
Biophysical Journal Volume 107 August 2014 815–824 815
Article
An Active Oscillator Model Describes the Statistics of Spontaneous
Otoacoustic Emissions
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ABSTRACT Even in the absence of external stimulation, the cochleas of most humans emit very faint sounds below the
threshold of hearing, sounds that are known as spontaneous otoacoustic emissions. They are a signature of the active
amplification mechanism in the cochlea. Emissions occur at frequencies that are unique for an individual and change little
over time. The statistics of a population of ears exhibit characteristic features such as a preferred relative frequency distance
between emissions (interemission intervals). We propose a simplified cochlea model comprising an array of active nonlinear
oscillators coupled both hydrodynamically and viscoelastically. The oscillators are subject to a weak spatial disorder that lends
individuality to the simulated cochlea. Our model captures basic statistical features of the emissions: distributions of 1), emission
frequencies; 2), number of emissions per ear; and 3), interemission intervals. In addition, the model reproduces systematic
changes of the interemission intervals with frequency. We show that the mechanism for the preferred interemission interval
in our model is the occurrence of synchronized clusters of oscillators.
INTRODUCTION
The sense of hearing exhibits several striking features. Our
ears are sensitive to faint sounds, but can also process
stimuli differing in power by 12 orders of magnitude, and
distinguish nearby frequencies well. These attributes,
namely a high sensitivity, a wide dynamic range, and a sharp
frequency selectivity, are associated with an active nonlinear
amplification process (1,2), which is physiologically vulner-
able and relies on the integrity of the inner ear. This cochlear
amplifier is acting on the level of mechanical vibrations
before neural processing takes place. The general attributes
of the cochlear amplifier are those of a dynamical system
close to an oscillating instability or Hopf bifurcation. It
has therefore been suggested that the cochlea contains
many oscillatory elements tuned to the proximity of a
Hopf bifurcation (2–4).

A remarkable consequence of the amplification mecha-
nism is that the ear can actively emit sounds without
external stimulation. These so-called spontaneous otoacous-
tic emissions (SOAEs), which can be detected as pressure
variations in the ear canal, were predicted theoretically by
Gold in 1948 (5) and found experimentally for the first
time by Kemp in 1979 (6). SOAEs have been reported in
many vertebrate species including lizards (7–9), birds
(10), and mammals (11,12). SOAEs are prevalent among
humans with healthy ears and have been studied both
experimentally and theoretically (13–16). An extensive
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experimental study of human SOAEs (152 ears) (14) re-
vealed a large variability of emission spectra of individual
ears, while the statistics of emissions exhibited a number
of remarkable features. Fig. 1 A and B show two examples
of typical spectra found in experiments. Emission fre-
quencies ranged from 500 Hz to 8 kHz and the distribution
of the number of emissions per ear is a monotonically
decreasing function. Interestingly, neighboring emissions
exhibit a most probable frequency difference of about 1
semitone. The existence of such a characteristic interemis-
sion interval was already pointed out earlier (16,17). In
addition, SOAEs with characteristic interemission intervals
have also been observed in other vertebrates such as lizards,
although their inner ear anatomy is strikingly different from
mammals (18). In particular, the basilar membranes of liz-
ards lack traveling waves (19).

The origin of SOAEs is still unclear and different mech-
anisms for their generation have been suggested. Shera (13)
and Shera and Zweig (20) proposed that SOAEs are collec-
tive wavelike excitations of the basilar membrane which
are selected by repeated reflections at the middle ear and
inhomogeneities along the cochlea. According to this view,
the corresponding modes extract particular frequencies from
the broadband fluctuations of the system and generate peaks
at those frequencies in the emission spectrum. The mode
structure of the cochlea then gives rise to characteristic
interemission intervals.

An alternative idea is that individual oscillatory elements
become unstable and generate emissions at a particular
frequency (5,21,22). This idea is more natural for verte-
brates without a cochlea such as lizards. At the first glance,
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FIGURE 1 Spontaneous otoacoustic emissions.

