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Inspired by the coordinated beating of the flagellar pair of the green algae Chlamydomonas, we study

theoretically a simple, mirror-symmetric swimmer, which propels itself at low Reynolds number by a

revolving motion of a pair of spheres. We show that perfect synchronization between these two driven

spheres can occur due to the motion of the swimmer and local hydrodynamic friction forces.

Hydrodynamic interactions, though crucial for net propulsion, contribute little to synchronization for

this free-moving swimmer.
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Eukaryotic flagella are whiplike cell appendages that
can bend actively, propel microorganisms at low
Reynolds numbers, and pump fluids, e.g., mucus in our
airways [1]. Their active bending waves are generated by a
highly conserved cytoskeletal core with cylindrically ar-
ranged microtubules intercalated by molecular motors [2]
that convert chemical energy into work and heat.
Mechanical interactions are thought to underlie the coor-
dinated beating of several flagella as observed in pairs of
sperm cells [3] or in ciliary arrays, where hundreds of short
flagella beat in synchrony as metachronal waves [4].
Recently, the biflagellate green alga Chlamydomonas has
emerged as an experimental model system for flagellar
synchronization [5–7]. A Chlamydomonas cell swims for-
ward by the approximately planar and mirror-symmetric
bending waves of its two flagella, thus resembling a breast
swimmer [8]; see Fig. 1(a). The synchronous beating of the
two flagella is important for swimming along a straight
path [9]. Free swimming cells often exhibit synchronized
flagellar beating [8,9], raising the question of the
underlying synchronization mechanism. For flagella
attached to a solid substrate, long-range hydrodynamic
interactions can induce flagellar synchronization [10–16].
Synchronization of the flagella of a moving swimmer,
however, shows different features: Here, we show that
flagellar synchronization can occur as a result of local
hydrodynamic friction forces, even in the absence of
hydrodynamic interactions.

A model swimmer for biflagellar synchronization.—
Inspired by Chlamydomonas swimming, we propose a
model swimmer of maximal simplicity that retains its basic
symmetries. The swimmer consists of three spheres of
equal radius a and respective positions rj ¼ ðxj; yj; 0Þ
attached to a planar and mirror-symmetric scaffold; see
Fig. 1(b). The swimmer is immersed in a viscous fluid of
viscosity � and the swimmer’s scaffold is frictionless. The
sphere located at r3 mimics a cell body and defines a
material frame of the swimmer with orthonormal vectors
e1 ¼ ðcos�3; sin�3; 0Þ, e3 ¼ ð0; 0; 1Þ, and e2 ¼ e3 � e1,
where the angular variable �3 characterizes rotations of

the swimmer (around the z axis) with respect to the (x, y, z)
laboratory frame; see Fig. 1(b).
The first and the second sphere move along circular orbits

of radius R, ri ¼ si þ Rð� sin’ie1 þ cos’ie2Þ, i ¼ 1; 2,
being connected by frictionless lever arms to joints located
at the corners si ¼ r3 þ l½ð�1Þie1 þ e2� of an isosceles
triangle; see Fig. 1(b). Thus, l sets the size of the swimmer.
The orbits are parametrized by respective phase angles ’i,
i ¼ 1; 2 such that bð’iðtÞ � ’ið0ÞÞ=ð2�Þc denotes the num-
ber of full rotations of the ith sphere since time t ¼ 0 with
respect to the material frame of the swimmer. Similarly,
bð�iðtÞ � �ið0ÞÞ=ð2�Þc with �i ¼ �3 þ ’i denotes the
number of rotations with respect to the laboratory frame.
Below, the dynamics of the phase angles’i is given in terms
of active driving torques; the cases _’i < 0 and _’i > 0
correspond to either a clockwise or counterclockwise revo-
lution of the driven spheres (viewed along �e3), respec-
tively. The revolving motion of these driven spheres
provides a simplified representation of the periodic bending
waves of the two slender flagella of Chlamydomonas
[10,11], for which each point on a flagellum follows a

FIG. 1 (color online). (a) Simplified flagellar beat of
Chlamydomonas showing flagellar shapes at equidistant times
representing a full beat cycle (T � 15 ms), adapted from [34].
The flagellar bending waves are approximately planar and
mirror-symmetric. Each point on a flagellum moves on a peri-
odic orbit with respect to a material frame of the cell body.
(b) The idealized model swimmer consists of three equal spheres
connected by a frictionless scaffold. The first and second sphere
(located at r1 and r2) can move along a circular trajectory as
indicated, being driven by internally generated active torques.
(The arrows correspond to the case !0 > 0).

