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The eukaryotic flagellum beats periodically, driven by the oscillatory dynamics of molecular motors, to
propel cells and pump fluids. Small but perceivable fluctuations in the beat of individual flagella have
physiological implications for synchronization in collections of flagella as well as for hydrodynamic
interactions between flagellated swimmers. Here, we characterize phase and amplitude fluctuations of
flagellar bending waves using shape mode analysis and limit-cycle reconstruction. We report a quality
factor of flagellar oscillations Q ¼ 38.0� 16.7 (mean� s:e:). Our analysis shows that flagellar fluctua-
tions are dominantly of active origin. Using a minimal model of collective motor oscillations, we
demonstrate how the stochastic dynamics of individual motors can give rise to active small-number
fluctuations in motor-cytoskeleton systems.
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Systems far from equilibrium such as living matter
display active, nonthermal fluctuations as well as directed
motion and oscillations, which are important for biological
function. As a prominent example, molecular motors
coupled to cytoskeletal filaments convert chemical energy
into work and heat to generate motion at the cellular scale.
Motor-filament systems can drive mechanical oscillations
including spontaneous hair bundles oscillations in the ear
[1], mitotic spindle oscillations during cell division [2],
sarcomere oscillations in insect flight muscle [3], and the
regular bending waves of cilia and flagella, which propel
cells in a liquid including sperm and green algae [4], as well
as clear mucus in mammalian airways [5]. Cilia and flagella
are slender cell appendages of 10–100 μm length, ubiqui-
tously found in nonbacterial cells, which comprise a
conversed cylindrical scaffold of microtubules interspersed
by dynein molecular motors.
The collective dynamics of the motors working against a

viscoelastic load drives flagellar oscillations via a dynamic
instability [6]. Force generation by individual motors relies
on the stochastic progression through a mechanicochemical
cycle [7]. The stochastic nature of force generation should
manifest itself in oscillations that display a characteristic
level of noise, representative of active fluctuations.
Intriguingly, previous work reported Fourier peaks of finite
width in power spectra of flagellar oscillations [8] and
phase slips in pairs of synchronized flagella [9–11], which
allowed an indirect assessment of flagellar noise. A direct
measurement of flagellar fluctuations is pending, let alone a
mechanistic understanding. Flagellar fluctuations impart on
biological function: Phase fluctuations of flagellar beating
should counteract synchronization in collections of flagella,
which is important for fast swimming [12] and efficient
fluid pumping [13]. Amplitude fluctuations will result in

noisy swimming paths of flagellated swimmers and impart
on hydrodynamic interactions between swimmers [14].
Here, we report direct measurements of phase and

amplitude fluctuations of the flagellar beat and discuss
the microscopic origin of active flagellar fluctuations using
a minimal model. We further illustrate the impact of
flagellar fluctuations on swimming and synchronization.
Our analysis contributes to a recent interest in driven, out-
of-equilibrium systems and their fluctuation fingerprint
[15–18] by characterizing noisy limit-cycle dynamics in
an ubiquitous motility system, the flagellum.
Flagellar shape analysis.—We characterize flagellar

beat patterns as the superposition of principal shape modes.
This dimensionality reduction is key to our fluctuation
analysis. We analyze planar beat patterns of bull sperm
swimming close to a boundary surface [19], filmed at
250 frames=s (corresponding to about 8 frames per beat
cycle). The flagellar centerline rðs; tÞ, tracked as function
of arclength position s and time t, can be expressed with
respect to a material frame of the sperm head in terms of a
tangent angle ψðs; tÞ

rðs; tÞ ¼ rhðtÞ −
Z

s

0

ds0½cosψðs0; tÞe1 þ sinψðs0; tÞe2�:
ð1Þ

Here, rhðtÞ denotes the sperm head center, and e1 and e2 are
orthonormal vectors with e1 pointing along the long head
axis; see Fig. 1(a). A space-time plot of ψðs; tÞ reveals the
periodicity of the flagellar beat; see Fig. 1(b). This high-
dimensional data set can be projected on a low-dimensional
“shape space” using shape mode analysis based on princi-
pal component analysis [20]. The time-averaged tangent
angle ψ0ðsÞ ¼

