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Curvature regulation of the ciliary beat through axonemal twist
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Cilia and flagella are hairlike organelles that propel cells through fluid. The active motion of the axoneme,
the motile structure inside cilia and flagella, is powered by molecular motors of the axonemal dynein family.
These motors generate forces and torques that slide and bend the microtubule doublets within the axoneme. To
create regular waveforms, the activities of the dyneins must be coordinated. It is thought that coordination is
mediated by stresses due to radial, transverse, or sliding deformations, and which build up within the moving
axoneme and feed back on dynein activity. However, which particular components of the stress regulate the
motors to produce the observed waveforms of the many different types of flagella remains an open question. To
address this question, we describe the axoneme as a three-dimensional bundle of filaments and characterize its
mechanics. We show that regulation of the motors by radial and transverse stresses can lead to a coordinated
flagellar motion only in the presence of twist. We show that twist, which could arise from torque produced by the
dyneins, couples curvature to transverse and radial stresses. We calculate emergent beating patterns in twisted
axonemes resulting from regulation by transverse stresses. The resulting waveforms are similar to those observed
in flagella of Chlamydomonas and sperm. Due to the twist, the waveform has nonplanar components, which
result in swimming trajectories such as twisted ribbons and helices, which agree with observations.
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Cilia and flagella are slender cellular organelles that contain
a motile internal structure called the axoneme. The axoneme
contains a regular arrangement of nine microtubule doublets
in a cylindrical geometry that is associated with additional
structural elements such as radial spokes, a central pair of
microtubules, motor proteins in the axonemal dynein family,
and other elements such as nexin linkers [1,2]; see Fig. 1(a).
The axoneme undergoes regular oscillatory bending waves
that propel cells through fluids, and fluids across the surfaces
of cells. This beat is powered by the dyneins, which generate
sliding displacements between adjacent doublets [3]. Bending
of the axoneme originates from the imbalance of dynein motors
on opposite sides of the bending plane [4,5]. For instance,
bending of the axoneme schematized in Fig. 1(a) occurs
when motors above the dashed line (beating plane) dominate
over those below, or vice versa. The coordinated on and off
switching of the motors on opposite sides of the axoneme
results in periodic bending waves.

It has been suggested that the switching of dynein activity
between opposite sides of the axoneme is the result of
feedback [4,6–8]. The axonemal dyneins generate forces de-
forming the axoneme; the deformations or the corresponding
stresses, in turn, act as a signal that regulates the dyneins. To
regulate motors, this signal has to affect motors on opposite
sides of the axoneme antagonistically, activating those on one
side of the beating plane while at the same time deactivating
those on the other. Such reciprocal antagonism leads to a
tug-of-war between motors across the axoneme with a winner-
take-all outcome (i.e., a switch). An example of an antagonistic
signal is interdoublet sliding: when the axoneme bends, the
sliding is in one direction on one side of the beating plane and
in the other direction on the other side. Sliding regulation has
been shown to generate beating patterns [6,7,9,10].

Doublet curvature is also antagonistic across the ax-
oneme, and was one of the earliest proposals for beat
regulation [5,11,12]. Importantly, it has recently been shown

that regulation by curvature can accurately reproduce the
waveforms of isolated Chlamydomonas axonemes, whereas
regulation by sliding forces fails to generate propagating
waves [13,14]. However, there is no clear mechanism by
which motors can sense curvature. The reason is that the
strains resulting from curvature changes in the axoneme are
very small, 0.5% or 0.2 Å per tubulin subunit (for a typical
maximum curvature of radius 4 μm, [14]). Such strains would
be exceedingly difficult to be sensed by the small microtubule
binding domain of dynein [15,16]. Given the recent support
for curvature regulation, a key question remains open: how can
motors sense curvature?

Another proposal for beat regulation, referred to as the
“geometric clutch,” is that dynein is regulated by transverse
stress, which tends to separate the doublets. However, for
nontwisted waveforms, the transverse stress is not antagonistic
because the rotational symmetry of the axoneme implies that
bends in either direction cause the same transverse and radial
stresses (a result that we will establish rigorously in this
paper). Regulation by transverse stress, therefore, requires an
additional asymmetry [5,17,18], whose origin remains elusive.
The same problem occurs in regulation by radial stresses,
which tend to increase the diameter of the axonemal cross
section.

To address the question of how motors can sense curvature,
a three-dimensional description of the axoneme is necessary.
Only then can the issue of motor antagonism be directly ad-
dressed. Furthermore, a three-dimensional model is necessary
to distinguish between radial and transverse stresses. Finally,
a three-dimensional model is necessary to address the role of
twist.

There are two reasons to think that twist may exist in
axonemes. First, axonemal dynein is known to generate a
torque that rotates microtubules in gliding assays [19,20]. The
handedness of the rotation corresponds to a negative twist,
as defined below. And second, cilia and flagella often have
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FIG. 1. Geometry of the axoneme. (a) Schematic of an axonemal
cross section of radius a0, with numbering for the nine doublets, as
seen from the basal end. Dyneins appear in blue and green, elastic
linkers in purple, and radial spokes in orange. The cross-bridges
between doublets 1-2 (thick purple lines) define the beating plane
(dashed line). The centerline triad is oriented such that e1, in red,
points between doublets 3 and 4, and the beating plane is spanned by
e2, in green, and e3, in blue. Bending in the direction of e2 requires the
motors in filaments 2–5 to be active, while bending in the direction
of −e2 requires activity of motors in filaments 6–9. (b) The bundle
of filaments on the surface of a bent twisted cylinder is parametrized
by the azimuthal coordinate φ and the arc-length s of the centerline.

chiral swimming paths [21,22], which suggests that their beat
patterns are themselves chiral or twisted.