PRL 109, 138102 (2012)

Selected for a Viewpoint in Physics
PHY S I CA L R EV I EW LE T T E R S

week ending
28 SEPTEMBER 2012

0031-9007=12=109(13)=138102(5) 138102-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.138102
http://link.aps.org/viewpoint-for/10.1103/PhysRevLett.109.138102


periodic orbit in a material frame of the cell body;
see Fig. 1(a).

We neglect inertial effects, which implies that fluid flow
is governed by the Stokes equation of zero Reynolds
number hydrodynamics [1,17]. We consider the hydrody-
namic friction force Fj and torque Tj (defined with respect

to r3) exerted by the jth sphere on the viscous fluid during
motion of the swimmer; T0

j ¼ Tj � Fj � ðrj � r3Þ denote
torques with respect to rj. For free swimming, force and

torque balance holds, Fext ¼ 0 and Text ¼ 0 with Fext ¼
F1 þ F2 þ F3, Text ¼ T1 þ T2 þ T3. The linearity of the
Stokes equation implies a linear relationship between the
generalized velocity vector for planar motion of the three
spheres, _q0 with q0 ¼ ðx1; y1; �1; . . . ; x3; y3; �3ÞT , and
the nonzero hydrodynamic friction force and torque
components [17],

ðF1x; F1y; T
0
1z; . . . ; F3x; F3y; T

0
3zÞT ¼ �0 _q0: (1)

The symmetric 9� 9 hydrodynamic friction matrix �0 can
be computed to arbitrary precision in a=jrj � rkj [18]; in
the limit of large separation between the spheres, the
friction matrix would be diagonal, �0;ij ¼ �j�ij, with

�j ¼ �rot for j ¼ 3; 6; 9 and �j ¼ � otherwise. Here,

� ¼ 6��a and �rot ¼ 8��a3 denote the translational
and rotational friction coefficients of a single sphere of
radius a, respectively. In general, the flow field induced by
the motion of one sphere will exert forces on the other
spheres, thus giving rise to nonzero, off-diagonal compo-
nents of �0, which characterize hydrodynamic interactions
between the spheres. Below, we use the Rotne-Prager-
Yamakawa approximation for �0 ¼ �0ðq0Þ, which general-
izes the Oseen tensor and applies to both translational and
rotational motion [18].

The swimmer is characterized by 5 degrees of freedom,
represented by a vector of generalized coordinates,
q ¼ ðx3; y3; �3; ’1; ’2Þ, if its internal constraints are taken
into account. In the following, we use the framework of
Lagrangian mechanics of dissipative systems [19] to de-
scribe the dynamics of our swimmer. First, _q0 ¼ L _q, with
a 9� 5 transformation matrix Lij ¼ @q0i=@qj. The rate

Rh ¼ _q0
T�0 _q0 of hydrodynamic energy dissipation dur-

ing swimming can be equivalently written asRh ¼ _qT�h _q
with the 5� 5 friction matrix �h ¼ LT�0L. The energy
for active swimming is provided by a fuel reservoir, which
we take for simplicity as infinite with internal energy
U ¼ �m1’1 �m2’2. Here, m1 and m2 denote active
driving torques that are assumed to be independent of the
present phase ’i (but see [16]). The potential U defines
generalized potential forcesQj ¼ �@U=@qj, j ¼ 1; . . . ; 5.

