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Abstract
Many biological tissues consist of more than one cell type. We study the
dynamics of an interface between two different cell populations as it occurs
during the growth of a tumor in a healthy host tissue. Recent work suggests that
the rates of cell division and cell death are under mechanical control, char-
acterized by a homeostatic pressure. The difference in the homeostatic pressures
of two cell types drives the propagation of the interface, corresponding to the
invasion of one cell type into the other. We derive a front propagation equation
that takes into account the coupling between cell number balance and tissue
mechanics. We show that in addition to pulled fronts, pushed-front solutions
occur as a result of convection driven by mechanics.

Keywords: tissue dynamics, growth, front propagation, cell competition

1. Introduction

Animal tissues are made of many different cell types, and interfaces between different cell
populations are ubiquitous in the developing and adult organism [1]. An example is the interface
that forms between a growing tumor and the healthy cells of the surrounding host tissue [2].

New Journal of Physics 16 (2014) 035002
1367-2630/14/035002+10$33.00 © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

mailto:julicher@pks.mpg.de
mailto:jean-francois.joanny@curie.fr
http://dx.doi.org/10.1088/1367-2630/16/3/035002
http://creativecommons.org/licenses/by/3.0


In this article, we study how such interfaces between two distinct cell populations evolve in the
presence of cell division and cell death, focussing on the effects of mechanical coupling between
the net cell division rates and pressure. It has been hypothesized that the rates of cell division and
apoptosis (cell death) are not only dependent on the biochemical conditions present in the tissue
but depend on mechanical forces exerted by the surrounding cells [3, 4]. This suggestion was
recently underpinned by experimental findings that demonstrate the variation of the net cell
division rate with an externally applied pressure [5]. Here, we develop a continuum theory of two
cell populations separated by an interface. Our theory takes into account rates of cell division and
death which can be influenced by local stress. Resulting cell flows and interface movements
follow from the dynamics of cells coupled to force balance in the tissue, and we find moving front
solutions that describe the invasion of one tissue into a second one.

2. Tissue hydrodynamics

To investigate the dynamics of tissues with two distinct cell populations, we develop a continuum
description that accounts for cell flow fields and stress distributions on large scales. We assume
that the tissue comprises cells of type A and B with number densities nA B, and average cell
volumes ΩA B, , respectively, such that Ω Ω+ =n n 1A A B B . Cell number balance is expressed by

∂ + ∂ =α α( )n n v n k , (1)t i i
i

i i

where αv
i is the velocity of the cell flow field of type i ( =i A B, ), and = −k k ki

i i
d a is the

respective net cell division rate, i.e., the difference between the rates of cell division and
apoptosis. The rates ki in general depend on pressure. Their variation is characterized by the

homeostatic pressures Pi
h: the homeostatic pressure Pi

h of a tissue is the value of the pressure P
for which the tissue is in a homeostatic state in which cell division and apoptosis balance and no
net growth occurs. Near the homeostatic state, one can expand the net cell division rate to linear
order in pressure differences as κ≃ −k P P( )i i i

h . Here, κi is a coefficient that in principle is
different for the two cell types A and B. For simplicity, we choose the same value κ κ=i for the
two tissues in the following and investigate the effects of a finite difference of the homeostatic
pressures between the two tissues Δ ≡ − >P P P 0A B

h h h .
Some tissues are separated from each other by physical barriers such as the basal

membrane [6]. However, tissue interfaces may also be smooth with possible mixing of cells of
different types, see figure 1. On large scales, the shape of the interface is then described by the
volume fraction ϕ Ω≡ nA A as a function of position. The average cell velocity αv is given by

ϕ ϕ= + −α α αv v v(1 ) , (2)A B

and the relative flux αJ obeys

ϕ ϕ ϕ ϕ= + − = − −α α α α α αv v J v v J, (1 ) (1 ) . (3)A B

Under the assumption that the cells are incompressible, i.e., ΩA and ΩB constant, the cell number
balance equations for each cell type then combine to a condition on the average velocity αv and a
dynamic equation for ϕ,

ϕ ϕ∂ = + −α αv k k(1 ) , (4)A B
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ϕ ϕ ϕ ϕ∂ + ∂ = −∂ + − −α α α αv J k k(1 )( ). (5)t A B

Equation (4) generalizes the the classical incompressibility condition on the divergence of the
velocity in the presence of cell division.

