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Abstract
Flagella of eukaryotic cells are transient long cylindrical protrusions. The proteins needed to form
and maintain flagella are synthesized in the cell body and transported to the distal tips. What
‘rulers’ or ‘timers’ a specific type of cells use to strike a balance between the outward and inward
transport of materials so as to maintain a particular length of its flagella in the steady state is one of
the open questions in cellular self-organization. Even more curious is how the two flagella of
biflagellates, like Chlamydomonas reinhardtii, communicate through their base to coordinate their
lengths. In this paper we develop a stochastic model for flagellar length control based on a
time-of-flight (ToF) mechanism. This ToF mechanism decides whether or not structural proteins
are to be loaded onto an intraflagellar transport (IFT) train just before it begins its motorized
journey from the base to the tip of the flagellum. Because of the ongoing turnover, the structural
proteins released from the flagellar tip are transported back to the cell body also by IFT trains. We
represent the traffic of IFT trains as a totally asymmetric simple exclusion process (TASEP). The
ToF mechanism for each flagellum, together with the TASEP-based description of the IFT trains,
combined with a scenario of sharing of a common pool of flagellar structural proteins in
biflagellates, can account for all key features of experimentally known phenomena. These include
ciliogenesis, resorption, deflagellation as well as regeneration after selective amputation of one of
the two flagella. We also show that the experimental observations of Ishikawa and Marshall are
consistent with the ToF mechanism of length control if the effects of the mutual exclusion of the
IFT trains captured by the TASEP are taken into account. Moreover, we make new predictions on
the flagellar length fluctuations and the role of the common pool.

1. Introduction

In a classic article, titled ‘on being the right size’, J B S Haldane [1] first analysed the physical reasons that
explain why ‘for every type of animal there is a convenient size’. He focussed his analysis on the size of
whole organisms. However, the mechanisms that ensure the ‘convenient’ size of a cell [2] and sub-cellular
structures [3–5] have become a very active field of research in recent years. Membrane-bound organelles are
prominent among the sub-cellular structures. Flagella of eukaryotic cells (not to be confused with bacterial
flagella), which are the organelles of our interest in this paper, appear as long cell protrusions [6] (key
features of its structure are summarized in the next section). The short eukaryotic flagella are often referred
to as cilia. In this paper, we will use the terms ‘flagellum’ and ’cilium’ interchangeably.

From the perspective of organelles size control, what makes flagella very interesting is not only the
one-dimensional nature of the problem but also their highly dynamic lengths. The lengths of flagella change
with time in sync with the cell cycle [7–9]. Even when their growth is complete, flagellar structure remains
highly dynamic because each of the flagella continue to incorporate new proteins to make up for the high
ongoing turnover, thereby maintaining a steady balance of the elongation and shortening [10, 11]. So,
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the first challenging question is how a specific cell maintains this balance at a particular length of a
flagellum.

The number of flagella vary from one species to another. Flagellar length control in biflagellated and
multiflagellated cells are more interesting than that in monoflagellates. So, in the context of flagellar length
control, the second challenging question is how biflagellated and multiflagellated cells coordinate the
dynamics of their different flagella. For the sake of simplicity, in this paper, we consider only biflagellated
eukaryotes for which the green algae Chlamydomonas reinhardtii (CR) serves as the most popular model
organism [12, 13].

CR is an interesting organism for studying flagellar length control because CR can loose its flagella in
three distinct ways: resorption, deflagellation and selective amputation. Even more interesting is the fact
that the CR can successfully regenerate its flagella as well. Both the flagella of a CR are gradually retracted
into the cell prior to the cell division [14]; this phenomenon is usually referred to as ‘resorption’. The
flagellar components disassembled during resorption are returned to the cell body [9]. Flagellar disassembly
[15] via resorption should be distinguished from ‘deflagellation’ (also known as flagellar excision, flagellar
shedding or flagellar autotomy) [16]. In the latter process, in response to wide varieties of stimuli, the
axoneme is severed resulting in a complete loss of the flagellar components. Deflagellated CR cells can
regenerate their flagella when stress causing stimulus disappears [17, 18]. One of the flagella, or a distal part
of it, can be selectively amputated in controlled experiments. All the proteins constituting the severed part
of the amputated flagellum are lost by the cell. The regeneration of the amputated flagellum and the
concomitant nonmonotonic variation of the length of its unsevered partner display most vividly the
cooperation of the dynamics of the two flagella. The model we develop here describes resorption,
deflagellation as well as regeneration of flagella within a single theoretical framework.

Proteins are synthesized in the cell body, and not in the flagella. Therefore, the flagellar structural
proteins are transported from the base to the tip of each flagellum by intraflagellar transport (IFT) [19–21].
Similarly, structural constituents of flagella that turn over are transported back to the cell body. IFT
particles, which are multi-protein complexes at the core of the IFT machinery, operate essentially as the
‘protein shuttles’ [22] (further details of IFT are given in the next section). The directed movement of the
IFT particles is powered by molecular motors [23–25]. Note that these motors do not appear explicitly in
our model; instead, their role in IFT is captured by assigning the corresponding intrinsic velocities of
anterograde (tipward) and retrograde (baseward) movement of each IFT particle in the absence of
hindrance.

An IFT particle may not be able to move with its intrinsic speed in a dense traffic because of steric
hindrance caused by other IFT particles in front of it on the same track. Similar traffic-like collective
phenomena in many other subcellular processes (see reference [26–31] for reviews) have been treated in the
past as appropriate variants of the totally asymmetric simple exclusion process (TASEP) [32–34]. In the
same spirit, the collective movement of the motor-driven IFT particles is represented in our model as a
TASEP.

The regulation of transport of the structural proteins by IFT can determine the overall dynamics of the
length of a flagellum. The length-dependent regulation of IFT requires feedback based on the flagellar
length. Even for a single flagellum, it is challenging to understand how the cell ‘knows’ or ‘senses’ the length
of its flagellum. Since none of the cells has a ‘ruler’ for direct measurement of flagellar length, indirect
mechanisms are believed to be used by a cell for getting a constant feedback about its flagellar length [35].
Here we present the theoretical formulation of a generic model based on the ‘time of flight’ (ToF)
mechanism to explore the consequences of such a feedback mechanism on the flagellar length dynamics
[35, 36].

The flagellar structural proteins to be transported are loaded as cargoes on the IFT particles; our model
explicitly distinguishes between IFT particles and molecular cargoes that the IFT particles transport.
Length-sensing by ToF allows a mechanism of ‘differential loading’ [37, 38] (see also [39]) of the flagellar
structural proteins on the IFT trains at the flagellar base before they begin their anterograde journey. The
longer is the flagellum, the fewer incoming IFT trains are loaded with cargoes and the slower is the rate of
growth of the flagellum.

We begin with a model for length control of a single flagellum that incorporates all the following key
features: (i) a ToF mechanism for length sensing [36], (ii) a mechanism of differential-loading of flagellar
structural proteins as cargo on the IFT trains [37, 38], (iii) a TASEP-based representation of the collective
traffic-like movement of IFT trains [31], (iv) a flagellar elongation rate that is proportional to anterograde
flux of the flagellar structural proteins at the flagellar tip, (v) a flagellar shortening rate that is independent
of the flagellar length, but dependent on the extent of IFT density at the flagellar tip, and (vi) synthesis and
degradation of flagellar structural proteins in the cell body. Thus, to our knowledge, this is the most
comprehensive model of length control of a single flagellum. By a combination of analytical treatment
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and computer simulations of both the stochastic and deterministic kinetic equations of this model,
we examine the roles of all these ingredients of the model in controlling the length of a single
flagellum.

The main aim of this paper, however, is to explore the mechanisms of coordination of the dynamics of
the lengths of the two flagella in bi-flagellated eukaryotic cells and their consequences. Our stochastic
kinetic model, that retains all the six key features of the model listed above for the kinetics of each
individual flagellum, postulates coupling of their dynamics through sharing of the common pool of
structural proteins at the base of the flagella. The key differences between our theory and another recently
published work [40] on flagellar length control in biflagellates will be discussed later in this paper. Utilizing
some of the known properties of TASEP, we present an alternative interpretation of the experimental
observations of Ishikawa and Marshall [36]. We show that a ToF mechanism of length regulation is
consistent with their experiments. We also predict new results that can, in principle, be tested
experimentally.

This paper is organized as follows: in section 2 we present a brief summary of the structure of flagella
and the phenomenon of IFT. The ToF mechanism is explained in section 3. The stochastic model for the
length control of a single flagellum is formulated in section 4 and the corresponding main results are given
in section 5. Experimental supports for the model are claimed in section 6. The model and results for
biflagellates are presented in sections 7 and 8, respectively. Detailed comparison of our model with those
developed earlier is presented in section 9 thereby highlighting the novel features of our model. Finally, the
main conclusions drawn from our model are summarized and suggestions for experimental tests of the new
predicted are indicated in section 10.

2. Structure of flagella and intraflagellar transport

2.1. Structure of flagella
Eukaryotic flagella are hair like appendages which emerge from the surface of the cell. The typical length of
fully grown flagella in, for example, unicellular algae C. reinhardtii (CR) is about 12 μm. However, various
experimental methods have been developed to manipulate the flagellar length [41] that produce even longer
or shorter flagella in the steady state.

The structure of a flagellum is based on a cytoskeletal arrangement known as axoneme. It acts both as a
scaffold as well as an axle which facilitates beating of the flagellum. The axonemal structure is assembled on
a basal body and projects out from the cell surface [42]. The major structural components of all axonemes
are microtubule (MT) doublets; each MT being essentially a tubular stiff filament. Each doublet consists of
an A-microtubule (A-MT) and a B-microtubule (B-MT). Nine doublet MTs, arranged in a cylindrically
symmetric fashion form an axoneme; it extends from the base to the tip. Most axonemes have a 9 + 2
arrangement of MTs, where nine outer doublets surround a coaxial central pair. Some other axonemes lack
a central pair and have a 9 + 0 arrangement of MTs. The MT doublets are cross-linked by axonemal dynein
motors that drive relative sliding of the MT doublets. This sliding, in turn, causes beating of the flagella of
eukaryotic cells [43–46].

2.2. Intraflagellar transport (IFT)
In eukaryotic cells an MT serves as a track for two ‘superfamilies’ of cytoskeletal molecular motors, called
kinesin and dynein, which move naturally in opposite directions by consuming chemical fuel ATP [23–25].
These motors transport cargo which plays a crucial role not only during growth, but also in the
maintenance and shrinkage of flagella [47]. This phenomenon of effective relocation of materials by the
active motorized transport machinery is known as intraflagellar transport (IFT) [19, 48, 49]. The crucial
role of IFT in the construction of a growing flagellum was established experimentally by demonstrating the
obstruction of flagellar growth upon disruption of IFT [21, 50]. Because of their superficial similarities with
cargo trains hauled along railway tracks, chain-like assemblies formed by IFT particles are called IFT trains
[22, 36, 51, 52]. IFT trains consist of two protein complexes (IFT-A and IFT-B) which have multiple
protein–protein interaction domains [53, 54]. The molecular components of the IFT machinery have also
been catalogued in detail [55, 56]. More recently, direct evidence for transport of structural proteins and of
signalling proteins as cargo of IFT trains has been reported [37, 38, 53]. The different protein–protein
interaction domains in the IFT particles allow different cargos hitchhiking on them.

The IFT trains are pulled by motor proteins walking on the MTs that form the axoneme and cycle
between the flagellar tip and base [51, 57]. During each leg of their journey the IFT trains remain
constrained in the narrow space between the outer surface of the axoneme and the inner surface of the
flagellar membrane. IFT-B and kinesin are associated with anterograde transport and only use B-MT for
moving from base to the tip. In contrast, IFT-A and dynein participate in the retrograde transport and use
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A-MT for moving from tip to the base [52, 58]. However, the number of motors per IFT train is not known.
Because of the use of the A-MT and B-MT for moving in opposite directions on an MT doublet,
anterograde IFT trains do not collide with the retrograde IFT trains. The IFT particles switch their direction
of movement only at the base and the tip of the flagellum. This indicates the plausible existence of a
regulatory mechanism for differentially activating and inactivating the appropriate IFT motors at the base
and tip to facilitate the directional switching. Recently it has been reported that IFT27 (a component of the
IFT train) is responsible for integrating the retrograde machinery (IFT-B complex) into the IFT trains and
remodelling of the trains at the tip for the retrograde trip back to the base [58].

Broadly, three different types of proteins perform distinct functions in IFT. Axonemal proteins (mainly
tubulins) and other structural proteins are transported as cargoes within flagella. These cargoes are loaded
onto IFT particles [37, 38] which are also proteins. Not all IFT particles are loaded with cargo before they
begin their journey. Both the empty and loaded IFT particles are hauled along the narrow space between the
axoneme and the flagellar membrane by motor proteins that walk along the MT tracks. Since the number of
motors per IFT train is not known, we do not describe the motion of the motors explicitly in the model.
Instead, the stochastic movement of the IFT trains along the MT tracks are described in terms of kinetic
equations.

Why is IFT required in fully grown flagella? This mystery was unveiled when it was observed that there is
an ongoing turnover of axonemal proteins at the tip of a fully grown flagellum. Unless replenished by fresh
supply of these proteins in a timely manner the flagellum will keep shortening. Therefore, IFT is necessary
even in fully grown flagella to maintain the dynamic balance between the rate of growth and disassembly in
order to maintain the length at a stationary value [10].

3. Time of flight for measuring length: ‘ruler’ is a ‘timer’

In this brief section we introduce the time-of-flight (ToF) mechanism on which our model of flagellar
length control is based [35, 36, 59]. Let us imagine that either the IFT particle itself, or a timer molecule
bound to it, is prepared in a specific ‘chemical’ or ‘conformational’ state S+. The timer enters the flagellum
in the state S+. However, the state S+, being transient, decays spontaneously, and irreversibly, into the state
S− at the rate k. Upon return at the base of the flagellum, the current state of a timer indirectly indicates the
length of the flagellum because the longer the flagellum, the longer is the duration of its travel and, hence,
the higher is the likelihood of change of its state during the travel. Thus, the ‘ruler’ used for measuring the
length of the flagellum is actually a ‘timer’.

The ToF mechanism is based on the idea that, on returning back to the base, the current state of the
timer molecule decides whether flagella building material (tubulin) will be loaded onto the IFT particle [37,
38, 60] for the next round of journey. If the timer returns in state S+, it indicates a smaller flagellum and
directs loading of cargo into the IFT particle departing into the flagellum. On the other hand, the timer
returning in state S− conveys that no more precursor is needed at the flagellar tip for further assembly and
allows dispatching of empty IFT particles only. So, only those molecules are suitable for the role of timer
whose timescale of switching states is comparable to the time taken by IFT trains to commute around the
flagellum [36, 61].

