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Abstract

We generalize the Susceptible-Infected-Removed (SIR) model for epidemics to take into

account generic effects of heterogeneity in the degree of susceptibility to infection in the

population. We introduce a single new parameter corresponding to a power-law exponent of

the susceptibility distribution at small susceptibilities. We find that for this class of distribu-

tions the gamma distribution is the attractor of the dynamics. This allows us to identify

generic effects of population heterogeneity in a model as simple as the original SIR model

which is contained as a limiting case. Because of this simplicity, numerical solutions can be

generated easily and key properties of the epidemic wave can still be obtained exactly. In

particular, we present exact expressions for the herd immunity level, the final size of the epi-

demic, as well as for the shape of the wave and for observables that can be quantified during

an epidemic. In strongly heterogeneous populations, the herd immunity level can be much

lower than in models with homogeneous populations as commonly used for example to dis-

cuss effects of mitigation. Using our model to analyze data for the SARS-CoV-2 epidemic in

Germany shows that the reported time course is consistent with several scenarios charac-

terized by different levels of immunity. These scenarios differ in population heterogeneity

and in the time course of the infection rate, for example due to mitigation efforts or seasonal-

ity. Our analysis reveals that quantifying the effects of mitigation requires knowledge on the

degree of heterogeneity in the population. Our work shows that key effects of population het-

erogeneity can be captured without increasing the complexity of the model. We show that

information about population heterogeneity will be key to understand how far an epidemic

has progressed and what can be expected for its future course.

1 Introduction

Diseases that spread by transmission between individuals can give rise to epidemic waves that

pass through a population [1, 2]. One infected person can infect several others who are suscep-

tible to the infection, characterized by the basic reproduction number R0, initially typically

generating an exponential growth of the number of infections. The number of infections

reaches a peak and later dies down when there is a sufficient number of individuals that have

gained immunity after they recovered from the infection so that further growth is hampered.
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Jülicher F (2020) Power-law population

heterogeneity governs epidemic waves. PLoS ONE

15(10): e0239678. https://doi.org/10.1371/journal.

pone.0239678

Editor: Vygintas Gontis, Vilnius University,

LITHUANIA

Received: August 10, 2020

Accepted: September 11, 2020

Published: October 14, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0239678

Copyright: © 2020 Neipel et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: We use in our work

publicly available data (Referenced as [26] and

[34]). The infection data for Germany [26] can be

found at https://npgeo-corona-npgeo-de.hub.

arcgis.com/, following "data" and "RKI COVID19".

http://orcid.org/0000-0002-2738-867X
http://orcid.org/0000-0003-4731-9185
https://doi.org/10.1371/journal.pone.0239678
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239678&domain=pdf&date_stamp=2020-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239678&domain=pdf&date_stamp=2020-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239678&domain=pdf&date_stamp=2020-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239678&domain=pdf&date_stamp=2020-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239678&domain=pdf&date_stamp=2020-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239678&domain=pdf&date_stamp=2020-10-14
https://doi.org/10.1371/journal.pone.0239678
https://doi.org/10.1371/journal.pone.0239678
https://doi.org/10.1371/journal.pone.0239678
http://creativecommons.org/licenses/by/4.0/
https://npgeo-corona-npgeo-de.hub.arcgis.com/
https://npgeo-corona-npgeo-de.hub.arcgis.com/


The fraction of immune individuals reached at the point when the epidemic starts to recede is

called herd immunity [1, 3, 4].

There are big uncertainties as to when and why an epidemic reaches its peak and the levels

of herd immunity required [5]. Simple models of infections dynamics predict that for an ini-

tially fast growing epidemic most of the population will become infected before the epidemic

dies down [1, 3, 6]. It was noted early by William Farr when investigating smallpox and other

epidemics that epidemics appear to follow a general time course in the form of a skewed bell

shaped curve [7, 8]. They first grow fast, reach a peak and then die down quickly, typically

much before the majority of a population has been affected. The fact that an epidemic dies

down is usually attributed to the fact that there exists some degree of immunity in the popula-

tion [9]. The uncertainty about when the peak of an epidemic is reached and why an epidemic

dies out even if there remains a large number of still susceptible individuals reveals that the fac-

tors that limit an epidemic are not well understood. Furthermore, the effectiveness and impact

of mitigation measures such as social distancing to counter a fast growing epidemic are not

known.

Simplified models of infection dynamics, such as the classic Susceptible-Infected-Removed

(SIR) model have been used for a long time to describe the dynamics of epidemics spreading

through a population [1, 3, 6, 10]. Such models capture key features of the epidemic as a non-

linear wave with qualitative properties that match observed bell-shaped dynamics of epidemic

waves. However, more quantitatively, such models exhibit the robust feature that a quickly

growing epidemic does not stop unless the majority of a susceptible population has reached

immunity after going through the infection [1]. This raises the question whether important

factors are missing in these simple and elegant models. To understand at what conditions and

at what levels epidemic waves become self-limiting and die down remains an important chal-

lenge. This aspect is also key to understand the role and effectiveness of social distancing mea-

sures to influence dynamics of an epidemic wave [10–12].

Simple epidemic models treat the population as effectively consisting of identical individu-

als. However, individuals in a population can differ widely. The importance of population het-

erogeneity was put forward to understand smallpox epidemic which could not be captured by

simple models [13]. Such heterogeneity has been taken into account by adding details such as

introducing several compartments to a model [14] or by introducing distributions of suscepti-

bility [13, 15, 16] or infectiousness [15–17]. It was suggested that population heterogeneity

reduces effective herd immunity levels [13, 16, 18, 19].

In this paper, we present a generalization of the SIR model that takes into account effects of

population heterogeneity. We show here that effects of heterogeneity can be added without

losing the simplicity of the SIR model and keeping its mathematical structure. We introduce a

single new parameter, the susceptibility exponent α, which characterizes a generic power-law

heterogeneity in the distribution of infection susceptibilities of the population. Power laws are

often found in nonlinear and complex systems [20–23]. In the present context, power laws

could be expected for example based on a variability of immune responses of different individ-

uals which could imply a wide variability in the efficiency of the transmission of an infection

[24, 25]. Furthermore, population heterogeneity could be relevant at very different scales, from

the immune response of cells to the behaviors of individuals that affect infection rates. Such as

broad range of relevant scales could give rise to approximately scale free properties or power

laws.

In the heterogeneous SIR model proposed here, the qualitative behaviors of the epidemic

wave are unchanged. However, as a function of the parameter α, the wave can become self-lim-

ited at much lower levels of infected individuals as compared to the classic SIR model. In the

limit of large α we recover the classic SIR model of homogeneous populations. For smaller α
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we find that the number of infections at the peak and the cumulative number of infections

after the epidemic has passed can be strongly reduced. Our work has implications for the con-

cept of herd immunity and clarifies that herd immunity cannot be discussed independently of

population heterogeneity.

We discuss the dynamics of the SARS-CoV-2 pandemics using the heterogeneous SIR

model applied to data on reported infection numbers and COVID-19 associated deaths in Ger-

many [26]. We estimate parameter values including the susceptibility exponent α and show

that the time course observed in Germany is compatible with different scenarios ranging from

a homogeneous population strongly affected by mitigation to a self-limited epidemic wave in a

heterogeneous population where social distancing measures play a minor role.