(A and B) Two examples of experimental power

spectra S(f) of the ear canal pressure variations

pe(t) of two individuals as a function of frequency

f, by courtesy of Talmadge et al. (14). (C and D)

Power spectra S(f) of ear canal pressure variations

pe(t) obtained for two realizations of the disorder

ε(x) in our model. The corresponding irregularities

ε(x) are shown below as a function of the local

characteristic frequency f(x) ¼ u(x)/(2p). (Shaded

areas) Regions where oscillators are active in

the sense that an isolated element would oscillate

spontaneously, i.e., ε > 0.
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in such a picture it is unclear how characteristic frequency
distances between emissions could arise. Motivated by the
lizard ear, Vilfan and Duke (21), however, have shown theo-
retically that many coupled oscillating elements can give
rise to characteristic interemission intervals (see Wit and
van Dijk (23) for a similar approach in the human cochlea).
In their model, dissipative and elastic coupling of active
Hopf oscillators leads to frequency clustering, resulting in
distinct emissions with characteristic interemission inter-
vals. The biological equivalent to the individual spontane-
ously oscillating element comprises a group of hair cells
and may involve, in particular, active hair bundle motility
(24) and in the mammalian cochlea also the interplay be-
tween hair bundle motility and electromotility (25).

Several models of cochlear mechanics have discussed the
generation of SOAEs. These works have considered irregu-
larities of the frequency profile (15) or of the active gain
(26–28) within active models of cochlear waves. Despite
these efforts, there is yet no model that can reproduce all
the main features of the SOAE frequency statistics observed
in humans, e.g., the probability distribution of emissions
with respect to frequency. In this article, we introduce
a one-dimensional cochlear model based on dynamical
oscillators that are coupled both hydrodynamically and via
elastic and dissipative elements such as the tectorial mem-
brane. The individuality of a cochlea is represented by a
random disorder of the bifurcation parameter of the Hopf
oscillators. This time-independent disorder leads to a spe-
cific spectrum with identifiable SOAEs. Two examples of
calculated spectra of the pressure variations, pe, in the ear
canal for individual realizations of the disorder are shown
in Fig. 1 C and D.

We obtain statistics of numerically determined SOAEs by
simulating a comparable number of realizations as cochleas
studied in the experiments. Our model can reproduce the
statistics of SOAEs observed in humans, such as the distri-
butions of emission number and frequency and of the inter-
Biophysical Journal 107(4) 815–824
emission interval. We show how specific parameters control
interesting statistical features of these distributions. For
example, the characteristic interemission interval is set
by the coupling strength between oscillators, whereas the
amplitude and correlation length of the irregularities
of the bifurcation parameter shape the distribution of
emission numbers.
THEORETICAL APPROACHES: MODELS
AND METHODS

Physical description of the noisy cochlea
with small irregularities

We extend a previously proposed model of coupled
nonlinear oscillators (29). We describe cochlear dynamics
in a simplified one-dimensional model, based on the geom-
etry sketched in Fig. 2. Two fluid-filled chambers are sepa-
rated by the cochlear partition, which includes the basilar
membrane (BM). The vertical displacement of this partition
is denoted by h(x,t). Force balance in the fluid and conserva-
tion of fluid volume imply (29–31)

2r

‘
v2t h ¼ v2xp; (1)

where r is the mass density of the fluid, ‘ is the chamber

height, and p is the fluid pressure difference between the
two chambers. We consider a set of noisy dynamic Hopf
oscillators, which are distributed along the BM. The ampli-
tude and phase of an oscillator at distance x from the base
is given by the complex function z(x,t) ¼ h(x,t) þ iu(x,t),
where the imaginary part u of z is a hidden state variable.
Note that in our model we choose the real part of z to corre-
spond to the vertical BM deflection h. This is motivated
by the relation of our model to a mechanical oscillator
(21). Oscillators are coupled both hydrodynamically and
via longitudinal coupling mediated, for example, by the
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FIGURE 2 (A) Schematic representation of the one-dimensional

cochlear model of length L, breadth b, and height 2 ‘. The cochlea is sepa-

rated by the BM (dark shaded) in two fluid-filled chambers. The oval win-

dow is at position x¼ 0, the helicotrema at x¼ L. Vertical displacements of

the BM are denoted by h(x). The BM is represented by a chain of oscillators

(indicated by dots), which are coupled via hydrodynamic interactions

(waves) and elastic and dissipative coupling (springs). (B) Profile of the

characteristic frequency u(x) (dashed line) together with a typical profile

of irregularities ε(x) along the cochlea (solid line). To see this figure in

color, go online.
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tectorial membrane. The oscillators obey a generalized
complex Ginzburg-Landau equation

vtz ¼ ½eðxÞþ iuðxÞ�z� bjzj2zþðkþ ik0Þv2xz�
i

a
pþ xðx; tÞ:

(2)