ToF is based on the simple idea that, for a given velocity, the distance travelled is proportional to the
time of flight of a particle or a wave. In the context of flagellar length control, a mechanism based on the
concept of ToF was formulated first by Marshall and coworkers although the possibility was conjectured
by Lefebvre in 2009 [59]. Switching of the state of the timer could be a protein modification like, say,
phosphorylation [62]. There are already other examples in molecular cell biology where nature
uses the trick of converting time into length. To our knowledge, the most celebrated example is that
of the segmentation clock that exploits temporal oscillations to create periodic spatial patterns
[63, 64].

Ishikawa and Marshall hypothesised that the timer could be a small GTPase bound to a molecule of GTP
as it begins its anterograde journey [36]; the rate of GTP hydrolysis by the GTPase would be the rate k of
switching of the timer. Two possible candidates for timer are IFT22 and IFT27 which are components of IFT
trains [54]. These small Ras-like GTPases [54, 65] function as switch molecules which cycle between an
active GTP-bound form and an inactive GDP-bound form. Huet et al [58] investigated the role of IFT27 in
trypanosome and found that IFT27 enters the flagellum only in GTP-bound state. The cells in which IFT27
is in GTP-locked state, IFT trains enter into the flagellum and build a flagellum of slightly smaller than the
normal length flagellum. But, if IFT27 is in GDP-locked state the trains are unable to enter the flagellum
thereby preventing its formation. They concluded that the GTP–GDP cycle is essential for maintaining the
correct length of the flagellum [58]. For Chlamydomonas, it has been reported that partial knocking down
of IFT27 affects the elongation of the flagella and a complete knockdown is lethal for the cell [66]. So, these
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Figure 1. Schematic description of the model for length control of a single flagellum: (a) two lattices of equal length, arranged
parallely, represent a microtubule doublet in a flagellum extending from the spherical cell body. The cell body has a pool of
flagellar precursors (blue–green lattice units), IFT particles (red balls) and timer molecules (triangles). The IFT particles can
either be empty (hollow balls) or loaded (balls with a lattice unit inside them). Whether to dispatch a loaded IFT particle or an
empty IFT particle, the decision is taken in the decision chamber which is a small compartment connecting flagellum with the
precursor pool in the cell body. Each red ball filled with red lines represents an IFT particle which can be either empty or loaded.
On the green lattice, IFT particles move unidirectionally from the cell body towards the tip (anterograde movement) and on the
blue lattice, IFT particles move unidirectionally from tip towards the cell body (retrograde movement) with average velocity v.
The sites on these chains are denoted with integer index j (j = 1, 2, . . . , L from the flagellar base to the tip) and j
(j = L + 1, L + 2, . . . , 2L from the tip to the base), respectively. At the tip (i.e., at site j = L), an IFT particle on the anterograde
(green) lattice simply switches direction by hopping to the adjacent site on the retrograde (blue) lattice (i.e., into site j = L + 1) if
the target site is empty. Both the loaded and empty IFT particles obey the exclusion principle, i.e., no site can be occupied by
more than one particle simultaneously. (b) The timer in state S+ switches to state S− with rate k. The timer enters the flagellum
in state S+; at the instant of its exit from the flagellum, the probability of finding it in the states S+ and S− are e−kttof and
1 − e−kttof , respectively, where ttof is the total time of flight inside the flagellum. (c) The timer from the latest IFT particle which
comes back from the tip detaches and gets attached to the decision chamber. If the timer is in state S+, loaded IFT particle is
dispatched into the flagellum and if the timer attached to the decision chamber is in S− state, an IFT particle is dispatched into
the flagellum. All the trains entering the flagellum carry timer in state S+. (d) Before switching direction at the flagellar tip, a
loaded IFT particle can either (i) elongate the flagellum by adding a single lattice site to both the green and blue lattices, with
probability Ωe, and return to the base empty, or (ii) return to the base carrying its undelivered cargo, without elongating the
flagellum, with probability 1 − Ωe. (e) If there is no IFT particle on the distal tips of both the green or blue lattices, the flagellum
can shorten by the chipping of those two sites with the rate Γr.

observations are indications that IFT27 is a possible candidate for timer. But more experiments have to be
done to clearly establish whether IFT27 is really a timer that can control the loading of precursor proteins
into the IFT trains.

4. Stochastic model for length control of a single flagellum

First we consider the time-dependence of the length of a single flagellum. In this section, we will build the
model step by step by clearly justifying all the simplifications. Thereafter, we will formulate the master
equations for the qualitative description of our stochastic model and the corresponding Fokker–Planck
equation and rate equations.

4.1. Model
The entire elongation and resorption dynamics of a flagellum can be effectively captured by a single MT
doublet which, in our model, is represented by two parallel linear chains of equal length L (green and blue
lattice chain in figure 1(a). For the convenience of labelling the sites on these two chains with a single
integer index j, the sites on the green (anterograde) chain are labelled by j = 1, 2, . . . , L from the base to the
tip and those on the blue (retrograde) chain are labelled by j = L + 1, L + 2, . . . , 2L from the tip to the base.
Because of this labelling scheme, the sites j = L and j = L + 1 are adjacent to each other at the tips of the
two MT tracks for anterograde and retrograde transport, respectively (see figure 1(a)). Each lattice site on
both the blue and green lattices represent a tubulin dimer; free dimers in the pool at the base are referred to
as precursor proteins.

5



New J. Phys. 22 (2020) 083009 S Patra et al

The precursor proteins are transported as cargoes on IFT trains. Each IFT train is made up of an array
of IFT particles. Fusion of IFT particles into IFT trains and fission of IFT trains have been observed
experimentally. However, for simplicity, we assume that all the IFT trains consist of a single IFT particle;
fusion and fission of the IFT particles do not dominate the phenomena of our interest here. In a flagellum,
each IFT train is pulled by several molecular motors. Since the number of motors per IFT train is not
known, we do not describe the motion of the motors explicitly in the model. Rather, in our model, each of
the self driven hard-core particles (red balls in figure 1(a)) represents a motor-driven single IFT particle; the
motors remain implicit. At any given instance, a site of the lattice can be occupied by only one such particle
as this mutual exclusion captures the hard-core steric interaction between the IFT particles. An IFT particle
at site j moves by hopping to the target site j + 1 with rate p if and only if the target site is not occupied by
any other IFT particle (see figure 1(a)).

Each IFT train may have the capacity to bind (and carry) multiple cargoes at a time [67]. The IFT
particles may be loaded up to maximum capacity during the initial stages of flagellar growth whereas their
capacity may remain underutilized in full-length flagella in steady-state [67]. However, for simplicity, we
assume that an IFT particle in our model can either be empty (empty red balls in figure 1(a)) or carry one
unit for flagellar structural building material (red balls each filled with a precursor in figure 1(a)) which is
assumed to be a tubulin dimer (figure 1(a)). The red balls filled by red lines in figure 1(a) denote those IFT
particle that can be either empty or loaded with precursor. We have used these to emphasize the ‘exclusion’
principle, i.e., any site occupied by an IFT particle, irrespective of whether or not it is carrying a precursor
protein, is not available to the following IFT particle. Moreover, every IFT particle switches its direction of
movement, from anterograde to retrograde, at the distal tip of the flagellum.

Whether loaded or empty, every IFT particle that enters the flagellum carries one timer molecule which
is in state S+ (see figure 1(b)). Let the rate at which it can switch stochastically, and irreversibly, to state S−
be k. The master equation for the stochastic process

S+
k−→S− (1)

is given by
dP+

tm(t)

dt
= −kP+

tm(t) (2)

where P+
tm is the probability density that the timer remain in the state S+ at time t. The time-dependent

solution of (2), corresponding to the given initial condition P+
tm(t = 0) = 1, is given by P+

tm(t) = e−kt .
Therefore, if the time spent by the timer inside the flagellum is ttof (see figure 1(b)), then the probability P+

tm

that the timer will remain in state S+ at the moment of its return to the base is given by

P+
tm(t = ttof) = e−kttof . (3)

In general, the length covered by an IFT particle during its anterograde journey may not be identical to
that covered during its retrograde journey along the same flagellum because of the elongation or shortening
of the flagellum during that period. The complete journey of an IFT particle in a fully grown flagellum is of
the order of 10 s whereas ciliogenesis requires a time of the order of tens of minutes. Because of this
separation of timescales, the length of the flagellum remains practically unchanged during the time of a
single flight of a timer and its time of flight is taken simply as

ttof =
2L(t)

v
(4)

and, hence, from (3)
P+

tm(t = ttof) = e−2kL(t)/v. (5)

Note also that the average velocity v of the timer (which is identical to that of the IFT particles) depends
on the number density (i.e., number per site) ρ of IFT particles in the traffic inside the flagellum. Because of
the separation of timescales, we assume that the number density ρ and the flux J of the IFT particles in the
flagellum always take corresponding values in the steady-state (time-independent) of the TASEP that
represents their traffic. The ρ-dependence of the flux J and mean velocity v in the steady state are given by
[32–34]

J(ρ) = pρ(1 − ρ) (6)

and
v(ρ) = p(1 − ρ) (7)

6



New J. Phys. 22 (2020) 083009 S Patra et al

which are fundamental results of TASEP [32–34]. So far TASEP has been applied to understand both
vehicular traffic and molecular motor traffic [30, 31].

We assume that whether or not a precursor will be loaded on an IFT particle just before it begins its
journey in the flagellum is decided by the state of the timer associated with the latest train to return to the
base after shuttling inside the flagellum. In other words, the passengers (precursor proteins) need ‘ticket’
(the state S+ of the timer) to gain access to the train [68]. This fact is the foundation of the differential
loading model [37, 38]. In this model, the timer dissociates after completing the retrograde trip and then the
timer sticks to the decision chamber (see figure 1(a)). The decision chamber is a hypothetical element
connecting the precursor pool and the flagellum which we introduce for our convenience. The immediate
neighbourhood of the basal bodies of Chlamydomonas, which play several key functions as ‘flagella
organizing centres’ [69], is a possible candidate for the decision chamber’ introduced here. The timer sticks
to the decision chamber until the next timer returns back from the tip with the next train. The decision
chamber locks the final state of the timer. The final state of the timer then determines the decision of the
cell whether to dispatch trains loaded with precursor proteins (if timer is in S+ state) or just empty train (if
the timer is in S− state) into the flagellum (see figure 1(c)). The timer is then reset into S+ state and can get
utilised by the trains which are about to enter the flagellum (see figure 1(c)).

IFT27, the small GTPases component of the IFT train, detaches from the retrograde IFT trains and
remains distributed around the flagellar base [62, 70]. This observation suggests that the flagellar base may
be serving as the decision chamber. Moreover, IFT27 only enters the flagellum if in the GTP-bound state.
This observation supports our idea that the timer resets to the S+ state before starting the journey inside
the flagellum [58]. When IFT27 is in the GDP bound state, it does not allow the interaction of many
proteins with IFT trains and this supports our assumption that when the timer in S− state no precursor is
able to hitchhike the IFT trains which enters the flagellum [58].

Suppose, at the time of entry of IFT particles into the flagellum, the average number of flagellar
precursor proteins at the base is 〈N(t)〉 (the operational meaning of this averaging will be clarified later in
this section). The probability of the timer to be in S+ (stuck to the decision chamber) is given by
equation (5). Then, the probability of loading a flagellar precursor onto the IFT particle is

αtu =
〈N(t)〉
Nmax

P+
tm(ttof) =

〈N(t)〉
Nmax

e−2kL(t)/v (8)

where Nmax denotes the maximum capacity of the precursor protein pool in terms of the number of
precursor proteins. In other words, synthesis and degradation of flagellar precursors happen in such a way
that the average of the precursor population of the pool does not exceed Nmax. This can be achieved by
choosing synthesis rate as ω+[1 − (〈N(t)〉/Nmax)] and degradation rate as ω−〈N(t)〉. Note that both
synthesis and degradation rates depend on the population of precursors in the pool.

If the total flux of IFT particles reaching at the tip is J, then the flux of loaded trains reaching the tip is
αtuJ. On reaching the tip along the anterograde track, a loaded IFT particle can elongate the tracks by one
tubulin unit with probability Ωe and this IFT particle (now empty after delivering its cargo) hops to the
newly formed site at the tip of the retrograde lane and begins its return journey to the base (see figure 1(d)).
Because of the scheme of labelling the sites on two lattices by a single index, as described above, two extra
sites are inserted between the two special sites j = L and j = L + 1 thereby increasing the range of j from
1 � j � 2L to 1 � j � 2L + 2. Thus, the effective elongation rate of the flagellum is αtuJΩe.

In addition to polymerization/elongation mediated by loaded anterograde trains, the axoneme can
undergo spontaneous shortening, with the rate Γr, by the simultaneous removal of both the sites j = L and
j = L + 1 at the tip provided both are empty at that instant of time (see figure 1(e)). As the probability of
simultaneously finding both the sites empty is (1 − ρ)2 under mean-field approximation, the effective
shortening rate is (1 − ρ)2Γr.

4.2. Master equations for a single flagellum
In this subsection we treat ciliogenesis as a stochastic process where the stochastic kinetics of the length L(t)
of the flagellum and that of N(t), the population of the precursors in the common pool, are assumed to be
Markovian. Let PL(j, t) be the probability that the flagellar length at time t is L(t) = j. The master equation
governing the stochastic kinetics of the flagellar length is given by

dPL(j, t)

dt
= λL

j−1,jPL(j − 1, t)︸ ︷︷ ︸
gain by elongation

from L(t)= j−1 to L(t)= j

+ μL
j+1,jPL(j + 1, t)︸ ︷︷ ︸

gain by resorption
from L(t)= j+1 to L(t)= j

− λL
j,j+1PL(j, t)︸ ︷︷ ︸

loss by elongation
from L(t)= j to L(t)= j+1

− μL
j,j−1PL(j, t)︸ ︷︷ ︸

loss by resorption
from L(t)= j to L(t)= j−1

(9)
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where λL
j,j+1 denotes the rate of elongation of the flagellum from state j to j + 1 while μL

j,j−1 denotes that of
shortening of flagellar length from state j to j − 1.

λL
j,j+1 =

[
〈N(t)〉
Nmax

e−2kj/v

]
︸ ︷︷ ︸

αtu

JΩe

=

[∑Nmax
n=0 nPN (n, t)

Nmax
e−2kj/v

]
JΩe (10)

where the expression of αtu is taken from equation (8). Similarly, the rate μL
j,j−1 of shortening of flagellar

length from state j to j − 1 is given by

μL
j,j−1 = (1 − ρ)2Γr. (11)

Note that, unlike the transition rates λL
j,j+1 (equation (10)), μL

j,j−1 (equation (11)) are independent of j. The
crucial consequence of this difference in the j-dependence of λ and μ will be demonstrated by the results
that follow from a quantitative analysis.

