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We show that pulsatory patterns arise in thin active films in which two chemical species regulate active
stress. The regulating species diffuse within the film and are advected by self-generated flows resulting
from active stress gradients. Spontaneous pulsatory patterns emerge when the following conditions are met:
(i) the fast-diffusing species up-regulates and the slow-diffusing species down-regulates active stress, or
(ii) the active stress up-regulator turns over faster compared to the active stress down-regulator. Our study,
motivated by pulsatory patterns in the actomyosin cortex in cells and tissues, provides a simple generic
mechanism for oscillatory patterns in active fluids.
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Pattern formation is an integral part of the development
of living systems. Classically, pattern formation in reaction-
diffusion systems [1–3] results from chemical instabilities
that arise if Turing criteria are satisfied [4]. For example,
the interaction between a slow-diffusing activator and a
fast-diffusing inhibitor can lead to time-independent spa-
tially periodic patterns. In addition to stationary patterns,
bulk oscillations can be generated through specific chemi-
cal reaction networks [5]. With spatial degrees of freedom
such systems typically generate complex waves but not
spatially periodic structures. Spatially periodic oscillatory
patterns can result from the coupling of oscillating chem-
istry with a Turing system [6].
The establishment of patterns in biology generally

involves a tight integration of both chemical signals and
mechanical events [7–10]. Mechanical events in cells and
tissues are typically generated by the cellular cytoskeleton
[11]. An important example is actin networks that are
driven out of equilibrium by force generation through
myosin motor activity. Such networks represent an active
material with unconventional material properties [12–15].
Mechanochemical pattern formation processes can arise
from the interplay between chemical signals and the active
properties of active materials [8]. Recently a general
mechanism for the emergence of stationary patterns in
active fluids was introduced [10]. Here patterns arise
because active stress gradients drive hydrodynamic flows
which advect the stress regulator and counterbalance
diffusive fluxes.
In this Letter, we study the emergence of pulsatory

patterns in a thin active film. Our motivation is the pulsatile
dynamics in the actomyosin cytoskeleton seen in many
morphogenetic processes [16–24]. We consider a system of
two chemical species that actively regulate the hydro-
dynamic stress in a thin film active fluid. Both species

are advected by flows resulting from active stress gradients
while also diffusing in the thin film. We seek the generic
principles underlying the generation of pulsatory patterns in
active fluids. Specifically, we ask if there are criteria
governing the emergence of pulsatile patterns in active
fluids that are analogous to those pertaining to stationary
Turing patterns.
We show that a two-component advection-diffusion

system coupled to an active fluid in a thin-film geometry
leads to the emergence of oscillatory patterns when the fast-
diffusing chemical species up-regulates the active stress
and the slow-diffusing species down-regulates the active
stress. With the inclusion of a simple turn-over reaction for
each of the species, oscillatory patterns can also result when
the fast turn-over species up-regulates the active stress and
the slow turn-over species down-regulates the active stress.
These generic Turing-like criteria for active pulsatory
patterns represent our key finding. Notably, this mechanism
does not require oscillatory chemical instabilities [6,25,26]
nor active nematic descriptions with excitable dynam-
ics [27].
Consider two chemical species confined to move in a

thin film of finite size L, with concentration fields Aðx; tÞ
and Iðx; tÞ at position x and time t, that evolve according to
the following advection-diffusion equations:

∂tA ¼ −∇ · ðvAÞ þD∇2A; (1)

∂tI ¼ −∇ · ðvIÞ þ αD∇2I; (2)

where D is the diffusion coefficient of species A, α > 0 is
the ratio of the diffusion coefficients of species I and A, ∇
is the spatial gradient operator, and ∂t denotes a partial time
derivative. We consider both periodic and no-flux boundary
conditions. The force-balance condition in the thin film
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active fluid leads to a dynamic equation for the hydro-
dynamic velocity field v given by [10,17,28]

∇ · σ ¼ γv; σ ¼ σp þ ζΔμ1: (3)

Here γ is the friction coefficient describing drag on the
substrate (cytosol/plasma membrane). The stress tensor σ is
decomposed in a passive contribution

σp ¼ η

�
∇v þ ð∇vÞT −

2

d
ð∇ · vÞ1

�
þ ηvð∇ · vÞ1; (4)

and an isotropic active stress ζΔμ. The shear and bulk
viscosities are denoted by η and ηv, respectively [29], and d
is the space dimension. We consider the case where the
active stress is regulated by the concentrations c ¼ ðA; IÞ of
both chemical species,