The characteristic frequency of oscillators u(x)¼ u0e
�x/d is

position-dependent, approximating the tonotopic map of

the cochlea (32) (dashed line in Fig. 2 B). Here, u0 denotes
the maximal frequency, d is the characteristic length, and b

is the strength of the oscillator’s nonlinearity. Coupling of
oscillators is described by an elastic and a dissipative
coupling k0 and k, respectively. In addition, hydrodynamics
(Eq. 1) leads to an effective coupling of oscillators because
the pressure difference p acts on the BM. This effect is char-
acterized by the coefficient a, where the imaginary unit i
implies an elastic response and au(x) is the local static
BM stiffness. The dynamic noise x(x,t) accounts for intrinsic
fluctuations of the oscillatory elements. We choose zero-
mean Gaussian noise with intensity D that is uncorrelated
in space and time:

hxðx; tÞxðx0; t0Þi ¼ 2Ddðx � x0Þdðt � t0Þ:

The spatially extended dynamics (Eq. 2) uses a generic
Hopf oscillator that describes any dynamical system in the
vicinity of a Hopf bifurcation (2,3). The state of the oscilla-
tors is governed by a bifurcation parameter ε, which for
ε ¼ 0 poises the isolated oscillators at a Hopf bifurcation.
We describe cochlear imperfections by static spatial varia-
tions ε(x) of the bifurcation parameter. We thus assume
that each oscillator may be slightly offset from criticality,
either in the oscillating (henceforth referred to as active)
or nonoscillating regime. In our model, this irregularity is
described by a set of stochastic variables with a Gaussian
distribution and a simple exponential correlation in space.
This disorder lends individual time-independent characteris-
tics to a cochlea and is generated by a spatial version of an
Ornstein-Uhlenbeck process via the stochastic differential
equation

l
d

dx
eðxÞ ¼ �eðxÞ þ hðxÞ: (3)

Here, h(x) is a Gaussian stochastic variable with zero mean
0 2 0
and correlations hh(x)h(x )i ¼ 2s ld(x � x ), where s and l

are the standard deviation and the correlation length of ε(x),
respectively. Each realization of a stochastic process ε(x)
corresponds in our model to one realization of an individual
ear. Note that our model also includes the important case of
uncorrelated Gaussian perturbations (l ¼ 0, s > 0). Corre-
lations over a finite correlation length emerge in many sim-
ple physical systems. In this context, correlations of the
irregularities could also be a result of irregularities in the
developmental process that builds the cochlea. The contin-
uum description of Eqs. 1–3 was introduced for conceptual
clarity and the ease of notation. In our numerical study, we
solve a discrete version of these equations for variables hn,
un, pn, and εn at N þ 1 discrete sites with positions xn ¼
Dx,n, n¼ 0,., N, and Dx¼ L/N¼ 10�5 m. The human co-
chlea is endowed with four parallel rows of 3500 hair cells
that run along the longitudinal axis of the organ (33).
Accordingly, we choose N ¼ 3500, i.e., each oscillator cor-
responds to one element of the organ of Corti containing one
inner hair cell and 3–5 outer hair cells (34). Boundary con-
ditions for pn and zn at the base and at the apex complement
the model. For simplicity we do not constrain z0(t) and zN(t),
corresponding to open boundary conditions for z(x,t) at both
ends. Furthermore, the helicotrema connecting the fluid-
filled chambers at the apex for x ¼ L implies pN(t) ¼ 0.
The boundary condition for the pressure difference pn(t) at
the base stems from the force balance at the base inside in
the cochlea,

�b‘
p1ðtÞ � p0ðtÞ

Dx
¼ r

d

dt
j0ðtÞ; (4)

where b is the breadth of the basilar membrane and j0 is the

difference in fluid volume flow in the upper and lower cham-
ber at the base (29), which is related to deflections q(t) of
the oval window j0z2Sow _q. Here, the dots denote the time
derivative, Sow is the oval window area, and we have ne-
glected contributions from movements of h0(t). The bound-
ary condition for the pressure at the base therefore reads
Biophysical Journal 107(4) 815–824



TABLE 1 List of parameters

Parameter Definition Value Ref.