P
n
i¼1 ψðs; tiÞ=n characterizes the mean
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shape of the beating flagellum (n ¼ 1024 frames in each
movie). We further define a two-point correlation matrix
Mðs; s0Þ ¼ P

i½ψðs; tiÞ − ψ0ðsÞ�½ψðs0; tiÞ − ψ0ðs0Þ�, where
s, s0 range over m equidistant arclength positions along
the flagellum. The eigenvectors ψ jðsÞ of the symmetric
m ×m-matrix M, sorted by decreasing magnitude of the
corresponding eigenvalues, characterize principal shape
modes of the flagellar beat. The first two shape modes
account for 95� 1% of the variance of the tangent angle
data (all measurements are mean�s:e:, n ¼ 7 cells). We
project the full data set on a two-dimensional shape space
spanned by these two shape modes

ψðs; tÞ ≈ ψ0ðsÞ þ β1ðtÞψ1ðsÞ þ β2ðtÞψ2ðsÞ ð2Þ

with shape coefficients β1, β2 obtained by least-square
fit; see Figs. 1(c), 1(d). Flagellar beating implies periodic

shape changes of the flagellum and, thus, noisy oscillations
of the shape coefficients with mean frequency ω0 ¼ 2π=T,
where T ¼ 32.4� 1.9 ms. Individually, β1ðtÞψ1ðsÞ and
β2ðtÞψ2ðsÞ describe standing waves; their combination
results in a traveling wave propagating from the base to
the tip of the flagellum, thereby facilitating net propulsion.
Limit-cycle reconstruction.—The point cloud represent-

ing subsequent flagellar shapes in Fig. 1(d) forms a closed
loop. This allows us to define a limit cycle of noisy flagellar
oscillations (red) by fitting a closed curve ðβ̄1ðφÞ; β̄2ðφÞÞ,
parametrized by a phase φ. The phase parametrization of
the limit cycle is defined such that the mean of the phase
speed is independent of φ [21]. Thus, φ slightly differs
from the polar angle in the ðβ1; β2Þ plane. Next, we assign a
unique flagellar phase to each tracked flagellar shape by
projecting the corresponding point in the ðβ1; β2Þ plane
radially onto the limit cycle. The shape trajectory
ðβ1ðtÞ; β2ðtÞÞ avoids the singular origin; thus, the instanta-
neous phase speed _φ is well defined.
Phase fluctuations.—The phase speed _φ has a mean

equal to the frequency ω0 of the beat but can fluctuate
around this mean. Phase speed fluctuations cause a decay
of the phase-correlation function CðtÞ ¼ hexp i½φðt0 þ tÞ−
φðt0Þ�i; see Fig. 1(e). This decay is insensitive to meas-
urement noise that is uncorrelated from frame to frame. The
frame-to-frame phase increments Δφi ¼ φðtiþ1Þ − φðtiÞ
are approximately normally distributed [Fig. 1(f), inset].
Furthermore, the correlation time of phase speed fluctua-
tions is on the order of our temporal resolution 4 ms
or below and, thus, short compared to the time scale
of phase decoherence. We can, thus, interpret the observed
phase decoherence using an idealized model of δ-correlated
phase speed fluctuations,

