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Abstract
We introduce lower bounds for the rate of entropy production of an active stochastic process by
quantifying the irreversibility of stochastic traces obtained from mesoscopic degrees of freedom.
Our measures of irreversibility reveal signatures of time’s arrow and provide bounds for entropy
production even in the case of active fluctuations that have no drift. We apply these irreversibility
measures to experimental recordings of spontaneous hair-bundle oscillations in mechanosensory
hair cells from the ear of the bullfrog. By analyzing the fluctuations of only the tip position of hair
bundles, we reveal irreversibility in active oscillations and estimate an associated rate of entropy
production of at least ∼3kB/s, on average. Applying thermodynamic uncertainty relations, we
predict that measuring both the tip position of the hair bundle and the mechano-electrical
transduction current that enters the hair cell leads to tighter lower bounds for the rate of entropy
production, up to ∼103kB/s in the oscillatory regime.

1. Introduction

Active systems are maintained out of equilibrium by processes that consume resources of energy and
produce entropy. This is the case of living cells, where energy is provided in the form of a biochemical fuel
such as adenosine triphosphate that drives active mesoscopic cellular processes. As discussed below,
spontaneous oscillations of mechanosensory hair bundles of auditory hair cells provide an important
example of active cellular fluctuations [1, 2]. These oscillations have been proposed to amplify sound
stimuli in the ear of many vertebrates, providing exquisite sensitivity and sharp frequency selectivity [3].

Active mesoscopic processes do not obey the fluctuation–dissipation theorem: measuring both the linear
response of the system to weak external stimuli and spontaneous fluctuations provides a means to quantify
deviations from thermal equilibrium [4–10]. A related important question is how entropy production can
be estimated in active mesoscopic systems. In cases where active systems generate movement with drift,
such as molecular motors moving along filaments [11–13], the rate of entropy production can be estimated
from measurements of drift velocities and viscous forces [11, 14]. More generally, to assess the entropy
production in a stationary process, it is necessary to measure all the currents in the system and their
conjugated thermodynamic forces. However, in many situations of interest, especially in biology, currents
consist of non-equilibrium reactions, molecular conformational changes, or other types of flows that
cannot be observed. Far from equilibrium, thermodynamic forces are also hard to identify even if the
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corresponding current is observable. As a consequence, it is relevant to develop methods for estimating
entropy production when the available information about a system is limited.

Two strategies have been recently introduced. The first one is based on a quantitative measure of the
irreversibility of a time series measured in the steady state. This quantitative measure is the relative entropy
or Kullback–Leibler divergence (KLD), and it has been proved to provide a lower bound to the entropy
production [15–17]. Because non-Markovian stochastic processes can be irreversible in absence of any drift,
this approach can detect that a system is out of equilibrium even in the absence of any current or flow in the
observed variables. This is the case of many experiments in hair cells, like the ones reported here. However,
the method has been implemented mostly for discrete systems [15–17] and an extension to continuous
variables is needed. The second method to estimate entropy production is based on the recently introduced
thermodynamic uncertainty relations (TURs). These relations establish a lower bound to entropy
production proportional to the relative fluctuations of currents [18, 19]. Hence, the method is useful when
currents can be observed but there is no access to the conjugated forces. Here, we introduce a novel
technique to calculate the KLD for continuous variables. We analyze the feasibility and accuracy of the
bounds provided by this new technique as well as the TUR by applying the two approaches to experimental
and numerical data of the motion of hair bundles in the sensory cells of the ear.