II. The Susceptible-Infected-Removed model

The Susceptible-Infected-Removed (SIR) model captures key features of a spreading epidemic

as a mean field theory based on pair-wise interactions between infected and susceptible indi-

viduals. This model captures generic and robust features without aiming to describe specific

details. In the presence of I infected individuals in a population of N individuals, the infection

can be transmitted to susceptible individuals. They stay infectious during an average time γ−1

after which they no longer contribute to infections. The number of susceptible individuals S
and the number of infected individuals I obey

_S ¼ � b�x
IS
N

ð1Þ

_I ¼ b�x
IS
N
� gI ; ð2Þ

where the dots denote time derivatives. The infection rate is denoted β and can in general

depend on time t. This time dependence could correspond to seasonal changes or mitigation

measures [10, 12, 27]. The infection rate can be modulated by the average infection susceptibil-

ity �x which we introduce to capture effects of population heterogeneity discussed below. In the

classical SIR model �x ¼ 1. The number of removed (or recovered) individuals is given by N −
S − I and the cumulative number of infections is C = N − S. A key parameter is the basic repro-

duction number

R0 ¼
b

g
; ð3Þ

which denotes the average number of new infections generated by an infected individual. The

growth rate of infections is _I=I ¼ lðtÞ ¼ gðRðtÞ � 1Þ, where RðtÞ ¼ b�xS=ðNgÞ is a time

dependent reproduction number.

The time course of an epidemic is often provided as the number of new cases per day. This

corresponds to the rate of new infections per unit time

J ¼ b�x
IS
N

ð4Þ

with J ¼ _C ¼ � _S and R = J/(γI).

A. Infection dynamics in homogeneous populations

In the simple case of a homogeneous population, all individuals have the same degree of sus-

ceptibility, x = 1 and the population average of x is �x ¼ 1 independent of time. This is the
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classic SIR model. An example for a solution to these equations for homogeneous population

�x ¼ 1 and constant β is given in Fig 1(a) and 1(b). The corresponding time dependent repro-

duction number is presented in Fig 1(c). The number of infections first grows exponentially

with growth rate

l0 ¼ gðR0 � 1Þ : ð5Þ

As the number of susceptible decreases, the epidemic reaches a peak number of infected

Imax = I(tI) at time t = tI with _IðtIÞ ¼ 0 and R(tI) = 1. At this peak, a fraction SI/N = 1/R0 of

Fig 1. Effects of population heterogeneity on the dynamics of SIR models. Examples for the time course of fraction of susceptible

S/N (green), fraction of infected I/N (orange) and fraction of the cumulative number of infected C/N (blue) in a SIR model with N
total individuals. (a)-(c) Homogeneous SIR model with R0 = 2.5 and γ = 0.13 day−1. (d)-(f) Heterogeneous SIR model with same R0

and γ and with α = 0.1. (a) and (d) show time course as linear plot, (b) and (e) show semi logarithmic plots of the same variables. (c)

and (f) show the normalized time dependent reproduction number R(t)/R0 (yellow) and the average susceptibility �xðtÞ (purple) as a

function of time. The dotted lines in (a),(b),(d) and (e) indicate the herd immunity level CI. Other parameters: N = 8107 individuals

and I0 = 10 initially infected.

https://doi.org/10.1371/journal.pone.0239678.g001
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individuals remain susceptible. The cumulative number of infections CI at the maximum of I
thus obeys

CI

N
¼ 1 �

1

R0

: ð6Þ

Eq (6) is the classic herd immunity level which is the fraction of immune individuals in the

population beyond which the epidemic can no longer grow. Finally the epidemic dies down

exponentially with rate

l1 ¼ g
R0S1
N
� 1

� �

; ð7Þ

where

S1
N
¼ �

1

R0

Wð� R0e
� R0Þ ð8Þ

is the fraction of susceptible individuals that remain after long times, see Appendix A. Here

W(z) denotes Lambert W-function [28]. The total fraction of infections over the course of the

epidemic is C1/N = 1 − S1/N.

For a classic SIR model with homogeneous population we have for R0 = 2.5, a herd immu-

nity level CI/N of 60% of the population, see Fig 1(a) and 1(b). After the infection has passed

C1/N’ 89% of the population have been infected, see Fig 2(a) and 2(b) (green lines). The

fraction of the population that become infected increase for larger R0. The SIR model thus sug-

gests that for R0 > 2 the epidemic wave exceeds a majority of the population before the epi-

demic begins to die out.

B. Infection dynamics with population heterogeneity

Not all individuals are the same and for some susceptible individuals the probability of infec-

tion per time is lower than for others. This can be captured by a distribution of susceptibilities

x [13, 15, 16]. We denote s(x)dx the number of individuals with susceptibility between x and

Fig 2. Fraction of susceptible individuals at long times. (a) Fraction S1/N of susceptible individuals that remain at long

times as a function of the basic reproduction number R0 for different degrees of population heterogeneity characterized by

the values of α. The limit α!1 corresponds to the classic case with homogeneous populations (green). In the limit α! 0

populations are most heterogeneous (blue). (b) Fraction SI/N of susceptible individuals as a function of R0 at the peak where

the number of infected is maximal for different α. (c) Ratio of infections after the peak Sm − S1 and infections before the

peak N − Sm as a function of R0.

https://doi.org/10.1371/journal.pone.0239678.g002
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x+ dx. The total number of susceptible individuals is then SðtÞ ¼
R1

0
dxsðx; tÞ. For each sub-

population s(x) with susceptibility x, the number of susceptible individuals decreases as

@ts ¼ � bxs
I
N

; ð9Þ

which for the whole population implies Eq (1) with average susceptibility

�xðtÞ ¼
1

SðtÞ

Z 1

0

dx xsðx; tÞ ; ð10Þ

which is in general time dependent.

This time dependence can be discussed by introducing the variable τ that increases

monotonically during the epidemic wave. It starts with τ = 0 and is defined via the equation

_t ¼ bI=N, which implies that it reaches a final value when the epidemic has decayed. There-

fore τ can be interpreted as a measure of how far the epidemic has progressed. Eq (9) can then

be written as @τ s = −xs, and the number of susceptible individuals is

SðtÞ ¼
Z 1

0

dxs0ðxÞe
� tx ; ð11Þ

where s0(x) is the initial susceptibility distribution at time t = t0 with average �x ¼ 1, see Appen-

dix B.

C. Infection dynamics with generic power law heterogeneity

The dynamics of epidemic waves depends on the shape of the initial distribution s0(x). Here,

we consider distributions that have the special property of shape invariance under the dynam-

ics of epidemics. This property is satisfied by a gamma distribution

s0ðxÞ � x� 1þae� ax ; ð12Þ

which is governed by a power-law at small x, characterized by the exponent α> 0, and a cut

off at large x, see Eq (C1) in Appendix C. The distribution s0(x) has average �x ¼ 1 and variance

1/α. Indeed, we have sðx; tÞ ¼ �x � 1þas0ðx=�xÞ, where the time dependence enters via �xðtÞ, see

Appendix C. This shape invariance implies that the gamma distribution is maintained at all

times and is not merely an initial condition. Furthermore, starting with any initial distribution

that exhibits a power law s0(x)�x−1+α at small x, the distribution will converge for large τ to

the shape invariant gamma distribution, which therefore is an attractor of the dynamics, see

Appendix B. Note that in the limit of large α, we recover the classic SIR model for a homoge-

neous population. For small α, the population is strongly heterogeneous.

By inserting the distribution given in Eq (12) into Eq (11) we obtain

SðtÞ ¼
N � I0

1þ t

a

� �a ; ð13Þ

as detailed in Appendix C. The average susceptibility is

�x ¼
1

1þ t

a

; ð14Þ

which starts from �x ¼ 1 for τ = 0 and decreases for increasing τ, thus dampening the epidemic.