_φ ¼ ω0 þ ζ; ð3Þ

where ζ is Gaussian white noise with hζðtÞζðt0Þi ¼
2Dδðt − t0Þ and D denotes a phase-diffusion coefficient.
In this idealization, jCðtÞj ¼ expð−DjtjÞ. By fitting an
exponential to measured jCðtÞj, we obtain the phase-
diffusion coefficient of sperm flagellar beating D ¼ 3.2�
1.9 s−1; see Fig. 1(e). An alternative measure for the
phase stability of oscillations is the quality factor, Q ¼
ω0=ð2DÞ ¼ 38.0� 16.7, where ω0=Q indicates the width
at half-maximum of the principal peak in the power spectral
density of exp½iφðtÞ�.
The observed phase fluctuations of the flagellar beat are

dominantly of active origin and surpass passive, thermal
fluctuations by orders of magnitude (as suggested by
earlier, indirect measurements [10]): For a simple estimate,
we consider a flagellar beat that is constrained to move
along the shape limit cycle with φ as the only degree of
freedom. The friction force Pφ conjugate to φ comprises
hydrodynamic friction γ _φ and dissipation within the
flagellum. We estimate γ ≈ 3 pN μms [22,23]. We, thus,
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FIG. 1 (color online). The flagellar beat of sperm cells displays
active fluctuations. (a) Tracked flagellar shapes are conveniently
characterized by a tangent angle ψðs; tÞ. (b) The kymograph of
this tangent angle reveals the periodicity of the flagellar beat.
(c) Using principal component analysis, we identify two principal
shape modes ψ1ðsÞ, ψ2ðsÞ, whose superpositions account for
95% of the variability of the tangent angle data. (d) By projecting
the tangent angle data on the shape space spanned by ψ1ðsÞ and
ψ2ðsÞ, each flagellar shape is assigned a pair of shape coefficients
ðβ1; β2Þ; see Eq. (2). This representation allows us to define a
limit cycle of perfect periodic beating (red). By projection onto
this limit cycle, we define a phase φ for each flagellar shape.
(e) The flagellar phase-diffusion coefficient D is determined by
fitting an exponential decay (red) to the phase correlation
function (jCðtÞj: thick blue, ReCðtÞ: thin blue). (f) Phase speed
Δφi=Δt and squared amplitude AðtiÞ are negatively correlated.
Inset: phase increments are approximately normally distributed.
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obtain an upper bound kBT=γ ≈ 0.0015 s−1 for the con-
tribution of thermal fluctuations to phase diffusion D,
which is a thousandfold smaller than the value measured.
Amplitude fluctuations.—We define an instantaneous

amplitude of the flagellar beat AðtÞ ¼ jβ1ðtÞ þ iβ2ðtÞj=
ρ0ðφðtÞÞ, normalized by ρ0ðφÞ ¼ jβ̄1ðφÞ þ iβ̄2ðφÞj. Thus,
the complex oscillator variable ZðtÞ ¼ AðtÞeiφðtÞ maps the
shape limit cycle onto the unit circle. In our data, the
amplitude AðtÞ is approximately normally distributed with
σ2A ¼ hAðtÞ2i − 1 ¼ 0.0070� 0.0023 [24]. The autocorre-
lation function of amplitude fluctuations decays with time
constant τA ¼ 5.9� 1.8 ms. Interestingly, we find that
phase speed correlates with amplitude squared; the slope
−ω1 of a linear regression gives ω1=ω0 ¼ 0.38� 0.10; see
Fig. 1(f). Thus, the beating flagellum is represented as a
nonisochronous oscillator (with approximate isochrones
φ − 2τAω1lnA ¼ const [25]). Nonisochrony of nonlinear
oscillators has been related to synchronization [26,27].
Noisy normal form.—Previous theoretical work

described the onset of flagellar oscillations as a supercriti-
cal Hopf bifurcation [28] with normal form (μ > 0) [29]