Further, we introduce the Rayleigh dissipation function
R ¼ Rh þR� that sets the rate at which the energy
reservoir is depleted, � _U ¼ R. Here, R� ¼ �ð _’2

1 þ _’2
2Þ

denotes a rate of internal dissipation associated with
the actuation of the two driven spheres. For notational
convenience, R� ¼ _qT�� _q with ��;ij ¼ 0 except

��;44 ¼ ��;55 ¼ �. The generalized friction forces

Pi ¼ ð1=2Þ@R=@ _qi are linear in _q, Pi ¼ �ij _qj with

� ¼ �h þ ��. Neglecting inertial forces and assuming
that no external forces act on the swimmer, we find a
balance of generalized potential forces and generalized
friction forces Qj ¼ Pj, j ¼ 1; . . . ; 5. For example, the

equation for j¼4, corresponding to q4 ¼ ’1, represents
a torque balance between a hydrodynamic friction torque,
ð1=2Þ@Rh=@ _’1 ¼ F1 � ð@r1=@’1Þ þ T0

1z, and a net motor

torque m1 � � _’1 provided by active driving. This motor
torque obeys a linear torque-velocity relation with stall
torque m1, similar to the net driving force used in [10].
An analogous statement holds for the second sphere. We
finally obtain an equation of motion of the swimmer [20],

_q ¼ ��1ð0; 0; 0; m1; m2ÞT: (2)

We first discuss the case of exactly opposite driving
torques m1 ¼ �m2, which results in a counterrotation
of sphere 1 and sphere 2 [Fig. 1(b)], similar to the
mirror-symmetric beat patterns of the two flagella of
Chlamydomonas [Fig. 1(a)]. The angular frequency !0 ¼
m1=� sets an (inverse) time scale of motion. If !0 > 0, the
revolution of the first sphere is counterclockwise and
clockwise for the second. The two cases !0 > 0 and
!0<0 are mapped onto each other by time reversal.
Net propulsion due to hydrodynamic interactions.—For

m1 ¼ �m2, there exists an orbit with perfect in-phase
dynamics characterized by � ¼ 0, where � ¼ ’1 þ ’2.
Below, we show that this orbit is stable for !0 < 0, but
unstable for !0 > 0. If initially �3ðt ¼ 0Þ ¼ 0, the
swimmer will move parallel to the y axis in an oscillatory
manner: In the limit of small spheres and small circular
orbits, a � l, R � l, we find to leading order
_y ¼ ð2=3ÞR!0 sin’1 þOð"2Þ with _’1 ¼ !0 þOð"3Þ.
Here, we introduced the small expansion parameter
" ¼ a=l and assume R=a to be of order unity. In this limit,
internal dissipation dominates over hydrodynamic dissipa-
tion, � � �R2 þ �rot. Net propulsion is a higher-order
effect [21,22] and the time-averaged velocity reads

h _yi ¼ �a!0�ða=lÞ2 þOð"4Þ; (3)

with � ¼ ½ð2 ffiffiffi
2

p � 1ÞðR=aÞ2 � 4ð1þ ffiffiffi
2

p Þ�=24. Note that
the swimmer can move either forward or backward
depending on the value of R=a and the sign of !0. For
asynchronous beating with � ¼ ’1 þ ’2 � 0, �3 oscil-
lates and the swimmer wiggles along a curved path.
If hydrodynamic interactions were absent, i.e. �0;ij ¼

�j�ij, the center of reaction rc ¼ P
jrj=3 of the swimmer

could not move since 3� _rc ¼ Fext ¼ 0, and net propulsion
would be zero. This is a well-known feature of hydro-
dynamics at zero Reynolds number. Partial screening of
hydrodynamic interactions can occur, e.g., for swimming
close to a planar substrate.
A system of coupled phase oscillators.—The phase

velocities _’1 and _’2 cannot depend on the momentary
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values of x3, y3, �3, as the phase variables are invariant
under a change of laboratory frame, but the position and
orientation variables are not. Indeed, one can eliminate the
latter from Eq. (2) and obtain a dynamical system for ’1

and ’2 in the form of two coupled phase oscillators,

� _’i¼miþ"3hi1ð’1;’2Þm1þ"3hi2ð’1;’2Þm2; i¼1;2:

(4)

Here the coupling functions hij depend only on ½’i�¼
’imod2� and can be computed from the friction matrix
�. Importantly, the hij implicitly account for the motion of

the swimmer and imposing constraints on themotionwould
change these functions.