ζΔμ ¼ ðζΔμÞ0fðcÞ: (5)

Here ðζΔμÞ0 is the active stress amplitude and f a
dimensionless function describing active stress regulation.
In this active stress-advection-diffusion system, species

A and I are coupled through the advection term stemming
from active hydrodynamic flow. Note that the total
amounts of A and I are conserved separately. Thus the
average concentrations A0 ¼ L−d R dxAðx; tÞ and I0 ¼
L−d R dxIðx; tÞ are constant, where L is the system size.
The homogeneous state with concentrations c0 ¼

ðA0; I0Þ and vanishing velocity v ¼ 0 is a steady-state
solution of this model. We perform a linear stability
analysis in response to a perturbation of the form δc≡
c − c0 ¼ eik·x with wave vector k [1,2]. The spatial
Fourier-amplitude of the hydrodynamic velocity field reads

v̂k ¼ ikðζΔμÞ0ðÂk∂Af þ Îk∂IfÞ
γð1þ νk2l2Þ ; (6)

where we have used Eqs. (3)–(5). The spatial Fourier
amplitudes of the concentration fields are denoted Âk and
Îk and l ¼ ffiffiffiffiffiffiffi

η=γ
p

is a characteristic length scale. The
dimensionless coefficient ν is ν ¼ 1 for d ¼ 1 and ν ¼
1þ ηv=η for d ¼ 2. Using Eq. (6) in Eqs. (1) and (2) and
keeping only linear terms, we find the linear-stability
matrix L with [10]

τL ¼ −k2l2

�
1 0

0 α

�
þ Pk2l2

1þ νk2l2

�
A0fA A0fI
I0fA I0fI

�
; (7)

where the Péclet number P ¼ ðζΔμÞ0=γD is the ratio of the
diffusive time scale τ ¼ l2=D to an advective time scale
τa ¼ l=U with U ¼ ðζΔμÞ0=

ffiffiffiffiffi
ηγ

p
, and fA ≡ ∂Afðc0Þ,

fI ≡ ∂Ifðc0Þ. The instabilities of the homogeneous state
are determined by the trace tr L and the discriminant
ΔL ¼ ðtrLÞ2 − 4 detL, where detL is the determinant of
L [2]. We find

tr L ¼ −Dk2½ð1þ αÞ − ΠðkÞðA0fA þ I0fIÞ�; (8)

ΔL ¼ D2k4½ð1 − αÞ2 þ Π2ðkÞðA0fA þ I0fIÞ2
− 2ΠðkÞð1 − αÞðA0fA − I0fIÞ�; (9)

with ΠðkÞ ¼ P=ð1þ νk2l2Þ. The homogeneous state c0 is
unstable at a wave number k for which the leading
eigenvalue λþðkÞ of L is positive. In a system of size L,
the wave numbers are kn ¼ ωnπ=L where n ¼ 0;�1;
�2;…, and ω ¼ 1 for no-flux and ω ¼ 2 for periodic
boundary conditions. From Eq. (8), we find that the mode
k1 becomes unstable first at a critical Péclet number Pc as
the Péclet number is increased. From this analysis we
obtain the linear-stability diagram shown in Fig. 1. Note
that the dynamics become slow in the limit of large
systems.
Instabilities can be either stationary or oscillatory. An

oscillatory instability occurs when tr Lðk1Þ > 0 and
ΔLðk1Þ < 0. From Eqs. (8) and (9), it follows that for
increasing Péclet number, the homogeneous state under-
goes an oscillatory instability at

P ¼ Pc ¼
ð1þ αÞð1þ ω2π2l2ν=L2Þ

A0fA þ I0fI
(10)

if fA > 0 and fI < 0 for α < 1, or fA < 0 and fI > 0 for
α > 1. The condition fA > 0 implies that A is a stress up-
regulator, while fI < 0 implies that I is a stress down-
regulator. Therefore the homogeneous state can undergo an
oscillatory instability if the up-regulator of active stress A
diffuses faster than the down-regulator I of active stress
(α < 1) and vice-versa. This criterion for an oscillatory
instability in active fluids is reminiscent of a Turing
criterion for stationary instabilities in reaction-diffusion
systems [4]. However, this instability is mechanochemical
in nature and thus fundamentally different from instabilities
in reaction-diffusion systems.
To numerically investigate the spatiotemporal oscillation