Experimentally measured parameters

a BM stiffness proportionality factor 5,103 Pa s m�1 (29)

b Average breadth of BM 1.1 mm (15)

d Decay constant 7 mm (29)

Dx Distance between oscillators 10 mm (33)

gair Specific heat ratio of air 1.4 (15)

l Height of upper/lower chamber 1 mm (29)

L Length of cochlea 35 mm (29)

Pe
0 Ambient pressure in ear canal 105 Pa (15)

r Density of fluid in cochlea 103 kg m�3 (29)

u0 Characteristic frequency at x ¼ 0 105 Hz (29)

u(x) Characteristic frequency u0e
�x/d Hz (29)

Ve Volume of ear canal 160 mm3 (15)

Parameters from previous models

b Nonlinearity 8,1019 Hz m�2 (29)

G Lever factor 1.3 (15)

g Middle ear damping coefficient 0.0295 N s m�1 (15)

m Mass of middle ear 5.9,10�5 kg (15)

Sow Area of oval window 3.2 mm2 (15)

Sty Area of tympanum 49 mm2 (15)

uow Eigenfrequency of middle ear 2p,1500 Hz (15)

Free parameters
�26 3 �1
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p1ðtÞ � p0ðtÞ ¼ �2
rSowDx

b‘
€q: (5)

The acceleration €q of the oval window is determined by the
mechanics of the middle ear, which we describe by a passive
oscillator with an effective mass m, damping constant g, and
eigenfrequency uow, following Talmadge et al. (15):

m€qþ g _qþ mu2
owq ¼ GStypinðtÞ � Sowp0ðtÞ: (6)

The oval window is subject to the force Sowp0 originating in
the cochlea and the force GStypin due to incoming sound
pressure pin. Here, Sty is the area of the tympanum and G
is a dimensionless lever factor describing middle ear trans-
mission (15). If air pressure changes are adiabatic, the pres-
sure variation in the ear canal is given by (15)

peðtÞ ¼ pinðtÞ � gairPStyG

V
qðtÞ; (7)

where gair is the specific heat ratio of air, and P and Vare the

D Noise strength 10 m s

k Dissipative coupling 3.9,10�9 m2 s�1

k0 Elastic coupling �3,10�8 m2 s�1

l Correlation length of ε(x) 5 mm

s Standard deviation of ε(x) 58.5 Hz
ambient pressure in and the volume of the ear canal, respec-
tively. To study spontaneous otoacoustic emissions, we set
the incoming sound pressure to zero, pin ¼ 0. Spontaneous
emissions, as measured in experiments, correspond to peaks
in the power spectrum of pe(t).

Parameter values

Our model contains 24 parameters, 19 of which we adopted
from previous studies including experimental observation
and detailed models. Note that some of the parameters in
a more detailed description would depend on frequency or
position along the cochlea, but that the values stated in Table
1 must be regarded as effective values. Unknown parameters
are, in particular, the strength D of dynamic noise, and the
parameters characterizing the static imperfection of the
cochlea, described by an Ornstein-Uhlenbeck process ε(x)
with standard deviation s and correlation length l. Two
parameters, the viscous and elastic coupling coefficients k

and k0, can have an important influence on the statistics of
spontaneous emissions.
Simulation procedures

The discretized versions of Eqs. 1 and 2 can be written in the
form

d~h

dt
¼ ~fh

�
~h;~u

�
;

d~u

dt
¼ ~fu

�
~h;~u;~p

�
;

(8)

d~f h

dt

¼ D~p: (9)
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Here, ~p ¼ ðp0;.; pNÞ is the set of values on the discrete
sites, and similarly for~h;~u. The symbol D denotes the ma-
trix that discretizes the operator [ ‘ /(2r)]v2x . The functions
~f h;~f u correspond to the real and imaginary parts of the
right-hand sides of Eq. 2. Equation 9 can be rewritten as

d~fh

d~h
fh þ d~fu

d~u
fu ¼ D~p (10)

and contains no time derivative. We discretize the dynamics
�5
equation, Eq. 8, in time using finite time steps Dt ¼ 10 s.

At each time step, the pressure is determined from Eq. 10
together with the boundary condition pN ¼ 0 and Eq. 5 by
solving a set of linear equations. Equation 6 is also discre-
tized in time, and provides the value of €q in Eq. 5 at each
time step. The set of oscillator parameters εn is determined
from sampling one realization of Eq. 3 at discrete values xn.
Detection of spontaneous emissions

From our simulations, we obtain, via Eq. 7, the time traces
of the ear canal pressure variation pe(t) over 300 s. From
these time traces, we compute the spectral density S(f) by
averaging the squares of the Fourier coefficients obtained
for 1 s intervals. Here, we define spontaneous otoacoustic
emissions as peaks in the spectrum S(f) that rise above the
background level by more than a threshold level, which
we choose at 20 dB (see dark shaded line in Fig. 3). The