In a previous work, we have shown that cell division and apoptosis give rise to a diffusive
motion of cells even in the absence of spontaneous cell motility [7]. The existence of such an
effective diffusion requires the presence of noise in the tissue, for example due to cell shape
fluctuations and to the stochasticity of cell division and apoptosis. Such processes can give rise
to mutual diffusion between the two cell types that can be described by an effective diffusion
coefficient D and generates a relative flux ϕ= − ∂α αJ D . Note that the effective diffusion
constant is not caused by thermal fluctuations.

Taking the dependence of cell proliferation on pressure into account, the dynamic equation
for ϕ then becomes

ϕ ϕ ϕ ϕ ϕ κΔ∂ + ∂ = ∂ + −α α αv D P(1 ) . (6)t
2 h

Equation (6) is a generalized version of the Fisher–Kolmogorov equation which was initially
put forward to describe the expansion dynamics of advantageous alleles in a population with
shared genome [8, 9]. However, the dynamics of the cell volume fraction described by equation
(6) contains an additional term that describes advection with velocity αv . This velocity is
generated in the tissue by active processes and is related to the proliferation of the two cell
populations via equation (4). This is a situation that is very different from cases where flows are
created externally such as in studies of bacterial colony growth as e.g. in [10]. Since the net cell
division rates depend on pressure, the Fisher population dynamics is eventually coupled to the
tissue mechanics. This coupling is generic for tissues, where cells do not only divide and die but
also interact mechanically. To our knowledge, diffusive growth has so far been discussed
without mechanical interactions [11].

To solve for the velocity field αv , we need to consider the stress distributions and force
balance in the tissue. In the absence of external forces, force balance is expressed by σ∂ =β αβ 0,
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Figure 1. Smooth interface between cells of different type. In the presence of cell
diffusion the two populations mix near the interface, which gives rise to a smooth
interfacial profile of the volume fraction ϕ of the blue cells as a function of position x.



where σαβ denotes the stress tensor in the tissue. The stress tensor can be split into an isotropic

and a traceless part as σ δ σ= − + ˜αβ αβ αβP , where P is the total pressure and σ̃ =αα 0. For an
incompressible tissue, P becomes a Lagrange multiplier to impose the generalized
incompressibility constraint and from equation (4) we find

ϕΔ κ= + − ∂α α( )P P P v / . (7)B
h h

In the hydrodynamic limit, the deviatoric stress σ̃αβ is given by the constitutive equation

⎡⎣ ⎤⎦σ η ϕ ϕ ϕ ϕ δ˜ = ˜ − ∂ ∂ − ∂ ∂αβ αβ α β γ γ αβv B2 ( )( ) ( )( ) , (8)1
3

where we assumed that the tissue behaves as a viscous fluid on long times [7, 12]. Here, η is the
shear viscosity and δ˜ = ∂ + ∂ − ∂αβ α β β α γ γ αβv v v v( )1

2

2

3
is the traceless part of the velocity gradient

tensor. The second term on the right-hand side is due to the coupling between stress and
composition gradients and its form is dictated by symmetry. It corresponds to the Ericksen
stress in systems near thermodynamic equilibrium, and it can be derived explicitly from a
Landau–Ginzburg free energy depending on a scalar parameter ϕ [13]. If the width of the
interface is of order l, the surface tension between A and B cells is of order B l/ . It describes
interfacial tensions as they arise for example from differential adhesion between the two cell
types [12].

3. Interface propagation dynamics

We are interested in the propagation of an interface between two cell populations that are at
their respective homeostatic states and at rest at = ±∞x . We consider a thin, effectively two-
dimensional tissue of fixed height h subject to friction with the underlying substrate [14], which
breaks Galilean invariance. Note that for bulk, i.e. three-dimensional, tissues, the role of
substrate friction could be played by friction with the interstitial fluid. This can be discussed in
descriptions of tissues with permeation [15].