_Z ¼ iðωc − ω1jZj2ÞZ þ μðΛ − jZj2ÞZ þ Ξ: ð4Þ

In the absence of noise Ξ ¼ 0 as considered originally
[28], the complex oscillator variable ZðtÞ ¼ AðtÞeiφðtÞ
exhibits spontaneous oscillations with amplitude A ¼ Λ1=2

and frequency ω0 ¼ ωc − ω1Λ for effective motor activity
Λ > 0. In this case, we may assume Λ ¼ 1 after a
parameter transformation.
To study the role of fluctuations, we add a multipli-

cative noise term Ξ ¼ ZðζA þ iζφÞ with uncorrelated
Gaussian white noise variables satisfying hζjðtÞζkðt0Þi ¼
2Djδjkδðt − t0Þ, j; k ∈ fA;φg and use Stratonovich inter-
pretation. This choice represents the simplest phase-
invariant noise term with tunable phase and amplitude
noise strengths Dφ and DA [30]. For weak noise DA;
Dφ ≪ μΛ, amplitude fluctuations satisfy hAðt0ÞAðt0þtÞi−
1≈σ2Aexpð−jtj=τAÞ with correlation time τA ¼ ð2μΛÞ−1
and variance σ2A ¼ DAτAΛ. Phase fluctuations are colored
with effective phase-diffusion coefficient D ¼ Dφþ
ðω1=μÞ2DA. Our measurements of active flagellar fluctua-
tions, thus, allow the full parametrization of Eq. (4) (with
Λ ¼ 1). Note that in the special case DA ¼ Dφ ≪ μΛ our
choice of multiplicative noise gives the same long-term
behavior as additive noise.
Flagellar fluctuations imply nondeterministic swim-

ming.—Using measured noise strengths, we simulated
realistic beat patterns and corresponding stochastic swim-
ming paths; see Fig. 3(a). Specifically, we (i) use Eq. (4) to
simulate ZðtÞ ¼ AðtÞeiφðtÞ, (ii) construct shape coefficients
β1ðtÞ þ iβ2ðtÞ ¼ AðtÞρ0ðφðtÞÞ and tangent angles ψðs; tÞ
by Eq. (2), and (iii) compute the path rhðtÞ using resistive

force theory [22] as described in Ref. [23]. We find that the
center RðtÞ of sperm swimming circles diffuses with
diffusion coefficient DR ¼ 3.3 μm2=s, which is on the
same order of magnitude, albeit smaller, than a valueDR ¼
9� 2 μm2=s measured for sea urchin sperm [8]. Our
analysis includes amplitude and phase fluctuations but
neglects additional shape fluctuations; thus, our value is
a lower bound.
Although phase and amplitude fluctuations are corre-

lated, we can ask separately for their respective effect on
swimming. Phase fluctuations cause fluctuations in swim-
ming speed but do not change the shape of the path. This is
because the Stokes equation governing self-propulsion at
low Reynolds numbers [31] is invariant under (stochastic)
reparametrizations of time.
To gain qualitative insight into the microscopic origin of

noisy oscillations and the dependence of phase diffusion on
microscopic parameters, we now discuss a minimal motor
model and show how it can be mapped onto Eq. (4).
A minimal model for noisy motor oscillations.—We