Hair cells are the cellular microphones of the inner ear [20]. They transduce sound-evoked mechanical
vibrations of their hair bundle—a cohesive tuft of cylindrical stereocilia that protrudes from their apical
surface (figure 1(A))—into electrical signals that then travel to the brain. Fluctuations and response of the
hair bundle provide a paradigmatic case study of nonequilibrium physics in biology [21–23]. Hair bundles
from the ear of the bullfrog show noisy spontaneous oscillations [1]. Under periodic external stimulation,
oscillatory hair bundles can actively amplify their response, resulting in a hysteretic behavior corresponding
to a net energy extraction from the bundle [24]. Furthermore, it was shown that the fluctuation–dissipation
theorem does not hold for oscillatory hair bundles, revealing that their spontaneous fluctuations are also
active [4]. This finding demonstrates that hair bundle fluctuations must be described by nonequilibrium
stationary states. Such behavior can be captured by a minimal two-variable stochastic model with nonlinear
and non-conservative forces [1, 2, 25–27]. In this model, one variable describes the tip position of the hair
bundle, whereas the other variable describes the dynamics of a collection of molecular motors that power
the bundle oscillations. Although the tip position can be measured, motors’ fluctuations are hidden and
hence can only be estimated from stochastic simulations [2, 21, 25]. Experimental and theoretical
evidence led to the proposal that spontaneous fluctuations of the hair bund are akin to noisy limit-cycle
oscillations close to a Hopf bifurcation [27]. Hence, as any active system, hair-bundle spontaneous
fluctuations are characterized by probability fluxes in suitable phase spaces and by entropy production.
Whether, and to what extent, tools from the emerging field of stochastic thermodynamics [28, 29] can be
used to estimate entropy production from measurements of active hair-bundle fluctuations remains an
open question.

In this paper, we quantify irreversibility of the hair-bundle dynamics using experimental measurements
of only the hair-bundle position X, an observable for which there is no measurable drift. From this limited
information, we obtain lower bounds for the entropy production of its spontaneous fluctuations. In
principle, one could also observe the mechano-electrical transduction current I produced by oscillatory hair
bundles, revealing currents in the (X, I) plane [30]. Here, to test the accuracy of the bounds based on TURs
[18, 19], we use a well-tested dynamical model for oscillatory hair bundles to simulate trajectories in the
(X, I) plane. Using this procedure, we obtain tighter bounds of the rate of entropy production of the hair
bundle.

The paper is organized as follows. In section 2, we discuss generic properties of irreversibility and
dissipation of mesoscopic nonequilibrium stationary states, as well as methods to quantify irreversibility
from the statistics of few stochastic variables. In section 3, we provide estimates of irreversibility from
experimental measurements of only the tip position X of hair bundles that show noisy oscillations. In
section 4, we perform numerical simulations of a stochastic model of active hair-bundle fluctuations to
compare the one-variable irreversibility estimates with the actual entropy production by the active system.
In section 5, we use TURs to predict how much entropy production could be estimated by having access to
both the tip position X and the transduction current I experimentally. Finally, in section 6 we discuss our
main findings and conclude the paper. Mathematical derivations, details on experimental data analysis and
on biophysical modeling are provided in the appendices.

2



New J. Phys. 23 (2021) 083013 É Roldán et al

Figure 1. (A) Electron micrograph showing hair bundles that protrude from the sensory epithelium of a bullfrog’s sacculus. This
organ from the frog’s inner ear is dedicated to the detection of low frequency vibrations (∼5–150 Hz). The height of the hair
bundles is about ∼7 μm. (B) and (C) Experimental recordings of the tip position of two active mechanosensory hair bundles that
display spontaneous oscillations. (D) Time series obtained from a simulation of a stochastic bistable oscillator, see text for details.
In panels (B)–(D), we plot: the position X of the system as a function of time (top left); its time reversals (bottom left); residual
time series ξF

i (top middle), ξR
i (bottom middle); and the autocorrelation functions (right column) of the full 30 s recording

(black ‘+’), ξF
i (blue squares), and ξR

i (red circles). The data in (D) corresponds to a stochastic simulation of a system obeying the
Langevin equation ẋ = −V ′(x) +

√
2Dξ, with the bistable potential V(x) = −ax2/2 + bx4/4 and parameter values a = 30,

b = 0.4, D = 20 [58].
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2. Entropy production estimates in stationary processes