The precursor synthesis and degradation by the cell, precursor loading onto the IFT particles and
addition of precursor chipped from the tip back into pool can change the precursor population from the
current state N(t) = n to n − 1 or n + 1. Let PN(n, t) denote the probability of finding N(t) = n free
precursors in the pool at time t. So, the master equation governing the evolution of the pool population N
is given by

dPN (n, t)

dt
= ω+

[
1 − (n − 1)

Nmax

]
PN (n − 1, t) − ω+

[
1 − n

Nmax

]
PN (n, t)︸ ︷︷ ︸

population dependent synthesis of flagellar precursor by the cell

+[ω−(n + 1)PN(n + 1, t) − ω−nPN(n, t)]︸ ︷︷ ︸
population dependent degradation of flagellar precursor by the cell

+

⎡
⎣Lmax∑

j=0

JΩe e−2kj/vPL(j, t)

⎤
⎦[

(n + 1)

Nmax
PN(n + 1, t) − (n)

Nmax
PN (n, t)

]
︸ ︷︷ ︸

contribution of pool towards assembly of the flagellum

+(1 − ρ)2Γr[PN(n − 1, t) − PN(n, t)]︸ ︷︷ ︸
precursors returned to the pool by disassembly of the flagellum

. (12)

The last two terms in (12) have been written under mean-field approximation that ignores correlations
between the L and N variables.

As stated earlier, the traffic flow of the IFT particles is represented in our model as a totally asymmetric
simple exclusion process (TASEP) [32–34]. Two primary quantities that characterize the steady state of a
TASEP are (i) average particle density ρ, and (ii) the average particle flux J(t); these are also the only two
properties of TASEP that enter directly in our model through the rates λL and μL (see equations (10) and
(11)). In our numerical plots we will choose values of ρ and J that correspond to one of the three dynamical
phases of immediate interest in that analysis (further details are given in the section 6).

To convert the dimensionless length L(t) to actual length (measured in μm) we multiply L with δL =

0.008 μm, where δL is the size of a single tubulin dimer. To convert the dimensionless flux J (i.e., number of
particles per unit time passing through a particular point), velocity v (i.e., the distance covered by an IFT
particle per unit time) and the other dimensionless rate constants k,Γr,ω+ and ω− to actual quantities, we
divide them with appropriate δt whose specific values are mentioned in the caption of each figure. The
parameter values have been chosen in such a way that the numerical value of the flagellar length in the
steady state is about 12 μm, which is comparable to that of each flagellum of C. reinhardtii.

4.3. Fokker–Planck equation for a single flagellum
Next we take the continuum limit in which the length of the flagellum is represented by a continuous
variable x. In this limit the probability PL(j, t) reduces to PX(x, t) which denotes the probability that flagellar
length is x at time t. Carrying out the standard Kramers–Moyal expansion of the master equation (9)
governing the length of the flagellum, we obtain the corresponding Fokker–Planck equation

∂PX(x, t)

∂t
= − ∂

∂x
[{λ(x) − μ(x)}PX(x, t)] +

ΔL

2
· ∂2

∂x2
[{λ(x) + μ(x)}PX(x, t)] (13)

8
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where

λ(x) =
〈N(t)〉
Nmax

JΩe exp(−2kx/v)

μ(x) = (1 − ρ)2Γr

(14)

and ΔL = 1. The equation (13) describes the stochastic kinetics of the length of the flagellum essentially as
a combination of x-dependent drift and diffusion of the flagellar tip where λ(x) − μ(x) and λ(x) + μ(x) are
proportional to the effective drift velocity and diffusion constant, respectively.

4.4. Rate equations for a single flagellum
From the master equations for the stochastic time evolution of the length of a single flagellum, we derive the
corresponding rate equation (see appendix A for the details)

d〈L(t)〉
dt

=

[
〈N(t)〉
Nmax

e−2k〈L(t)〉/v
]

︸ ︷︷ ︸
αtu

JΩe − (1 − ρ)2Γr (15)

that describes the deterministic time evolution of the mean length

〈L(t)〉 =
∞∑

j=0

jPL(j, t) (16)

of the flagellum. Similarly, from the master equations for population of the precursor pool, we get

d〈N(t)〉
dt

= ω+

[
1 − 〈N(t)〉

Nmax

]
− ω−〈N(t)〉 − d〈L(t)〉

dt
(17)

which describes the deterministic temporal evolution of the average population of the precursors

〈N(t)〉 =
∞∑

n=0

nPN (t). (18)

5. Results on length control of a single flagellum

5.1. Steady-state of a flagellum: a ‘balance point’
The steady state of the system is defined by the condition d〈L(t)〉/dt = 0 = d〈N(t)〉/dt; the corresponding
average length of the flagellum and the average population of precursors in the pool are denoted by 〈Lss〉
and 〈Nss〉, respectively. From (15), in the steady state, we get αtuJΩe = (1 − ρ)2Γr and using the expression
for αtu that follows from equation (8) in the steady-state, we get

〈Lss〉 =
v

2k
log

[
JΩe

(1 − ρ)2Γr

〈Nss〉
Nmax

]
(19)

and

〈Nss〉 =
ω+

ω− + ω+

Nmax

. (20)

For future convenience, we introduce the symbols

A = JΩe, (21)

B = (1 − ρ)2Γr (22)

and

C =
2k

v
. (23)

In terms of A, B, C, the steady state flagellar length is expressed as

〈Lss〉 = C−1 log

[
A

B

〈Nss〉
Nmax

]
(24)
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Figure 2. ToF mechanism for flagellar length control, ciliogenesis and length fluctuation: (a) assembly rate
(JΩe(〈N(t)〉/Nmax)exp(−2k〈L(t)〉/v)) and disassembly rate ((1 − ρ)2Γr) are plotted as functions of flagellar length. (b)
Distribution of flagellar length in the steady state (green dots denote the predictions from master equation while the black line
shows the corresponding predictions of the Fokker–Planck equation). The plot of 〈L(t)〉 vs t in the inset depicts how a new
flagellum elongates with time eventually attaining its steady-state length; this process is called ciliogenesis. (Parameters: ρ = 0.1,
J = 0.09, v = 0.9, k = 1.1 × 10−3, Ωe = 0.5, Γr = 5.0 × 10−5, ω+ = 2.0 × 10−3, ω− = 1.0 × 10−5, Nmax = 5000,
δt = 3.6 × 10−4 s).

The factor within the square bracket on the right hand side of (19) (or, equivalently, (24)) corresponds
to the ratio of the rates of elongation and shortening of the flagellum. However, these rates affect the steady
state length of the flagellum only logarithmically. The length of the flagellum is essentially determined by
v/k which is a characteristic length set by the ratio of two properties of the timer. Thus, the faster the timer
moves (and/or the slower is its conversion to the state S−) the longer is the magnitude of 〈Lss〉. In the
steady-state the flagellum neither enriches nor depletes the population of the precursors in the pool. The
only variation in the population of precursors in the pool arises from the synthesis and degradation of the
precursors. Not surprisingly, in large Nmax limit, the steady-state population 〈Nss〉 is determined by the ratio
ω+/ω−; the larger is the rate of production (and/or the smaller is the rate of degradation) the higher is the
population 〈Nss〉.

As mentioned in section 4.1, in our model, the effective assembly rate JΩeexp(−2k〈L(t)〉/v)〈N(t)〉/Nmax

is length-dependent whereas the disassembly rate (1 − ρ)2Γr is independent of length. More precisely, the
ToF mechanism leads to monotonic decrease of the assembly rate with increasing length; the steady-state
is a ‘balance point’ where the assembly rate just balances the rate of disassembly (see figure 2(a)). This
result is consistent with the concept of ‘balance-point’ proposed by Rosenbaum, Marshall and others
[10, 18, 71].

Because of the intrinsic stochastic nature of the kinetics, as descibed by the full master equations, the
flagellar length L(t) keeps fluctuating around the average length 〈Lss〉 even in its steady-state. Using the
master equation as well as the Fokker Planck equation (see appendices A, B and C for the detailed
derivations) we have calculated the steady state distribution that, as shown in figure 2(b), is peaked at 〈Lss〉.
This distribution of the flagellar length in the steady-state is very similar to the distribution of the
steady-state lengths of cytoskeletal filaments obtained earlier by following a master equation approach (see,
for example, figure 5(c) of reference [72] and figure 2 of [73]).

5.2. Ciliogenesis: controlled assembly of a single flagellum
The process of assembly and disassembly of flagella is referred to as ciliogenesis [74]. All quantitative studies
of ciliogenesis normally begin by probing the time-dependent growth of a flagellum. With the same aim, we
solved the coupled rate equations (equations (15) and (17)), subject to the initial conditions
〈L(t = 0)〉 = L(0) and 〈N(t = 0)〉 = N(0), respectively, for a set of values of the model parameters; the
results are plotted in figure 2(b). The rate of growth of the mean length slows down with time as 〈L(t)〉
approaches its steady-state value 〈Lss〉 asymptotically as t →∞. This qualitative trend of variation of 〈L(t)〉
with t is very similar to those observed earlier in experiments [75].

10



New J. Phys. 22 (2020) 083009 S Patra et al

Figure 3. Dependence of ciliogenesis on the initial precursor population N(0): (a) semi-log plot of 〈L(t)〉 vs t, and (b) 〈N(t)〉 vs
t, both for three different values of N(0). The length of a growing flagellum can overshoot beyond its steady-state length Lss,
before relaxing to Lss, if N(0) is sufficiently high. (Parameters: ρ = 0.1, J = 0.09, v = 0.9, k = 2.0 × 10−3, Ωe = 0.5,
Γr = 1.0 × 10−5, ω+ = 1.0 × 10−5, ω− = 1.0 × 10−8, Nmax = 5000, δt = 9.0 × 10−6 s. Other quantities: Lss = 12.3 μm,
Nss = 833.3).

Various time scales in the problem have been analysed in appendix D. In the special limiting situation
where 〈N(t)〉 attains steady state value 〈Nss〉 much faster than 〈L(t)〉 such that the quantity N(t)/Nmax

remains practically constant throughout the evolution of the flagellar length, we can approximate the
equation (15) by

d〈L(t)〉
dt

=

[
〈Nss〉
Nmax

e−2k〈L(t)〉/v
]

JΩe − (1 − ρ)2Γr (25)

whose solution is given by

〈L(t)〉 = 1

C
log

[
Nss

Nmax

A

B
−

(
Nss

Nmax

A

B
− eCL0

)
e−BCt

]
(26)

where L0 is the initial length of the flagellum. From this solution, we conclude that, in this special limit,
〈L(t)〉 relaxes to its steady-state value 〈Lss〉 exponentially with the corresponding relaxation time
τ = 1/(BC). In the general case, the correlation between the shapes of the curves 〈L(t)〉 and 〈N(t)〉 will be
discussed in detail in the next subsection.

5.3. Effects of precursor pool on length of a flagellum
Although the initial amount of precursor N(0) does not affect Lss and Nss, it does affect how steady state is
achieved by the flagellar length L(t). In this subsection we systematically study the effects of the
time-dependence of 〈L(t)〉 on N(0). In other words, we systematically explore the interplay of the
population kinetics of the precursors 〈N(t)〉 and growth of the flagellum 〈L(t)〉 during ciliogenesis. For this
purpose, we vary the numerical value of the parameter N(0) over about three orders of magnitude; the
values of other model parameters are such that 〈Nss〉 � 1000. We have chosen the interesting regimes of
ω+ � ω− and JΩe � Γr. We present results for three regimes, namely, N(0) � 〈Nss〉, N(0) � 〈Nss〉, and
N(0) � 〈Nss〉.

In the N(0) � 〈Nss〉 regime the most remarkable observation is that 〈L(t)〉 can overshoot beyond 〈Lss〉,
before shortening and eventually relaxing to 〈Lss〉 (see figure 3(a) uppermost curve). As the flagellum
grows, and finally relaxes to its steady-state length 〈Lss〉, the population of the precursors in the pool also
relaxes to the corresponding value 〈Nss〉 (see figure 3(b) uppermost curve). To our knowledge, this effect
has not been reported so far in the experimental literature, perhaps, because the value(s) of one or more
of the parameters or N(0) in the experiments have never been in the range required to observe this
phenomenon.

In the opposite limit N(0) � 〈Nss〉 the most remarkable feature of ciliogenesis is the ‘lag period’.
Although the population kinetics of the precursors is switched on at t = 0, the growth of the flagellum
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Figure 4. Contour plots for Lss: (a) contours of constant Lss on the ρ–Ωe plane, keeping k and Γr constant. (Parameters:
k = 0.0018, ω+ = 5 × 10−6, ω− = 5 × 10−8 and Γr = 10−6). (b) Contours of constant Lss in the ρ–k plane, keeping Ωe and Γr

constant. (Parameters: J = ρ(1 − ρ), v = 1 − ρ, k = 0.0018, ω+ = 5 × 10−6, ω− = 5 × 10−8, Nmax = 1000, Ωe = 0.5 and
Γr = 10−5).

becomes significant only after a ‘lag period’ (see the lowermost curve in figure 3(a)). The precursor
population can contribute to sustained growth of the flagellum only after the precursor population in the
pool itself begins to rise beyond a critical level (see the lowermost curve in figure 3(b)).

For the intermediate value of N(0) � 〈Nss〉, initially the flagellar growth exhibits practically no lag
period (see the middle curve in figure 3(a)). But, the precursors supplied during this initial growth and
those lost by natural decay are not replenished at a comparable rate resulting in a fall in the precursor
population (see the middle curve in figure 3(b)). This low population of precursors, in turn, reduces the
flagellar growth to almost vanishingly small level (see the middle curve in figure 3(a)). This situation
continues, just like the ‘lag period’ discussed before, till fresh synthesis of precursors enlarges the pool
population to levels that can resume sustained growth of both the flagellar length as well as its own
population, eventually, reaching the steady state (see the middle curves in figures 3(a) and (b)).

5.4. Interplay of traffic, timer and polymerization
As we show in this subsection, the density ρ gives rise to interesting features of the flagellar length dynamics.
We have explored the combined effect of ρ, k and Ωe on the Lss (by using equation (19)) through contour
plots. From equations (6), (7) and (19), the dependence of 〈Lss〉 on ρ, k and Ωe is given by

〈Lss〉 =
p(1 − ρ)

2k
log

[
pρΩe

(1 − ρ)Γr

〈Nss〉
Nmax

]
. (27)

For a particular density ρ, a higher value of Ωe results in a longer Lss (see figure 4(a)). On the other hand,
for a fixed value of ρ, Lss decreases with increasing k (see figure 4(b)).

Lss exhibits non-monotonic variation with ρ. For a fixed Ωe, as we increase ρ, the steady state flagellum
length Lss increases with ρ. But for the values of ρ, which lie on the right side of the white-dotted line in the
contour plot in figure 4(a), the flagellum length Lss keep on decreasing with increasing ρ. Similar trend is
seen in the second contour plot as well (figure 4(b)). When ρ is on the left of the dotted white line
(figure 4(b)), with increasing ρ, flux increases which, in turn, increases the supply of precursor at the tip
and thus results in longer flagellum with time. On the other hand, when ρ further increases, both the
velocity v and the flux J decrease due to congestion of the IFT particles (which can be verified from
equations (6) and (7)). Therefore, the timer has to spend more time in the slow-moving congested traffic
thereby increasing the probability that it is in the state S− when it returns to the base. In such situations the
timer conveys the wrong message that the flagellum is long enough and prevents additional loading of
precursor onto the IFT particles.
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Figure 5. Traffic of IFT particles is modelled as TASEP: the pair of antiparallel anterograde (green lattice) and retrograde track
(blue lattice) can be viewed as a single track connected at the tip. IFT particles enter the anterograde track from the precursor
pool with rate α if the first site on the anterograde track is empty. They move out of the retrograde track from the last site into
the pool with rate β. In the bulk (in both anterograde and retrograde track) they hop with rate p to the next neighbouring site on
their right if the target site is empty.