We can now express the dynamics given in Eqs (1) and (2) as two dynamic equations for I(t)

PLOS ONE Power-law population heterogeneity governs epidemic waves
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and τ(t) which read

_I ¼ Ibð1 �
I0

N
Þð1þ

t

a
Þ
� ðaþ1Þ

� gI ð15Þ

_t ¼ bI=N : ð16Þ

with initial values I(0) = I0, τ(0) = 0 and S(0) = N − I0. The number of susceptible individuals at

time t is then given by S(t) = S(τ(t)). An example of a time course of this model for α = 0.1 is

shown in Fig 1(d), 1(e) and 1(f).

We can discuss how the shape of the epidemic wave depends on the parameter α. The epi-

demic starts out with exponential growth of infected individuals at rate λ0 = γ(R0 − 1), with

R0 = β/γ. The time dependent reproduction number is

R ¼ �x1þaR0 : ð17Þ

When the reproduction number drops to R = 1, the number of infected reaches a maxi-

mum

Imax

N
¼ 1 �

1

R0

�
1

R0

ð1þ aÞ R
1

1þa

0 � 1
� �

: ð18Þ

Beyond the herd immunity level given by the cumulative number of infections at the maxi-

mum of I

CI

N
¼ 1 � R�

a
aþ1

0 ; ð19Þ

the reproduction number R drops below 1 and the epidemic dies down. In Eqs (17)–(19) we

have considered the limit of small I0/N for simplicity. The general derivation is given in

Appendix C. In the limit of large α, these expressions converge to those obtained for the homo-

geneous SIR model, see Appendix C. The remaining fraction of susceptible individuals at the

peak and after the epidemic has passed is shown as a function of α in Fig 2(a) and 2(b). This

reveals that as α is reduced, the fraction of the population reached by the epidemic decreases

and can become very small for small α. At the same time the infections are more spread out

over time and a larger fraction occurs after the peak when α is reduced, see Fig 2(c).

An important case is a strongly heterogeneous population. For small α� 1, we obtain sim-

ple analytical expressions for the behavior of the system, see Appendix E. In this limit we have

Imax=N ’ að lnR0 þ 1=R0 � 1Þ and CI/N’ α ln R0. An important quantity is the rate J of new

cases per time. For small α it takes the maximal value

Jmax

N
’ gaððR0 � 2Þe

1
R0
� 1
þ 1Þ ð20Þ

The final number of susceptible individuals is given by

S1
N
¼ �xa

1
; ð21Þ

where for small α the average susceptibility after the infection has passed is

�x1 ’ � 1=ðR0W� 1ð� e� 1=R0=R0ÞÞ. Here W−1(z) denotes the −1 branch of Lambert W function.
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We finally have for small α

l1 ¼ gðR0�x1 � 1Þ : ð22Þ

A key result is that for small α the herd immunity level can be much below the classical

value suggested by the SIR model. For example for R0 = 2.5 and α = 0.1, we have Imax/N’
2.8%, and a fraction CI/N’ 8% of infected individuals required for herd immunity, much

lower than is usually suggested. The total number of infected at long times is C1/N’ 14%, see

Appendix C. The reason for the small amplitude of the epidemic wave in a heterogeneous pop-

ulation (see Fig 1(d) and 1(e)) as compared to the amplitude for a homogeneous population

(see Fig 1(a) and 1(b)) is the drop of the average infection susceptibility �x (see Fig 1(f)). This

drop occurs because in a heterogeneous population the most susceptible individuals are first

removed, thereby lowering the average susceptibility.

III. Application to the SARS-CoV-2 epidemic in Germany

We analyze the dynamics of the SARS-CoV-2 epidemic in Germany using public data pro-

vided by the Robert Koch institute [26]. These daily reports provide the numbers of reported

positive tests for each day, but also the dates of reporting of those infections which later turn

out as fatal. The total number of new reported infections per day Jtrep (red symbols) are shown

in Fig 3(a) together with the number of reported infections per day that were later fatal (blue

symbols), which we denote JfrepðtÞ. Both sets of data can be interpreted as proxies for the rate J
of new cases per day up to an unknown factor. They show qualitatively similar behavior, a

rapid growth and a decline after passing a maximum. However there are quantitative differ-

ences, in particular the growth rates at early and late times, given by the slopes of the data in a

single logarithmic plot are different, see Fig 3(b). The number of new cases per day that are

later fatal JfrepðtÞ is related to the number of new infections per day as JfrepðtÞ ¼ Jf , where f
denotes the infection fatality rate, the fraction of infections that are fatal, which we consider to

be constant for simplicity.

Fig 3. (a) Daily new SARS-CoV-2 infections reported in the early months of 2020 in Germany. The number of new

reported infections per day Jtrep (red symbols) is shown together with the number of reported infections per day for

those cases with later fatal outcome Jfrep (blue symbols). (b) Semi logarithmic representation of the same data. The

dashed and solid lines represent linear and cubic fits to the data in specific time intervals. They are used to estimate the

initial and final growth rates λ0 and λ1 as well as A2 ¼
€J=J and A3 ¼ J

...

=J at the maximum of the rate of new cases Jmax.

We find λ0’ 0.269 day−1 (0.336 day−1), λ1’ −0.068 day−1 (−0.038 day−1), A2’ −10−2 day−2 (−0.9110−2 day−2) and

A3’ 6.810−4 day−3 (7.510−4 day−3) for the fatal cases (for all reported cases).

https://doi.org/10.1371/journal.pone.0239678.g003
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A. Comparison to heterogeneous SIR model

The calculated number of new cases per day J obtained as solution to Eqs (15) and (16) for a

heterogeneous population and scaled by the factor f to match the data of fatal cases are shown

in Fig 4(a)–4(d) as solid blue lines. These lines are shown together with the number Jfrep of new

fatal cases per day as blue symbols. The factor f was determined such that the cumulated cases

per day Jfrep=f matches the cumulative number of cases C on June 15. The time axis is chosen

such that the model matches the data. From a fit of the model to the data we obtain the param-

eter estimates R0’ 2.67 and γ’ 0.146 day−1. Good fits to the data are found for a range of α
sufficiently small, about α< 0.2. The resulting infection fatality rates f vary as α is changed.

Using α = 0.05 corresponds to an infection fatality rate f’ 0.13%. It could be larger or smaller

if a different value of α was used. This would not significantly affect the quality of the fit as

Fig 4. Time course of the SARS-CoV-2 epidemic in Germany (symbols) compared to solutions of the

heterogeneous SIR model (lines). (a) and (b) Data on daily reported infections (red) and on reported infections with

later fatal outcome (blue) as logarithmic and linear plots. (c) and (d) same data and model solutions as in (a) and (b)

but for cumulative numbers of cases. The horizontal dashed lines indicate scaled herd immunity levels. Parameter

values for the model solution are R0 = 2.67 (R0 = 3.91), γ = 0.146 (γ = 0.069), α = 0.05 and N = 8107 for the fatal cases

(for all cases). The case fatality rate that corresponds to this solution is f = 0.13% (f = 0.11%). (e) Time courses of the

fraction of infected I/N (blue), the new cases per day J/N (red) and the fraction of cumulative cases C/N (yellow) for R0

= 2.67 and γ = 0.146. (f) Time course of the average susceptibility �x ¼ ðR=R0Þ
1=ð1þaÞ

(blue), where R is the time

dependent reproduction number and of t ¼ að1=�x � 1Þ (red) for the solution shown in (e). Inset: distributions of

susceptibility in the population for different values of τ.

https://doi.org/10.1371/journal.pone.0239678.g004
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long as α< 0.2. The calculated time courses I(t), J(t) and C(t) corresponding to these fits to Jfrep
are shown in (e). The dependence of the average susceptibility �x on time and the function τ(t)
are shown in (f). The increase of τ with time represents the advance of the epidemic. It reaches

a final value at long times as discussed in Appendix C. The inset in (f) shows the shape of the

distribution of susceptibility in the population at different stages characterized by different val-

ues of τ.