Despite some early computational attempts [23], no three-
dimensional mechanical model of the axoneme exists in the
literature. Thus, the dependence of the transverse and radial
stresses on curvature and twist remains unaddressed, and the
origin of curvature sensing remains unanswered. In this paper,
we develop a mechanical model of the three-dimensional
axonemal structure. This model, inspired by earlier work [24],
is able to distinguish between transverse and radial stresses
in the three-dimensional axonemal structure, and allows us
to investigate their antagonism. We show that motor torques
can generate twist, and that this twist is enough to break the
symmetry of radial and transverse stresses. In particular, we
show that twist leads to coupling of curvature to both transverse
and radial forces, which leads naturally to alternative mecha-
nisms of curvature sensing. Furthermore, the transverse stress
is directly proportional to curvature, which results in beating
patterns analogous to those of curvature regulation that were
shown in Ref. [13] to agree with the beat of Chlamydomonas
axonemes. Importantly, due to the presence of twist, the
emerging beat patterns are nonplanar, and we show how
this results in complex swimming trajectories such as twisted
ribbons and helices, which are indeed observed [21,22].

I. CONTINUUM MECHANICS OF THE AXONEME

We characterize the axonemal structure by a bundle of
filaments corresponding to the microtubule doublets that are
arranged on the surface of a cylindrical sheet of radius
a0 [24]; see Fig. 1. Estimates of all geometric and mechanical
parameters can be found in the last section of the Appendix.

The cylindrical sheet R(s,φ) is parametrized by an angular
coordinate φ and the distance variable s as

R(s,φ) = r(s) + e1(s)a0 cos(φ) + e2(s)a0 sin(φ). (1)

Here, s is the arc-length of the centerline r(s) of the cylindrical
sheet measured from base to tip. The vectors e1 and e2 are unit

vectors normal to the centerline with unit tangent e3 = ∂sr.
We choose e1 to point between filaments n = 3 and 4, and we
orient e2 perpendicular to both e1 and e3; see Fig. 1(a). The
angular parameter φ starts at e1 and grows positive clockwise
toward e2. It is used to identify filaments, which correspond to
the values φ = φn with φn = 2π (n − 4)/9 + π/9.

The geometry of the filaments is fully characterized by the
axonemal curvatures and twist of the centerline. The in-plane
curvature is � = e3 · ∂se2, and the twist is � = e2 · ∂se1. In
the following, we will focus on the case of almost planar and
weakly twisted axonemal shapes. Physically this corresponds
to enforcing the constraint e3 · ∂se1 = 0. A more general case
is discussed in the Appendix; see Eq. (A1) and below.

To discuss the mechanics of the axoneme, we introduce
the relevant deformation variables. We fix the cylinder radius
a0 and the separation between neighboring filaments 2πa0/9.
These constraints are enforced by the radial stress σa and
the transverse stress σφ , respectively [see Eq. (A9) in the
Appendix]. We also impose incompressibility of the filaments;
see [25] for a more general treatment. Two key deformation
variables of the filament bundle are the sliding displacement
between filaments � [24–26] and the filament splay 	, which
corresponds to the out-of-plane rotation of the filaments [see
Eqs. (A2) and (A4) and Fig. 4(a) in the Appendix]. To linear
order in the curvature and twist, we can express the sliding
displacement and the splay as

�(s,φ) ≈ �b(φ) − a2
0�(s) + a0 cos(φ)

∫ s

0
�(s ′)ds ′, (2)

	(s) ≈ −a0�(s). (3)

Note that, to lowest order in the deformations, the splay directly
corresponds to axonemal twist. Here we have introduced the
basal sliding �b [27], known to be key in shaping the beating
patterns [7].

Molecular motors can induce sliding displacement and
filament splay by generating active stress conjugate to these
strains; see Eq. (A9) and Fig. 4(b) in the Appendix. These
conjugate stresses are the motor force fm, which tends to
slide filaments apart, and the motor torque mm, which tends to
induce splay. In addition to motors, passive structural elements
can also generate stresses. For instance, elements that link
neighboring doublets (such as nexin links) will generate a
passive sliding stress ks�, where ks is the sliding stiffness.

In the following, radial Fourier modes in angle φ will play
a key role. For example, the motor force can be written as
fm = f (0)

m + f (1)
m cos(φ) + · · · . In this analysis, we truncate

the series after the first mode for simplicity. Importantly,
the mode n = 1 is antagonistic, as it produces forces with
sign +f (1)

m in the region φ ∈ [−π/2,π/2] above the bending
plane and with sign −f (1)

m in the opposing region. Higher
modes can be systematically taken into account if they become
relevant; see the Appendix for a treatment of the second
mode. Correspondingly, we also expand the net sliding force
f = fm + ks�, and the stresses σφ and σa in angular Fourier
modes. Since the motor torque mm couples to 	, which shows
no angular dependence, the angular components of mm can
be integrated out from the force balance; see Eq. (A9) in
the Appendix. We thus do not expand the torques in angular
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modes. Upper indices in parentheses in the following always
denote azimuthal Fourier modes.