Table 1. Quantities in different phases in TASEP: LD (low density), HD
(high density) and MC (maximal current).

Phase Particle density ρ Particle flux J Particle velocity v

LD (α < β, α < p
2 ) α

p α(1 − α
p ) p(1 − α

p )

HD (β < α, β < p
2 ) (1 − β

p ) β(1 − β
p ) β

MC (α > p
2 , β > p

2 ) p
2

p
4

1
2

The properties of the TASEP, that represents the traffic of IFT particles, also provides a means of testing
the ToF hypothesis. The ToF mechanism works satisfactory provided the average velocity of the IFT trains
remains practically constant. However, if for any reason the rate of entry of the IFT particles onto the
anterograde track exceeds a limit imposed by TASEP, the IFT particles may find themselves in the
high-density phase in which the IFT particles would take a very long ToF and would erroneously signal
against loading of the IFT particles with tubulins. Consequently, the HD phase of the TASEP would result in
a shorter than usual Lss.

6. Experimental supports for the model

The adoption of the TASEP for modelling the intraflagellar traffic of IFT particles is a key new ingredient of
our model. We summarize here the key features of TASEP, particularly in the context of IFT, before detailed
discussion on the interpretation of experimental results from the perspective of TASEP. Irrespective of its
load status, an anterograde IFT particle hops to the next site in the forward direction with the rate p only if
the target site is empty. Similarly, a retrograde IFT particle hops with the rate p to the target site only if the
latter is empty. Thus, the traffic flow of the IFT particles is modelled as a totally asymmetric simple
exclusion process (TASEP) [47–49]. This process is completely characterised by three parameters (see
figure 5): α (rate with which a particle hops into the lattice at one end), β (rate with which a particle hops
out of the lattice at the other end) and p (rate with which a particle hops into its nearest neighbour lattice
site if the target site is empty). The three primary quantities that completely characterize the steady state of
such processes are (i) average particle density ρ (or, more precisely, the density profile), (ii) the average
particle flux J and (iii) the mean particle velocity v which is defined as the average total number of sites
hopped per unit time. The three different (non-equilibrium) phases can be realized on the track in the
steady state of the system: (i) sparsely crowded low density (LD) phase, (ii) highly crowded high density
(HD) phase and (iii) a phase with the optimal flow known as maximal current (MC) phase. The primary
quantities as a function of α, β and p in three different phases are summarised in table 1.

The density ρ of the IFT particles depends on the dynamical phase, i.e., whether the traffic of the IFT
particles is in the LD, HD or the MC phase. We consider the IFT particle traffic to be always in the LD
phase. In the LD phase, if we have the number density ρ(α,β, p) = ρ, the corresponding flux J and mean
velocity v are unique and can be expressed as a function of ρ only. The flux and the mean velocity are given
by (6) and (7), respectively.

6.1. Experimental test for the validities of ToF mechanism and TASEP for IFT
A set of experiments was carried out by Ishikawa and Marshall [36] to test the validity of the ToF
mechanism. In C. reinhardtii cells with mutant dyneins the retrograde transport was slower than that in
wild type cells, as expected. But, contrary to their expectation, Ishikawa and Marshall [36] observed that the
slowing down of the retrograde IFT lead to an increase in the flux of the anterograde IFT, instead of a
decrease. Based on their interpretation of the data, they believed that their observations ‘rule out the
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time-of-flight mechanism as a means of controlling injection as a function of length’. But, what was
missing in their analysis for the interpretation of the data is the role of the principles of TASEP. By
re-interpreting their data in this subsection, in the light of the properties of TASEP, we argue that their
observation is, contrary to their conclusion, fully consistent with our ToF-based model developed in this
paper.

Like shuttle trains, IFT trains cycle between the base and the tip of a flagellum. In our model so far the
times for anterograde and retrograde travel were considered to be equal although, in reality, the velocities of
the IFT particles in the two directions are almost certainly different. Moreover, after reaching the tip of the
flagellum, kinesin-driven IFT particles do not immediately begin their dynein-driven retrograde journey.
Instead, upon arrival at the flagellar tip, a train detaches from the anterograde track (B-microtubule),
spends some time τ at the tip in an unattached state during which it gets ‘remodelled’ [76], then attaches to
the retrograde track (A-microtubule) after which it starts moving towards the base from the tip [51].
During remodelling a loaded IFT particle may unload the cargo (tubulin precursors), an empty IFT particle
may get loaded with turned over structural protein, unbind (or deactivate) kinesins and activate dyenins
(which are carried as cargo by the anterograde IFT trains).

In order to explain their key experimental observations, the generalized expression for the time of flight
(ttof ) inside the flagellum considered by Ishikawa and Marshall [36] was

ttof = (L/va)︸ ︷︷ ︸
time of travel from base to tip

+ (L/vr)︸ ︷︷ ︸
time of travel from tip to base

+ τ︸︷︷︸
time spent at the tip for remodelling

. (28)

Accordingly, the equation (8) would get generalized to

αtu =
〈N(t)〉
Nmax

e−k{(L/va)+(L/vr)+τ}] (29)

where va and vr are the average velocities of IFT particles in the anterograde and retrograde directions,
respectively. The equation (29) implies that any decrease in the retrograde velocity vr of the IFT particles
would cause decrease of αtu, i.e., probability of loading of the tubulin into the IFT particles. This
observation is consistent with Ishikawa and Marshall’s comment that their experimental observations on
the increase of the flux of anterograde particles ‘do not rule out the possibility that a time-of-flight scheme
might regulate cargo loading’ [36].

Following Ishikawa and Marshall [36], the concept of remodelling time τ has been introduced in
equation (29) only for the sake of completeness of our discussion. But, in our actual calculation we have
used τ = 0 and incorporated its effect indirectly through effective rates βeff and αeff (see figure 6) which we
have obtained self-consistently by imposing steady-state condition on the flux. The assumption of
steady-state condition, in turn, is justified by the fact that neither accumulation nor depletion of IFT
particles with passage of time have been observed so far in any experiment.

Next, we assign different hopping rates to the anterograde and retrograde IFT particles, thereby
mimicking different average velocities of the IFT particles in the anterograde and retrograde directions. In
such situations where the rates of hopping of the IFT particles in the anterograde and retrograde transport
are unequal, the TASEP effectively becomes a composite of two TASEPs in the two distinct segments that are
coupled at the tip of the flagellum. As shown in figure 6(a), βeff is the effective rate of exit of the IFT
particles from the first segment (anterograde transport) while αeff is the effective rate of entry of the IFT
particles into the second segment (retrograde transport).

As stated in section 4, in the steady-state each TASEP can exist in one of the three possible dynamical
phases, namely, LD, HD and MC. Thus, for a composite TASEP, as in figure 6(a), the phase of the system in
the steady state can be denoted by the symbol PA|PR where PA and PR refer to the phases of the
anterograde and retrograde segments, respectively. Naively, it may appear a priori that the system can exist
in nine distinct composite phases PA|PR where each of Pμ (μ = A or R) can be in LD, or HD or MC phase.
Since the same steady state flux has to be sustained in both the segments, not all of the nine phases are
physically realizable. Only those composite phases are stable which can maintain a single steady flux
through the entire composite system. The physical implications of this principle will be established in this
section.

Let us begin our discussion here with the simplest situation pA = 1.0 = pR = p. Moreover, we select
α = 0.1 and β = 1.0 so that α is rate limiting. Under this condition, the TASEPs in both the segments (i.e.,
on anterograde and retrograde direction) are in LD phase, i.e., the composite phase is LD|LD. The resulting
average density of the IFT particles in both the anterograde and retrograde segments is ρA = α/p = ρR and
the corresponding flux is JA = α(1 − (α/p)) = JR (see the curves corresponding to pR = 1.0 in figures 6(b)
and (c)).
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Figure 6. Number density profile and flux in the steady states of the composite TASEP model of IFT: (a) as explained earlier, the
sites on the anterograde lattice are labelled by j = 1, 2, . . . , L from the base to the tip and those on the retrograde lattice are
labelled by j = L + 1, L + 2, . . . , 2L from the tip to the base. If the average velocity of the IFT particles during retrograde
transport is lower than that during anterograde transport, the IFT becomes composite of two TASEPs, with the respective
hopping rates pA and pR (pR < pA) in the anterograde and retrograde segments, respectively. The effective rate βeff of exit from
the anterograde segment and the effective rate αeff of entry into the retrograde segment must satisfy the condition that the same
flux passes through both the segments in the steady state. Keeping α = 0.3, pA = 1.0 and β = 1.0 fixed, we plot the density in
(b) and flux in (c) for three different pR.

As pR decreases, without change in the value of pA, the densities ρA and ρR in the two segments change
in such a way that the condition JA = JR continue to be satisfied by the two steady-state fluxes JA and JR in
the anterograde and retrograde directions. Expressing JA and JR in terms of pA, pR and the unknown αeff , we
get the equation

α(1 − (α/pA)) = αeff(1 − (αeff/pR)) (30)

whose solution yields

αeff =
pApR −√

pApR

√
4α2 − 4αpA + pApR

2pA
. (31)

From (31), we find that when pR is decreased, αeff remains real as long as pR > p∗R, with

p∗R =
(4αpA − 4α2)

pA
(32)

is satisfied. In such situations, both the segments are in their respective LD phases and the composite system
is still in the LD|LD phase although ρA �= ρR because α �= αeff (see the curves corresponding to pR = 0.9 in
figures 6(b) and (c)).

However, if
pR < p∗R (33)

the retrograde segment cannot sustain the anterograde flow. The flux in both the segments is controlled by
pR which is now rate limiting. If the condition (33) is satisfied, the retrograde segment is in the MC phase
while the anterograde segment is in the HD phase so that the composite system exhibits the HD|MC phase
(see the curves corresponding to pR = 0.5 in figures 6(b) and (c)). So, now the steady-state condition in
terms of the equality of the fluxes JA and JR gives

βeff(1 − (βeff/pA)) = pR/4 (34)

whose solution gives the expression

βeff =
1

2
(pA −

√
p2

A − pApR) (35)
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Table 2. Steady state properties of composite two-TASEP model.

Condition JA = JR = J ρA

pR > (4αpA−4α2 )
pA

α(1 − (α/pA)) α/pA

pR < (4αpA−4α2 )
pA

pR/4 1 − βeff

for βeff . The average IFT particle density in anterograde segment is now given by

ρA = 1 − βeff (36)

while the corresponding flux is JA = pR/4. The condition, in terms of pR, and the corresponding
anterograde density and common flux are summarized in table 2.

The results plotted in figures 6(b) and (c) correspond to a specific value of α. In order to illuminate the
role of α, we plot ρA, ρR and ρA − ρR in figure 7 as functions of pR, keeping pA = 1.0 = β fixed. For every
given value of α the system exhibits the composite phase LD|LD for all pR > p∗

R; although ρA remains
unaffected, ρR continues to increase with the decrease of pR because of the corresponding change of αeff .
Exactly at pR = p∗R the system makes a transition to the composite phase HD|MC where ρA increases by a
discontinuous jump and ρR attains its maximum value. With further decrease of pR, ρA continues to
increase while ρR now remains unaffected.

The most interesting point here is that, for a given α, ρA − ρR changes sign at pR = p∗R so that for
pR < p∗R, ρA > ρR. The higher values of ρA for pR < p∗R than the value for pR > p∗R is consistent with the
higher intensity observed by Ishikawa and Marshall [36] in the case of IFT with mutant dyneins. We believe
that the ‘injection intensity’ that Ishikawa and Marshall [36] claimed to have measured in their experiment
is actually proportional to the average density, rather than flux, of the IFT particles in the anterograde
segment.

With the above interpretation of the experimental observations and comparison with our theoretical
predictions, we establish that both the (i) time-of-flight mechanism for length control, and (ii) description
of the traffic of IFT particles in terms of TASEP are consistent with experimental observations [36].

6.2. Role of depolymerases in the ‘balance-point’ scenario
By a series of experiments, Pan and coworkers [77–79] established the following facts:

(a) Flagellar shortening requires the depolymerases to the extent that the shortening is inhibited in
depolymerase-depleted cells.

(b) In the steady state, the depolymerases are almost exclusively located in the cell body and very little
traces of it are found in the flagella. However, when flagellar shortening is triggered by internal cues or
external signals, the depolymerases are rapidly transported to the flagellar tip where these begin
depolymerization of the axonal MTs.

(c) Since the depolymerases in CR do not possess the domains required for active motor-like walk towards
the plus-end of the MTs, the only plausible mode of their rapid transport to the flagellar tip is as cargo
on anterograde IFT that are driven by other families of processive kinesin motors.

In our model, continuation of turnover of the tubulins in the steady-state requires depolymerization
rate to be non-zero (as for the disassembly rate-1 in figure 8). However, shortening of the flagella during
resorption can occur in two different ways. In the first, the polymerization probability Ωe can be switched
off, without altering the depolymerization rate Γr, thereby triggering resorption (see figure 9). In the
second, the depolymerization rate Γr increases abruptly, without any change in the polymerization
probability Ωe (see figure 10) thereby shifting the balance points to a shorter length [3] as shown in figure 8.
In the latter case if the shifted balance point still correspond to a non-zero length, the flagella shorten, but
resorption is only partial (as for the disassemmbly rate-2 in figure 8). But, if the increase of Γr is sufficiently
large, the resulting shift of the balance points can be so large that the steady-state corresponds to vanishing
length of the flagella indicating complete resorption (as for the disassembly rate-3 in figure 8). This scenario
of depolymerase-induced resorption is consistent with the experimental observations of Pan and
co-workers [77, 78], but quite different from the length-dependent depolymerization proposed recently in
reference [40]. The mechanisms of flagellar length control that we have postulated in this paper are also
different from that, proposed for control of length of microtubules, based on a length-dependent feedback
on polymerization by kinesin Kip2 [80].
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Figure 7. Number densities in the steady states of the composite TASEP model of IFT: for several different values of the α
(α = 0.05 to α = 0.5), we plot (a) ρA (b) ρR and (c) ρA − ρR as functions of pR, keeping pA = 1.0 = β fixed. The system exhibits

a transition from the composite phase LD|LD to HD|MC at pR∗ = (4αpA−4α2 )
pA

. At pR = pR∗, ρR hits its maximum value (and
remains constant with further decrease of pR) and ρA increases by a discontinuous jump resulting in a discontinuous jump also in
ρA − ρR. The magnitudes of these discontinuous jumps, shown by the dotted vertical lines, in (a) and (c) decrease with
increasing α and vanish as α→ 0.5.