Synchronization of counterrotating spheres.—For oppo-
site driving torques, m1 ¼ �m2 ¼ !0�, we find two limit
cycles of the phase dynamics characterized by � ¼ 0 and
� ¼ �þOð"3Þ, respectively, where � ¼ ’1 þ ’2. The
first limit cycle corresponds to perfect in-phase dynamics
as considered in the paragraph on net propulsion and is
a global attractor for !0 < 0, but unstable for !0 > 0; see
Fig. 3(b). Limit cycles of the (’1, ’2) phase dynamics
correspond to fixed points of a Poincaré return map �n !
�nþ1 ¼ �n þ�ð�nÞ that tracks �n ¼ �ðtnÞ at discrete
times tn that mark the completion of n full revolutions of
the first sphere, ’1ðtnÞ ¼ 2�nsgnð!0Þ. The solid curve in
Fig. 2(a) shows a numerical solution for�ð�Þ as a function
of initial phase sum � ¼ �0. By symmetry, �ð0Þ ¼ 0,
which corresponds to the limit cycle of in-phase synchro-
nization with � ¼ 0. This limit cycle will be stable if

� ¼ �d�=d�j�¼0 is positive. In the limit of small spheres

and small circular orbits, �ð�Þ ¼ �� sin�þOð"6Þ with
� ¼ �sgnð!0Þ3��R4=ð16�l2Þ þOð"6Þ: (5)

Thus, in-phase synchronization with � ¼ 0 is stable
for !0 < 0 and perturbations decay as limn!1�nþ1=�n ¼
1� �.
Remarkably, if hydrodynamic interactions are neglected,

�ð�Þ does not change significantly; see Fig. 2(a) (dashed
curve). In fact, hydrodynamic interactions contribute to
�ð�Þ only to higher order as Oð"6Þ. This implies that
hydrodynamic interactions have only a marginal effect for
the phase synchronization of our model swimmer. Rather,
local hydrodynamic friction forces that arise from the mo-
tion of the swimmer dominate synchronization: If one
driven sphere is ahead of the other, this asynchronous beat-
ing results in a rotation of the whole swimmer, accompanied
by hydrodynamic friction forces acting on the spheres.
In the presence of constraining forces that prevent the

swimmer from translating and rotating, the coupling func-
tions hij in Eq. (4) change, resulting in weak synchroniza-

tion toward novel limit cycles; see Fig. 2(b). In this case,
synchronization is due to hydrodynamic interactions only.
For a microscopic oscillator such as a beating flagellum

powered by molecular motors, noise is prevalent and may
counteract synchronization. As a simple model for motor
fluctuations, we now consider fluctuating driving torques,
m1 ¼ k!0 þ �1 and m2 ¼ �k!0ð1þ 	Þ þ �2, h�ii ¼ 0,
together with a detuning of driving torques, 	. We
assume a noise correlation time short compared to
T ¼ 2�=j!0j, and model �i as Gaussian white noise
with h�iðtÞ�jðt0Þi ¼ 2D!0�

2�ij�ðt� t0Þ, where D denotes

a dimensionless noise strength. Equation (4) thus becomes
a stochastic equation with multiplicative noise (for which
Stratonovich interpretation is to be used). For weak noise
with D � 1, the behavior of � ¼ ’1 þ ’2, averaged
over cycles of the fast variable ’1 � !0t, is to a good
approximation [23] given by the prototypical Adler equa-
tion [24–26],

d�=dt � 	!0 � ð�=TÞ sin�þ �; (6)

where � denotes Gaussian white noise with h�ðtÞ�ðt0Þi ¼
4D!0�ðt� t0Þ. Equation (6) describes a Brownian particle
with position � that diffuses in a tilted washboard potential.
For 	, D � j�j, � fluctuates within one potential well
(corresponding to transient synchronization), with occa-
sional phase slips from one well to the next. For 	 ¼ 0, the
frequency ð2�Þ�2dh�2i=dt of these phase slips scales with
noise strength D for D � j�j, but is suppressed for
D � j�j [25]; see Fig. 2(c). In the case of torque detuning,
	 � 0, phase locking can occur as discussed next.
In the general case of arbitrary driving torques m1 and