II. RADIAL AND TRANSVERSE STRESS
IN A TWISTED AXONEME

A bent and twisted axoneme exhibits radial stress σa and
transverse stress σφ , which may be key in regulating the motor
activity. To determine their values, we first establish a static
torque balance for the twist of the axoneme. In the case in
which twist relaxes quickly in time, the corresponding torque
balance will be quasistatic and the static torque balance will
apply. The torque balance then implies

a4
0ks� − a2

0κ1∂
2
s � = a0mm + a2

0f
(0)
m . (4)

This equation shows that the cilium is twisted by motor torques
mm and also by the zeroth harmonic of motor force f (0)

m
(i.e., the azimuthally invariant component). The corresponding
twist stiffness is provided by the doublet sliding stiffness ks.
Since twisting the cilium involves bending of the doublets, the
bending stiffness of the axoneme per unit angle κ1 couples to
twist. The competition of sliding and bending of the filaments
during twist is characterized by the length scale d =

√
κ1/a

2
0ks,

at which twist deformations decay along the axoneme in
response to spatially localized motor forces or torques. Note
that the axonemal bending stiffness per unit angle κ1 is related
to that of an individual filament by a geometric factor of 9/2π .
That is, κ1 = 9κdb/2π , with κdb the doublet bending rigidity.
Axonemal twist is governed by torsional stiffness. Elastic
linkers between neighboring microtubule doublets provide an
effective torsional stiffness a4

0ks of the axoneme; see Eq. (4).
The transverse and radial stresses can be calculated from

force balances that constrain the radius and angle variables.
The full expressions of σa and σφ are given in the Appendix;
see Eqs. (A11) and (A12). In the simple case of almost planar
deformations with small twist, we have

σ
(1)
φ = Mm�/a2

0, (5)

σ (0)
a = �F (1)

2a0
, (6)

σ (1)
a = 2f (1)� + 3κ1�∂s�/a0 + �Mm, (7)

where we have introduced the integrated torque Mm =
− ∫ L

s
mmds ′ and the integrated net sliding force F (1) =

− ∫ L

s
f (1)ds ′, with f (1) = f (1)

m + ks�
(1). Figure 2 depicts the

angular profiles of radial and transverse stresses. Note that σ (0)
φ

vanishes, while the first angular mode σ
(1)
φ of the transverse

stress is proportional to curvature �. The zeroth mode of
the radial stress, in Eq. (6), is a generalization of the normal
stress in two-dimensional models [17,18,28]. Importantly, the
antagonistic n = 1 modes of the radial and transverse stresses
allow for motor control. These modes are enabled by motor
torques that, according to Eq. (4), can result in axonemal twist.
Thus, we predict only that in twisted axonemes it is possible
to have regulation by transverse and radial stresses.

(b)

(a)

(c)

FIG. 2. Azimuthal stress profile. (a) Components of the sliding
force. The zeroth mode is homogeneous and, with the motor torques,
determines the twist. The first mode, positive above the dashed line
(beating plane) and negative below (for f (1) > 0), is responsible for
in-plane bending. (b) and (c) The transverse stress has a first mode,
and the radial stress has a zeroth and first mode. These first modes,
possible only in the presence of motor torques, can regulate the first
mode of the sliding force.

III. SELF-ORGANIZED BEATING BY MOTOR
CONTROL FEEDBACK

We now focus our attention on self-organized beating
patterns with small-amplitude waveforms and angular beat
frequency ω. In this case, the periodic flagellar beat is powered
by oscillating sliding forces, which we write in frequency
representation as f = f̃0 + f̃1e

iωt + · · · , where f̃0 is time-
independent, f̃1 = f̃ ∗

−1 is the amplitude of the fundamental
Fourier mode, and higher frequency harmonics have been
omitted for simplicity. We also define time Fourier modes
of the azimuthal force components denoted f̃

(n)
k , as well

as of the transverse stress σ̃
(n)
φ,k , sliding �̃

(n)
k , and torque

m̃m,k , where k = −1,0,1 and n = 0,1,2. These components
generally depend on arc-length s.

The motor forces and torques are the result of a feedback
regulation of motors by axonemal deformations [9,29]. Here
we focus on the case in which the oscillating instability
occurs via the oscillating force amplitude f̃

(1)
1 , but not the

oscillating torque amplitude m̃m,1. We propose that motor
regulation occurs through the sensitivity of the motor function
to local axonemal deformations and stresses. For simplicity,
we illustrate our ideas by focusing on regulation by sliding
displacement [6,8,24] and by molecular deformations induced
by the transversal stress [17,18,28]. We therefore write the
oscillating motor force to linear order as

f̃
(1)
1 = χ (ω)�̃(1)

1 + ζ (ω)σ̃ (1)
φ,1, (8)

where χ (ω) and ζ (ω) are complex frequency-dependent
linear-response coefficients describing the effects of sliding
displacement and transverse stress, respectively [8]. Response
to the n = 1 mode of other stresses can in principle be added.
For example, the term ρ(ω)σ̃ (1)

a,1 would allow for response to
radial stress.