It is surprising that the model fits the data of fatal cases with just two fit parameters while

yielding a reasonable infection fatality rate. This is further clarified when using the fit values of

R0 and γ to calculate λ0’ 0.24 day−1, slightly smaller than the estimate given in Fig 3(b). Using

Eq (22), we also find λ1’ −0.069 day−1, very close to the estimate from the data. The data of

all reported cases can also be captured by the model for small α, see Fig 4(a) and 4(c) red sym-

bols and red lines. This fit is not as close and the parameter values are different, see Fig 4. Our

comparison of the model to the data shows that the model captures the time course of fatal

cases surprisingly well for the case of strong heterogeneity for infection fatality rates that fall in

the range of estimates from immunological studies [29–33].

B. Quantification of the shape of the epidemic wave

In order to understand how the shape of the wave of infections constrains the possible parame-

ter values of R0, γ and α, we consider in addition to the initial growth rate λ0 and the final

decay rate λ1 two coefficients describing the epidemic dynamics near its peak, using the

expansion

ln JðtÞ ’ ln Jmax þ
A2

2
ðt � tJÞ

2
þ
A3

6
ðt � tJÞ

3
; ð23Þ

where the linear term disappears by definition at the maximum Jmax = J(tJ) at time tJ. The coef-

ficients A2 ¼
€J=Jjt¼tJ and A3 ¼ J

...

=Jjt¼tJ can be obtained for the homogeneous and heteroge-

neous SIR model, see Appendix C, D and E. Fig 5 shows dimensionless combinations of these

values as a function of R0 for different α ranging from the homogeneous case α!1 to

strongly heterogeneous with α! 0 as solid lines of different color. The values obtained from

the fits shown in Fig 3 are indicated as dashed lines together with shaded regions correspond-

ing to estimated uncertainty ranges of these values.

We find that the ratio A2=l
2

1
, which is independent of γ depends only weakly on α. We

can therefore use it to estimate R0, see Fig 5. Using A2’ −0.01 day−2 and λ1’ −0.07 day−1

determined from the data of fatal cases, we have A2=l
2

1
’ 2:0 leading to the estimate R0’

2.5, see Fig 5. This estimate can now be used to infer bounds on α. The ratio λ1/λ0’ −0.3 is

only consistent with R0� 2.6 and the lower value corresponds to the limit of small α, see Fig

5. This reveals that α� 1 must be small and that the classic SIR model with homogeneous

population is not consistent with this data. We can now estimate γ using the small α limit.

For R0’ 2.6, we have γ’ 2λ1’ 0.14 day−1, see Fig 5(d). The data does not provide informa-

tion about the true total number of infections. Therefore the precise value of α remains

unknown. We can use estimates from immunological studies estimating the number of

infections [29, 31, 32] to determine α. This suggests a range of about 0.01 < α< 0.15, corre-

sponding to 0.65%>f > 0.04%. Fig 5 also shows the estimated ranges for data on all reported

cases in red. For this case the inferred values of R0 is larger and the consistency with the data

is less strong.
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C. Effects of mitigation and social distancing measures

During an epidemic conditions can change over time. For example, mitigation by social dis-

tancing measures, quarantining or seasonal changes could affect how quickly an infection

spreads on average from person to person. Given that such changes are global, they may be

captured by a time-dependence of the rate β(t) [10, 12, 27]. In the following, we discuss scenar-

ios of mitigated epidemics, starting from a reference point with an initial infection rate β0

prior to mitigation. We use this reference to define the herd immunity CI of the population via

Eq (19). The herd immunity level depends on the basic reproduction number R0 = β0/γ and on

the population heterogeneity α. For immunity levels above herd immunity, C� CI, the popula-

tion is stable after mitigation measures are completely relaxed and β is restored to its original

value β0.

We examine three different scenarios with a comparable total number of infections. These

scenarios are shown in Fig 6. They are characterized by different levels of immunity relative to

herd immunity at July 1 and thus differ in the future behaviors beyond this time. Starting in all

scenarios with R0 = 2 and using γ = 0.24, the model follows the initial growth at rate λ0 of the

reported cases. If β is kept constant, β = β0, the model deviates from the data at later times, see

dotted lines in Fig 6. If β is permitted to change in time, almost any reported time course could

be described by the model. We use the data to infer a time course of β(t) such that the model

follows the data, see Appendix G. The inferred values of β are shown as circles in Fig 6(c), 6(f)

and 6(i). In order to fit the model to the data in different mitigation scenarios, we use a

Fig 5. Role of population heterogeneity for the behavior of the generalized SIR model. Plots of various

dimensionless ratios of parameters characterizing the shape of the infection wave for different values of α. Here the

limit α!1 corresponds to the homogeneous SIR model, the limit α! 0 to the strongly heterogeneous case. Here λ0

and λ1 denote the initial and final growth rate, A2 ¼
€J=J and A3 ¼ J

...

=J describe the shape of the wave at the

maximum of new cases per day J. The horizontal dashed lines correspond to estimates from fits shown in Fig 3, the

shaded regions indicate uncertainty ranges, see Appendix D.

https://doi.org/10.1371/journal.pone.0239678.g005
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piecewise linear modulation of β. The time dependence of β(t) that resulted from these fits are

shown in Fig 6(c), 6(f) and 6(i) as solid lines. The value of β decreases sharply at the onset of

mitigation. After this decrease it stays roughly constant or increases at constant rate, thus

relaxing mitigation. The magnitude of maximal mitigation and the two slopes of β(t) were

used as fit parameters.

In the case of early mitigation, Fig 6(a)–6(c), fast reduction of β suppresses the epidemic

before any appreciable progress towards herd immunity was made. Mitigation needs to be

Fig 6. Scenarios of mitigation. (a)-(c) Early mitigation by strong reduction of β for a homogeneous population (large

α limit). The new cases per day are shown in (a) as symbols. A fit of the mitigated model is shown as solid lines. The

solution for same parameter values R0 = 2 and γ = 0.24 but without mitigation is shown as dotted lines. The

corresponding cumulative numbers of cases are shown in (b). Herd immunity levels corresponding to these solutions

are indicated as horizontal dashes lines. The time dependence of β(t) are shown in (c) as solid lines. The time courses

of β inferred from the data is shown as symbols. Mobility data indicating social activities in Germany relative to

baseline values are shown in orange for comparison. (d)-(f) same plots as in (a)-(c) but for a moderate mitigation and

heterogeneous population with R0 = 2, γ = 0.24 and α = 0.1. (g)-(i) Heterogeneous population with mild mitigation

and release leading to almost herd immunity. Red symbols and lines correspond to the case of all reported infections,

blue data and lines correspond to reported infections of fatal cases.

https://doi.org/10.1371/journal.pone.0239678.g006
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strong and sustained to be compatible with the data. By July, the population reaches only

about 6−7% of herd immunity in this case. Note that this is the only scenario of the classic SIR

model with a homogeneous population (α!1) that could be compatible with the data.

