

∑
l

〈ξr(s1)ξl(s2)ξp(t)ξq(t + τ)〉
)

. (B.3)

We deal with the four summands in turn and use the fact
that because ξp(t) is Gaussian, one has

〈ξp(t1)ξq(t2)ξr(t3)ξl(t4)〉 = 〈ξp(t1)ξq(t2)〉 〈ξr(t3)ξl(t4)〉
+〈ξp(t1)ξr(t3)〉 〈ξq(t2)ξl(t4)〉+〈ξp(t1)ξl(t4)〉 〈ξq(t2)ξr(t3)〉

for all choices p, q, r, l between 1 and N2 (see e.g. [41]).
Then the first term in eq. (B.3) gives

∑
p,q

〈ξp(s1)ξq(s2)ξp(t)ξq(t + τ)〉

=(2λakBTa)2
(
N2δ(s1−s2)δ(τ) + N2δ(t + τ−s1)δ(t−s1)

+N4δ(t − s1)δ(t + τ − s2)
)
. (B.4)

The second term in eq. (B.3) gives

− 1
N2

∑
p,q,l

〈ξr(s1)ξq(s2)ξp(t)ξq(t + τ)〉

= −(2λakBTa)2
(
δ(s1 − s2)δ(τ) + δ(t + τ − s1)δ(t − s1)

+N2δ(t − s1)δ(t + τ − s2)
)
. (B.5)

Similarly, the third term in eq. (B.3) gives

− 1
N2

∑
p,q,l

〈ξp(s1)ξl(s2)ξp(t)ξq(t + τ)〉

= −(2λakBTa)2
(
δ(s1 − s2)δ(τ) + δ(t + τ − s1)δ(t − s1)

+N2δ(t − s1)δ(t + τ − s2)
)
. (B.6)

Finally, the last term in eq. (B.3) gives

1
N4

∑
p,q,r,l

〈ξr(s1)ξl(s2)ξp(t)ξq(t + τ)〉

= (2λakBTa)2
(
δ(s1 − s2)δ(τ) + δ(t + τ − s1)δ(t − s2)

+δ(t − s1)δ(t + τ − s2)
)
. (B.7)

One thus finds

Ω(t, t + τ, s1, s2) = (2λakBTa)2((N2 − 1)1δ(s1 − s2)δ(τ)
+(N2 − 1)1δ(t + τ − s1)δ(t − s2)
+(N2 − 1)2δ(t − s1)δ(t + τ − s2)). (B.8)
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For the correlation function of η this finally leads to

〈η(t)η(t + τ)〉 ≈ (2λakBTa)2

N4λ2
a

(N2 − 1)eφ(t)+φ(t+τ)

×
∫ t

−∞

∫ t+τ

−∞
ds1ds2δ(s1 − s2)δ(τ)e−φ(s1)e−φ(s2)

+
(2λakBTa)2

N4λ2
a

(N2 − 1)eφ(t)+φ(t+τ)

×
∫ t

−∞

∫ t+τ

−∞
ds1ds2δ(t + τ − s1)δ(t − s2)e−φ(s1)e−φ(s2)

+
(2λakBTa)2

N4λ2
a

(N2 − 1)2eφ(t)+φ(t+τ)

×
∫ t

−∞

∫ t+τ

−∞
ds1ds2δ(s1 − t)δ(t + τ − s2)e−φ(s1)e−φ(s2)

= (2kBTa)2
(

1
N2

− 1
N4

)
δ(τ)e2φ(t)

∫ t

−∞
ds1e

−2φ(s1)

+(2kBTa)2
(

1
N2

− 1
N4

)
· δ0τ

+
(

1 − 1
N2

)2

(kBTa)2 . (B.9)

While the remaining integral is still dependent on time,
and thus also the intensity of the noise acting on Z̄, it can
be viewed as the formal solution DZ̄(t) of the deterministic
equation

ḊZ̄ = − 2
λa

a(t)DZ̄ + 1.
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29. G.A. Manley, C. Köppl, Hear. Res. 238, 3 (2008).
30. K. Dierkes, B. Lindner, F. Jülicher, Proc. Natl. Acad. Sci.
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