Force balance in the film reads

σ γ∂ ¯ =β αβ αv (9)

(α β = x y, , ), where γ is a coefficient describing friction with the substrate and σ̄αβ is the stress

in the film averaged in the z-direction

∫σ σ¯ =αβ αβh
z

1
d . (10)

h

0

For simplicity, we consider tissues for which ϕ is homogeneous along y and fields vary with x
only. From the force balance equation (9), using the expressions for P and σ̃αβ, we obtain an

equation for the velocity profile vx,

κ η Δ ϕ ϕ ϕ γ+ ∂ − ∂ − ∂ ∂ =−( ) v P B v . (11)x x x x x x
1 4

3
2 h 2

3
2

Equations (6) and (11) define the dynamics of interface propagation, together with the boundary
conditions ϕ −∞ =( ) 1, ϕ +∞ =( ) 0, and ±∞ =v ( ) 0x . These equations can be written in a
dimensionless form,
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ϕ ϕ ϕ ϕ ϕ∂ + ∂ = ∂ + −V (1 ), (12)T X X
2

Λ Λ ϕ β ϕ∂ − = ∂ + ∂( )V V V2 1 . (13)X X X
2 2

0
2

Here, we have used the characteristic interface width l0 and timescale t0 with

Δ κ Δ κ= =l D P t P( /( )) , 1/( ), (14)0
h 1/2

0
h

to normalize lengths and times: =X x l/ 0, =T t t/ 0, and =V v t l/x 0 0. We have furthermore
introduced the dimensionless parameters

Λ κη Δ γ Δ γΛ β κ= + = =( ) P D V P D B D1 /( ), /(2 ), / .2 4
3

h
0

h 2
3

For =V 00 , the convective velocity vanishes, V = 0. Starting with a steep initial condition

ϕ = + ϵ −X e( ) (1 )X / 1, with ϵ ⩽ 1, the system reaches for long times traveling-wave solutions of
the form ϕ Φ=X T U( , ) ( ), where = −U X CT with wave speed =C C0 and interface profiles
Φ Φ=U U( ) ( )0 where =C 20 [16, 17]. This solution of the classical Fisher equation is a so-
called pulled-front solution for which the wave speed is determined by the linearized dynamics
in the tail of the profile. Pulled-front solutions cannot have larger wave speeds than C = 2. Here
we ask whether traveling-wave solutions persist when >V 00 and tissue mechanics and
advection have to be taken into account. A simple limit occurs when Λ ≫ 1. In this case,
equations (12) and (13) decouple because = ≃V U V( 0) 0 remains approximately constant
along the interface where ϕ X( ) varies. From this argument, we find for β = 0 that

ϕ ϕ∂ ≃ ∂V VX X0 in equation (12). Thus, the interface profile is again given by Φ0, however
with traveling speed = +C C V0 0. Finite interfacial tension due to β > 0 does not change this
result as long as β Λ≪ . Such solutions are so-called pushed-front solutions for which the wave
speed is determined by nonlinearities as discussed below [17].

We obtain numerical solutions to the dynamic equations (12) and (13) for different values
ofV0, Λ, and β. Starting from a steep initial interface, the interface evolves to a stationary profile
Φ U( ) and moves with a speed C for all tested parameter values. Examples of traveling-wave
profiles ϕ U( ) and V(U) are shown in figure 2. For smallV0 as well as for Λ ≫ 1, the profiles are
well captured by the approximate solution Φ0 to the original Fisher equation. Deviations start to
be important for larger values of V0 and finite interfacial-tension coefficient β, see figure 2(g):

because of the term ϕ∝ ∂X
2 in equation (13), the interfacial profile broadens, and wave speed

increases. The dimensionless wave speed C is shown in figure 3 for different values of V0, Λ,
and β. Our numerical analysis confirms the simple Fisher-wave limit for Λ ≫ 1, in which the
advective velocity V0 adds up to the wave speed C0. It is interesting to note the effect of finite β
on the observed wave speeds. For β = 0, the wave speed C is bounded from above by +C V0 0,
and C increases with increasing Λ towards the predicted value +C V0 0. For large enough β, the
reverse can be observed: for finite Λ, the wave speed C actually exceeds +C V0 0 and decreases
with Λ for fixed V0. Taken together, these results highlight the role of the interplay between
cellular diffusion, cell–substrate friction, and the mechanical coupling of cell proliferation to
pressure.

One can distinguish between pulled fronts and pushed fronts [17]. The velocity of pulled
fronts is set by the dynamics of the asymptotic tail which pulls the main profile behind. Because
the tail decays to zero, its dynamics can be understood by a linearized theory. Pushed fronts are
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Figure 2. Interface profile ϕ and dimensionless cell velocity V for different driving force
V0 and for different values of Λ as indicated in the absence of interfacial tension, β = 0,
(left panels, (a)–(d)) and for β = 103 (right panels, (e)–(h)). Both ϕ Φ=X T U( , ) ( ) and

=V X T V U( , ) ( ) are shown as functions of the coordinate = −U X CT ; note also the
change of scale in panels (g), (h). The values of V0 are indicated.