patterns, we choose the active stress regulation function f
of the form

fðcÞ ¼ f0 þ ð1þ βÞ A
Aþ As

þ ð1 − βÞ I
I þ Is

; (11)

where f0 ≥ 0 is the base level and β is an asymmetry
parameter in the regulation of active stress, As and Is are the
saturation values of the active stress for A and I, respec-
tively. Equation (11) implies that (i) when β < −1, A down-
regulates the active stress and I up-regulates, (ii) when
−1 ≤ β ≤ 1, both the species up-regulate the active stress
and finally (iii) when β > 1, A up-regulates and I down-
regulates the active stress. We emphasize that our results are
more general and do not depend on the particular choice of
the function f. The results of the linear-stability analysis
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depend only on the derivatives of f evaluated at the
homogeneous fixed point c0
Figures 1(a)–(c) display the variation of the real and

imaginary parts of the leading eigenvalues λþ as a function
of wave number k for β ¼ 3. As the Péclet number
increases, the system undergoes an oscillatory instability.
To investigate the oscillating states, we numerically solved
the Eqs. (1)–(5) in a periodic domain of size L ¼ 2π in
d ¼ 1; 2, starting with small random perturbations about
the homogeneous state c0. We also chose f0 ¼ 0,
As ¼ ξA0, Is ¼ ξI0, with ξ ¼ 3 and multiplied the function
f by a factor ð1þ ξÞ2=ξ. The results of the numerical
simulations, in d ¼ 1 and with α ¼ 0.1, are shown in
Fig. 1(d). The time period of the oscillation patterns T close
to the instability will be inversely proportional to the
imaginary part of growth rate Im½λþðk1Þ�. Figure 1(e)
compares the time period of the oscillations as determined
in numerical simulations with that from the linear stability
analysis. It is interesting to note that for large enough P
(and β > 1), the oscillatory patterns are unstable and
transition to stationary patterns. Note that when the
diffusivities of A and I are the same, or when both A
and I up-regulate the active stress, the system exhibits
stable steady-state patterns as described in Ref. [10]. We
have verified that results of numerical simulations with no-
flux boundary conditions also agrees with the linear-
stability analysis.

The oscillation mechanism can be understood through
simple arguments: a local decrease in I will drive
convergent flows towards the depleted region,
Figs. 2(a) and 2(b). Flow brings in both A and I,
however, I has a lower diffusivity and thus forms a
sharper peak, Fig. 2(c). This in turn reduces active stress
and the convergent flows, Fig. 2(d). With reduced flow,
both peaks in A and I relax by diffusion, however, the I
peak remains longer due to the reduced diffusivity of I,
Fig. 2(e). This in turn again drives divergent flow away
from the remaining peak in I, Fig. 2(f), which serves to
accumulate A and I at a different location and repeats the
cycle. In summary, the differential regulation of active
stress coupled with different diffusive relaxation time-
scales lead to pulsatory patterns.
Differential relaxation of the concentration fields can

also be achieved by introducing distinct relaxation times for
A and I through linear chemical kinetics. We thus write

∂tA ¼ −∇ · ðvAÞ þD∇2A − κðA − A0Þ; (12)

∂tI ¼ −∇ · ðvIÞ þD∇2I − ρκðI − I0Þ; (13)

where κ is the turnover rate of A, ρ > 0 is the ratio of
the turnover rate of I to that of A, and A0 and I0 are the
steady-state values of A and I, respectively, in the homo-
geneous state. For simplicity, we have now chosen the
diffusivities of A and I to be the same. Equations (12) and
(13), together with Eqs. (3)–(5) specify our active stress-
advection-reaction-diffusion system. Again, A and I are

Homogeneous

Stationary

Oscillating

Linear stability

(a)

(b)

(c)

(d)

(e)

FIG. 1 (Color online) (color online). Dispersion relations and
phase diagram for the active stress-advection-diffusion system in
d ¼ 1 with α ¼ 0.1, and using Eq. (11). (a)–(c) Variation of the
real and imaginary parts of the leading eigenvalue λþ of the linear
stability matrix (7) with k for β ¼ 3, and increasing Péclet
numbers P: (a) P < Pc, (b) P ¼ Pc, and (c) P > Pc, where
Pc is the critical Péclet number for an oscillatory instability.
(d) Phase diagram in the β-P plane. The solid curve is the linear
stability boundary for the homogeneous state. The symbols
indicate the type of patterns obtained at long times in numerical
simulation at different points of the phase diagram (see legend).
Temporal snapshots of the dynamics appear in Fig. 2 for the
parameter value marked by crossed symbol. Inset (e): Time
period of oscillations T determined numerically, for the points
enclosed in the gray shaded rectangle in (d), at P ¼ 1.2. The solid
line is 2π=Im½λþðk1Þ�.