2.1. Estimates based on time irreversibility
We first discuss the relation between entropy production and irreversibility for generic nonequilibrium
stationary processes. Consider a physical system described by a set of variables labeled as Xα, with
α = 1, 2, . . . . In a stationary nonequilibrium process of time duration t, the physical system traces a
trajectory in the phase space described by the stochastic processes Xα(t). We denote by
Γ[0,t] ≡ {(x1(s), x2(s), . . . ) )}t

s=0 a given trajectory described by the system variables and its corresponding
time-reversed trajectory as Γ̃[0,t] ≡ {(θ1x1(t − s), θ2x2(t − s), . . . )}t

s=0, where θα = ±1 is the time-reversal
signature of the αth variable. Assume now that Xα are the variables that may be out of equilibrium, i.e. we
do not include in Γ[0,t] those variables corresponding to thermal reservoirs, chemostats, etc. In that case, the
steady-state rate of entropy production σtot is given by

σtot = kB lim
t→∞

1

t
D
[
P
(
Γ[0,t]

)∣∣∣ ∣∣∣P (
Γ̃[0,t]

)]
, (1)

where kB is the Boltzmann constant and P denotes the steady-state path probability [31–34]. Here
D[Q‖R] � 0 is the KLD between the probability measures Q and R, which quantifies the distinguishability
between these two distributions. For measures of a single random variable x the KLD is given by
D[Q(x)‖R(x)] ≡

∫
dxQ(x) ln[Q(x)/R(x)]. Note that for isothermal systems, σtotT is equal to the rate of

heat dissipated to the environment at temperature T.
Often in experiments, only one or several of the nonequilibrium variables can be tracked in time.

Consider the case where only X1, . . . , Xk are known. We define the k-variable irreversibility measure in
terms of path probabilities of k mesoscopic variables

σk ≡ kB lim
t→∞

1

t
D
[
P
(
Γ(k)

[0,t]

)∣∣∣ ∣∣∣P (
Γ̃(k)

[0,t]

)]
, (2)

where Γ(k)
[0,t] ≡ {(x1(s), . . . , xk(s))}t

s=0 and Γ̃(k)
[0,t] ≡ {(θ1x1(t − s), . . . , θkxk(t − s))}t

s=0 denote paths described
by k variables. The k-variable irreversibility measure increases with the number of tracked degrees of
freedom, providing a set of lower bounds to entropy production:

0 � σ1 � . . . � σk � σk+1 � . . . � σtot. (3)

It can also be shown that the estimator σk equals the physical entropy production σtot if the missing
variables, X� with � > k, are at thermal equilibrium [35–37]. When the missing variables are not at thermal
equilibrium, which is often the case in active systems, the estimate σk � σtot yields only a lower bound for
the entropy production rate.

We now introduce a method to estimate the irreversibility measure σ1 for any nonequilibrium steady
state from a single stationary time series xi = X(iΔt) (i = 1, . . . , n) of a single variable X that is even under
time reversal. We describe the technique for a single variable, but it can be generalized to several
variables Xα(t). In discrete processes, the KLD in σ1 can be accurately measured from the statistics of
sequences of symbols [15, 16] and non-Markovian waiting time distributions [17]. In continuous processes
however, estimating σ1 is a herculean task due to the difficulties in sampling the whole phase space of paths
[38–40].

The key idea of our method is to exploit the invariance of the KLD under one-to-one transformations.
Suppose that there exists a one-to-one map ξi(x1, . . . , xn), i = 1, . . . , n, that transforms the original time
series and its time reversal into two new time series ξF

i = ξi(x1, . . . , xn) and ξR
i = ξi(xn, . . . , x1) that are

independent and identically distributed (i.i.d.) processes. Such a procedure is often called a whitening filter
[41, 42]. Because the new series are i.i.d., the KLD is now simple to calculate: it is given by the KLD between
two univariate distributions p(ξ) and q(ξ), corresponding to the stationary probability distribution of ξF

i

and ξR
i , respectively [40]. In general, it is not possible to find a one-to-one map that fully eliminates the

correlations of both the forward (x1, . . . , xn) and the backward (xn, . . . , x1) time series. In that case, the
removal of the correlations in the backward series is enough to provide a lower bound for σ1:

σ1 � kBfsD[p(ξ)‖q(ξ)] ≡ σ̂1, (4)

where fs = (Δt)−1 is the sampling frequency and D[p(ξ)‖q(ξ)] =
∫

dξp(ξ) ln[p(ξ)/q(ξ)] is the KLD
between the univariate distributions p(ξ) and q(ξ). We estimate D[p(ξ)‖q(ξ)] 
 γ

∑
i p̂i ln(p̂i/q̂i) where p̂, q̂

are empirical densities, and the sum runs over the number of histogram bins. We introduce the prefactor
γ = 1 − pKS � 1, where pKS is the p-value of the Kolmogorov–Smirnov (KS) statistic between p(ξ) and

4
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q(ξ), to correct the statistical bias of our KLD estimate [43]. The proof of the bound (4) and further details
of the estimate are found in appendices A and B.