FIGURE 3 Detection of spontaneous emissions. Example of a power

spectrum obtained in our model (black solid line) in a small frequency in-

terval exhibiting four emissions at frequencies f1–f4. Emission frequency in-

tervals are denoted Df. The running average over 1000 Hz (dashed line) of

the spectral density and the threshold line 20 dB above the average (dark

shaded line) are used to identify emissions (for details see text).
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background is defined as the running average of the spec-
trum over a 1000-Hz interval (dashed line in Fig. 3). We
compare the statistics of the so-defined spontaneous otoa-
coustic emissions, completely characterized by their fre-
quencies, to those determined in experiments by Talmadge
et al. (14). For the peak detection in experimental spectra,
slightly different criteria were used because of considerable
amounts of noise affecting both the background as well as
introducing additional AC peaks (14). Because such arti-
facts are absent in our simulations, we can detect peaks by
the simpler criterion stated above. We stress that a detailed
description of spectral peaks at emission frequencies as well
as of the background spectrum is beyond the scope of our
study.

The uniqueness of steady-state emission spectra is caused
in our model by the irregularities of the bifurcation param-
eter εn in a given realization. From the procedure specified
above, we obtain for a given realization of εn a discrete
A B
sequence of peak frequencies fm with m ¼ 1,.,M, where
M is the number of emissions in the spectrum. To compare
the statistics of SOAEs in our simulations with human
cochleas, we use 152 different realizations of εn, which
corresponds to the number of individual cochleas studied
in the experiment (14).
RESULTS

Two examples of emission spectra of our model are pre-
sented in Fig. 1, C and D. Shown below are the correspond-
ing irregularities ε as a function of characteristic frequency
u(x)/(2p). The spectra typically contain emissions in fre-
quency regions where oscillators are active (i.e., ε(x) >
0), whereas the converse is not necessarily true, i.e., posi-
tive excursions of ε do not necessarily lead to emissions in
the spectra. This is so because emissions result from the
synchronization of groups of active oscillators (see below),
which also depends on global features of the system. Emis-
sions are not caused by individual oscillators. Model
spectra can be compared to those observed in experiments
(Fig. 1, A and B). Although spectra differ in number and
frequencies of the emissions for different ears (experi-
mental data) or realizations of disorder (simulation data),
numbers and frequencies fall into comparable ranges.
Furthermore, peak power in experiments and of calculated
spectra are similar. Note that the backgrounds of simulated
spectra differ from those of experimental spectra, because
in our model we neither include microphone noise nor all
of the possible biological noise sources. In the following,
we focus exclusively on the statistics of SOAE frequencies,
but do not intend to describe the shape of SOAE peaks and
background spectra.

In the experimental data (14), the number of emissions per
cochleaM varied broadly; 67 of the 152 cochleas studied did
not show any SOAEs, and emission numbers beyond 20were
observed occasionally. A histogram of emission numbers
in the experiments and the frequency histogram are shown
in Fig. 4 A (circles) and Fig. 4 B (solid line), respectively.
FIGURE 4 (A) Histogram of SOAE number per

cochlea detected in experiments on 152 individual

ears (circles), together with the histogram of SOAE

number per cochlea obtained in our model from

152 realizations of the irregularities (squares).

(Inset) Average number of SOAEs per cochlea as

a function of the standard deviation s of the irreg-

ularities. (B) Histograms of emission frequency in

the experiments (solid line) and the model (dashed

line). (Shaded regions, A and B) Standard deviation

around the average determined from 10 repetitions

of 152 realizations in the model. To see this figure

in color, go online.
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We can quantitatively account for the key features of
these observations by our model. Using the known parame-
ters given in Table 1, we find that the dissipative coupling k

as well as the standard deviation s and the correlation length
l of the irregularities εn have a strong influence on the
average and the distribution of the total countM. In addition,
s and l also affect the frequency distribution of emissions.
For the choice of k, s, and l given in Table 1, the histograms
obtained in simulations and in experiments correspond
closely (Fig. 4). In particular, the shoulder in the experi-
mental histogram at about M ¼ 5 in Fig. 4 A, the maximum
at 1.5 kHz, and the range of emissions (0.5–8 kHz) in Fig. 4
B are reproduced by the model. Of particular interest is the
statistics of intervals Df ¼ fn – fn�1 between adjacent emis-
sions. We consider the inverse relative interval f =Df , where
f ¼ ðfn�1fnÞ1=2, and alternatively, the interval in Cent units,
defined as

Iðfn; fn�1Þ ¼ 1200 , log2ðfn=fn�1Þ:
Both interval measures have been used before to charac-
terize SOAEs (13,17,35). Fig. 5 A shows experimental

data for the inverse relative intervals as a function of mean
frequency f , scattering around f =Dfz15. In addition, there
is a trend toward larger f =Df for increasing frequency: The
probability to find an interval with f =Df attains a maximum
close to a straight line corresponding to a power law (13),

f

Df
� f n: (11)