(a) (c) (e)

(b) (d) (f)

FIG. 2 (Color online) (color online). Temporal evolution of the
active stress-advection-diffusion model in d ¼ 1 with parameter
values corresponding to the point marked with crossed symbol,
Fig. 1(d). The top row (a,c,d) shows the evolution of the
concentration profiles of A (thick green curve) and I (thin red
curve) for half a period. Time points are specified above the plots.
The bottom row (b,d,f) shows the corresponding profiles of the
hydrodynamic velocity v (thick blue curve) and the active stress
ζΔμ (thin black curve). The Supplemental Material [30] contains
a movie showing the temporal evolution of these profiles.
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coupled only via advection, and any pattern forming
instabilities that may occur are mechanochemical in nature.
We analyzed this system in a manner analogous to the
previous system, and find that it can exhibit pulsatory
patterns when the active stress up-regulator A turns over
faster than the active stress down-regulator I, i.e., ρ < 1.
Figure 3 shows the phase diagram of this system, together
with temporal snapshots of the patterns exhibited. The
patterns display several maxima arranged in hexagonal
patterns for stationary states. In the oscillating phase, we
obtain oscillating square lattice patterns or oscillating
honeycomb lattice patterns at the points indicated in the
phase diagram in Fig. 3. It should be noted that the several
maxima that appear in the patterns come about because the
ratio of the diffusivity D to the the turnover rate κ sets a
length scale, in addition to l.
We have presented a theory for pulsatory patterns in

active thin films with two chemical species regulating the
active stress. Differential relaxation of the concentrations
either via different diffusivities or via different rates of
turnover coupled with active stress regulation generically
leads to pulsatory patterns. The criteria for oscillatory
instabilities are reminiscent of classical Turing criteria for
the formation of stationary patterns in reaction-diffusion
systems. The mechanism of oscillatory instability
involves the chemical regulation of active matter flow
and thus is fundamentally different from those observed
in chemical systems.
For a system that displays pulsatory patterns, it might be

of interest to identify whether pulsation arises due to a
purely chemical instability, due to a purely mechanical
instability, or due to a combination of mechanics and

chemistry. For the first two cases, an analysis of correla-
tions between concentration and flow profiles is adequate
to identify them. For example, there are no flows for a
purely chemical instability. In an experimental situation,
the observed concentration and flow patterns are thus
uncorrelated. In the case where neither chemistry nor
mechanics alone display pulsatory patterns, they are
inseparably coupled to provide the observed dynamic
behavior, and must be analyzed as such. In this case,
perturbing either chemistry or mechanics will affect the
patterns.
Our study was motivated by the pulsatile patterns

observed in the actomyosin cytoskeleton. The system
with distinct turnover rates is more readily applicable to
this case, and the pulsatory patterns that can arise (Fig. 3)
share similarities with those observed [16,17,19–21].
Here, myosin motor proteins represent the up-regulating
species [17], and it is intriguing to speculate which
proteins correspond to the species that down-regulates
the active stress. Possibilities are actin itself, or one of the
many other proteins that associate with the actomyosin
cortex [31]. Although our study was motivated by the
pulsatile patterns observed in the actomyosin cytoskele-
ton, our results are more general and could apply to other
systems, for example biological systems at the scale of
tissues.
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(b) Stationary
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FIG. 3 (Color online) (color online). (a) Phase diagram of the active stress-advection-reaction-diffusion model in d ¼ 2 with κτ ¼ 1
and ρ ¼ 0.1. (b)–(i) show representative patterns for the points marked with × in (a). The intensity map represents the concentration field
of the species A and the quiver plot represents the hydrodynamic velocity field v. (b) Stationary hexagonal patterns, (c)–(e) temporal
evolution of the oscillating square lattice pattern, (f) a drifting square lattice pattern that moves without shape distortion in the direction
indicated by the gray arrow, (g)-(i) temporal evolution of the oscillating honeycomb lattice pattern. The Supplemental Material [30]
contains movies for the patterns in (b)–(i).
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