For heterogeneous populations with α≲ 0.2, scenarios with milder mitigation and with

infection levels closer to herd immunity are compatible with the data, see Fig 6d and 6g. A case

of moderate mitigation with α = 0.1 is shown in Fig 6d–6f. The population in this case reaches

by July 1st about�45% of herd immunity. A sustained mitigation is needed to account for the

data, albeit with smaller magnitude compared to the first case. If the epidemic starts slightly

earlier (3 days for the case shown in Fig 6g–6i as compared to (d-f)), the population reaches

�95% of herd immunity by July 1st. Here, mitigation has the effect to reduce the cumulative

number of infections as compared to a non-mitigated case (C/N = 5.8% compared to 11% by

July 1st). This reduction of cumulative infections C results from a reduction of the number of

infectious individuals I at the point when herd immunity is reached. In the absence of mitiga-

tion, I reaches its maximum when C = CI, whereas mitigation can reduce I to small numbers as

herd immunity is reached, preventing further infections. The minimal number of infections

that can be achieved by temporary mitigation is CI, which is up to 50% smaller than the long

lime limit C1 in an unmitigated epidemic (see Fig 2c).

The scenarios of temporary reduction of β could capture the mitigation effects of social dis-

tancing measures. To relate the inferred time dependence of β to measures of social activity,

we show in Fig 6(c), 6(f) and 6(i), β(t) together with mobility data from Ref. [34] for compari-

son, see Appendix H. This mobility data shows a sharp decline and a slow but steady return to

the initial state roughly in line with inferred changes of β(t).
The three scenarios differ in the fraction of herd immunity they reach by July 1 and there-

fore in their future trajectories. However, β(t) was adjusted by a fitting procedure such that all

scenarios are consistent with the data on reported infections. This reveals that it can be difficult

to distinguish effects of heterogeneity leading to a time dependent average susceptibility �x
from mitigation effects corresponding to time-dependent β. Indeed our analysis shows that

changes in mitigation strength can be compensated to some degree by changes of heterogene-

ity described by α.

IV. Conclusions and perspectives

We have presented a generalization of the classic Susceptible-Infected-Removed model for epi-

demic waves, which adds one new parameter to the model that captures population heteroge-

neity by a power-law exponent α. This exponent describes the power law that characterizes

the distribution of susceptibility in the population s(x)� x−1+α for small x. A special case for

such distributions is the gamma distribution. Gamma distributions have been used before to

describe heterogeneous populations [13, 15–17] and an approach similar to the one presented

here has been proposed in [15] where also the shape invariance of gamma distributions is

mentioned. Here, we have shown that gamma distributions have the special properties that

they are both shape invariant under the dynamics and attractors of the dynamics for power-

law distributions. This implies that for each α there exists a class of distributions with the same

power law at small x which share the same limiting dynamics and distribution. The generaliza-

tion of the SIR model introduced here captures the effects of these power laws by the parame-

ter α in a generic way. Note that this generalization does not change the simplistic nature of

the SIR model and does not change its numerical or analytical complexity.

For α> 1, population heterogeneity is weak and in the limit of large α, one recovers the

classic SIR model of homogeneous population, see Fig 1(a)–1(c). For α< 1 population hetero-

geneity plays a key role in limiting the peak of the epidemic wave. We show that as a result of
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strong population heterogeneity (small α), the wave peaks when only a small minority of indi-

viduals have been infected, see Fig 1(d)–1(f). The herd immunity level, the point where the epi-

demic dies down spontaneously becomes very small for small α, see Eq (19). Thus our model

shows that for small α, an epidemic wave can die out after reaching only a small fraction of the

population even though a majority of the population is still susceptible. In this case the popula-

tion is stable with respect to introducing new infected individuals because the average suscepti-

bility �x has dropped significantly, see Fig 1(f).

Many properties of the nonlinear wave in this generalized model can be obtained exactly as

a function of α and in the limit of small α. Numerical solutions can be generated quickly and

efficiently. In a heterogeneous population the average susceptibility �x stays almost constant at

early stages of the epidemic where the number of new cases grows exponentially with rate λ0 =

γ(R0 − 1). At this stage the dynamics is the same as in the classic model and independent of α.

However, �x then drops rather quickly and the epidemic waves thus reaches its peak and dies

down, see Fig 1(b) and 1(f). This sudden drop in average susceptibility results from a shift of

the distribution of susceptibility. The most susceptible individuals are removed from the

dynamics at higher rates than those with low susceptibility. This leads to a rapid reduction of

the average susceptibility until it has dropped to a low value where the time dependent repro-

duction number R falls below 1, see Eq (17). The wave then dies down at rate λ1 and the aver-

age susceptibility approaches a final value �x1. Thus the qualitative behavior of the classic SIR

model is unchanged and the key parameters, the recovery rate γ and the basic reproduction

number R0 have the same values and properties. However, the power-law distribution of sus-

ceptibility can dramatically change the peak of the epidemic and alters the precise shape of the

wave. The dynamics effectively shifts the edge of the susceptibility distribution, see inset in Fig

4(f), which changes the stability of the population from prone to an exponentially growing

wave to a stably decaying wave without requiring a large number of infections.

The simple SIR model does not aim to capture details such as the population structure, the

geography or human travel. In the spirit of statistical physics it is based on the idea that the col-

lective behaviors of many individuals give rise to an emergent epidemic wave with robust and

generic features that can be captured by a simplified model that focuses on key aspects. Here

we show that power-law heterogeneity is a key factor that should not be left out. Note that our

approach to take into account population heterogeneity can also be applied to extensions and

generalizations of the SIR model such as the SEIR and the SIRS models [16, 35–37].

We apply our model to data on the SARS-CoV-2 epidemic in Germany in 2020. The data

from Germany provides time stamps on reporting dates of infections and reporting dates of

infections that later are fatal. Surprisingly, the data for fatal cases is well described by the het-

erogeneous SIR model with constant parameters and small α but not by the classic SIR model

with constant parameters. In the case of SARS-CoV-2, immunological data suggests that only

a minority of the population exhibits antibodies [29, 31, 32]. This is consistent with a fit of our

model to the data using a small value of α. The data on all reported cases can also be captured

by the model, but the fit is less convincing. Comparing the data on all reported cases to the

data on the time course of cases that are fatal reveals some differences. Clearly the fatal cases

represent a different sampling as these cases correspond to predominantly old individuals and

therefore measure a different quantity. However, starting from all reported cases and then

using the fatal outcome as a second criterion could reduce biases due to changes in testing

rates, testing strategies as well as testing errors.

An epidemic wave does not progress under constant conditions but is subject to changes

such as mitigation measures and seasonal effects. We use our model in comparison with the

data from Germany to investigate different scenarios of mitigation that correspond to different

level of immunity in the population. In the case of a homogeneous population the data can
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only be accounted for if mitigation is strong and suppresses the epidemic far below herd

immunity Fig 6(a)–6(c). This scenario further requires mitigation to be sustained and it leads

to a fragile and unstable state when mitigation measures are relaxed.

In the case of heterogeneous populations, intermediate scenarios are possible which stay

below herd immunity or just reach herd immunity, see Fig 6(d)–6(i). In the latter example

shown in Fig 6(g)–6(i), mitigation effectively reduces the total number of infections by keeping

immunity just at herd immunity level, leading to a stable state where mitigation can be safely

relaxed. This is a desirable outcome because the number of infections could be reduced by mit-

igation by up to 40% without the need of sustaining mitigation, see Fig 2(c).

