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Abstract—This paper presents a generalization of the classical
phase-locked loop (PLL) theory. It includes the effects of time-
delays and mutual coupling between PLLs. Two methods for
finding stable solutions to locked states and their transient
dynamics are discussed. The theoretical predictions of these
methods are verified by experimental measurements obtained
of a classical PLL entrained by a clock. For entrainment the
generalized and classical PLL theory overlap. The analysis
correctly predicts the phase-relations of phase-locked states, the
loop-gain dependency on the component characteristics and time-
delays and the transient dynamics, i.e., perturbation decay rate
and the frequency of perturbation decay. Thus the generalized
theory allows a deeper understanding of a PLL’s response. The
model covers PLLs of arbitrary order and number of inputs.

Index Terms—phase locked loops, delays, control theory, clock
synchronization, frequency synchronization, synchronous clock-
ing

I. INTRODUCTION

The conventional approach to global synchronous clocking

in digital timing systems is to distribute a clock signal in

a spatially distributed system through a tree-like network.

This is a hierarchical approach to clock synchronization,

a central reference oscillator entrains multiple phase-locked

loops (PLLs) in the network [1]. In the classical sense a PLL

is a negative feedback system in which the phase of the output

signal locks to that of a reference clock. The PLL changes

from its quiescent frequency to that of the reference signal

and a constant phase-relation can be achieved that need not be

zero. In applications that rely on specific phase-relations, such

as beam steering and local positioning, it is important to know

how the phase-relations depend on the systems’ parameters.

Furthermore, as the physical extent of the network becomes

larger, the clocks suffer from skew and signal propagation

delays. Approaches that rely on a mutual coupling of PLLs,

sometimes termed self-synchronization, have been explored

but did not include effects of such time-delays, which strongly

affect the dynamics of such systems [1], [2]. Reference [3]

includes the effect of these time delays but there is a need

to verify the predicted results, i.e., the phase differences,

perturbation decay rate and frequency. This paper presents a
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theoretical approach to PLL theory, which includes the effect

of time-delays and allows to calculate phase-differences and

frequencies, as well as the stability of entrained and synchro-

nized states, i.e., phase-locked states. Furthermore, the results

predicted by the theory are verified by measurements obtained

of a classical PLL entrainment. In time and Laplace domain

it is shown how the propagation delay affects the properties

of locked states and the transient dynamics of the perturba-

tion response. The paper is organized as follows. Section II

introduces the time and Laplace domain representation of the

phase model that characterizes the PLL. These representations

are used in section III to obtain the characteristics of the phase-

locked states. A hardware setup, described in section V, is then

used to verify the theoretical results from both methods and the

measurements are compared with the theoretical predictions in

section IV.

II. GENERALIZED PLL THEORY

Here two representations that characterize phase-locked

states of a PLL are introduced and a relation between them is

established.

A. Generic phase-model for arbitrary PLL networks

In time-domain, a PLL can be represented as shown in

Fig. 1a, see [3]. The phase-detector (PD) receives an external

signal xl(t − τ) with phase φl(t − τ) delayed by a time τ
from, e.g., the reference clock or another PLL. It is processed

together with the feedback-signal of voltage controlled oscilla-

tor (VCO) whose frequency is divided v-times. The PD output

voltage of PLL k is a function of the phase-difference

xPD
k (t) =

ξ

2
+h

[
φl(t− τ)− φVCO

k (t)

v
+ φINV

k

]
+O(HF), (1)

where φVCO
k (t) the VCO signals’ phase and h(·) is the 2π-

periodic phase error transfer function. It is a cosine for multi-

plier PDs with ξ = 0 and a triangular function for XOR PDs

with ξ = 1 [3], [4]. The piece-wise linear triangular function

is −APD
k x/π−APD

k /2 for x ∈ [−π, 0] and APD
k x/π−APD

k /2
for x ∈ (0, π], where APD

k denotes amplitude (peak to peak)

of the PD output signal. The term φINV
k relates to signal

inversion (INV) where φINV
k = π for an odd number and

φINV
k = 0 for an even number of inverters. Assuming an
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Fig. 1. Time (a) and Laplace domain (b) representation of a phase locked loop.