A value of nz0:350:1 was estimated in Shera (13). Using
the data shown in Fig. 5A, we estimate nz0:450:2 and indi-

cate the respective power law by a dashed line in Fig. 5 A.
(Note: For both experiment and model, we determined n as
follows: The data were divided in 12 logarithmically binned
frequency intervals. For each interval, the value of f =Df
A

B

C
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where the histogram count is maximal was determined.
The exponent n was determined by a fit of a power law to
the 12 data points. Each point was weighted by the number
of points lying in each interval. If an interval contained
<20 counts in the experimental data, the weight was set to
zero both in the evaluation of experimental and model data.)

We can compare these statistics to the interemission inter-
val statistics obtained in our model, shown in Fig. 5 B. In
the model, there are more of the shorter frequency inter-
vals f =Df >100 than in experiments, presumably caused
by different peak detection schemes in experiments and sim-
ulations. However, the general features of the scatterplots in
Fig. 5, A and B, such as the trend of inverse relative intervals
described by the exponent n, are similar. From the simula-
tions, we estimate n z 0.3 5 0.2. This is consistent with
the experimental values mentioned above.

Distributions of intervals in Cent units both of experi-
ments (solid line) and model (dashed line) are shown in
Fig. 5 C. In the experimental data the most probable interval
occurs at about 100 Cent, corresponding to one semitone
(17,35). We find a similar histogram in the model (dashed
line) that captures not only the maximum at 100 Cent but
also the asymptotic behavior for large Cent values. In partic-
ular, this histogram does not display peaks at multiples of
100 Cent, even if we use a subset of cochleas with many
emissions (not shown), which is in agreement with experi-
mental data (36). The most probable interval Imax depends
on the value of the elastic coupling coefficient k0 (see inset,
Fig. 5 C). To gain some insight into the variability of the his-
tograms, we have generated 10 realizations of 152 cochleas
and indicate the mean value plus/minus one standard devia-
tion as shaded areas in Figs. 4 and 5. These figures demon-
strate that our model can account for all statistical features
that characterize experimentally observed emissions and
emission intervals. In addition, we note that our model
FIGURE 5 Statistics of emission frequency in-

tervals. (A) Scatterplot of the inverse relative fre-

quency intervals f=Df , where f ¼ ðf1f2Þ1=2 and

Df¼ f2 – f1 for adjacent emissions in 152 individual

cochleas in the experiment as a function of f . (B)

Same as in panel A, but for model data. (Dashed

line in panels A and B) Power-law growth

f=Df � f
n
with n ¼ 0.4. (C) Histogram of relative

frequency intervals I ¼ 1200 log2(f2/f1) in Cent

units for the same data as in panel A (experiment,

solid line; model, dashed line). (Shaded region)

Standard deviation around the average determined

from 10 repetitions of 152 realizations in the

model. (Inset) Position Imax of the distribution’s

maximum as a function of elastic coupling strength

k0. To see this figure in color, go online.
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also produces BM vibrations in response to a sinusoidal
external pressure stimulus pin(t), which exhibits the main
features found in the frequency domain description of an
active cochlea based on critical oscillators (29).

Some of the key features of emission statistics in our
model can be understood as follows: Each realization of εn
defines regions in which ε > 0 and the oscillators are active
(see Fig. 6 A). The length of these regions is of the order of l.
Within an active region, oscillators tend to oscillate sponta-
neously, albeit at a gradually varying characteristic fre-
quency u(xn). Because of elastic and dissipative coupling
between neighboring elements, clusters of synchronized
oscillators appear. These clusters correspond to plateaus in
the local frequency, defined as the average number of oscil-
lation periods per unit time determined for oscillator n in our
simulations (Fig. 6 B, solid line). This local frequency has to
be distinguished from the characteristic oscillator frequency
u(xn)/(2p) (Fig. 6 B, dotted line). The corresponding spec-
trum of emissions pe(t) is shown in Fig. 6 C, revealing spec-
tral peaks at frequencies that correspond to the plateaus,
indicated by dashed lines. Thus, the number of oscillators,
Nsyn, that participate in a synchronized cluster, determines
the distance between two emissions. In the realization of
the model shown in Fig. 6, Nsyn z 40, corresponding to
f =Dfz15. Note thatNsyn< l/Dx, implying that the synchro-
nized cluster is smaller than the number of correlated oscil-
lators. Put differently, the active regions typically break up
in several synchronized clusters.