When discussing rapidly evolving epidemics such as SARS-CoV-2, herd immunity is often

not considered to be reachable as it is predicted to require an unacceptably high fraction of

cumulative infections [38]. Interestingly, the picture changes dramatically if a strongly hetero-

geneous population is considered. In this case herd immunity can be reached rather quickly

while a large majority of the population is still susceptible. This raises the question of what

are the features that are variable and that give rise to heterogeneity and how widely they are

expected to vary in the population. One possibility is that differences of susceptibility stem

from differences in the abilities of immune systems of susceptible individuals to react to a new

pathogen. In addition to adaptive immunity related to the presence of specific antibodies,

many individuals show a T-cell response to SARS-CoV-2 [25]. This response could for exam-

ple be due to less specific cross reactions related to earlier encounters with related viruses [24].

Here we have focused on data from Germany until July 2020 because it provides detailed

information that is not available in most countries. Furthermore, Germany has relatively few

reported infections and deaths per capita. Our work shows that even this rather mild manifes-

tation of the epidemic can be captured by a heterogeneous SIR model with mild mitigation.

The data of newly infected cases with fatal outcome can even be explained in a strongly hetero-

geneous population without considering any mitigation effects at all. This implies that in order

to quantify the effects of mitigation, population heterogeneity has to be taken into account. In

order to disentangle effects from heterogeneity and from mitigation the combination of differ-

ent types of information is important. For example, analyzing in different countries the cir-

cumstances under which different sero-prevalence levels or multiple epidemic waves are

observed could be key to understand the roles of mitigation and heterogeneity.

Appendix A: Properties of the homogeneous SIR model

For a homogeneous population with �x ¼ 1, the SIR model given in Eqs (1 and 2) can be writ-

ten as

_I ¼ ð1 �
I0

N
ÞbIe� t � gI ðA1Þ

_t ¼ b
I
N

ðA2Þ

with S = (N − I0)exp(−τ), I(0) = I0 and τ(0) = 0. We therefore have

dI=dt ¼ _I= _t ¼ ðN � I0Þe� t � N=R0, where R0 = β/γ. For constant β this implies

IðtÞ ¼ I0e� t þ Nð1 � e� tÞ �
Nt
R0

: ðA3Þ
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We can eliminate τ and find

I
N
¼ 1 �

S
N
þ

1

R0

ln
S

N � I0

: ðA4Þ

The maximum Imax = I(τI) with I0(τI) = 0, where the prime denotes a τ-derivative, occurs

for

tI ¼ ln R0ð1 �
I0

N
Þ

� �

: ðA5Þ

Therefore we the maximal number of infected individuals reads

Imax ¼ N 1 �
1

R0

�
1

R0

ln R0ð1 �
I0

N
Þ

� �� �

: ðA6Þ

At the maximum Imax, we have dI/dS = 0, which implies

SðtIÞ
N
¼

1

R0

: ðA7Þ

At long times, the infection dies out when I(τ1) = 0 with (1 − I0/N)exp(−τ1) = 1 − τ1/R0

and S1 = (N − I0)exp(−τ1). We therefore have S1/N = 1 + ln(S1/(N − I0))/R0 and

S1
N
¼ �

1

R0

W � R0e
� R0ð1 �

I0

N
Þ

� �

; ðA8Þ

where W(z) denotes the 0-branch of Lambert W-function. The time dependent solution τ(t)
can be obtained from Ndτ/I(τ) = βdt via

Z t

0

dt0

1 � ð1 � I0=NÞe� t
0
� t0=R0

¼ bt : ðA9Þ

To discuss empirical data, we consider the time-course of the rate of new cases J = βIS/N.

We have _J=J ¼ bK with

K ¼ ð1 �
I0

N
Þe� t �

1

R0

�
I
N

: ðA10Þ

The maximum Jmax = J(τJ) is reached for K(τJ) = 0, which implies

tJ ¼W� 1 � ð1 �
I0

N
Þ2R0e

� ðR0þ1Þ

� �

þ R0 þ 1 ; ðA11Þ

where W−1(z) denotes the −1 branch of the Lambert W-function with W(z)eW(z) = z [28]. At

the maximum Jmax of J we have _SI þ _IS ¼ 0 and therefore

SðtJÞ ¼ �
1

2R0

W� 1 � 2R0e
� 1� R0ð Þ ðA12Þ

IðtJÞ ¼ SðtJÞ �
1

R0

ðA13Þ
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and finally

Jmax ¼ bSðtJÞð
SðtJÞ
N
�

1

R0

Þ : ðA14Þ

Near the maximum of the rate jmax with _J ¼ 0 we have A2 ¼
€J=Jjt¼tJ and A3 ¼ J

...

=Jjt¼tJ . For

the homogeneous SIR model, we have

A2 ¼ �
g2

2
1þW� 1 � 2R0e

� 1� R0ð Þ½ � 2þW� 1 � 2R0e
� 1� R0ð Þ½ � ðA15Þ

A3 ¼
g3

4
½2þW� 1ð� 2R0e

� 1� R0Þ�
2

: ðA16Þ

Appendix B: Distributions of infection susceptibility in the

population

For an initial distribution s0(x) of susceptible individuals with susceptibility x, we define

SðtÞ ¼
R1

0
dxs0ðxÞe� tx. We can then write the dynamics of the epidemic spreading given in

Eqs (1) and (2) as two equations for I(t) and τ(t)

_I ¼ � b
I
N
dS
dt
� gI ðB1Þ

_t ¼ b
I
N

ðB2Þ

with initial values I(0) = I0, τ(0) = 0 and S(0) = N − I0. The number of susceptible at time t is

then given by S(t) = S(τ(t)). Defining the cumulant-generating function Γ(τ) = −ln S(τ), we

have

�x ¼
d
dt
G ðB3Þ

and the nth cumulant of x is for n> 1 given by

hxnic ¼ ð� 1Þ
nþ1 dn

dtn
G : ðB4Þ

The classic case with homogeneous population then corresponds to s0(x) = (N − I0)δ(x), see

Appendix A.

Here we consider distributions which exhibit a power-law behavior for small x with s0�
x−1+α. For α> 0 the power law must be cut off at large x> x0 for the distribution to be normal-

izable. From @τ s = −xs, we have s(x, τ) = s0(x)e−τx which for τ� 1/x0 approaches s(x, τ)�x−1+α

e−τx. The moments of this distribution can be obtained from the cumulant generating function

GðtÞ ¼ � ln
R1

0
dxx� 1þae� tx ¼ � a ln tþ const: The cumulants of this distribution are hxnic =

ατ−n(n − 1)!. Using �x ¼ a=t, the susceptibility thus approaches for large τ the limiting distribu-

tion

sðx; tÞ � x� 1þae� ax=�x ; ðB5Þ

which is the gamma distribution.
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Appendix C: The generalized SIR model with population

heterogeneity

We have shown in Appendix B that for susceptibility distribution with a power law at small x
the gamma distribution is an attractor of the dynamics. We therefore choose at time t = 0 a

gamma distribution with average �x ¼ 1 as initial condition. It is given by

s0ðxÞ ¼ ðN � I0Þ
aa

ða � 1Þ!
x� 1þae� ax : ðC1Þ

Here (α − 1)! denotes Euler’s gamma function. Note that in the limit of large α, this

approaches the homogeneous case with s0(x)’δ(x − 1). We then have S(τ) = (N − I0)(1 + τ/

α)−α and S0 = −(N − I0)(1 + τ/α)−(1+α), where the prime denotes a derivative with respect to τ.