7. Stochastic model for length control in biflagellates

In the preceding section we have developed a model for length control of a single flagellum. Analyzing that
model and comparing its predictions with known empirical facts, we have established the validity of the
hypotheses on which the model is based. In this section we couple two such model flagella to develop a
theoretical model for flagellar length control in biflagellates. The emphasis of this section is in the study of
cooperative effects of the coupling.

In addition to all the simplifications listed above for the dynamics of a single flagellum, we make one
more simplification regarding the coupling of the dynamics of the two flagella in a biflagellate. The
dynamics of the two flagella are coupled via the common pool of flagellar protein precursors at the base; we
consider explicitly only the tubulins, the building blocks of axonemal MTs, in this pool because those are
the most dominant component in it. The flagella are also assumed to share a common pool of IFT particles.
That is why the same flux J of IFT trains appears in the master equations of the two flagella. A timer
molecule returning to the base upon completion of a round trip in a flagellum dwells in the decision
chamber providing the feedback required for the differential loading of an IFT train that is poised to begin
its next journey. Thereafter the timer goes back to the pool at the base, gets re-charged and waits for the
next hitch-hiking on another IFT train.
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Figure 8. Shift of the balance point with change of the disassembly rate; common parameter for assembly and disassembly
curve: ρ = 0.1. For assembly curve: J = 0.09; v = 0.9; k = 0.000 45; Ωe = 0.10; ω+ = 10−6; ω− = 5 × 10−7; Nmax = 3000; for
disassembly curve-1: Γr = 1 × 10−6, for disassembly curve-2: Γr = 1.25 × 10−6, for disassembly curve-3: Γr = 1.45 × 10−6.

Figure 9. Ciliogenesis, polymerization-blocked resorption, followed by regeneration, of the flagella: after completion of
ciliogenesis, the rate constant Ωe is set to zero to mimic blocking of polymerization of the axonemal MTs, resulting in resorption
of both the flagella. After allowing sufficiently long time for relaxation of the precursor population, the rate constant Ωe is
restored to its pre-resorption non-zero value which triggers regeneration of the flagella that eventually attain their steady-state
lengths. However, the steady-state lengths achieved during this regeneration phase depend on the rates of synthesis and
degradation of the precursor proteins in the common pool. Common parameters used: ρ = 0.09, J = 0.0819, v = 0.91,
k = 0.0011, Γr = 4.0 × 10−4, ω+ = 3.0 × 10−4, ω− = 5.0 × 10−7, Nmax = 1500, δt = 2.88 × 10−4 s. For ciliogenesis and
regeneration phase: Ωe = 0.75 and for resorption phase Ωe = 0.

7.1. Master equations for a biflagellate
Let PL1(j, t) (PL2(j, t)) be the probability that the length of flagellum f1 (f2) at time t is L1(t) = j (L2(t) = j).
The master equation governing the stochastic kinetics of the length of flagellum f1 and f2, given in appendix
E, are appropriate generalizations of the master equations for a single flagellum.

7.2. Rate equations for length control in biflagellates
The equations governing the evolution of average length 〈L1(t)〉 and 〈L2(t)〉 of flagellum f1 and f2 are

d〈L1(t)〉
dt

=

[
〈N(t)〉
Nmax

e−2k〈L1(t)〉/v
]

JΩe − (1 − ρ)2Γr

d〈L2(t)〉
dt

=

[
〈N(t)〉
Nmax

e−2k〈L2(t)〉/v
]

JΩe − (1 − ρ)2Γr

(37)
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and the equations governing the evolution of the average precursor population 〈N(t)〉 in the pool is

d〈N(t)〉
dt

= ω+

[
1 − 〈N(t)〉

Nmax

]
− ω−〈N(t)〉 − d〈L1(t)〉

dt
− d〈L2(t)〉

dt
. (38)

8. Results on length control of a biflagellate

8.1. Ciliogenesis, resorption and subsequent regeneration
CR cells lose their flagella by one of the two well known mechanisms called (i) resorption, and (ii)
deflagellation [9]. During the process of resorption a flagellum is gradually retracted into the cell. In
contrast, deflagellation refers to the process of shedding of the flagella that involves severing of the entire
flagellum from its base [16]. In this subsection we present results obtained from our model for the process
of resorption, and subsequent regeneration of the flagella. Our results for the process of deflagellation will
be presented in the next subsection.

The plot of lengths 〈L1(t)〉 and 〈L2(t)〉 of the two flagella is the simplest, and most direct, way of
presenting the empirical data on ciliogenesis. The slope of each of the curves at a given time t indicates the
rate V1(t) and V2(t), respectively, of elongation of the corresponding flagella at that instant of time. In most
of the systems the rates V1(t) and V2(t) decrease with increasing t and eventually, after a time interval T,
vanish as the flagella attain their steady-state lengths 〈Lss

1 〉 and 〈Lss
2 〉. These qualitative features of the

experimental data are captured very well by the numerical results obtained by solving the rate
equation (37), together with the equation (38) for the given initial conditions 〈L1(0)〉 = 0 = 〈L2(0)〉,
〈N(0)〉 = N0 (see figure 9). The rate constants have been tuned so as to obtain 〈Lss

1 〉 = 12 μm = 〈Lss
2 〉,

which is the typical length of the flagella of wild type CR in the steady-state [36].

8.1.1. Resorption in our model: a plausible scenario
In our numerical studies of the model we mimicked the resorption process by setting the term
[ 〈N(t)〉

Nmax
e−2k〈L1(t)〉/v]JΩe to zero which implies either the rate Ωe = 0 (vanishing of elongation rate), or J = 0

(vanishing rate of flux of the IFT trains), or e−2k〈L1(t)〉/v = 0 (vanishing rate of tubulin loading). In that
situation, because of the nonvanishing Γr, the lengths of both the flagella keep decreasing till both
〈L1(t)〉 = 〈L2(t)〉 → 0, manifesting as the phenomenon of resorption as shown in figures 9(a) and (b).

Note that during resorption none of the structural proteins constituting the flagella are lost by the cell;
instead, those are actually returned to the basal pool [9, 16]. Suppose resorption begins when the system is
in the steady state. If the synthesis and degradation of the structural proteins were blocked as the resorption
begins, then at the end of resorption the net population of structural proteins in the pool would have been
〈Nss〉+ 〈Lss

1 〉+ 〈Lss
2 〉. However, if the synthesis and/or degradation of the structural proteins are not blocked

and the resorption is not sufficiently rapid, then Ndf �= 〈Nss〉+ 〈Lss
1 〉+ 〈Lss

2 〉 where Ndf is the population of
structural proteins in the pool at the moment of completion of resorption.

If [ 〈N(t)〉
Nmax

e−2k〈L1(t)〉/v]JΩe remains zero for sufficiently long time even after disappearance of the two
flagella, the population of the precursors in the common pool relaxes to the new steady-state corresponding
to Ωe = 0. This relaxation of the precursor pool population is also shown in figure 9(c).

Resorption does not remove the basal bodies [81]. Therefore, the same basal bodies remain available for
regeneration of the flagella. If the elongation rate Ωe is again switched on at this stage, the regeneration of
the two flagella proceed in a manner qualitatively similar to that during ciliogenesis (see figure 9) and both
flagella eventually regain the respective original steady-state lengths 〈Lss

1 〉 = 12 μm = 〈Lss
2 〉.

Rosenbaum et al [75] found that if CR were deflagellated in cycloheximide, a known inhibitor of protein
synthesis, then upon regeneration the flagella can attain only a length of about 6 μm whereas the normal
full length of flagella in CR is about 12 μm. This result established that the CR cells maintain a pool of the
essential structural proteins that can be exploited for regeneration of flagella. But, in the absence of fresh
synthesis of these proteins, the existing pool is not adequate for regeneration upto the full length of 12 μm.
This feature is also reproduced by our model, as depicted in figures 9(a) and (b).

8.1.2. An alternative scenario of resorption in our model

Based on a series of experiments, Pan and collaborators [15, 77, 78] have suggested that shortening of the
flagella, which requires depolymerization of the axonemal MTs, is dominantly driven by MT depolymerases
which belong to distinct families of kinesin motors [82–84]. Those experiments also indicated that under
normal conditions the population of the depolymerases in the flagella is negligibly small. However, upon
receiving a specific signal, depolymerases rush into the shaft of a flagellum and quickly reach the distal tips
of the MTs where they begin MT depolymerization at a high rate.
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Figure 10. Ciliogenesis, depolymerase-induced resorption, followed by regeneration, of the flagella: after completion of
ciliogenesis, the rate constant Γr is increased ten-fold to mimic depolymerization of the axonemal MTs by depolymerase motor
proteins. This depolymerization results in resorption of both the flagella. Allowing sufficiently long time for relaxation of the
precursor population, the rate constant Γr is restored to its pre-resorption value triggering regeneration of the flagella that
eventually attain their pre-resorption steady-state lengths. Parameters used for the plots are ρ = 0.09, J = 0.0819, v = 0.91,
k = 0.0011,Ωe = 0.3, ω+ = 3.0 × 10−4, ω− = 5.0 × 10−7, Nmax = 3000, δt = 2.4 × 10−4 s. For ciliogenesis and regeneration
phase: Γr = 2.0 × 10−4, and for resorption phase Γr = 8.0 × 10−3 (20 times stronger).

In order to establish that our model is capable of capturing the experimentally indicated role of
depolymerases in resorption, we abruptly implented a ten-fold increase of the rate Γr well after the flagella
attained their steady-state values Lss, without altering the numerical value of the growth term
[ 〈N(t)〉

Nmax
e−2k〈L1(t)〉/v]JΩe. The abrupt increase of Γr causes resorption. However, allowing sufficient time for

relaxation to the new steady-state, if the numerical value of the parameter Γr is restored to its
pre-resorption value, the two flagella again regain their pre-resorption lengths Lss through regeneration
process. For this case, the evolution of flagellar length and pool population are shown in figures
10(a)–(c).

8.2. Flagellar dynamics after deflagellation and subsequent regeneration
When subjected to environmental stress like, for example, extreme temperatures or pH or presence of
detergents or alcohols in the medium [17, 18, 85], a CR cell itself severs its flagella so that each flagellum
abruptly shortens to a length f〈Lss〉 where f = 0 corresponds to shedding of the entire flagellum. That is why
deflagellation is also referred to as flagellar excision, flagellar shedding or flagellar autotomy [16]. The
dynamics of regeneration of flagella after deflagellation need not be identical to those after resorption
because the structural proteins that constitute the severed part of a flagella are lost by the cell during
deflagellation whereas the structural proteins are gradually retracted into the common pool during
resorption.

In the in-silico experiments with our model, we mimicked deflagellation by abruptly, and
instantaneously, reducing the lengths of each of the two flagella to a shorter value f〈Lss〉 where 0 � f < 1
without altering the numerical value of any of the model parameters. The data for f = 0 and f = 1/2 are
plotted in figures 11(a)–(c). Immediately after the deflagellation, the existing pool has to provide the much
needed initial resources for the regeneration of the flagella. Consequently, in the immediate aftermath of
severing of the flagella, the population 〈N(t)〉 of the precursors in the pool decreases (see figure 11).
However, in the mean time, enhanced synthesis of the flagellar components begins; these freshly synthesized
proteins not only replenish the depleted pool but also become available for the continued growth of the
flagella. IFT particles moving inside a flagellum at the instant of amputation also get lost. But this loss of
IFT particles has negligible effect because the pool of IFT particle is generally quite large and only a small
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Figure 11. Ciliogenesis and deflagellation followed by regeneration of both flagella: after ciliogenesis, the lengths of each
flagellum is simultaneously, and abruptly, reduced to a shorter value f〈Lss〉 where 0 � f < 1; this process mimics deflagellation.
Since numerical values of all the model parameters were kept unchanged during this process, regeneration of both the flagella
begin immediately and finally both attain their original steady-state lengths. The lower and upper curves in the ‘regeneration’
part correspond to f = 0 (severing of the entire length of each flagellum, and f = 0.5 (severing of the distal half of each
flagellum), respectively. Parameters used for this plot are ρ = 0.09, J = 0.0819, v = 0.91, k = 0.001 05,Ωe = 0.75,
Γr = 3.0 × 10−4, ω+ = 4.5 × 10−4, ω− = 4.5 × 10−6, Nmax = 500, N0 = 200, Nss ≈ 81, δt = 3.6 × 10−4 s.

fraction of IFT particles participate in shuttling inside the flagellum (roughly 20%) [55, 86]. Both the
flagella and the population of the precursors in the common pool eventually attain their respective original
steady-state values irrespective of the value of f.

8.3. Flagellar dynamics after selective amputation and subsequent regeneration
In the context of deflagellation, discussed above, both the flagella were severed to equally shorter lengths. In
this subsection we consider the more general case where the two flagella are severed unequally. We refer to
this process as selective amputation in order to distinguish it from the process of deflagellation. For
simplicity, we consider the scenario where one of the two flagella is selectively severed to a length f〈Lss〉
(0 � f < 1) while the other flagellum remains intact, the special case of this situation corresponding to
f = 0 is usually referred to as ‘long-zero case’.

The curiosity-driven exploration of the consequences of amputation of flagella of unicellular eukaryotes
began almost seventy years ago when regeneration of severed flagella was first observed [87]. The first
quantitative study of the kinetics of regrowth of the shortened flagella was reported soon thereafter [88].
Since then the mechanisms of flagellar length regulation under wide varieties of conditions and
chemo-physical perturbation have been investigated with many species of flagellated eukaryotes using
several different experimental techniques with increasing sophistication [41]. In their pioneering works
Rosenbaum and coworkers [75, 81, 89, 90] used either paralysed strains or applied compression through a
coverslip to hold the cells under study for direct viewing (see, for example, [75]). Both types of
perturbations are likely to affect the objects and processes of interest in this context. In recent times,
ingenious experimental methods have been developed that avoid possible adverse effects on the normal
physiology of the flagellated cells under investigation [91]. All those experiments helped in collecting wealth
of information not only on the regeneration of the severed flagellum but also on the effects of this selective
amputation and regeneration on the length of the unsevered flagellum.

In the ‘long-zero case’, the unsevered flagellum is found to resorb rapidly while the severed one begins
to elongate. When the resorbing unsevered flagellum and the regenerating amputated flagellum attain the
same length, both elongate at the same rate till regaining their original (equal) steady-state lengths. In
principle, a cell could sense the damage/amputation of a flagellum by the loss of a function that crucially
depends on the undamaged full-length normal flagellum. However, a paralysed flagellum, which is disabled
to perform its function of driving fluid flow, can still regenerate upon amputation [91]. This experimental
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Figure 12. Regeneration of an amputated flagellum in the ‘long-zero’ case: the lengths of both the flagella are plotted against
time starting from the instant when one of the flagella is amputated from its base leaving the other intact; this type of amputation
of flagella of biflagellates is referred to as the ‘long-zero’ case. The four different sets of curves correspond to four different values
of ω+. Each pair curves plotted with the same colour correspond to the lengths of the two flagella for same ω+ where the
monotonically increasing curve denotes the growing length of the regenerating amputated flagellum. The parameters used for
this plot are ρ = 0.09, J = 0.0819, v = 0.91, Ωe = 0.75, Γr = 3.0 × 10−4, k = 1.05 × 10−3, Nmax = 500, δt = 3.6 × 10−4 s.

evidence indicates that the ‘loss-of-function’ is neither a mode of sensing damage/amputation of a flagellum
nor the stimulus for fresh synthesis of the flagellar proteins by the cell. Therefore, how the unsevered
flagellum senses the amputation of its partner and how it responds to this perturbation by initiating own
resorption remains one of the challenging open questions on this phenomenon.