ideal low pass loop filter (LF) which fully removes the high

frequency components O(HF), the control voltage is

xc
k(t) = GLF

k

∫ ∞

0

du p(u)xPD
k (t− u), (2)

where p(u) denotes the impulse response of the LF and GLF
k

the loop filter DC gain. This voltage controls the VCO, either

increasing or decreasing its instantaneous angular frequency

φ̇VCO
k (t) = ω0 +KVCO

k xc(t), (3)

where ω0 is the VCO’s quiescent frequency and KVCO
k its

sensitivity. Using Eqs. (1-3) and φ̇k(t) = φ̇VCO
k (t)/v yields

φ̇k(t) =
ω

v
+

K

v

N∑
l=0

ckl

∫ ∞

0

du p(u)h [Δφkl(u, τ)] , (4)

where Δφkl(u, τ) = φl(t − u − τ) − φk(t − u) + φINV
k the

phase-difference at the PD, ckl equals one if k receives input

from l or zero otherwise, ω = ω0+ξ GLF
k KVCO

k /2 denotes the

intrinsic frequency of the free-running closed-loop PLL and

K = KVCO
k GLF

k the coupling strength. The global frequency

Ω and phase-differences βkl in a phase locked state and its

stability can be obtained self-consistently using the approach

φk(t) = Ωt+ βk + εqk(t), (5)

in Eq. (4), where εqk(t) is a small phase perturbation [3].

Linearizing about such states the perturbation dynamics are

q̇k(t) =
N∑
l=0

cklαkl

∫ ∞

0

du p(u)(ql(t−u−τ)−qk(t−u)), (6)

where αkl = Kh′(−Ωτ − βkl + φINV
k )/v and h′(·) denotes

the derivative of the phase error transfer function. This per-

turbation response can be represented in Laplace domain, see

Fig. 1b.

sqk(s) =
N∑
l=0

ckl αkl p̂(s)
(
ql(s)e

−τs − qk(s)
)
. (7)

B. Generic phase-model for the entrainment case

In the case of entrainment of a PLL by a reference clock,

i.e., ql(s) = qR(s), Ω = ωR and dropping index k, the phase-

difference is obtained from Eqs. (4-5)

β = −ωRτ − h−1

[
ωR v − ω

K

]
+ φINV, (8)

where h−1(·) denotes the inverse phase error transfer function.

It is a multivalued function that leads to multiple solutions, e.g.

β = ±π/2. From Eq. (7) the transfer function can be obtained

HCL(s) =
q(s)

qR(s)
=

α p̂(s)e−τ.s

s+ α p̂(s)
. (9)

Here, α = Kh′(−ωRτ − β + φINV)/v, defines the loop-gain

of the PLL which in general depends on the delays and the

component heterogeneity, especially in the case of mutually

coupled PLLs [3]. However replacing β with the expression

in Eq. (8) yields α = Kh′(h−1((ωRv−ω)/K))/v. Hence, the

loop gain is independent of delays for classical PLLs. Using

p̂(s) = (1+ sτc)
−1 for a first order loop filter where τc is the

time constant of the LF yields

HCL(s) =
α

τceτ.s

s2 + s
τc

+ α
τc

. (10)

Comparing Eq. (10) with the transfer function of a second

order control system, i.e., ω2
n/(s

2+2ζωns+ω2
n ), one identifies

for the natural frequency ωn =
√

α/τc and for the damping

ratio ζ = (2ωnτc)
−1 = (4τcα)

−1/2.

III. STABILITY AND TRANSIENT DYNAMICS

A. Method 1: LTI Systems Control Theory

The stability and transient dynamics of the PLL are given in

Eq. (11), derived from Eq. (10) by analyzing the PLL response

to a step input change 1/s and taking its inverse Laplace

transform [5]. Here ωd = ωn

√
(1− ζ2) denotes the frequency

of the underdamped perturbation decay case, i.e., 0 ≤ ζ < 1.