As time evolves, the shape of the distribution s(x, t) is time independent. Indeed, with @τ s =

−xs we have s(x, τ) = s0(x)e−τx and thus

sðx; tÞ ¼ ðN � I0Þ�x � 1þaf ðx=�xÞ ðC2Þ

with �xðtÞ ¼ ð1þ t=aÞ� 1
. The time-invariant distribution is then given by

f ðzÞ ¼
aa

ða � 1Þ!
z� 1þae� az : ðC3Þ

The dynamic equation of the heterogeneous SIR model read

_I ¼ Ibð1 �
I0

N
Þð1þ

t

a
Þ
� ðaþ1Þ

� gI ðC4Þ

_t ¼ bI=N : ðC5Þ

Defining I0 ¼ _I= _t, we have

I0 ¼ ðN � I0Þð1þ
t

a
Þ
� ðaþ1Þ

�
N
R0

: ðC6Þ

For constant β, we then have by integrating over τ

I ¼ I0ð1þ
t

a
Þ
� a
þ Nð1 � ð1þ

t

a
Þ
� a
Þ �

Nt
R0

: ðC7Þ

The maximum of I is reached for τ = τI with I0 = 0 and thus

ð1þ
tI
a
Þ
aþ1
¼ ð1 �

I0

N
ÞR0 : ðC8Þ

We thus obtain

Imax

N
¼ 1 �

1

R0

�
1

R0

ð1þ aÞ½ðð1 �
I0

N
ÞR0Þ

1
1þa � 1� : ðC9Þ

The herd immunity level CI/N is obtained by using CI = N − SI, where SI is derived using Eq

(13) together with Eq (C8). It follows that

CI

N
¼ 1 �

N � I0

N
ðð1 �

I0

N
ÞR0Þ

� a
aþ1 : ðC10Þ
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The epidemic ends at long times for I(τ1) = 0, for which

ð1 �
I0

N
Þð1þ

t1
a
Þ
� a
¼ 1 �

t1
R0

ðC11Þ

with S1 individuals that remain susceptible. This quantity obeys

R0

S1
N
þ að1 �

I0

N
Þ

1
að
S1
N
Þ
� 1
a ¼ R0 þ a : ðC12Þ

We then find

S1
N
¼

R0 þ a

R0

F
a

R0 þ a

R0 1 �
I0
N

� �

R0 þ a

� �1
a

;
1

a

 !

; ðC13Þ

Where the function F(z, ν) is defined as the inverse of the function xν(1 − x) via the condition

Fν(1 − F) = z. Finally, using Ndτ/I(τ) = βdt, the time dependent solution τ(t) can be written as

Z t

0

dt0

1 � ð1 � I0=NÞð1þ t0=aÞ
� a
� t0=R0

¼ bt : ðC14Þ

Appendix D: Dynamics of the rate of daily new cases

Data on the dynamics of the epidemic typically provides information about new cases reported

per day. We therefore consider the rate of nex cases J = −βIS0/N, where the prime denotes a τ
derivative. Using I0 = −S0 − N/R0, we have

IðtÞ ¼ I0 þ Sð0Þ � SðtÞ �
Nt
R0

: ðD1Þ

We then write

_J
J
¼ bK ðD2Þ

with

K ¼ �
S0

N
�

1

R0

þ
I
N
S00

S0
: ðD2Þ

We then have

K 0 ¼ �
S00

N
þ

I0

N
S00

S0
þ

I
N
S000S0 � S002

S02
ðD4Þ

The maximum of J occurs at τ = τJ with K(τJ) = 0. We thus have A2 ¼ ð
€J=JÞjt¼tj ¼ b _K and

A3 ¼ J � 1ðd3J=dtÞjt¼tj ¼ b
€K .
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Plugging in S(τ) = N(1 + τ/α)α for the heterogeneous SIR model with I0�N, yields

K ¼ 1þ
t

a

� �� 1

1þ
t

a

� �� a
�
aþ 1

a

I
N

� �

�
1

R0

ðD5Þ

¼
1

aþ t
1þ

t

a

� �� a
ð2aþ 1Þ � ðaþ 1Þð1 �

t

R0

Þ

� �

�
1

R0

ðD6Þ

At the maximum in J, we have K = 0, yielding

2aþ 1

ðaþ 1Þ a

R0
þ 1

� � ¼ 1þ
tJ

a

� �a
1 �

a2

ðaþ 1Þðaþ R0Þ
1þ

tJ

a

� �� �

ðD7Þ

Using the function F(z, ν) defined by Fν(1 − F) = z, we can solve this for τJ:

tJ ¼
ðaþ 1Þðaþ R0Þ

a
F

2aþ 1

ðaþ 1Þ a

R0
þ 1

� �
a2

ðaþ 1Þðaþ R0Þ

� �a

; a

0

@

1

A � a ðD8Þ

This allows us to compute A2 and A3

A2 ¼
€J
J

�
�
�
�
t¼tJ

¼ b _K ¼
g2ð1þ aÞ

ðaþ tJÞ
2

1þ
tJ

a

� �� 2a

ðR0 � tÞ 1þ
tJ

a

� �a
� R0

h i

� ð1þ 2aÞR0 þ ðaþ R0Þ 1þ
tJ

a

� �ah i
ðD9Þ

A3 ¼
J
...

J

�
�
�
�
t¼tJ

¼ b€K ¼
g3ð1þ aÞ

ðaþ tJÞ
3

1þ
tJ

a

� �� 3a

ðR0 � tJÞ 1þ
tJ

a

� �a
� R0

h i

�

� ðaþ R0Þðaþ 2R0 � tJÞ 1þ
tJ

a

� �2a

þ ð1þ aÞR0 1þ
tJ

a

� �a
ð3aþ 2ð2þ aÞR0 � ð1þ 2aÞtJÞ

� 2ð1þ aÞð1þ 2aÞR2
0

�

ðD10Þ

The parameters λ0, λ1, A2 and A3 can be obtained from linear and cubic fits to the loga-

rithm the number of daily reported cases Jrep. For these fits, time intervals corresponding to

initial exponential growth (Ti), peak Tp and final decay Tf need to be defined. We use the time

point trepm , where Jrep reaches its maximum as a reference point relative to which the intervals

are given by:

Ti ¼ ½trepm � 3Dt; trepm � Dt� ðD11Þ

Tp ¼ ½trepm � Dt; t
rep
m þ Dt� ðD12Þ

Tf ¼ ½trepm þ Dt; t
rep
m þ 3Dt� ðD13Þ

These time intervals are further reduced depending on the used data and Δt such that all

time points before the last day with Jrep = 0 prior to trepm and after the first day Jrep = 0 after trepm
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are excluded. The fits in Fig 3 and the dashed horizontal lines in Figs 5 and 7 correspond to fits

with Δt = 19days. The shaded areas in Figs 5 and 7 depict the range of parameter values one

obtains for fits with 10 days� Δt� 20days.

Appendix E: Small α limit for heterogeneous populations

For small α the system reaches a well defined limiting dynamics that can be expressed analyti-

cally. We start from I(τ) for small I0/N

I
N
¼ 1 � ð1þ

t

a
Þ
� a
�
t

R0

ðE1Þ

which for small α becomes

I
N
’ a ln ð1þ

t

a
Þ �

t

R0

: ðE2Þ

The maximum of I occurs at τ = τI when I0 = 0 or τI/α’ R0 − 1. We thus have

Imax

N
’ að lnR0 þ

1

R0

� 1Þ : ðE3Þ

Similarly, using CI/N = 1 − (1 + τI/α)−α, we find for small α

CI

N
’ a lnR0

ðE4Þ

Fig 7. Normalized coefficient A3 ¼ J
...