We mimicked the long-zero amputation and subsequent regeneration in our model by choosing the
initial conditions 〈L1(0)〉 = 〈Lss

1 〉, 〈L2(0)〉 = 0, 〈N(0)〉 = 〈Nss〉. The flux J of IFT particles in the two flagella
is same because both the flagella share the same pool of IFT particles and amputation of one flagellum does
not affect the overall population of IFT particles in the pool [55, 86]. The data for four different values of
ω+ are plotted in figure 12. The qualitative trend of variation of 〈L1(t)〉 and 〈L2(t)〉 for the two intermediate
values of ω+ are consistent with the empirically observed facts; for both the unsevered flagellum shortens
initially till equalization of its length with the elongating severed partner and then the two flagella grow
together to full recovery. The flagellar proteins released by the shortening flagellum is utilized by the
elongating flagellum during the early stages of the latter’s regeneration [89]. Subsequently, unless
suppressed by inhibitors, fresh synthesis of flagellar proteins provides the material needed for full growth of
the two flagella to their pre-amputation original lengths.

Moreover, the larger is the numerical value of ω+ the quicker is the recovery. In fact, in the case of the
highest value of ω+ used in figure 12, the recovery of the amputated flagellum is so quick that practically no
shortening of the unsevered flagellum is observed. On the other hand, in the opposite extreme case where
ω+ = 0, only the unsevered flagellum supplied the structural proteins required for the growth of the
amputated flagellum; consequently, both the flagella can attain a steady-state length of only Lss/2 � 6μm,
as observed earlier experimentally. Thus, the nature of the kinetics of regeneration of the amputated
flagellum depends on the kinetics of synthesis of the precursor proteins in the common pool (see
figure 13).

We tested whether the model explains the experimental observation i.e., the elongation/resorption
pattern of the amputated/unamputated flagellum of the CR as reported by Ludington et al [91] and
Ishikawa and Marshall [36]. For this purpose, we selected numerical values of all the parameters to get the
best fit between the experimental data [36] and our theoretical prediction of the time-dependence of
flagellar lengths during ciliogenesis (see figure 14(a)). Then, using the same numerical values of all the
parameters, except ten times smaller values of ω+ and ω−, we could get excellent fit to our theory and the
experimental data on the time-dependence of the flagellar lengths following amputation in the long-zero
case (see figure 14(b)).

8.4. Beyond mean: fluctuations and correlation
For the numerical computation of the correlations, we begin with the following definitions: suppose, the
total number of realizations generated is n. Let Li

1(t) and Li
2(t) denote the length of flagellum-1 and 2 at

time t in ith realization. The instantaneous mean lengths of the two flagella are defined by

〈L1(t)〉 =
∑n

i=1 L1
i(t)

n
, and 〈L2(t)〉 =

∑n
i=1 L2

i(t)

n
, (39)
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Figure 13. Length and time of equalization as a function of ω+: (a) length at which equalization of the two flagellar lengths
happens during regeneration, after amputation in the ‘long-zero’ case. (b) The corresponding time of equalization of the lengths
of the two flagella in the ‘long-zero’ case; here time is measured from the instant of amputation. The colour code is identical to
that in figure 12. The parameters used for this plot are ρ = 0.09, J = 0.0819, v = 0.91, Ωe = 0.75, Γr = 3.0 × 10−4,
k = 1.05 × 10−3, Nmax = 500, δt = 3.6 × 10−4 s.

Figure 14. Comparison of theory with experimental data on ciliogenesis and flagellar regeneration after selective amputation:
(a) simultaneous growth of the two flagella during ciliogenesis. The dots denote the experimental data taken from Ishikawa and
Marshall [36] while the continuous curves have been obtained solving the coupled equations (37) and (38). The parameters used
for this plot are ρ = 0.08, J = 0.0736, v = 0.92, Ωe = 0.65, Γr = 3.0 × 10−4, k = 1.0 × 10−3, ω+ = 4.5 × 10−4,
ω− = 4.5 × 10−6, Nmax = 500, δt = 3.6 × 10−4 s. (b) Regeneration after selective amputation of a single flagellum. The dots
denote the experimental data taken from Ludington et al [91] while the continuous curves have been obtained by solving the
coupled equations (37) and (38). For this plot, ω+ = 4.5 × 10−5, ω− = 4.5 × 10−7, δt = 3.6 × 10−4 s.

while the corresponding variances are given by

Var(L1) =

[
1

n − 1

n∑
i=1

(〈L1(t)〉 − L1
i(t))2

]1/2

Var(L2) =

[
1

n − 1

n∑
i=1

(〈L2(t)〉 − L2
i(t))2

]1/2
(40)
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Figure 15. Length fluctuation and correlation: the correlation of the fluctuations of the lengths of the two flagella during
regeneration in the ‘long-zero’ case are plotted in (a1)–(c1) under three different conditions shown in (a)–(c), respectively. The
fluctuations in the lengths of the two flagella during short intervals in the plots (a1)–(c1) are shown explicitly in (a2)–(c2),
respectively. The common numerical values of the parameters used for this figure are ρ = 0.1, J = 0.09, v = 0.9, k = 0.008,
Ωe = 0.5, Γr = 5.0 × 10−4, Nmax = 100, N0 = 50, δt = 3.6 × 10−4 s.

and the covariance Cov(L1L2) is given by

1

n − 1

[
n∑

i=1

(〈L1(t)〉 − L1
i(t))(〈L2(t)〉 − L2

i(t))

]1/2

. (41)

In terms of these variances and the covariance, the correlation between the flagellar lengths is defined as

Corr(L1L2) =
Cov(L1L2)

Var(L1) Var(L2)
; (42)

and it gives a quantitative measure of the correlation of fluctuations in the lengths of the two flagella. Then
a set of n realizations of stochastic trajectories are generated by simulating the model using Monte-Carlo
methods as described in appendix F.

We studied the Corr(L1L2) for three different cases: (i) negligibly small resorption of the unsevered
flagellum before equalization of its length with that of regenerating flagellum (figure 15(a)), (ii) significant
shortening of the unsevered flagellum till equalization of the lengths of the two, followed by recovery of
pre-amputation steady-state lengths of both (figure 15(b)) and (iii) significant shrinkage of the unsevered
flagellum till both the flagella attain a steady-state length of ≈ Lss/2 and stop growing further (figure 15(c)).

In the case (i), the correlation remained zero throughout the regeneration process (see figure 15(a1)).
Since the proteins required for the regeneration of the amputated flagellum are supplied exclusively by the
precursor pool, leaving the unamputated flagellum practically unaffected, there is no correlation between
the length fluctuations of the two flagella (see figure 15(b1)).
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In case (ii), the correlation exhibited a nonmonotonic behaviour; starting from the initial value zero, it
became negative and its absolute value increased with the passage of time till it attained its minimum
beyond which it increased gradually to its final value zero (see figure 15(a2)). The correlation was found to
be negative during the initial period when the shortening unamputated flagellum made significant
contribution to the supply of proteins that sustained the regeneration of the amputated flagellum. This fact
is demonstrated clearly by the plots in figure 15(b2)).

In case (iii), the correlation became negative as soon as the amputated flagellum started growing at the
expense of the unamputated flagellum and remained negative throughout, even after both the flagella
attained their new steady lengths (see figure 15(c1)). Since in this case synthesis and degradation of the
precursors were blocked, any increase of the length of one of the two flagella had to be compensated by the
corresponding decrease in the length of the other, i.e., the fluctuations in the lengths of the two flagella were
always anti-correlated. This is clearly visible in figure 15(c2)).

From all these three cases it could be concluded that the correlation between the fluctuation of lengths
of the flagellum is strongly related to the precursor population in the pool. Actually, through this precursor
pool both the flagellum interact. When sufficient precursor is present in the pool to support the
regeneration of the amputated flagellum, the correlation is vanishingly small (figures 15(a)–(a2)). But,
during those time intervals when the precursors get depleted, then one flagellum grows at the cost of other,
leading to negative correlation (figures 15(b)–(b2)). And in those extreme situations where one flagellum
can grow only at the expense of the other, correlation remains negative for the whole time
(figures 15(c)–(c2)).

9. Comparison with other models

A summary of all the known theoretical models of flagellar length control and critical analysis of their
implications was reported few years ago by Ludington et al [35]. Several of those models could be ruled out
through their systematic analysis. But, some others, which could not be discarded by the experimental
evidence, still remain as plausible, although alternative, scenarios for flagellar length control. One of these is
based on a ‘time of flight’ (ToF) mechanism which was considered subsequently by Ishikawa and Marshall
[36] while analyzing their experimental data. Based on their physical interpretation of the experimental
data, Ishikawa and Marshall concluded that their data do not support the ToF mechanism. In contrast,
invoking some subtle features of TASEP, which represents IFT in our model, we argue that the experimental
observations of Ishikawa and Marshall are consistent with the ToF mechanism.

Note that equation (15) can be expressed as

d〈L(t)〉
dt

= k1CpT(〈L〉) − k2 (43)

with k1 = JΩe, Cp = 〈N(t)〉/Nmax, T(〈L〉) = e−2k〈L(t)〉/v and k2 = (1 − ρ)2Γr. The form (43) looks exactly
like the equation (1) in the supplementary information of reference [91]. However, the crucial difference
between (43) and equation (1) in the supplementary information of reference [91] is that T(〈L〉) in (43) is
given by a mathematical expression that follows naturally from the ToF mechanism whereas it was treated as
a phenomenological parameter in reference [91].

The length-dependent growth and length-independent decay of flagella is at the foundation of Marshall
and Rosenbaum’s ‘balance-point’ model [10]. It has been used also in a stochastic model of flagellar length
control developed by Bressloff [92]. In the original version of the balance-point model [10] it was implicitly
assumed that each IFT particle carries flagellar structural proteins as cargo. One of the key explicit
assumptions of that version of the balance-point model was that the number of IFT particles and their
average speed remain constant in time. Therefore, in that case, the decrease of the flagellar assembly rate
with its increasing length could arise only if the rate of the arrival of the IFT particles decreased with the
increase of flagellar length. But, this scenario was in direct contradiction with the subsequent experimental
observation of Dentler [93]. In the revised balance-point model [18] an attempt was made to reconcile the
balance-point concept with the experimental observation of Dentler [93] in terms of the variation in the
sizes of the IFT trains (see [94] for an extension of the Bressloff’s work to a stochastic version of the revised
balance-point model.

The length-dependent effective assembly rate and a length-independent disassembly rate of each
individual flagellum in our model (see figure 2(a)) is consistent with the general concept of ‘balance-point’
[10, 18, 71]. However, the length-dependence of the effective assembly rate arises in our model from the
differential loading of the IFT particles with flagellar structural proteins. The concept of differential loading
was proposed earlier qualitatively [37, 38]; it is now incorporated quantitatively in our theoretical
model.
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Marshall and coworkers [95] developed an alternative model where kinesin motor proteins, that diffuse
on their way back to the base from tip, serve as ‘rulers’. In this model the steady state length of the flagellum
is given by

Lss =

(
2NDδL

d

)1/2

(44)

where N is the number of diffusing motors, D is their diffusion constant, δL is the increment of flagellar
length when a motor reaches its tip, and d is the rate of shortening (decay) of flagellar length. In spite of the
differences in the underlying length control mechanisms the expressions (19) and (44) for Lss, shares one
common feature. The steady-state length of the flagellum is determined by the balance of the competing
length-dependent growth rate and length-independent decay rate.

The more recent model developed by Fai et al [40] is based on Hendel et al’s postulate [95] that the
diffusing kinesins act as rulers for length control. Fai et al [40] use IFT particles and motors interchangeably
throughout the paper without explicitly stating that they do not distinguish between the two. In contrast,
the model developed by Hendel et al [95] does not specifically represent the IFT particles. In fact, Hendel
et al [95] assumed that ‘each motor is associated with an IFT particle carrying a fixed quantity of material’.
The slight difference in the expressions for Lss derived by Hendel et al [95] and that of Fai et al [40] arises
from difference in the scenarios considered by the two. The two assumptions made by Hendel et al [95] are:
(i) ‘a constant source of free motor protein at the tip’ and, (ii) ‘motors that have reached the base
immediately transport back to the tip’. Under these special conditions (i.e., ‘no tubulin depletion’ and
‘instantaneous ballistic motion’ [40]), as Fai et al point out [40], the more general form of the expression
Lss reduces to that of Hendel et al [95] In this sense Fai et al’s result is slightly more improved compared to
that of Hendel et al [95]. One key feature of Fai et al’s flagellar length control model is that the rate of
shortening of a flagellum is also length dependent. This is in sharp contrast to all the other models of
balance-point scenario where shortening rates are independent of the flagellar length.

As we have discussed above, a balance point in the context of flagellar length control can arise from
length-dependent rates of growth or/and shrinkage of axonemal MTs. In other words, at least one of the two
competing rates (assembly and disassembly rates) should be length dependent [72]. In this way a balance
emerges between the assembly and disassembly and gives rise to a time-independent average length of the
filament in the steady-state. Specifically, in our model the balance point results from a length-dependent
growth and length-independent shrinkage of the axonemal MTs. However, the existence of a balance point
is not a unique feature of MTs. This phenomenon occurs also in actin filaments where the rates of
attachment and detachment of subunits at the barbed and pointed ends can exactly balance each other
provided at least one of them is length-dependent [72, 73].

10. Summary and conclusions

In this paper we have developed a rather general theoretical model for eukaryotic flagellar length control.
This model successfully integrates the following ingredients within a single theoretical framework: (i) a ToF
mechanism for length sensing, (ii) a length-dependent differential loading of the IFT particles [37, 38], and
(iii) representation of IFT as a totally asymmetric simple exclusion process (TASEP).

We have analysed the model at two different levels. The intrinsic fluctuations in the quantities of interest
are obtained analytically from the master equations and the Fokker–Planck equations, and numerically
from MC simulations. Most of these results are new predictions that, in principle, can be tested
experimentally. The deterministic rate equations derived from the master equations account for the well
known time-dependent, as well as the steady-state, properties of the system.

Next we list the main results of our analysis. (a) Quantification of the length-dependent growth rate, in
terms of the length-dependent differential loading of the precursor proteins, and length-independent
shrinkage rate gives rise a mechanism of attaining the steady-state length Lss; this scenario is consistent with
the concept of balance-point introduced, and elaborated, earlier in the literature [10, 18, 71].

(b) Our results highlight the important role of the population kinetics of the structural precursor
proteins in the common shared pool at the base of the flagella. In some physiologically relevant range of
parameters, we demonstrate that during ciliogenesis the elongating flagellum can overshoot beyond its
steady-state length Lss before relaxing back to Lss. Such overshooting, although not reported so far, is
expected to be observed in the parameter range that we propose.