Figure 3. Dimensionless wave speed C of traveling waves for varying driving
amplitude V0 and different values of Λ in the absence of interfacial tension, β = 0
(circles), and for β = 103 (triangles). The approximation = +C C V0 0 is plotted as a
dashed black line, see text for details. The inset shows the phase diagram of traveling
waves in terms of dimensionless parameters Λ andV0, when β = 0. The red dots are the
measured transition points between the pushed and pulled fronts. The black line is an
interpolation of these data points. The parameter values below the dashed line in the
inset, where Λ<V /20 , are unphysical as they cannot be reached in our model.



driven by the part of the profile where nonlinearities are essential. The profile pushes the linear
tail forward at a speed that is larger than the pulled-front velocity. Both pulled- and pushed-
front solutions can be obtained as profiles ϕ U( ) and V(U) that solve equations (12) and (13).
Such solutions exist for all >C 0. The tails of the corresponding profiles are of the form
ϕ ≃ +λ λ− −U d e d e( ) U U

1 2
1 2 which follows from linearizing equations (12) and (13). Here, d1 and

d2 are coefficients and the (inverse) decay lengths are given by λ = ∓ −C C/2 [( /2) 1]1,2
2 1/2,

with λ λ⩽1 2. For localized initial conditions, the system either reaches a pulled-front solution
with = =C C 20 and λ = 11,2 or a pushed-front solution for which >C C0. In the latter case, the
velocity C is set by the requirement that the coefficient =d 01 must vanish such that the

asymptotic behavior of the front is given by ϕ ≃ λ−U d e( ) U
2

2 , corresponding to the steeper front.
This analysis allows us to distinguish pulled-front solutions from pushed fronts in our

numerical study. The inset of figure 3 shows a line separating two regions in which pulled and
pushed fronts occur as a function of V0 and Λ, in the case where β = 0. For small V0 front
propagation is dominated by diffusion and the system develops a pulled front which moves at
the same dimensionless speed =C C0 as a Fisher wave without advection. Beyond a critical
value ofV0, the front is pushed by nonlinearities and moves at an increased speed C that depends
onV0 in this advection-dominated regime. Both regimes are separated by a sharp transition from
pulled to pushed fronts shown as a solid line.

4. Tissue invasion in circular geometry

The case of a linear geometry discussed above has been chosen for conceptual clarity. For a
small clone of A cells surrounded by B cells on a substrate, the expansion is more realistically
captured by a growing circular domain of A cells in two dimensions. Using circular symmetry
for simplicity, the dynamic equation for the cell volume fraction ϕ reads in polar coordinates

⎜ ⎟⎛
⎝

⎞
⎠ϕ ϕ ϕ

ϕ
ϕ ϕ κΔ∂ + ∂ = ∂ +

∂
+ −v D

r
P(1 ) , (15)t r r r

r2 h

where r is the radial coordinate. The force balance reads

⎜ ⎟⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠κ η γ Δ ϕ ϕ

ϕ
ϕ+ ∂ +

∂
− − = ∂ + ∂ +

∂
∂−( ) v

v

r

v

r
v P B

r
. (16)r r

r r r
r r r

r
r

1 4
3

2
2

h 2
3

2

The boundary conditions are given by ϕ′ =(0) 0, ϕ ∞ =( ) 0, =′v (0) 0r , and ∞ =v ( ) 0r . Note
that traveling waves of the form ϕ Φ= −r t r ct( , ) ( ) cannot exist for this system because the
dynamic equations are not invariant with respect to changes of r. In the limit of long times,
however, the radius of the interface becomes large, Λ≫r l lmax ( , )i 0 0 , and one approaches the
one-dimensional case described above. For smaller ri, the finite curvature of the interface has to
be taken into account.