042426-3
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FIG. 3. Twisted beating patterns and swimming trajectories. (a)–(c) Above, top, side, and front view of self-organized beating pattern
regulated by transverse stress [(a) and (b)] or sliding [(c)]. Due to the twist, all beating patterns are nonplanar, however only the waveforms in
(b) and (c) are asymmetric. Below, three different views of the swimming path with a laboratory frame for reference. The gray line shows the
path of the basal point, the yellow twisted surface shows the average trajectory, and the blue arrow indicates the swimming direction. For the
symmetric beating pattern (a), the swimming surface forms a twisted ribbon, while for the asymmetric cases it forms a helix [(b) and (c)]. Note
that due to the presence of the head, the precession of the basal end in (c) is much smaller than that in (a) and (b).

IV. SYMMETRIC AND ASYMMETRIC TWISTED
BEATING PATTERNS

The dynamics of the axoneme is governed by a balance
of fluid friction forces, mechanical forces of the axoneme
structure, and active motor forces. These are characterized,
respectively, by the friction coefficient per unit length ξ⊥, the
sliding and bending stiffnesses ks and κ1, and the motor force
fm; see Eq. (A13) in the Appendix for a general expression.
This force balance gives rise to beating patterns that occur by
an oscillating instability from an initially nonoscillating state.
This instability can be driven by the mechanical feedbacks
mediated by the regulation of motors by sliding displacements
or tangential stresses described by Eq. (8). The nonoscillating
state is characterized by a time-independent curvature � = �̃0

and a time-independent twist � = �̃0. Starting from this
nonoscillating state, an oscillating mode that represents the
flagellar beat can emerge. This mode can be characterized
by the Fourier amplitude of the fundamental frequency
component �̃1, which becomes nonzero beyond the instability
point.

We now discuss the symmetry properties of the emerging
beating patterns. We first consider the simple case of vanishing
static twist � = 0, for which beats are confined to a plane. In
this case, we can distinguish symmetric beats, with vanishing
average curvature �̃0 = 0, and asymmetric beats, with �̃0 �=
0. Symmetric beats are mirror symmetric within the beat

plane [8], and the swimming trajectories are straight lines
within the plane. This mirror symmetry is broken in the asym-
metric case, for which swimming trajectories are circles in the
plane [30].

Generally, the static twist does not vanish. The beating
pattern is then confined to a twisted two-dimensional manifold;
see Figs. 3(a)–3(c), bottom panels. Again, we can distinguish
symmetric and asymmetric twisted beats. In the symmetric
case with �̃0 = 0, the beat is now symmetric with respect
to π rotations with a rotation axis tangential to the manifold
[see Fig. 3(a)], and swimming trajectories are straight lines
on the manifold. This symmetry is broken in the case of
asymmetric twisted beats, which exhibit helical swimming
paths [see Fig. 3(b)].

The static twist is determined from Eq. (4). The static
curvature of asymmetric beats follows from the force bal-
ance κ̄�̃0 = āF̃

(1)
0 , where κ̄ = π (κ1 + κ2) is an effective

bending rigidity and ā = πa0. An approximately constant
static curvature, such as that observed in Chlamydomonas
axonemes [13,14], requires static forces that act at the distal
end, in which case F

(1)
0 is s-independent. In the following,

we focus on this case. For simplicity, we consider that the
static torques also accumulate at the distal end, and Mm,0 is
also s-independent. As a consequence, the static curvature is
constant and the average shape is a twisted circular arc. We
can now express the dynamic equation for the beat shape. For
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the case of a symmetric twisted beat, we find

iωξ⊥�̃1 = −κ̄∂4
s �̃1 + πa2

0χ∂2
s �̃1 + πa0β∂3

s �̃1. (9)

Here β(ω) = (Mm,0/a
2
0)ζ (ω) plays the role of an effective

motor control feedback by curvature. The term proportional
to χ describes a motor control feedback by sliding displace-
ments. Regulation by transverse stress would contribute with
additional geometrical terms proportional to ρ.

Equation (9) not only describes beats in a plane, but
for � �= 0 it describes beats on a twisted two-dimensional
manifold. The resulting three-dimensional shapes r(s) can be
determined from � and �, which are solutions to Eqs. (9)
and (4), by integrating ∂se3 = −�e2 and ∂se2 = �e3 − �e1.
Thus, although we constrained e3 · ∂se1 = 0, the twist causes
out-of-plane bending. An example of such a beat is shown in
Fig. 3(a) in the case in which oscillations are generated by
motors that are regulated via transverse stresses. The resulting
waveform is nonplanar and the swimming path corresponds
to a twisted ribbon, as recently observed in sperm [31]. The
planar projection of this beating pattern is analogous to that of
the Chlamydomonas mutant mbo2 [32], as recently shown in
Ref. [13].

Asymmetric beating patterns can be studied in a similar
way; see Eq. (A19) in the Appendix, which is a generalization
of Eq. (9). An example of such a beating pattern for the
case of motor regulation by transverse stresses is shown in
Fig. 3(b). This beating pattern is nonplanar and asymmetric,
and the resulting swimming path is a helical ribbon. This
waveform is analogous to the one observed for the wild-type
Chlamydomonas axoneme [33], as detailed in Ref. [13].