m2 (and no noise), phase locking between ’1 and ’2 can
occur, i.e. n2’1 � n1’2 remains bounded for some choice
of integers n1, n2. Figure 3(a) shows parameter regions
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FIG. 2 (color online). (a) Phase synchronization behavior of
our model swimmer (here for m1 ¼ �m2 < 0) can be read off
from a Poincaré return map � ¼ �ðTÞ � �ð0Þ that tracks the
change of the phase sum � ¼ ’1 þ ’2 after a full revolution of
the first sphere as function of initial � ¼ �ðt ¼ 0Þ. Fixed points
� ¼ 0 correspond to limit cycles of the (’1, ’2)-phase dynam-
ics; see Fig. 3(b1). For the dashed and solid curve, hydrodynamic
interactions were neglected or accounted for, respectively.
(b) Constraining translation and rotation of the swimmer by
clamping the third sphere changes its synchronization behavior
completely. (c) In the presence of fluctuations, the phase dynam-
ics of the free swimmer exhibits stochastic phase slips that occur
at a frequency ð2�Þ�2dh�2i=dt; shown is dh�2i=dt normalized
by D!0 (solid curve), as well as the analytical result [25]
dh�2i=dt � 4D!0I

�2
0 ½�=ð4�DÞ� for the approximate dynamics

given by Eq. (6), (dotted curve). Parameters: a=l ¼ 0:1,
R=a ¼ 5, � ¼ �l3.
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(called Arnold tongues [26]) for which phase locking
occurs.

The case of corotating spheres with m1 ¼ m2 is special
in the sense that the dynamics becomes reversible: The
mirror operation ð’1; ’2Þ ! ð�’2;�’1Þ maps each orbit
onto itself, but reverses the time arrow. The ð’1; ’2Þ phase
space is foliated by neutrally stable orbits; see Fig. 3(c).
Hence, for identical driving torques, no specific phase
difference is selected. In the presence of a small mismatch
	 in driving torque,m2 ¼ m1ð1þ 	Þwith j	j � 1, we find
�ð�Þ ¼ 2�	þOð	"3Þ mod 2�, which rules out the
possibility of 2�-periodic orbits for 	 � 0 and therefore
synchronization cannot occur in this case.

Generally, symmetries dictate synchronization behavior
[27]. For two interacting oscillators, time reversal changes
an attractor of their phase dynamics such as a synchronized
state into a repeller. If the time-reversed system is equiva-
lent to a mirror image of itself, stable synchronization
can therefore not occur [27]. This is exemplified by our
swimmer with corotating spheres (m1 ¼ m2); see Fig. 3(c).
Our swimmer with counterrotating spheres (m1 ¼ �m2)
is, after a time reversal, not equivalent to its mirror image.
Correspondingly, there exist limit cycles with synchro-
nized dynamics in this case, and their stability reverses
under time reversal; see Fig. 3(b). Note that in the absence
of the third sphere, time reversal would be equivalent to a
reflection at the plane that contains both rotation axes and
synchronization would be lost for our model swimmer with
its rigid scaffold. Previous research demonstrated that elas-
ticity of the rotating objects introduces additional degrees
of freedom that can break symmetries and thus stabilize
synchronization [11,12]. However, reversibility may also
be broken without evoking elasticity as in the case of our
three-sphere swimmer.

A realistic flagellar beat.—The conceptual framework of
our model swimmer can be extended in a straightforward
manner to any mirror-symmetric microswimmer whose
swimming stroke is characterized by two phase angles
’1 and ’2. As an example, consider the idealized flagellar
beat in Fig. 1(a): During a beat cycle, the centerline ri of

each of the two flagella can be expressed as a function of
arclength s, 0 � s � L, and phase angles ’i, i ¼ 1; 2, with
_’1 > 0 and _’2 < 0 that characterize the phase of the beat
cycle: With respect to a material frame (r3; e1, e2, e3) of
the cell body, riðs; ’iÞ ¼ r3 þ ci1ðs; ’iÞe1 þ ci2ðs; ’iÞe2,
i ¼ 1; 2. By mirror symmetry of the two flagella,
c1jðs; ’Þ ¼ ð�1Þjc2jðs;�’Þ. We make the simplifying

assumption that hydrodynamic forces do not alter the
sequence of flagellar shapes (i.e. the shape functions cij),

but only affect the phase speeds _’i.
The force balance equations for the dynamics of the

three-sphere swimmer generalize to the case of a realistic
flagellar beat; the torque balance corresponding to ’i now
reads [28]