We obtain numerical solutions to the dynamic equations, starting from localized initial
conditions. The resulting behavior is shown in figure 4, where an initially localized distribution
of A cells first decreases in magnitude and widens before it increases its magnitude and grows
out radially. Interestingly, the number of A cells first decreases, because of the increased
pressure due to the interfacial tension, which counteracts the proliferative advantage of the
stronger A cells (see inset in figure 4). The time dependence of the total number of A cells
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∫πΩ ϕ= − ∞
N r r2 dA A

1

0
, where we take ΩA to be an effective two-dimensional cell volume, can be

discussed using equation (15), which implies

∫π
Ω

ϕ κΔ ϕ ϕ= − ∂ + −
∞N

t
v P r r

d

d
2

[ (1 )] d (17)A

A
r r

0

h

(note that the diffusive term disappears under the integral). With equation (7), one eventually
obtains

∫π
Ω

κϕ= −
∞N

t
P P r r

d

d
2

( ) d . (18)A

A
A

0

h

This equation shows that the number of A cells drops as long as >P PA
h. If cell motion can

be ignored, the typical pressure inside the region of A cells Γ≃ +P P R/A B
h has a contribution

from the Laplace pressure Γ R/ , where Γ ≃ B l/ is the surface tension (or line tension in two
dimensions), l is the interface width, and R is the radius of the A-cell-rich region. We thus have

κ Δ Γ≃ −
N

t
N P R

d

d
( / ). (19)A

A
h

The suppression of A cells occurs if R is below a critical radius Δ≈R B l P/( )c
h .

At long times, however, diffusion smears out the interface profile and l first increases as
≃l Dt2 until it saturates at the finite value l0 defined in equation (14). Therefore the surface

tension drops and the critical radius becomes smaller. The stronger A cells with higher
homeostatic pressure Ph can therefore possibly escape suppression and invade the weaker tissue
with lower Ph even if initially the A-cell region is smaller than the critical radius.
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Figure 4. Time-evolution of the interface shape between two cell populations in the
cylindrical geometry. The profile of the volume fraction ϕ is plotted as a function of
normalized radius =R r l/ 0 for different dimensionless times T shown by a color code.
We start from an initially localized distribution of A cells with higher homeostatic
pressure surrounded by B cells of lower homeostatic pressure. Here,
ϕ π= +R R( , 0) (cos 1)1

2
if ⩽R 1, ϕ =R( , 0) 0 else and the dimensionless parameters

=V 50 , Λ = 10, and β = 100. The inset shows the total number of A cells NA

normalized by its initial value NA,0 as a function of T. Interfacial tension first suppresses
the invading tissue, which eventually succeeds after the interface broadened.



This long-time growth of A cells into a region of B cells occurs only if the total number of
A cells always remains larger than one. Note however that our continuum description with
continuously varying cell volume fraction does not take the discrete character of cells into account.
Therefore, this description misses the absorbing state when the last remaining A cell undergoes
apoptosis. In this case, the continuum description breaks down and a more refined discrete
description is needed.

If we apply this result to the situation of cancer invasion, these arguments therefore suggest
that cell diffusion could increase significantly malignancy: when cancer cells become less
cohesive and mix with cells of the host tissue, the tumor cannot be suppressed by interface
tension only. If tumor and host tissue cannot freely mix (possibly separated by a physical barrier
such as the basal membrane), the tumor can be suppressed if smaller than a critical radius Rc [4]
and thus is statistically less dangerous.

5. Discussion

The interface dynamics discussed in this article is generic for tissues in which cells undergo cell
division and apoptosis and interact. This is the case for developing tissues, where cell
competition has been observed for example in the growing larva of Drosophila [18]; another
example is the interface between a growing tumor and its surrounding host tissue. Using a
continuum description, we find two regimes of interface propagation: a diffusive regime in
which relative fluxes dominate the expansion (pulled front), and a propulsive regime in which
the proliferation gives rise to convective flows (pushed front). In general, experiments will
distinguish the regime in which a given system operates. Recent experiments focused on the
growth dynamics of tumor cell spheroids that consist of one cell type only [5]. Taking a closer
look at the combined growth dynamics of two cell populations will hopefully provide more
insight into the different modes of homeostatic competition discussed in this article.

Here, we restricted our analysis to deterministic equations and noises are considered
indirectly in the diffusion term. As cell division and cell death are stochastic events, it is
straightforward to add a noise to the cell number balance. It is well known that in classical
models for interface dynamics, noises can change the wave speed and the interface profile
[19, 20]. We also discussed here only tissues with reduced dimensionality, assuming
translational invariance along y or rotational symmetry, respectively. Additional insight into the
dynamics in three dimensions may be gained from cell-based tissue simulations [21, 22].
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