=J at the peak of new cases per day. (a) The ratio A3=l
3

0
as a function of R0 is shown for different values of α. (b)

The ratio A3=l
3

1
as a function of R0 for the same values of α. The dashed lines represent the values inferred from the data shown in Fig 3 for all cases

(red) and fatal cases (blue). The shaded colored regions correspond to the uncertainties of the fits to the data.

https://doi.org/10.1371/journal.pone.0239678.g007
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At long times, we have I(τ1) = 0, where (1 + τ1/α)−α = 1 − τ1/R0. For small α this implies

α ln(1 + τ1/α)’τ1/R0 and thus S1 ¼ ðN � I0Þ�xa1 and l1 ¼ b�x1 � g, where

�x � 1
1
¼ � R0W� 1ð�

e� 1=R0

R0

Þ : ðE5Þ

In the limit of small α, u = τ/α is finite. The limiting function u(t) for small α can be

expressed as

Z u

0

du0

ln ðu0 þ 1Þ � u0=R0 þ i0
¼ bt ; ðE6Þ

where i0 = I/(αN) in the limit α = 0. The number of susceptible then becomes

S
N
’ 1 � a ln ð1þ uÞ : ðE7Þ

Finally we discuss the maximum of the rate of new cases J = Jmax. We have _J=J ¼ bK, where

K ¼ ð2þ
1

a
Þð1þ

t

a
Þ
� ðaþ1Þ

�
1

R0

þ
aþ 1

a

1 � t=R0

1þ t=a
ðE8Þ

At the maximum of J, τ = τJ with

ð2aþ 1Þð1þ
tJ

a
Þ
� a
¼
a

R0

ð1þ
tJ

a
Þ þ ðaþ 1Þð1 �

tJ

R0

Þ ðE9Þ

Defining �xJ ¼ ð1þ tJ=aÞ
� 1

we have in the limit of small α

�xJ ¼ exp ð
1

R0

� 1Þ : ðE10Þ

The value of J at the maximum is

Jmax

N
¼ agR0

�xJð� ln �xJ �
1 � �xJ

R0
�xJ
Þ : ðE11Þ

We determine A2 ¼
€J=J ¼ b2 _K and A3 ¼ J

...

=J ¼ b3 €K , with _K=b ¼ K 0I=N and

€K=b2
¼ K 00I2=N2. We then find

A2 ¼ � g2R2
0
�x2
J ð� ln �xJ �

1 � �xJ

R0�xJ
Þ ðE12Þ

A3 ¼ 2g3R3
0
�x3
J ð� ln �xJ �

1 � �xJ

R0�xJ
Þ

2
: ðE13Þ

We also have

A2
2

A3

¼
gR0�xJ

2
ðE14Þ

and

A2
3

A3
2

¼ 4ð� ln �xJ �
1 � �xJ

R0�xJ
Þ : ðE15Þ
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Appendix F: Mitigation in the heterogeneous SIR model

We now consider the case where the rate of infections β(t) becomes time dependent because

of overall changes of conditions such as seasonal effects or measures of social distancing.

Using I0 = −S0+ N/R0, we have l ¼ _I=I ¼ � bS0=N � g and the reproduction number

R ¼ �
b

b0

R0

S0

N
: ðF1Þ

where β0 = β(t = 0) and R0 = β0/γ. The epidemic can be mitigated by a reduction of β over

time. However if the mitigation is relaxed the epidemic can grow again. As the epidemic

advances, τ increases as _t ¼ bI=N. Growth of infection number is no longer possible for τ> τI
with

� S0ðtIÞ ¼
1

R0

ðF2Þ

Thus the condition τ> τI defines herd immunity conditions where the epidemic can no

longer grow. If mitigation sets in early, before τ = τI, the epidemic is slowed and it takes more

time to reach herd immunity. in this case a new wave starts after mitigation is relaxed. If miti-

gation occurs for τ> τI, mitigation facilitates the decay of infections by reducing λ1 = −(β1/

β0)R0 S0(τ1) − γ as compared to the value λ1 = −R0 S0(τ1) − γ without mitigation.

Appendix G: Inferring β(t) from reported cases

For a given time course of infections, there always exists a function β(t) such that the SIR

model follows this time course. We first consider the classic SIR model. A change in the rate of

new infections J = βIS/N can be decomposed in three different contributions,

d
dt

ln J ¼
_b

b
þ

_I
I
þ

_S
S
: ðG1Þ

In the case of an early mitigation, S� N and thus _S=S � 0. Together with Eq (2), we find

d
dt

ln J ¼
d
dt

lnbþ b � g: ðG2Þ

This provides a differential equation for ln β if ln J(t) is given, which does not require

knowledge of the amplitude of J. We infer β(t) for each day, using the initial value β(0) =

0.48days−1 at March 15. We use an iterative scheme to calculate the rate for the next day as

lnbðiþ 1Þ ¼ lnbðiÞ þ ln Jobsðiþ 1Þ � ln JobsðiÞ � bðiÞ þ g; ðG3Þ

where ln JobsðiÞ ¼ ð1=7Þ
P3

Dt¼� 3
Jrepðiþ DtÞ is a running average over seven days of the num-

ber of reported cases.

For the two scenarios of a later mitigation, the heterogeneous SIR model was considered

with J = βI(1 − I0/N)(1 + τ/α)−(α+ 1). We then have

d
dt

ln J ¼
d
dt

lnbþ
d
dt

ln I �
aþ 1

a
ð1þ

t

a
Þ
� 1 bI

N
: ðG4Þ

Again, this equation can be used to construct an iterative scheme to infer β(t). For given ini-

tial number of infected individuals on March 15 I(0), we can iteratively obtain the subsequent
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values as

ln tðiþ 1Þ ¼ ln tðiÞþ
bðiÞIðiÞ
NtðiÞ

; ðG5Þ

ln Iðiþ 1Þ ¼ ln IðiÞþ bðiÞð1 �
I0

N
Þð1þ

tðiÞ
a
Þ
� ðaþ1Þ

� g; ðG6Þ

lnbðiþ 1Þ ¼ lnbðiÞþ ln
Jobsðiþ 1Þ

JobsðiÞ
� ln

Iðiþ 1Þ

IðiÞ

þ
aþ 1

a
ð1þ

tðiÞ
a
Þ
� 1 bðiÞIðiÞ

N
:

ðG7Þ

The starting value of τ(0), can be derived by inverting Eq (C7) for I(τ(0)) = I(0).

Appendix H: Mobility data

Data concerning the changes in mobility of the population has been provided by Google [34].

The data reports the changes compared to a baseline of visits and length of stay at different

places. The baseline depends on the specific day of the week and refers to the median value, for

the corresponding day of the week, during the 5-week period Jan 3–Feb 6, 2020. Fig 8 shows

these changes for Germany for a representative number of categories. These categories are

defined in [34] as follows: “Grocery and pharmacy: Mobility trends for places like grocery mar-

kets, food warehouses, farmers markets, specialty food shops, drug stores, and pharmacies.

Transit stations: Mobility trends for places like public transport hubs such as subway, bus, and

train stations. Retail and recreation: Mobility trends for places like restaurants, cafes, shopping

centers, theme parks, museums, libraries, and movie theaters. Residential: Mobility trends for

Fig 8. Mobility changes for a representative set of commonly visited places in Germany up to July 1 2020 from

[34].

https://doi.org/10.1371/journal.pone.0239678.g008
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places of residence. Workplaces: Mobility trends for places of work. The residential category

shows a change in duration while the other categories measure a change in total visitors.”
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Project administration: Frank Jülicher.
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