2.2. Estimates based on TURs
We now consider the case in which one can measure a set of k � 2 mesoscopic variables X1, . . . , Xk that are
all even under time reversal. In this case, a measurable signature of irreversible dynamics is the emergence
of currents in the (X1, . . . , Xk) plane. For Markovian nonequilibrium stationary states, it has been shown
that the rate of entropy production can be computed analytically and expressed in terms of forces and
conjugated currents, see e.g. [44–46]. For example, consider an isothermal overdamped Langevin system
described by two mesoscopic variables,

Ẋ1 = μ1F1(X1, X2) +
√

2D1η1 (5)

Ẋ2 = μ2F2(X1, X2) +
√

2D2η2, (6)

where μk, Dk are the mobility and diffusion coefficient of the kth variable, Fk(X1, X2) is a generic
state-dependent force, and η1 and η2 are two independent Gaussian white noises with zero mean
〈η1(t)〉 = 〈η2(t)〉 = 0 and autocorrelation 〈η1(t)η1(t’)〉 = 〈η2(t)η2(t’)〉 = δ(t − t’) with δ Dirac’s delta
function. For this example, the entropy production can be expressed in terms of forces Fk and currents
(velocities) Ẋk as follows

σtot = σ2 =
kBμ1

D1

〈
F1 ◦ Ẋ1

〉
+

kBμ2

D2

〈
F2 ◦ Ẋ2

〉
. (7)

Here, 〈·〉 denote steady state averages, ◦ the Stratonovich product [47, 48] and we have used the shorthand
notation Fk ≡ Fk(X1, X2). This result can be generalized to nonequilibrium overdamped Langevin dynamics
with more than two degrees of freedom, and similarly to Markov-jump processes with an arbitrary number
of states [44, 46].

The TUR approach, introduced in references [18, 19], provides a bound to entropy production which is
useful when one has not access to the forces. For finite-time trajectories in stationary processes, the
following TUR holds [49–51]

σtot �
2kB

τ

〈j(τ)〉2

Var[j(τ)]
, (8)

where Var[j(τ)] = 〈j2(τ )〉 − 〈j(τ )〉2 is the finite-time variance of any current, and τ > 0 the observation
time. Equation (8) allows us to bound from below the entropy production rate of any nonequilibrium
stationary state with statistics of any current j which may contain partial information about the dynamics of
the system.

For the example of a 2D stochastic model described in equations (5) and (6), one can construct a family
of currents as follows

jG(t) =

∫ t

0
G1(s) ◦ Ẋ1(s) +

∫ t

0
G2(s) ◦ Ẋ2(s), (9)

where G1(t) ≡ G1(X1(t), X2(t)) and G2(t) ≡ G2(X1(t), X2(t)), with G1(x, y) and G2(x, y) two arbitrary
functions. For this model, the TUR (8) implies that [52]

σ2 � 2kB

τ

〈jG(τ)〉2

Var[jG(τ)]
≡ σ̂2, (10)

which holds for any observation time τ and any choice of the functions G1 and G2 that enter in
equation (9). Notably, the bound (10) also applies for currents that are obtained by coarse graining the
phase space variables X1 and X2. To which extent the bound (8) can be tightened by finding optimal
currents has become an active area of research (see e.g. [53–57]). In particular, it has been shown that
currents containing ‘footprints of irreversibility’ (i.e. information about stochastic entropy production)
provide tight, optimal bounds to the finite-time TURs [54, 56].