L−1

[
1

s
·HCL(s)

]
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

unstable solution if ζ < 0,

u (t-τ)

{
1− e−ζ·ωn(t−τ)

[
cos(ωd(t− τ)) + ζ√

(1−ζ2)
· sin(ωd(t− τ))

]}
if 0 ≤ ζ < 1,

u (t-τ)
{
1− e−ωn(t−τ) [1 + ωn (t− τ)]

}
if ζ = 1,

u (t-τ)

{
1− e

−[(ζ−
√

(ζ2−1))·ωn(t−τ)]

2
√

(ζ2−1)(ζ−
√

(ζ2−1))

}
if ζ > 1.

(11)
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B. Method 2: Linear Stability Analysis

The analysis above becomes difficult for higher orders of

loop filters. Therefore a similar method for the linear stability

analysis of a PLL, explained in detail in [3], can be used.

Assuming an exponential perturbation, i.e., q(t) = q0 est,
where s = σ + iγ characterizes the dynamic perturbation

response. The perturbation response is σ and frequency of

perturbation is given by γ. This perturbation is used in Eq. (6),

thus obtaining the following characteristic equation

si +
K p̂(si)

v
h′ [−ωRτ − β + φINV] = 0. (12)

Solving yields a set of solutions {si} and the system is stable

if and only if all σi < 0, i.e., the perturbation decays. Note

that the characteristic equation is equal to the denominator of

the transfer function.

IV. MEASUREMENTS AND RESULTS

In order to validate the above methods, measurements are

taken for the PCB-based PLLs with off-the-shelf components.

The PCB and the measurement setup from [6] are modified

to characterize the transient response of a PLL with first

order loop filter for the entrainment case. Fig. 2 presents

the PLL block diagram and Table I lists all its parameters.

A fully differential XOR logic gate MC100EP08 from ON
Semiconductor is used as a PD whose output is converted to

a single-ended signal using an AD8000 op-amp from Analog
Devices. This op-amp operates as an adder for the prebias

voltage Vprebias, inverting the signal in the process. This voltage

+

PD
x (t- )R

MC100EP08 AD8000

LF

MC100LVEL11

HMC988

DIV 32

DIV 16

HMC739

AD8000

VCO
Vprebias

x (t)
PD

x(t)

x (t)c

Fig. 2. Block diagram of the PLL composed of off-the-shelf components.
Figure modified from Fig. 7 in [6].

TABLE I
IMPORTANT PARAMETERS OF THE PLL

Description Parameter Value
Insertion loss of LF GLF 1

Cut-off frequency of the first order LF wLF
c 2π · 1 · 106 rad

Time constant of the first order LF τc 0.159 μ sec
Pre-bias Voltage for the VCO Vprebias 2.12 V

Intrinsic frequency of PLL w 2π · 24.25 rad GHz
Reference clock frequency ωR 2π · 47.36 rad MHz

VCO sensitivity KVCO 2π · 757 radMHz
V

Division factor of the DIV v 512
Inverter contribution to the phase φINV π
Amplitude of PD output signal APD 1.6 V

is used to tune the VCO’s free-running frequency to 24GHz.

A low pass RC filter supresses the high frequency components

of the PD signal. The resulting control voltage xc(t) is fed to

the Analog Devices HMC988 VCO, which allows operation in

microwave frequency range of 24GHz. This VCO has a built-

in divider of 16, which is used with a separate programmable

divider HMC988, to yield a total division factor of 512.