exemplify how a finite collection of motors drives sponta-
neous oscillations with characteristic small-number fluctua-
tions using the classical two-state model [6,32] in its most
simple form: A collection ofN motors, rigidly attached to an
inextensible backbone interacts with a filament through an
effective potentialWðxÞ ¼ U½1 − cosð2πx=lÞ�; see Fig. 2(a).
Here, x is the coordinate of the motor along the filament,
and l is the periodicity of the filament. Individual motors
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FIG. 2 (color online). A minimal model of coupled motors
predicts noisy oscillations. (a) An ensemble of N motors, grafted
at a rigid backbone (gray), can bind and unbind to a filament with
transition rates ωon and ωoff . Bound motors interact with the
filament through an interaction potential WðxÞ. Filament and
backbone are coupled viscoelastically. (b) The motor model
exhibits spontaneous, noisy oscillations, here visualized by
filament position X and total motor force. The deterministic
limit cycle is shown in red. (c) The phase correlation function
CðtÞ (real part shown in blue) decays exponentially
jCðtÞj ≈ expð−DtÞ, defining the phase-diffusion coefficient D.
(d) The quality factor Q ¼ ω0=ð2DÞ scales with N for large N,
consistent with our analytic approximation (dashed red, Eq. (5)).
The star indicates the experimentally measured Q. For all
simulations, we chose parameters close to the Hopf bifurcation
(ξa=ξ ¼ 1.2π2, ν ¼ 10, α ¼ η ¼ 0.5, N ¼ 104, unless indicated
otherwise; errors smaller than symbol size).
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can bind to and unbind from the filament with rates
ωonðxÞ ¼ Ω½η − α cosð2πx=lÞ� and ωoff ¼ Ω − ωon. Here,
η denotes the mean fraction of attached motors (“duty
ratio”). Importantly, the binding rates are spatially inhomo-
geneous, characterized by α, and break detailed balance. If
the filament is now coupled to the backbone by a viscoelastic
element with viscosity ξ and elastic stiffness k, we obtain a
force-balance equation for the position XðtÞ of the filament
kX þ ξ _X ¼ Fm with Fm ¼ −

P
i∂XWðxi − XÞ, where the

sum extends over all bound motors and xi ¼ il=N is a
simple choice for the positions of the motors along the
backbone.
To properly define a thermodynamic limit for large N,

we rescale stiffness and viscosity as k ¼ k0N and ξ ¼ ξ0N.
In the limit N → ∞, the system can exhibit spontaneous
oscillations by a supercritical Hopf bifurcation, when
the normalized motor activity ξa=ξ ¼ 2π2αU=ðΩl2ξ0Þ
exceeds the threshold 1þ ν, where ν ¼ k=ðξΩÞ [32]. For
a finite motor number, we numerically observe noisy
oscillations; see Fig. 2.
In the following, we analytically compute the quality

factor Q in the limit of large (yet finite) motor number
N, assuming that we are close to the Hopf bifurcation
with ε ¼ ξa=ξ − 1 − ν positive and small. Following
Refs. [32,33], we first approximated the stochastic binding
and unbinding dynamics of individual motors by a dif-
fusion approximation, thus arriving at a Fokker-Planck
equation for the probability distribution of filament position
and density ρðxÞ of bound motors (see Supplemental
Material [34] for details). Because of the simple choice
of potential WðxÞ, the dynamics of the first Fourier mode
of ρðxÞ decouples from that of the higher modes, resulting
in a three-dimensional stochastic system [33]. A nonlinear
coordinate transformation maps this system onto Hopf
normal form Eq. (4), with oscillator variable Z satisfying
ReZ ¼ X=lþOðε3=2Þ and phase-dependent noise term
Ξ ¼ iζ, where hζðtÞζðt0Þi ¼ 4DΛδðt − t0Þ. The quality
factor Q ¼ ω0=ð2DÞ is found to scale with N

Q ≈
ω0

2Ω
NΛ

ηð1 − ηÞ
�

2παffiffiffi
ν

p þ 1=
ffiffiffi
ν

p
�

2

: ð5Þ

Furthermore, Λ ≈ εð1þ 4νÞ=½3π2νð1þ 2νÞ�, μ≈Ωε=ð2ΛÞ,
ω0 ≈Ω

ffiffiffi
ν

p ½1þ ε=ð2þ 4νÞ�. Interestingly, the motor duty
ratio η controls oscillation quality, although η affects
neither amplitude nor frequency (for N → ∞). To under-
stand this, note that the number of bound motors fluctuates
with mean ηN and variance ηð1 − ηÞN. This number
characterizes a spatially homogeneous “background” of
bound motors, which does not contribute directly to the
oscillations but sets the amplitude of motor density fluc-
tuations responsible for phase diffusion. Oscillations
become also more regular for increasing amplitude.
Equation (5) and simulations of the full model agree well
close to the Hopf bifurcation; see Fig. 2. This minimal