Alternatively, we can also discuss beats by motor regulation
via sliding. It has been suggested that sliding control likely
governs the beat shape of bull sperm [7]. In Fig. 3(c), we show
such a beating pattern of asymmetrically beating axoneme with
motors regulated via sliding. The result is a waveform similar
to that of a freely swimming bull sperm. Due to the friction of
the sperm head [green sphere in Fig. 3(c)], the resulting helical
ribbon is narrow as compared to Fig. 3(b); see also [21,22].

V. DISCUSSION

Using a three-dimensional continuum mechanical model of
the axoneme, we showed that both shear stresses (associated
with sliding forces) and transverse stresses (associated with
torques) can be used to regulate motors and generate periodic
beating patterns. In principle, radial stresses could also regulate
the motors. The key feature of all these stresses is that they
are antagonistic, meaning that they have opposite sign on
opposite sides of the axoneme and so will lead to switching
of motor activity. Our finding is that twist, induced by motor
torques, leads to coupling between curvature and transverse
stress. Thus, in the presence of twist, transverse stresses
are proportional to curvature. Consequently, twist provides
an alternative mechanism by which the motors can sense
curvature, namely through the tendency of the doublets to
separate. This provides a possible solution to the problem of
sensing the tiny strains associated with microtubule bending.

Dynein-generated torques induce splay deformations of
microtubule doublets, which in turn lead to axonemal twist.
As a consequence of the twist, beating patterns are in general

chiral. This chirality produces a nonplanar component to the
waveform, which results in the swimming trajectories being
either helical paths or twisted ribbons. Such swimming paths
have indeed been observed experimentally for different sperm
cells [21,22,31]. If such swimmers are observed near surfaces,
the chirality of the beat leads to circular trajectories [34],
which have been reported for many systems [30,35]. Using
literature values for the mechanical properties of the axoneme
together with the presented theoretical framework, the amount
of expected twist was calculated as the distal twist angle, which
is 0.04 rad for bull sperm and 0.25 rad for Chlamydomonas.
These values present approximations for the expected twist
sufficient to realize the proposed motor-regulation of the beat,
and they can be compared to experimental studies.

Because the structure of the axoneme is three-dimensional,
and the resulting beats are nonplanar (in general), we believe
that our cylindrical continuum mechanical model of the ax-
oneme will be an important tool to understand the mechanical
origin of beat asymmetries and the selection of the beat plane
of flagellar beats.
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APPENDIX

1. Geometry of the axoneme

The axonemal structure is in general subject to radial
deformations as well as deformations that alter the transverse
spacing between adjacent microtubules. To account for this, we
introduce the function ϕ(s,φ) describing the azimuthal angle
of filaments indexed by φ. Similarly, we allow the cylinder
radius a(s,φ) to depend on s and φ. Taking this into account,
the geometry of the cylindrical sheet containing the filament
doublets is given by

R(s,φ) = r(s) + e1(s)a(s,φ)cos(ϕ(s,φ))

+ e2(s)a(s,φ)sin(ϕ(s,φ)), (A1)

which is a generalization of Eq. (1) that allows for radial as
well as transverse deformations.

To characterize the geometry of the filaments, we introduce
the tangent vectors es = ∂sR/|∂sR| and eφ = ∂φR/|∂φR|,
which form a basis of the tangent space on the cylindrical
sheet. We also introduce the filament normal n in the tangent
plane. It obeys es · n = 0 and n2 = 1; see Fig. 4(a). The
vector ea = n × es is normal to the cylinder pointing outward.
The filament curvatures tangential and perpendicular to the
cylindrical surface are then given by C1(s,φ) = es · ∂sn and
C2(s,φ) = ea · ∂ses , respectively.

We now discuss the deformation variables relevant for
the mechanical description of the axoneme. For simplicity,
we impose the constraints ϕ = φ and a = a0 for which the
cylinder radius a0 and the separation between neighboring
filaments 2πa0/9 are fixed. We also impose incompressibility
of the filaments; see [25] for a more general treatment. The
two most relevant deformation variables of the filament bundle
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(b)

(a) relaxed deformed

FIG. 4. Deformation of the axoneme. (a) Relaxed and deformed
geometries of the axoneme with two filaments marked in green and
blue, and a dynein represented as a black line with a green circle. In the
deformed state, the tangent plane (in red) spanned by es and eφ does
not contain the tangent vector e′

s of the contiguous doublet, which is
displaced out of the plane by a distance 	 in the direction of ea . The
sliding � corresponds to the length mismatch of the two successive
doublets measured by projecting in the direction of the normal vector
n. (b) A dynein motor creates a pair of forces fm that produces sliding
�, and also torques mm that produce out-of-plane displacement 	.
The deformed states are shown from different perspectives, with the
tangent and normal vectors indicated.

are then the sliding displacement � [24–26] and the splay 	;
see Fig. 4(a). The sliding displacement is defined by

� = a0∇n(�b + �), (A2)

where � denotes the arc-length of a filament corresponding to
angle φ at centerline distance s, with

�(s,φ) =
∫ s

0
|∂sR(s ′,φ)|ds ′. (A3)

The length offset at the base, defined as the mismatch
between the centerline and filament φ, is denoted �b(φ).
Correspondingly, the sliding displacement at the base is
�b = a0∇n�b. Here, the normal derivative is defined by
∇nf = (ns/|∂sR|)∂sf + (nφ/|∂φR|)∂φf , where ns and nφ are
the components of n = nses + nφeφ ; see [24] for details on
calculating n. The filaments splay is defined as

	 = ea · ∂φes , (A4)

and it corresponds to the out-of-plane rotation of the filament
tangent vector when changing φ.