(c) In the context of the length coordination between the two flagella of biflagellates, it has been known
for decades that, during regeneration of the amputated flagellum the unamputated flagellum exhibits a
non-motononic variation of its length: initially it shortens till its length becomes just equal to that of the
regenerating flagellum and beyond this point both the flagella grow together maintaining approximately
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equal length till attaining their pre-amputation steady-state lengths. Our model not only reproduces this
non-trivial collective dynamics of the two flagella over a wide range of parameter values, but also reveals
new qualitatively different behaviours in parameter regimes that, to our knowledge, have not been explored
in laboratory experiments.

(d) We have carried out a numerical analysis of our model mimicking the conditions under which the in
vivo experiments were carried out by Ishikawa and Marshall [36] to test the validity of the ToF mechanism.
We have argued that the experimental observations are not only consistent with the ToF mechanism, but
also provide experimental support for the TASEP-based description of the traffic of IFT particles. Moreover,
a different numerical study of our model demonstrates that it can capture the experimentally observed [15,
77, 78] role of depolymerase cytoskeletal motors in the resorption of flagella.

(e) The stochastic version of our model has made new predictions on the nature of correlations between
fluctuations of the lengths of the two flagella in steady-state as well as in states far from the steady-state.

Thus, in spite of the simplifying assumptions, as listed in section 4, the model is remarkably successful
in accounting for all the known phenomena in the context of flagellar length control in biflagellated
eukaryotes. Moreover, it also makes new predictions on the nature of length fluctuations and on the role of
the pool of flagellar structural proteins that, in principle, can be tested experimentally. Furthermore, the
stochastic formulations of the model have laid down the foundation on which more detailed structures of
the theories can be constructed in future for quadriflagellate and octoflagellate eukaryotes.
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Appendix A. Derivation of rate equations for a single flagellum from master
equations

Now we will write the master equations governing the evolution of length and pool population in terms of
A, B and C-defined in equations (21)–(23). The complete set of master equations governing the length of
the flagellum:

For j = 0

dPL(j, t)

dt
= −

[
e−Cj

Nmax∑
n=0

n

Nmax
PN(n, t)

]
APL(j, t) + BPL(j + 1, t). (A1)

For j = 1 to j = Lmax − 1

dPL(j, t)

dt
=

[
e−C(j−1)

Nmax∑
n=0

n

Nmax
PN(n, t)

]
APL(j − 1, t) −

[
e−Cj

Nmax∑
n=0

n

Nmax
PN(n, t)

]
APL(j, t)

+ BPL(j + 1, t) − BPL(j, t). (A2)

For j = Lmax

dPL(j, t)

dt
=

[
e−C(j−1)

Nmax∑
n=0

n

Nmax
PN (n, t)

]
APL(j − 1, t) − BPL(j, t). (A3)

The complete set of master equations governing the precursor population:
For n = 0

dPN(n, t)

dt
=− ω+

(
1 − n

Nmax

)
PN(n, t) + ω−(n + 1))PN(n + 1, t)

+

⎡
⎣Lmax∑

j=0

A e−CjPL(j, t)

⎤
⎦[

(n + 1)

Nmax
PN(n + 1, t)

]
− BPN(n, t). (A4)

For n = 1 to n = Nmax − 1

dPN (n, t)

dt
= ω+

(
1 − (n − 1)

Nmax

)
PN(n − 1, t) − ω+

(
1 − n

Nmax

)
PN (n, t) + ω−(n + 1))PN (n + 1, t) − ω−(n)PN (n, t)
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+

⎡
⎣Lmax∑

j=0

A e−CjPL(j, t)

⎤
⎦[

(n + 1)

Nmax
PN (n + 1, t) − (n)

Nmax
PN (n, t)

]
+ B[PN (n − 1, t) − PN (n, t)]. (A5)

For n = Nmax

dPN(n, t)

dt
= ω+

(
1 − (n − 1)

Nmax

)
PN (n − 1, t) − ω−(n)PN (n, t)

−

⎡
⎣Lmax∑

j=0

A e−CjPL(j, t)

⎤
⎦[

n

Nmax
PN (n, t)

]
+ BPN(n − 1, t). (A6)

Some well known probability relations are the following

∞
Σ

j=0
{P(j, t)} = 1

∞
Σ

j=0
{jP(j, t)} = 〈 j(t)〉

∞
Σ

j=0

{
j2P(j, t)

}
= 〈 j2(t)〉.

(A7)

Multiplying both the sides of the master equation (A2) with j and summing it over, we get

Lmax∑
j=0

j
d

dt
(PL(j, t)) =

Lmax∑
j=0

j

⎡
⎢⎢⎢⎢⎣
[{

Nmax∑
n=0

n

Nmax
PN(n, t)

}
e−C(j−1)A

]
PL(j − 1, t)

︸ ︷︷ ︸
term−1

−
[{

Nmax∑
n=0

n

Nmax
PN (n, t)

}
e−CjA

]
PL(j, t)

︸ ︷︷ ︸
term−2

+ {B}PL1(j + 1, t) −
{

(1 − ρ)2Ωr

}
PL1(j, t)︸ ︷︷ ︸

term−3

⎤
⎥⎥⎥⎥⎦

(A8)

where Lmax is a positive integer and Lmax � Lss.
On simplifying term-1 we will get

Term − 1 :
Lmax∑
j=0

j

[{
Nmax∑
n=0

n

Nmax
PN (n, t)

}
e−C(j−1)APL(j − 1, t)

]

=

[{
Nmax∑
n=0

n

Nmax
PN(n, t)

}
A

] ⎡
⎣Lmax∑

j=0

{
j e−C(j−1)PL(j − 1, t)

}⎤⎦

=

[{
Nmax∑
n=0

n

Nmax
PN(n, t)

}
A

] ⎡
⎣Lmax∑

j=0

{
(j − 1 + 1)e−C(j−1)PL(j − 1, t)

}⎤⎦

=

[{
Nmax∑
n=0

n

Nmax
PN(n, t)

}
A

] ⎡
⎣Lmax∑

j=0

⎧⎨
⎩(j − 1 + 1) e−C(j−1)︸ ︷︷ ︸

expand it

PL(j − 1, t)

⎫⎬
⎭

⎤
⎦

=

[{
Nmax∑
n=0

n

Nmax
PN(n, t)

}
A

] ⎡
⎣Lmax∑

j=0

{(j − 1 + 1) (1 − C(j − 1))PL(j − 1, t)}

⎤
⎦

=

[{
Nmax∑
n=0

n

Nmax
PN(n, t)

}
A

] ⎡
⎣Lmax∑

j=0

{(j − 1) (1 − C(j − 1))PL(j − 1, t)}

+

Lmax∑
j=0

{ (1 − C(j − 1))PL(j − 1, t)}

⎤
⎦
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=

[{
Nmax∑
n=0

n

Nmax
PN(n, t)

}
A

] [{
(〈L(t)〉 − C〈L(t)2〉)

}
+ { (1 − C〈L(t)〉)}

]
. (A9)

Similarly, on simplifying term-2 we will get

Term − 2:
Lmax∑
j=0

j

[{
Nmax∑
n=0

n

Nmax
PN(n, t)

}
e−CjAPL(j, t)

]
=

[{
Nmax∑
n=0

n

Nmax
PN(n, t)

}
A

] [{
(〈L(t)〉 − C〈L(t)2〉)

}]
.

(A10)
On simplifying term-3 we will get

Term − 3 :
Lmax∑
j=0

j[{B} PL(j + 1, t) − {B} PL(j, t)] =
Lmax∑
j=0

[{B} (j + 1 − 1)PL(j + 1, t) − {B} jPL(j, t)]

= [{B} (〈L〉 − 1) − {B} (〈L〉)] = −B (A11)

d〈L1(t)〉
dt

= term 1 term 2 + term 3

=

[{
Nmax∑
n=0

nPN (n, t)

}
A

]
︸ ︷︷ ︸

(1 − C〈L〉)︸ ︷︷ ︸ − B

=
〈N(t)〉
Nmax

A e−C〈L(t)〉 − B. (A12)

Now let us consider the master equation for the precursor population at the pool given by
equation (A5). Multiplying both the sides with n and summing it over, we get

Nmax∑
n=0

n
dPN(n, t)

dt
=

Nmax∑
n=0

n

⎡
⎢⎢⎢⎣ω+

(
1 − (n − 1)

Nmax

)
PN (n − 1, t) − ω+

(
1 − n

Nmax

)
PN(n, t)︸ ︷︷ ︸

term−1

+ (n + 1)PN(n + 1, t)ω− − nPN (n, t)ω−︸ ︷︷ ︸
term−2

+ PN(n + 1, t)

⎡
⎣Lmax∑

j=0

{
e−CjAPL(m, t)

}⎤⎦− PN(n, t)

⎡
⎣Lmax∑

j=0

{
e−CjAPL(m, t)

}⎤⎦
︸ ︷︷ ︸

term−3

+ {B} PN(n − 1, t) − {B}PN (j, t)︸ ︷︷ ︸
term−4

⎤
⎦ . (A13)

On simplifying term-1:

Nmax∑
n=0

n

[
ω+

(
1 − (n − 1)

Nmax

)
PN(n − 1, t) − ω+

(
1 − (n)

Nmax

)
PN(n, t)

]

=

Nmax∑
n=0

[
(n − 1 + 1)ω+

(
1 − (n − 1)

Nmax

)
PN(n − 1, t) − ω+n

(
1 − (n)

Nmax

)
PN(n, t)

]

=

Nmax∑
n=0

[{
(〈N(t)〉+ 1) − (〈N2(t)〉+ 〈N(t)〉)

Nmax

}
ω+ −

{
〈N(t)〉 − 〈N2(t)〉

Nmax

}
ω+

]

=

[
1 − 〈N(t)〉

Nmax

]
ω+. (A14)

On simplifying term-2:

Nmax∑
n=0

n[ω−(n + 1)PN(n + 1, t) − ω−nPN (n, t)] =
Nmax∑
n=0

[ω−(n + 1 − 1)(n + 1)PN(n + 1, t) − ω−n2PN (n, t)]
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= ω−〈N2(t)〉 − ω−〈N(t)〉 − ω−〈N2(t)〉

= −ω−〈N(t)〉. (A15)

On simplifying term-3:

Nmax∑
n=0

n

⎛
⎝ (n + 1)

Nmax
PN (n + 1, t)

⎡
⎣Lmax∑

j=0

{
e−CjAPL(j, t)

}⎤⎦− (n)

Nmax
PN(n, t)

⎡
⎣Lmax∑

j=0

{
e−CjAPL(j, t)

}⎤⎦
⎞
⎠

=
1

Nmax

⎡
⎣Lmax∑

j=0

{
e−CjAPL(j, t)

}⎤⎦ [
Nmax∑
n=0

n {(n + 1)PN(n + 1, t) − nPN (n, t)}
]

=
1

Nmax

⎡
⎣Lmax∑

j=0

{
e−CjAPL(j, t)

}⎤⎦ [
Nmax∑
n=0

{
(n + 1 − 1)(n + 1)PN(n + 1, t) − n2PN (n, t)

}]

=
1

Nmax

⎡
⎣Lmax∑

j=0

{
e−CjAPL(j, t)

}⎤⎦ [〈N2(t)〉 − 〈N(t)〉 − 〈N2(t)〉]

= −〈N(t)〉
Nmax

⎡
⎣Lmax∑

j=0

{
e−CjAPL(j, t)

}⎤⎦
︸ ︷︷ ︸

= −〈N(t)〉
Nmax

e−C〈L(t)〉A. (A16)

On simplifying term-4:

Nmax∑
n=0

n[{B} PN(n − 1, t) − {B}PN (n, t)] = {B}
Nmax∑
n=0

[(n − 1 + 1)PN(n − 1, t) − nPN (n, t)]

= {B} [〈N(t)〉+ 1 − 〈N(t)〉] = B. (A17)

On collecting all the terms:

d〈N(t)〉
dt

=

[
1 − 〈N(t)〉

Nmax

]
ω+ − 〈N(t)〉ω− − 〈N(t)〉

Nmax
e−C〈L(t)〉A + B

=

[
1 − 〈N(t)〉

Nmax

]
ω+ − 〈N(t)〉ω− − d〈L(t)〉

dt
. (A18)

Appendix B. Steady state length distribution from master equation

In steady state, the probabilities become time dependent. So setting dPL(j,t)
dt = 0 for the master equations

given in equation (9), we get system of Lmax + 1 linear equations

μL
1,0PL(1) − λL

0,1PL(0) = 0 (B1a)

λL
j−1,jPL(j − 1) + μL

j+1,jPL(j + 1) − (λL
j,j+1 + μL

j,j−1)PL(j) = 0 for j = 1 to Lmax − 1 (B1b)

λL
Lmax−1,Lmax

PL(Lmax − 1) − μL
Lmax,Lmax−1PL(Lmax) = 0. (B1c)

Solving these coupled equations given by equation (B1) recursively, we obtain all the probabilities P(j)
for j > 0 in terms of P(0). For example, P(1) and P(2) in terms of P(0) are expressed as
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PL(1) =
λL

0,1

μL
1,0

PL(0) (B2a)

PL(2) =
(λL

1,2 + μL
1,0)

μL
2,1

PL(1) − λL
0,1

μL
2,1

PL(0) =
(λL

1,2 + μL
1,0)

μL
2,1

λL
0,1

μL
1,0

PL(0) − λL
0,1

μL
2,1

PL(0) =
λL

1,2λ
L
0,1

μL
2,1μ

L
1,0

PL(0). (B2b)

It can be shown by method of induction that

PL(j) = PL(0)
j∏

j′=0

λL
j−1,j

μL
j,j−1

. (B3)

Substituting the expressions of P(j), which are written in terms of P(0), into to the following
normalization condition

Lmax∑
j=0

PL(j) = 1 (B4)

we solve for PL(0) which turns out to be a function of the intensities λL
j,j+1 and μL

j,j+1 (j = 0, 1, . . . , Lmax) and
is given by

PL(0) =

⎡
⎣(1 +

Lmax∑
j=0

j∏
i=1

λL
i−1,i

μL
i,i−1

)

⎤
⎦−1

. (B5)

Hence, substituting the expression of for PL(0) obtained in equation (B5) in the formula for PL(j) given
by equation (B3), all the PL(j) can be expressed in terms of transition rates λL

s and μL
s .

Appendix C. Steady state length distribution from Fokker–Planck equation

Carrying out a standard Kramer–Moyal expansion of the master equation, we get the Fokker–Planck
equation

∂P(x, t)

∂t
= − ∂

∂x
[f (x)P(x, t)] +

ΔL

2
· ∂2

∂x2
[g(x)P(x, t)] (C1)

with
f (x) = λ(x) − μ(x) (C2)

and
g(x) = λ(x) + μ(x) (C3)

where

λ(x) =
〈N(t)〉
Nmax

e−2kx/vJΩe

μ(x) = (1 − ρ)2Γr.