motor model recapitulates the experimental observation
of phase diffusion in a minimal setting and illustrates
how noisy oscillations can arise from small-number
fluctuations.
Flagellar synchronization.—Phase fluctuations cause

phase slips in pairs of synchronized flagella, e.g., in the
green algae Chlamydomonas [10].Chlamydomonas swims
with two flagella, which can synchronize their beat.
Analysis of phase slips allowed a previous, indirect
estimate of flagellar phase fluctuations, corresponding to
Q ≈ 25 for the quality factor of individual flagella [10].
A latter study indicated a length dependence of Q, with
correspondingQ ranging from ≈70–120 for length increas-
ing from 6 to 12 μm [35]. Interestingly, flagellar synchro-
nization in Chlamydomonas seems to operate just below a
tolerable level of noise: Consider the approximate dynam-
ics of the phase difference δ between two identical, coupled
oscillators _δ ¼ −λ=T sin δþ ζ, where ζ is Gaussian white
noise with hζðtÞζðt0Þi ¼ 4Dδðt − t0Þ [10,36]. Using the
estimate λ ≈ 0.3 for the synchronization strength [10],
we find λQ ≈ 10, which yields robust synchronization. A
tenfold higher noise level, however, implies failure of
synchronization; see Fig. 3(b).
Conclusion.—The beating flagellum is a noisy oscillator,

driven by N ≈ 8 × 104 dynein motor domains [37]. Here,
we precisely measured its phase and amplitude fluctua-
tions, using a novel method of limit-cycle reconstruction
[20]. We obtain a quality factor Q ¼ 38� 16.7 of flagellar
oscillations. Values estimated in other cytoskeletal oscil-
lators are Q ¼ 2.2� 1.0 (N ≈ 2500) for spontaneous hair
bundle oscillations [38] and Q ¼ 1.4� 1.1 (N ¼ 10–100)
for an in vitro acto-myosin system [16]. We find that the
strength of flagellar phase fluctuations is several orders of
magnitudes above the level corresponding to thermal noise,
highlighting the active origin of flagellar fluctuations.

20

R(t)

rh(t)

(a) (b) 0.4

0 0-π π

λQ=10

λQ=1

p(δ)

δ

FIG. 3 (color online). Flagellar fluctuations imply nondeter-
ministic swimming and counteract synchronization. (a) We
simulated stochastic sperm swimming paths rhðtÞ (black), using
measured flagellar fluctuation strengths. Fluctuations imply that
the blue center RðtÞ of red sperm swimming circles diffuses, with
apparent diffusion coefficient DR ¼ 3.30� 0.01 μm2=s. B. Pairs
of flagella can synchronize, e.g., in the green alga Chlamydo-
monas. In a simple description of flagellar synchronization, the
phase difference δ between its two flagella peaks around zero for
realistic noise strength (λQ ¼ 10) but is almost uniformly
distributed for tenfold stronger noise (λQ ¼ 1), indicating lack
of synchronization.
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We compute the quality factor Q in a minimal model of
motor-filament oscillations and find thatQ is proportional to
the number of motors. A simple numerical example [39]
yields noisy oscillations with amplitude, frequency, and
quality factor Al ≈ 68 nm, ω0 ≈ 228 s−1, Q ≈ 33, which
roughly match measured values (Al≈100nm, ω0 ≈ 200 s−1

[19], Q ≈ 38). Our analytic approximation Eq. (5) is not
applicable for these large-amplitude oscillations. Note that
the model does not fully capture flagellar oscillations
quantitatively because it strongly simplifies flagellar geom-
etry and motor dynamics.
We show that phase and amplitude fluctuations affect

sperm swimming differently: Whereas amplitude fluctua-
tions cause an effective diffusion of sperm swimming
circles, phase fluctuations imply speed fluctuations but
do not change the shape of the path. Additionally, phase
fluctuations introduce phase slips in collections of
synchronized flagella [10].
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