The geometry of the filaments is fully characterized by
the axonemal curvatures, � = e3 · ∂se2 and � = −e3 · ∂se1,
the twist � = e2 · ∂se1, and the length offset �b(φ). Thus, the
curvatures of the doublets, C1(s,φ) and C2(s.φ), the axonemal
splay 	, and the sliding displacement � are functions of �,
�, �, and �b. For the case of small deformations, we have

C1(s,φ) ≈ �(s) cos(φ) + �(s) sin(φ) − a0∂s�, (A5)

C2(s,φ) ≈ �(s) cos(φ) − �(s) sin(φ), (A6)

where only terms linear in the axoneme curvatures are kept;
see also [25]. Note that � and � correspond to curvatures
in two perpendicular directions, and that in the main text we
constrained � = 0. Note also that the rate of twist, and not

the twist, affects the curvature on the tangent plane C1. This is
because, as shown in Eq. (3), a constant twist corresponds to a
constant sliding. Constant twist contributes as a higher-order
correction to C2. Using these expressions and the definitions
Eqs. (A2) and (A4) for sliding and splay, we arrive at

�(s,φ) ≈ �b(φ) − a2
0�(s) + a0 cos(φ)

∫ s

0
�(s ′)ds ′

+ a0 sin(φ)
∫ s

0
�(s ′)ds ′, (A7)

	(s) ≈ −a0�(s). (A8)

See [24] for details on similar calculations.

2. Work functional

The mechanical properties of the axoneme are characterized
by the elasticity of filaments and linkers, and the active forces
and torques generated by molecular motors. We introduce
the work functional G that describes the mechanical work
performed to induce axonemal deformations:

G =
∫ L

0

∫ 2π

0

{
κ1

2
C2

1 + κ2

2
C2

2 + ks

2
�2 + kr

2
(�b + � − s)2

+ fm� + mm	 + σφa2
0(∂φϕ − 1) + σaa0(a − a0)

+ �

2
|∂sr|2

}
ds dφ +

∫ 2π

0

{
Ks

2
�2

b + Kr

2
�2

b

}
dφ. (A9)

Here κ1 and κ2 are bending rigidities corresponding to
deformation of the filaments tangent and perpendicular to the
cylindrical sheet. The sliding stiffness of elements that link
neighboring doublets is denoted ks. Similarly, kr denotes the
radial stiffness of sliding linkers between filaments and the
central pair, which was ignored in the main text for simplicity.
These elastic constants relate to those of an individual filament
by a geometric factor of 9/2π , for example κ1 = 9κdb/2π ,
with κdb the doublet bending rigidity. The tangential stress σφ

and the radial stress σa are Lagrange multipliers to impose
the constraints ϕ = φ and a = a0. The Lagrange multiplier
� imposes the constraint |∂sr| = 1. Finally, Ks and Kr are
basal stiffnesses between neighboring filaments and between
filaments and the central pair, respectively. The mechanical
work performed by motors is given by fm� and mm	.

We express the φ dependence of variables in Eq. (A9) by
Fourier series. For instance, the motor force can be written as

fm = f (0)
m + f (1)

m cos(φ) + f (2)
m sin(φ) + · · · , (A10)

with f (n)
m unknown functions of the arc-length. In the main

text, we considered the n = 0,1 modes. Here we also discuss
the n = 2 mode, which is orthogonal to n = 1 and causes
bending in the out-of-plane direction. Correspondingly, we
also expand σφ , σa , �, �, and �b. Note that because 	 shows
no angular dependence, in Eq. (A9) any φ dependence of mm

can be integrated out. We thus do not expand mm in φ. The
same argument holds for the Lagrange multiplier �.

3. Radial and transverse stress

To obtain the radial stress σa and the transverse stress σφ , we
use the force balances given by δG/δa = 0 and δG/δϕ = 0.
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The procedure is straightforward, see [8,24,28] for similar
calculations, and for σa directly gives

σa = 2(f − mm/a0)� + F [� cos(φ) + � sin(φ)]/a0

+Fr[� sin(φ) − � cos(φ)]/a0 − κ1{(∂s�)2

− 2∂s�[� cos(φ) + � sin(φ)]/a0}, (A11)

where we have introduced the radial force Fr = − ∫ L

s
kr(�b +

� − s)ds ′, set to zero in the main text. For the case � = 0 and
to linear order in �, the zeroth and first azimuthal modes are
those in Eqs. (6) and (7), where we have used the integral of
Eq. (4). In the case of the transverse stress, the force balance
results in

a2
0∂φσφ = κ1[� cos(φ) + � sin(φ) − a0∂s�]

× [� cos(φ) − � sin(φ)]

− κ2[� cos(φ) − � sin(φ)][� sin(φ) + � cos(φ)]

− a0F [� cos(φ) − � sin(φ)]

− a0Fr[� cos(φ) + � sin(φ)]. (A12)

For the case � = 0, we have a2
0∂φσφ = (a0F

(0) +
a0κ1∂s�)� sin(φ) + · · · . Using Eq. (4) and integrating gives
the harmonic in Eq. (5).