The typical intervals

2pDf ¼ u
�
xn�Nsyn=2

�� u
�
xnþNsyn=2

�

between emissions are related to the size Nsyn of synchro-
nized clusters. Using
A

BC

FIGURE 6 Oscillation frequencies of a small active cochlear region. (A)

Bifurcation parameter εn for a range of oscillator index n. The shaded area

indicates active oscillators (εn > 0). (B) Local oscillation frequency deter-

mined from the inverse average oscillation period in the simulation (solid

line) together with characteristic frequency (dotted line). (C) Spectral den-

sity of ear canal pressure variations in the simulation (solid black line).

Emissions are identified by a threshold (shaded line) and correspond to fre-

quency plateaus (dashed lines).
2pDfzNsynðuðxn�1Þ � uðxnÞÞ

and
uðxn�1Þ � uðxnÞz� d

dx
uðxnÞDx ¼ uðxnÞDx=d;

we find
f

Df
z

d

NsynDx
: (12)

To discuss the typical intervals between emissions, we need

to understand the size Nsyn of synchronized clusters (29,37).
There exists no general theory for the cluster size of coupled
nonlinear oscillators. For purely dissipative coupling of
strength k, the maximal cluster size Nsyn obeys (37)

�����
ðuðxnÞ � uðxn�1ÞÞN2

syn

8k

�����
z1: (13)

Using this relation as an approximation even in the presence
of elastic coupling, by means of Eq. 12 we obtain Eq. 11

with n ¼ 1/2. This value is slightly larger than the values
from the experimental data (n z 0.3,0.4) and from the
model simulation (n z 0.3). Our consideration, however,
illustrates why the differences between emission fre-
quencies drop systematically with increasing frequency:
For an exponential frequency map, the difference between
characteristic frequencies of adjacent oscillators appearing
in Eq. 13 grows with the frequency f and, according to
Eq. 13, Nsyn has to decrease as Nsyn � f

�n
. A smaller size

of the cluster in turn implies a smaller relative distance
(or, equivalently, a higher inverse relative distance) between
SOAE frequencies.
DISCUSSION

In this article, we developed a theory of otoacoustic emis-
sions of the mammalian cochlea that can reproduce key sta-
tistical properties of emission spectra observed in humans.
Our model differs from previous ones (see, e.g., Talmadge
et al. (15), Wit and van Dijk (23), Elliot et al. (26), and
Ku et al. (27,28)) by combining viscoelastic and hydrody-
namic interactions between oscillatory modules with a static
disorder of the modules’ activity parameter. In our model,
SOAEs are elicited by a synchronization of local oscillators,
which is in agreement with the SOAE generation mecha-
nisms found in other vertebrates (21,22) and also suggested
to be at work in the cochlea (23). This is in contrast to the
notion of SOAEs arising as a global phenomenon from
wavelike excitations (13,20).

We extended a one-dimensional description of cochlear
mechanics based on nonlinear oscillators coupled by hydro-
dynamical and viscoelastic interactions. We took into
account irregularities that capture cochlear imperfections.
Biophysical Journal 107(4) 815–824
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To this end, we introduced small perturbations of the bifur-
cation parameter away from criticality. Regions in the co-
chlea where the bifurcation parameter is positive are
active and can power spontaneous emissions. The size and
location of these emissions depend on the realization of
irregularities that characterize an individual cochlea. In
our model, spontaneous emissions correspond to peaks in
the power spectrum of calculated ear canal pressure pe(t)
that rise above a threshold beyond background level.

By varying only four key parameters, we could achieve
strong similarity of basic statistical features of the emission
frequencies and interemission intervals between model and
experiments. This includes the following:

1. The range of frequencies in which SOAEs are observed,
2. The total number of SOAEs in a population of subjects,
3. The monotonic decay of the number of emissions per

cochlea, and
4. The most likely relative distance between adjacent emis-

sion frequencies.

Note that the statistical distributions in experiment and
model are very similar, but not identical.

In our model, certain statistical features correspond to
specific parameters. The standard deviation s and correla-
tion length l of the irregularities control the number and dis-
tribution of spontaneous emissions and attain nonvanishing
values when we fit the model to the experimental data. In
particular, we were not able to obtain statistics similar to
the experimental ones when using uncorrelated Gaussian
disorder (corresponding to l ¼ 0). The longitudinal
coupling of oscillators, characterized by elastic and dissipa-
tive coefficients k0 and k, govern the synchronization of
neighboring oscillators and the size of synchronized clus-
ters. Hence, longitudinal coupling is essential to determine
the most probable interemission interval by influencing
cluster size. In the cochlea, this longitudinal coupling could
be mediated by the overlying tectorial membrane (38), but
also by the basilar membrane (39) and other connecting
tissues (40). We emphasize that in our model, correlations
of irregularities and longitudinal coupling have distinct
roles: while the correlation length l determines the size of
the active regions in which SOAEs might originate, the lon-
gitudinal coupling causes the breakup of the active region
into synchronized clusters.