(C4)

In terms of A = JΩe〈N(t)〉/Nmax, B = (1 − ρ)2Ωr, and C = 2k
v f (x) and g(x) can be re-written as:

f (x) = Ae−Cx − B

g(x) = Ae−Cx + B.
(C5)

The steady state solution of the Fokker Planck equation Pss(x) is given by:

Pss(x) = C0
e−Φ(x)

g(x)
(C6)

where

Φ(x) = − 2

ΔL

∫ x

0

f (x′)

g(x′)
dx′ =

2

ΔL

[
2

C
log

(
A + B eCx

A + B

)
− x

]
(C7)

and the normalization constant C0 is given by
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C0 =

[∫ Lm

0

e−Φ(x′)

g(x′)
dx′

]−1

=

[
A(C +

2

ΔL
)

]−1
[

eLm(C+2/ΔL)
(

A + B eCLm

A + B

)−4/(CΔL)

2F1 (σa,σb;σc;σd1) − 2F1 (σa,σb;σc;σd2)

]

(C8)

where 2F1(a, b; c; z) represents the Gauss hypergeometric function and
σa = 1, σb =

C−2
C ; σc =

2
C + 2; σd1 = − B

A , σd2 = − B
A eCLm .

Substituting the expressions (C8) and (C7) for C0 and Φ(x), respectively, into the expression (C6) for
Pss(x), we get

Pss(x) =

[
A(C +

2

ΔL
)

] [
1

A + B
e[x(C+2/ΔL)]

(
A + B eCx

A + B

)−4/(CΔL)−1
]/

[
eL0(C+2/ΔL)

(
A + B eCLm

A + B

)−4/(CΔL)

2F1 (σa,σb;σc;σd1) − 2F1 (σa,σb;σc;σd2)

]
. (C9)

Hence,

〈x〉ss =
1

C0

ΔL

A(CΔL + 2)2

[
ΔL

(
A + B

A

)4/(CΔL)

3F2 (ηa, ηa, ηb; ηc, ηc; ηd1)

+ eLm(C+2/ΔL)(A + B)4/(CΔL)
(
A + B eCLm

)−4/(CΔL)
(

1 +
B eCLm

A

)4/(CΔL)

× {Lm(2 + CΔL)2F1 (ηa, ηb; ηc; ηd) −ΔL3F2 (ηa, ηa, ηb; ηc, ηc; ηd2)}
]

(C10)

and

〈x2〉ss =

[
1

C0

]
ΔL

A(CΔL + 2)3

[
−2ΔL2

(
A + B

A

)4/(CΔL)

4F3 (ηa, ηa, ηa, ηb; ηc, ηc, ηc; ηd1)

+ eLm(C+2/ΔL)(A + B)4/(CΔL)
(
A + B eCLm

)−4/(CΔL)
(

B eCLm

A
+ 1

)4/(CΔL)

×
{

Lm
2(CΔL + 2)2

2F1 (ηa, ηb; ηc; ηd2) − 2ΔLLm(CΔL + 2)3F2 (ηa, ηa, ηb; ηc, ηc; ηd2)

+ 2ΔL2
4F3 (ηa, ηa, ηa, ηb; ηc, ηc, ηc; ηd2)

}]
(C11)

where ηa =
2
C + 1, ηb =

4
C + 1, ηc =

2
C + 2, ηd1 = − B

A and ηd2 = − B
A eCLm .

Appendix D. Timescales

In terms of A, B and C, the coupled differential equations become:

d[L(t)]

dt
=

N(t)

Nmax
A e−CL(t) − B

d[N(t)]

dt
= ω+

[
1 − N(t)

Nmax

]
− ω−N(t) − d[L(t)]

dt

(D1)

where A = JΩe, B = (1 − ρ)2Γr, and C = 2k/v.
First we need to calculate the fixed point for the system. The system has one fixed point (L∗, N∗), given

by

L∗ =
1

C
log

[
A

B

ω+

ω− + (ω+/Nmax)

]
(D2)

and
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N∗ =
ω+

ω− + (ω+/Nmax)
, (D3)

which is the steady state of the system. Let d[L(t)]
dt = fL(L, N) and d[N(t)]

dt = fN (L, N).
Introducing the matrix⎛

⎜⎝
∂fL

∂L

∂fL

∂N
∂fN

∂L

∂fN

∂N

⎞
⎟⎠ =

⎛
⎝−AC e−CLN A e−CL

AC e−CLN −A e−CL − ω− − ω+

Nmax

⎞
⎠ (D4)

and evaluating its elements at (L∗, N∗), we get⎛
⎜⎜⎝−CB B

(
ω−

ω+
+

1

Nmax

)
C B −B

(
ω−

ω+
+

1

Nmax

)
− ω− − ω+

Nmax

⎞
⎟⎟⎠ . (D5)

The matrix (D5) has two eigenvalues (λ+,λ−) and two corresponding eigenvectors (V+, V−); the
eigenvalues are

λ± =
1

2

[
−

{
B

(
ω−

ω+
+

1

Nmax

)
+ ω− +

ω+

Nmax
+ BC

}

±

√{
B

(
ω−

ω+
+

1

Nmax

)
+ ω− +

ω+

Nmax
+ BC

}2

− 4BC

(
ω− +

ω+

Nmax

)⎤
⎦ (D6)

and the corresponding eigenvectors V± are

⎛
⎜⎜⎝

1

2BC

⎡
⎣B

(
ω−

ω+
+

1

Nmax

)
+ ω− +

ω+

Nmax
− BC ±

√{
B

(
ω−

ω+
+

1

Nmax

)
+ ω− +

ω+

Nmax
+ BC

}2

− 4BC

(
ω− +

ω+

Nmax

)⎤
⎦

1

⎞
⎟⎟⎠.

(D7)

To simplify the expressions, that also helps in more transparent physical interpretations, we introduce the
symbols

ζ1 = −B

(
ω−

ω+
+

1

Nmax

)
− ω− − ω+

Nmax

ζ2 = BC

ζ3 = 4BC

(
ω− +

ω+

Nmax

)
. (D8)

In terms of ζ1, ζ2 and ζ3, the eigenvalues and eigenvectors can be recast as

λ± =
1

2

[
−(ζ1 + ζ2) ±

{
(ζ1 + ζ2)2 − ζ3

}]
(D9)

and

V± =

⎛
⎝ 1

2ζ2

[
(ζ1 − ζ2) ±

{
(ζ1 + ζ2)2 − ζ3

}]
1

⎞
⎠ . (D10)

Note that the dependence of λ± on the three parameters ω+, ω− and Nmax, which together characterize
the population kinetics of the precursor pool, have been shown explicitly in (D6). The composite
parameters A, B and C, as stated before, characterize the flagellar elongation, timer relaxation and flagellar
shrinkage, respectively. The inverse of these two eigenvalues indicate the two timescales of relaxation of
small excursions away from the steady-state. Since λ− is the larger of the two eigenvalues, the associated
timescales τ± = 1/λ± satisfy τ+ > τ−.

In figure D1(a), we plot the 〈L(t)〉 vs t for different pairs of Ωe and Γr. Note that 〈Lss〉 remain same for
all the different sets of parameters because the ratio of Ωe and Γr is kept same for all the cases. It can be
checked from the expression of eigenvalues from equation (D6) that the the timescale mainly depend on ω−

and BC. In figure D1(a), we are vary B over three decades by changing Γr over three decades and we observe
that the time in which the 〈L(t)〉 mature vary by three decades as well.
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Figure D1. Timescales: (a)〈L(t)〉 vs t. Inset: 〈N(t)〉 vs t. (b) 〈N(t)〉 vs t. Inset: 〈L(t)〉 vs t. Parameters: (a) ρ = 0.1, J = 0.09,
v = 0.9, k = 1.8 × 10−3, ω+ = 0.5, ω− = 5.0 × 10−3, Nmax = 1000, δt = 9.0 × 10−6 s, L(0) = N(0) = 0 (b) ρ = 0.1, J = 0.09,
v = 0.9, k = 1.8 × 10−3, Ωe = 0.5, Γr = 1.0 × 10−5, Nmax = 1000, δt = 9.0 × 10−6 s, L(0) = N(0) = 0.

Substituting the parameters used to plot figure D1(a) into the expressions (D6) for λ±, we observe that
λ+ varies by three orders for the three different cases whereas λ− remains practically unchanged. It
indicates that λ+ determines the timescale associated with the flagellar length L(t). Moreover, from the inset
of figure D1(a), we see that the timescale in which N(t) attains 〈Nss〉 is very small compared to the timescale
in which L(t) attain 〈Lss〉. Besides, the curves for 〈Nss〉 corresponding to the three sets of parameter values
are almost identical. Hence, in this case, 〈L(t)〉 is given by the approximate expression (26) which clearly
shows that, in this limit, the timescale in which 〈L(t)〉 attains 〈Lss〉 is τ = 1/(BC). For consistency, we have
also extracted the numerical value of λ+ for all the three cases plotted in figure D1(a) and found it to be,
indeed, approximately equal to [BC]. Hence, we conclude that 1/λ+ governs the timescale in which length
〈L(t)〉 attains 〈Lss〉.

Similarly, to understand the timescale with which 〈N(t)〉 approach Nss, we plot 〈N(t)〉 for different
values of ω+ and ω− in figure D1(b). However, as the ratio of ω+ and ω− is kept same in all the three cases,
Nss is also same for all the cases. As we vary ω− over three decades, the time over which 〈N(t)〉 attain steady
state Nss varies over three decades (figure D1(b)) while the corresponding 〈L(t)〉 attains steady state value
〈Lss〉 in same time interval irrespective of the time taken by the pool to achieve steady value (see
figure D1(b) inset).

To understand this observation, we computed the λ± using the corresponding parameter values used to
plot figure D1(b). We observed λ− varies by three orders for the three different cases whereas λ+ remains
unchanged. For plotting figure D1(b), Γr is very small compared to ω+ or ω− (see the caption of
figure D1). Therefore, under the approximation B � 0, the formula for eigenvalues (16), can be
approximated as

λ− =

[
ω− +

ω+

Nmax

]
. (D11)

Hence, we conclude that the timescale associated with the N(t) dynamics is τ− = 1/λ− ≈
1/[ω− + (ω+/Nmax)].

Finally, for further check of consistency, we perturbed the system slightly away from the fixed point (i.e.,
from the steady state) and observing how the perturbations died out with time. In the first case (see
figure D2(a)), we have monitored the relaxation of the initial state L(0) = 〈Lss〉 −ΔL(0), N(0) = 〈Nss〉; the
slope of the straight line on the semi-log plot is, indeed, λ+. Similarly, in the second case, we chose the
initial condition L(0) = 〈Lss〉, N(0) = 〈Nss〉 −ΔN(0); the slope of the straight line on the semi-log plot in
figure D2(b) is also found to be λ−.
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Figure D2. Slight deviation from fixed point: (a) solid line—|〈L(t)〉 − Lss| vs t. Dashed line—CLexp[−λ+t]. (b) Solid
line—|〈N(t)〉 − Nss| vs t. Dashed line—CNexp[−λ−t] where CL and CN are constants. Parameters: ρ = 0.1, J = 0.09, v = 0.9,
k = 0.0011, Ωe = 0.5, Γr = 5.0 × 10−5, ω+ = 2.0 × 10−2, ω− = 10−4. Other quantities: Lss = 12.28 μm, Nss = 191 (for both
(a) and (b)). Initial conditions: (a) |〈L(t = 0)〉 − Lss|= 1.0 μm and 〈N(t = 0)〉 = Nss, (b) |〈N(t = 0)〉 − Nss|= 50 and
〈L(t = 0)〉 = Lss.

Appendix E. Master equations for biflagellates

The master equations are given by

dPLi (j, t)

dt
=

[
e−2k(j−1)/v

Nmax∑
n=0

n

Nmax
PN(n, t)

]
JΩePLi (j − 1, t) −

[
e−2kj/v

Nmax∑
n=0

n

Nmax
PN (n, t)

]
JΩePLi(j, t)

︸ ︷︷ ︸
probabilitic assembly of the flagellar tip by the flux of full IFT particles

+ (1 − ρ)2ΓrPLi (j + 1, t) − (1 − ρ)2ΓrPLi(j, t)︸ ︷︷ ︸
stochastic disassembly of the tip when not occupied by any IFT particle

where i = 1, 2 (E1)

and the master equation governing the population of precursors in the pool is

dPN(n, t)

dt
= ω+

(
1 − (n − 1)

Nmax

)
PN (n − 1, t) − ω+

(
1 − n

Nmax

)
PN(n, t)︸ ︷︷ ︸

population dependent synthesis of flagella precursor by the cell.

+[ω−(n + 1))PN(n + 1, t) − ω−(n)PN(n, t)]︸ ︷︷ ︸
population dependent degradation of flagella precursor by the cell.

+

⎡
⎣Lmax∑

j=0

JΩe e−2kj/vPL1(j, t)

⎤
⎦[

(n + 1)

Nmax
PN(n + 1, t) − (n)

Nmax
PN(n, t)

]
︸ ︷︷ ︸

contribution of pool towards assembly of the first flagellum.

+

⎡
⎣Lmax∑

j=0

JΩe e−2kj/vPL2(j, t)

⎤
⎦[

(n + 1)

Nmax
PN(n + 1, t) − (n)

Nmax
PN(n, t)

]
︸ ︷︷ ︸

contribution of pool towards assembly of the second flagellum.

+2(1 − ρ)2Γr[PN(n − 1, t) − PN(n, t)]︸ ︷︷ ︸
addition of the precursor back to the pool when chipped

from the tip of both the flagella during their disassembly.

. (E2)

35



New J. Phys. 22 (2020) 083009 S Patra et al

Appendix F. Steps for simulating the model

We simulate our model using Monte Carlo methods. At a given instant of time t let the flagellar length be
denoted by L(t) and the pool population by N(t). L(t) can take discrete values j = 0, . . . , Lmax and N(t) can
take discrete values n = 0, . . . , Nmax. We have chosen Lmax � Lss.

At each Monte-Carlo time step, we update the values of L(t) and N(t) according to the following rules:
Updating the flagellar length: we generate a random number rn between 0 and 1. If at the current time

step the flagellar length is L(t) = j, we update the length to L(t) = j + 1 if rn < λj,j+1 or update the length
to L(t) = j − 1 if λj,j+1 < rn < λj,j+1 + μj,j+1. While updating the length to L(t) = j to L(t) = j + 1 we
update the value of N(t) from N(t) = n to N(t) = n − 1. If there is no precursor in the pool (N(t) = 0), the
length cannot be increased. Similarly, while updating the length to L(t) = j to L(t) = j − 1 we update the
value of N(t) from N(t) = n to N(t) = n + 1.

Updating the pool population: we generate a random number rn between 0 and 1. If at the current time
step the pool population is N(t) = n, we update the pool population to N(t) = n + 1 if
rn < [ω+(1 − n/Nmax)] or update the pool population to N(t) = n − 1 if
[ω+(1 − n/Nmax)] < rn < [ω+(1 − n/Nmax) + ω−n].
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