4. General equations of motion

In the case in which the twist � relaxes fast over time, the
torque balance is determined by δG/δ� = 0, which results in
Eq. (4); see [24] for a characterization of twist dynamics. The
dynamics of the centerline r is governed by a balance of fluid
friction forces and axonemal forces,

∂tr = −(ξ−1
⊥ (e1e1 + e2e2) + ξ−1

‖ e3e3) · δG

δr
. (A13)

Here δG/δr is the axonemal force, and ξ⊥ and ξ‖ are the friction
coefficients per unit length perpendicular and tangential to
the axonemal axis. From Eq. (A13) we can obtain dynamic
equations for the axonemal curvatures � and � given by ∂t� =
−e2 · ∂t∂

2
s r and ∂t� = e1 · ∂t∂

2
s r. Note that we are neglecting

fluid interactions, which can be relevant when two or more
flagella are nearby [36,37]. This is justified by studies that
show that these interactions are not necessary to understand the
swimming of single flagellates with high precision [30,38,39].

The axonemal force is explicitly given by

δG

δr
= −∂s

{
e1

(−ā
(
F

(1)
t � + f (2)

) + κ̄�� + κ̄∂s�
)

+ e2
(−ā

(
F

(2)
t � − f (1)

) + κ̄��−κ̄∂s� − e3τ
)}

,

(A14)

where we have introduced the total force modes F
(1)
t =

F (1) + F (2)
r and F

(2)
t = F (2) + F (1)

r , the tension τ = 2π� −
ā(F (1)� + F (2)�) − κ̄(�2 + �2), the effective bending rigid-
ity κ̄ = π (κ1 + κ2), and the effective radius ā = πa0. Taking
the time derivative of the constraint ∂sr 2 = 1, we arrive at
e3 · ∂s∂tr = 0, which together with Eq. (A13) provides the
equation for the tension. Finally, to calculate the modes of the
basal length �

(n)
b , we use the sliding force balances δG/δ�

(n)
b =

0. For n = 1 and 2, the equations are Kt�
(1)
b = F

(2)
t (0) and

Kt�
(2)
b = F

(1)
t (0), while doing δG/δ�

(0)
b = 0 results in �

(0)
b = 0.

Here, we have defined the total basal stiffness Kt = Ks + Kr.
The boundary forces and torques exerted by the filament

correspond to the boundary terms of δG/δr and δG/δ�;
see [8,24,28]. Balancing these by external forces Fext and
torques Text, we have at the base s = 0:

Fext = −(−ā
(
F

(1)
t � + f (2)

) + κ̄�� + κ̄∂s�
)
e1

− (−ā
(
F

(2)
t � − f (1)) + κ̄�� − κ̄∂s�

)
e2 + τe3,

(A15)
Text = (

āF (2) − κ̄� − πκ1a
2
0�∂s�

)
e1

+ (−āF (1) + κ̄� + πκ1a
2
0�∂s�

)
e2, (A16)

Mext = κ1a0∂s�. (A17)

The lack of a third component in the torque balance comes
from neglecting the twist dynamics [24]. The third moment
balance comes from the contribution of filament bending, and
involves an additional external moment Mext. At the tip s =
L, the boundary conditions are analogous. In this work, we
considered two types of boundary conditions. For a freely
swimming flagellum, the external forces and torques are null.
For a flagellum attached to a head, the torques and forces at
the base are Fext = ξtransv and Text = ξrotω, where ω = (e3 ·
∂te2,e1 · ∂te3,e2 · ∂te1)0 and v = ∂tr0 are the head’s rotational
and translational velocities, with the subindex 0 indicating
evaluation at s = 0, and ξtrans and ξrot the corresponding friction
coefficients of the head.

5. Weakly nonplanar dynamics of the axoneme

In the main text, we focus on the case of almost planar and
weakly twisted axonemal shapes. Physically, this corresponds
to enforcing the constraint � = 0. The nonlinear equation of
motion of � is then to linear order in � given by

ξ⊥∂t� = −κ̄∂4
s � + ā∂3

s f (1) + ∂2
s (�τ )

+ (ξ⊥/ξ‖)∂s{[�2(κ̄∂s� − āf (1)) + �∂sτ ]}. (A18)

The dynamic shape equation (A18) for the curvature � is a
generalization of the previously introduced shape equation for
two-dimensional beats [8,11,12]. Solving Eq. (A18) provides
the time dependence of the curvature � from which, provided
the twist �, we determine the axonemal shape by integration
along the arc-length. To impose the constraint of � = 0 in
the presence of twist, the component f (2) of the sliding force
becomes a Lagrange multiplier that corresponds to the force
introduced by structural elements.