The model can be extended in several ways to capture
additional features of emission spectra. Here, we have
used an Ornstein-Uhlenbeck process for which the average
of the bifurcation parameter ε is zero. For zero average,
we find a slightly higher prevalence of emissions (i.e., the
fraction of cochleas that show at least one emission) than
found in human ears (see the count for zero emissions in
Fig. 4 A). The prevalence can be matched more closely by
allowing for a small negative mean value of the bifurcation
parameter. Another extension is to take into account addi-
tional noise sources. Indeed, although the power of spectral
Biophysical Journal 107(4) 815–824
peaks between model and experiments is similar, the peak
width in our model is smaller than the typical peak width
of about 0.4–40 Hz reported in experiments (14,41,42).
Taking into account external noise that varies slowly and
affects the phase of oscillators globally leads to an increase
of the peak widths in our model, while keeping emission
frequency and power constant. Such noise could stem for
example from blood flow, breathing, or other physiological
processes (43).

Parameters chosen in our model largely stem from exper-
imental measurements (see Table 1). The four free parame-
ters of our model characterize the irregularities of the
bifurcation parameter ε (its standard deviation and correla-
tion length) and the longitudinal coupling of oscillators.
These parameters are constrained in several respects.

The feature that gives individuality to the cochlea in our
model is the irregular variation of the bifurcation parameter
ε along the cochlea. Because emission spectra are relatively
stable over time (44), our assumption of static imperfections
in ε seems to be plausible. Furthermore, it has been
suggested that the bifurcation parameter is kept in close
proximity to criticality (ε ¼ 0) by a self-tuning mechanism
(3). This implies that the irregularities in the bifurcation
parameter should be small compared to the characteristic
frequency, i.e., s � u(x). Indeed, with our parameter
choice, s/u(x) < 0.1 for all x, and typically s/u(x) < 0.01
in the region where SOAEs are generated.

Irregularities in the physiological equivalent of the bifur-
cation parameter might arise, for instance, from cell-to-cell
variability of the number and geometry of stereocilia
(45–47). Other possible sources of variation might be
introduced by the self-tuning mechanism or efferent brain
activity transmitting signals to outer hair cells. A nonzero
correlation length l of perturbations might result from
morphogen gradients or other concentration variations of
chemical substances that govern the local activity adjust-
ment during the growth phase of the cochlea.

Values of the longitudinal coupling coefficients can be
discussed in the context of cochlear physiology. The
coupling contains an elastic and a much weaker viscous
component, in line with experimental observations (48).
With the parameter values used in our model, the elastic
coupling has an approximate strength of K ¼ ak0b/Dx ¼
16.5 mN m�1. This is comparable to estimates of coupling
strengths mediated by the connecting tissue such as the
tectorial membrane in gerbil, where K z 3–30 mN m�1

(38). Note that the value that we used corresponds to the
regime of strong coupling in theoretical studies of coupled
hair bundles (see, e.g., Dierkes et al. (49)).

Our model predicts that longitudinal coupling governs the
interval lengths between neighboring emissions. Thus, mod-
ifications of the coupling in vivo are expected to change the
interval statistics. Specifically, a weakening of the coupling
should result in otoacoustic emissions with a smaller
preferred distance. Furthermore, our model implies a



Model for Otoacoustic Emissions 823
correspondence between SOAEs and spontaneous BM vi-
brations, which has been experimentally demonstrated in
one case (50). Hence, the model predicts that for every
SOAE there is a spontaneous BM vibration at the position
according to the tonotopic map. Last but not least, due to
the spatial correlation of the bifurcation parameter, our
model suggests that neighboring BM segments exhibit
similar levels of spontaneous activity.

Returning to the statistics of SOAEs, we have shown that
the cause for the most probable interemission interval of
one semitone could be the synchronization of nearby oscil-
lators by a mixture of hydrodynamic, elastic, and viscous
interactions, i.e., similar to the mechanism that was sug-
gested to be responsible for a most probable interval in
the lizard’s inner ear (21). Hence, synchronization of local
oscillators by viscoelastic coupling could be the key to
explain the statistics of SOAEs across species.

Experimental data were generously provided by C. L. Talmadge.
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