V. EXPERIMENTAL SETUP

A reference signal generated by Keysight 33600A series
signal generator is fed to the PD using Rosenberger LU1-001-
XXX cables. Here the XXX corresponds to the used cable

length. Different propagation delays between 2.64–10.12 ns

are obtained by varying the length of the cables between

50− 190 cm. The propagation delay of signal in the feedback

path is 0.91 ns, so the effective delay of the clock is 1.73–

9.21 ns. The PLL is allowed to achieve a steady locked

condition (at a reference frequency of 47MHz) and is then

given a step frequency input change by frequency shift keying

with a frequency hop of 1MHz. The response of the PLL to

this change is directly captured by the control voltage xc(t).
This signal is observed on a Rohde & Schwarz RTO-2044 os-

cilloscope using high impedance (1MΩ), RT-ZD40 differential

active probes for both the falling edge, i.e., clock’s frequency

shifts from 48MHz to 47MHz, see Fig. 3a and rising edge,

i.e., clock’s frequency shifts from 47MHz to 48MHz, see

Fig. 3b. For each case, the noisy data is smoothed in Matlab

by applying a Gaussian-weighted moving average filter with

window length 10950. Subsequently, PLL parameters can

be directly observed and measured through analysis of the

waveform according to the following well known equations.
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Fig. 3. Transient response of the control voltage xc(t) for an input frequency
change of 1MHz.
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Decay rate = σmeas = −ζ ωn =
1

τd
, (13)

where τd is the time constant of the decay, obtained when the

overshoot decays to 1/e of its peak value in the regime labeled

as ‘1/e envelope’ in Fig. 3.

Decay frequency = γmeas = ωd =
π

τp
, (14)

where τp is the time it takes to reach the minimum or

maximum value.

Damping ratio = ζ =

⎛
⎝1 +

[
π

lnC1

C2

]2
⎞
⎠

− 1
2

. (15)

Both the clock and PLL signal are converted from differential

to single-ended signals for each channel of the oscilloscope

using Prodyn Model BIB 100G baluns. The clock’s and

PLL’s phase is extracted from the signals’ time-series using

the Hilbert transform after smoothing them with a moving

average. The phase difference is then obtained from the phases

of the individual signals.

The results obtained from the measurements are presented

in Fig. 4 and compared to theoretical predictions from the

two methods discussed in section III. The decay rate and fre-

quency are calculated using the Laplace domain analysis, i.e.,

( 2πζωn

ωR
, ωd

ωR
) and the solutions ( 2πσωR

, γ
ωR

) obtained from linear

stability analysis. The results show good agreement with the

measurements ( 2πσmeas

ωR
, γmeas

ωR
). The analysis also gives an unsta-

ble solution with normalized perturbation decay rate of 0.06

for all delays. The theoretical analysis predicts underdamped

oscillations, with ζ = 0.58 as compared to ζ = 0.60 obtained

from measurements by averaging the results for each delay,

see Eq. (15). Fig. 5 compares the phase-relations predicted

by model with measurements for the falling and rising edges of

the control signal. The decay rate σ = −ζ · ωn = 1
τc

depends

only on the loop filter parameters and not explicitly on the

delay τ . However, the phase offset is dependent on the delay

and is different for the rising and falling edge due to different

detuning, i.e., (wR v−w) when the PLL achieves steady state,

see Eq. (8).

Fig. 4. Decay rates and frequencies obtained from the different methods.
All frequencies are normalized by ωR and all decay rates are normalized by
2π/ωR, the period.

,2

1 2 3 4 5 6 7 8 9 10 11
τ (ns)

0 12

Fig. 5. Phase-difference between clock and PLL for different detuning of the
intrinsic frequencies.

VI. CONCLUSION

This work highlights how the classical PLL theory can be

understood and extended within the framework of dynamical

systems theory. This is verified by experiments in regimes

covered by both theories. Furthermore, the extended model

unifies the study of hierarchical and self-organized synchro-

nization. It allows to study cases e.g mutual PLL coupling

in the presence of time-delays that were out of scope of the

classical theory before. The phase model of a PLL is studied

in the time and Laplace domain. Its stability and transient

dynamics are determined using two methods and the theory is

verified by measurements for the case of entrainment. The loop

gain is independent of delay for classical PLLs but dependent

on delays and component heterogeneity for mutually coupled

PLLs. The analysis show that the PLL achieves lock even

in the case of significant delays in the case of entrainment.

However, the delay contributes to the phase offset between

clock and PLL, which can be accurately calculated using the

model.
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