The dynamics of small-amplitude periodic beats can be
characterized by an equation in frequency space. To obtain
it, we linearize Eq. (A18) and then transform it into Fourier
space. For the case of symmetric beats, in which �̃0 = 0, this
leads directly to Eq. (9). For asymmetric beats, we expand
Eq. (A18) around a static shape given by a constant static
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curvature �̃0 = āF̃
(1)
0 /κ̄ . The dynamic mode then obeys

iωξ⊥�̃1 = −κ̄∂4
s �̃1 + ā∂3

s f
(1)
1 + (1 + ξ⊥/ξ‖)�̃0∂

2
s τ1

+ (ξ⊥/ξ‖)�̃2
0

(
κ̄∂2

s �̃1 − ā∂sf
(1)
1

)
, (A19)

where τ1 is obtained from expanding the equation for the
tension.

6. Twist by tip-accumulated torques

If the source of twist is a tip-accumulated torque, we
have that mm = Mδ(s − L). In the case in which f (0)

m =
0, the solution to Eq. (4) is using the boundary condi-
tions ∂s�(s = 0) = 0, and a0κ1∂s�(s = L) = M is � =
(Md/κ1a0) sinh(s/d)/ cosh(L/d). Note that for L � d the
twist created changes little along the length. Conversely, for
L � d the twist quickly decays away from the tip.

7. Swimming trajectories

The force density exerted by the cilium in the fluid is ffl =
[ξ⊥(e1e1 + e2e2) + ξ‖e3e3] · ∂tr. Imposing that the sum of all
forces and torques in the fluid must vanish, we have ξtransv +∫ L

0 fflds = 0 and ξrotω + ∫ L

0 r × fflds = 0, where the terms
outside the integrals come from the head’s drag [30,39,40].
Given a beating pattern, we can calculate ffl and use these
equations to obtain the translational and rotational velocities
at each instant during the beat.

8. Parameters used

The Chlamydomonas cilium is L = 10.2 μm long and
has frequency ω/2π = 73.1 Hz, while bull sperm has L =
58.3 μm and ω/2π = 19.8 Hz [7]. For bull sperm �̃0 =
0.010 μm−1 [7], for wild-type Chlamydomonas we took
�̃0 = 0.25 μm−1 and for mbo2 �̃0 = 0 [33]. The radius we
used is a0 = 0.2 μm [1,2].

We now estimate F̃
(1)
0 and M , note that a density of

500 μm−1 dyneins with a force of 0.7 pN accumulated
in one distal micron results in a force of F̃

(1)
0 ≈ 300 pN,

compatible with �̃0 for Chlamydomonas. If ∼5% of this force

results in a torque over a distance of 0.015 μm, we ob-
tain M ≈ 0.25 pN μm, used for Chlamydomonas. For bull
sperm, with a smaller �̃0, we used M ≈ 0.025 pN μm
instead.

The stiffnesses were calculated as follows: a doublet
has 24 protofilaments compared to 13 in a microtubule.
The bending stiffness scales as area squared, and so κdb ≈
(24/13)2κmt ≈ 80 pN μm2, with κmt ≈ 23 pN μm2 for mi-
crotubules [41]. This results in κ1 ≈ 115 pN μm2 and κ̄ =
9κdb ≈ 700 pN μm2, comparable to measurements of sea
urchin sperm [42]. The sliding stiffness ks was determined
in Ref. [43], and it corresponds to d between 3.5 and 10 μm;
we chose d ≈ 6 μm. The resulting distal twist angle for bull
sperm is 0.04 rad, while for Chlamydomonas it is 0.25 rad.

The friction coefficients are ξ‖ ≈ 2πη/ ln(2h/a0) and ξ⊥ ≈
2ξ‖, where η is the viscosity of the surrounding fluid [7,42]
and h ≈ 4 μm the distance between the axoneme and the
surface. For water at 22 ◦C we have η = 0.96 10−3 pN s μm−2,
which for L ≈ 10 μm results in ξ‖ ≈ 0.0017 pN s μm−2.
For the head of bull sperm, we use ξtrans = 6πrαtη and
ξrot = 8παrr

3η [42], where r is the radius of the head and
αt = 1/(1 − 9/16) and αr = 1/(1 − 1/8) are corrections due
to the proximity to a wall [44]. In Ref. [7] it was observed that
sliding controlled beating patterns require a large head friction.
We take r ≈ 10 μm, large for bull sperm but adequate for other
species [45]. This results in ξrot ≈ 35 pN s μm and ξtrans =
0.45 pN s μm−1. The values of the response coefficients for
Chlamydomonas wild-type beats were ζ = −i221 μm and
χ = −1645 pN/μm2, for the mbo2 mutant ζ = −i235 μm
and χ = −1916 pN/μm2, and for bull sperm χ = (−5516 −
i10138) pN/μm2.

The torsional stiffness of the axoneme could have contribu-
tions from the torsional stiffness κ3 of individual microtubule
doublets, which for simplicity we have not included in our
discussion. This contribution becomes relevant when doublets
are constrained not to rotate around their axis, and results
in a net torsional stiffness κ3 + a4

0ks. Estimating κ3 ∼ κ1, we
have that κ3/(a4

0ks) ∼ (d/a0)2 ∼ 103. In this case, the torque
necessary to twist the axoneme would be larger, and the twist
would decay faster along the axonemal length.
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