Z L

0
dsfiðsÞ � @riðsÞ=@’i ¼ mi � � _’i; i ¼ 1; 2: (7)

To compute the density fiðsÞ of hydrodynamic friction
forces along the flagellar length as a function of ’i and
_’i, we employ simple resistive force theory [29–32], while
the cell body is approximated by a drag center equivalent to
a spheroid.
Resistive force theory accounts for short-range hydro-

dynamic effects along a single flagellum by assuming
effective anisotropic friction coefficients. This is crucial
for net propulsion. However, hydrodynamic interactions
between the two flagella, or with the cell body are not
accounted for. Despite these approximations, we compute
realistic, saltatory forward swimming for in-phase flagellar
beating with a net swimming speed of 0:66 
m=cycle. As
a main result, perfect flagellar synchronization with � ¼ 0
is stable; see Fig. 4(a). Of note, the synchronization pa-
rameter � has different sign in the case of the realistic
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FIG. 4 (color online). Flagellar synchronization of
Chlamydomonas computed for the beat pattern from Fig. 1(a)
using Eq. (7) and resistive force theory. (a) The Poincaré return
map �ð�Þ [defined analogous to that of Fig. 2(a)] shows that
in-phase flagellar beating with � ¼ 0 is stable with respect
to perturbations. (b),(c) The synchronization parameter � ¼
�d�=d�j�¼0 depends on the ratio of hydrodynamic dissipation

and internal dissipation (b) as well as on the size of the cell
body (c). Parameters (unless indicated otherwise): flagellar
length, L ¼ 12 
m; semiaxes of spheroidal cell body 3:7 
m,
5 
m [34]; resistive force coefficients, �k ¼ 2��=½lnð2L=rÞ �
3=2�, �? ¼ 4��=½lnð2L=rÞ � 3=2� [29] with flagellar radius
r ¼ 0:1 
m [2], �L3=� ¼ 100.

FIG. 3 (color online). (a) Depending on the ratio of the active
driving torques m1 and m2, phase locking of the phase variables
’1 and ’2 describing our model swimmer can occur giving rise
to a distinct pattern of Arnold tongues. (b) As specific example,
a limit cycle with � ¼ ’1 þ ’2 ¼ 0 is globally attractive for
opposite torques with m1 ¼ �m2 < 0 (b1), but repulsive for
m1 ¼ �m2 > 0 (b2). (c) For equal torques m1 ¼ m2, the
(’1, ’2) phase space is foliated by neutrally stable orbits.
Parameters: a=l ¼ 0:1, R=a ¼ 5, � ¼ �l3.
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flagellar beat and that of the simple three-sphere swimmer
with m1 ¼ �m2 > 0; this can be related to geometric
factors such as cell body size; see Fig. 4(c).

Discussion.—Using a minimal model, we have demon-
strated that synchronization can occur between the two
flagella of a free-moving swimmer due to the motion of
the swimmer itself, independent of hydrodynamic interac-
tions between the flagella. Importantly, the synchroniza-
tion behavior changes fundamentally if the swimmer is
restrained from translating and rotating. Local hydrody-
namic friction forces couple the flagellar oscillators via
movements of the swimmer, even in the absence of hydro-
dynamic interactions. Coupling of oscillators by swimmer
movements can be strongly influenced by externally im-
posed constraints, which typically exist in experiments.
For our model swimmer, synchronization of the flagellar
phases attenuates if the swimmer is restrained from trans-
lating and rotating. In Chlamydomonas, perfect in-phase
synchronization of its two flagella was reported also for
cells held in a micropipette [5–7], and even for isolated
flagellar pairs detached from the cell body [33].
Hydrodynamic interactions between the two flagella and
flexibility of the flagellar beat, as proposed by others
[10,11], may contribute to synchronization. We anticipate
that synchronization depends sensitively on elastic proper-
ties of the flagellar base.

We thank J. Baumgart, E. Fischer-Friedrich, V. Geyer,
J. Howard, R. Ketzmerick, L. Morelli, and A. Vilfan for
stimulating discussions.

Note added in proof.—After submission of this Letter,
we learned from R. Bennett and R. Golestanian that they
have independently developed a similar three-sphere
model for Chlamydomonas [35].
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