3. One variable irreversibility in active hair-bundle fluctuations

We now discuss irreversibility and entropy production in active mechanosensory hair cells from the
bullfrog’s ear. In experimental recordings of spontaneous hair-bundle oscillations, only the tip position X1

of the bundle is measured (figures 1(B) and (C)). Hair-bundle oscillations take the shape of relaxation
oscillations corresponding to an alternation of fast jumps between two extreme positions interspaced by
dwell times. Measuring X1, we can only estimate σ1, which provides a lower bound to the total steady-state

5
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Figure 2. (A) Irreversibility measure σ̂1 (symbols) as a function of the observation time τ for the time series partially shown in
figure 1(A). The horizontal dashed line is set to zero, corresponding to the reversible limit. The values of irreversibility obtained
for these time series is indicated in the figure legends. They are given by the mean of the values of σ̂1 for τ > 10 s and the error
bars by the standard deviation of the same values. (B) Histogram of the irreversibility measure σ̂1 obtained from N = 182
different experimental recordings of spontaneous hair-bundle oscillations, each of duration 30 s. The experimental average value
of the irreversibility measure σ̂1 is ∼3kB/s. Inset: empirical cumulative distribution function of irreversibility (black circles). The
red line is a fit to an exponential distribution with mean value (2.82 ± 0.02)kB/s and R2 > 0.9990.

entropy production rate σtot. We later compare this estimate to that obtained for a passive bistable system in
a thermal bath (figure 1(D)).

In the following, we make use of autoregressive (AR) models for the whitening transformation. More
precisely, we obtain the transformed time series ξF

i (ξR
i ) as the difference between the observed values of the

forward (backward) time series and the forecast of that value based on an AR model of order m = 10.
Parameters of the model are determined from fits of the AR-model to the time-reversed series of positions.
The residual time series ξF

i and ξR
i (figures 1(B)–(D), center column) obtained from the whitening

transformation are uncorrelated (figures 1(B)–(D), right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure σ̂1 given by equation (4) distinguishes active hair-bundle
fluctuations (σ̂1 > 0) from passive fluctuations of a bistable system (σ̂1 
 0). Note that the estimate
saturates to a plateau when the time series is long enough, in practice here longer than 10 s. Using a
population of 182 hair cells that showed spontaneous hair-bundle oscillations [59], we obtain an
exponential distribution of σ̂1 with mean value 3kB/s (figure 2(B)). Interestingly, this result depends on the
sampling frequency fs (see appendix C): irreversibility is maximal in the range fs ∼ (200–600) Hz where its
value goes up to 4.3kB/s. This frequency dependency may provide additional information about timescales
of the underlying active process [48].

We further quantify differences in irreversibility in typical examples of: (i) active oscillatory hair bundles
(figure 3(A), top); (ii) hair bundles that were brought to quiescence upon exposure to a drug (gentamicin)
that blocks the transduction channels (figure 3(A), middle); (iii) noisy signals produced by the recording
apparatus when there was no hair bundle under the objective of the microscope (figure 3(A), bottom). To
further characterize differences in irreversibility, we apply the local irreversibility measure defined as

6
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Figure 3. (A) Examples of experimental traces for the tip position of different mechanosensory hair bundles as a function of
time. Top: active hair bundles. Bottom: passive hair bundles, i.e. when the channel blocker gentamicin is present (magenta,
green), and experimental noise trace (black). (B) Estimate of the local irreversibility measure (11) obtained from single 30 s
recordings of the oscillations shown in panel (A) as a function of the residual value ξ. The sampling rate was fs = 2.5 kHz.

ŝ1(ξ) ≡ kBfs

[
p(ξ) ln

p(ξ)

q(ξ)
+ q(ξ) − p(ξ)

]
, (11)

which obeys ŝ1(ξ) � 0 for all ξ [60], and σ̂1 =
∫

dξ ŝ1(ξ). We find that for all the analyzed values of ξ, the
local irreversibility of active oscillations is ∼103 times larger than for passive hair-bundle fluctuations and
experimental noise.

4. Entropy production rate of active hair-bundle fluctuations

We now relate the estimate σ̂1 of entropy production from experimental recordings (figure 2(B)) to the
entropy production σtot which we obtain from stochastic simulations of hair-bundle oscillations.
Spontaneous hair-bundle oscillations are thought to result from an interplay between opening and closing
of mechanosensitive ion channels, activity of molecular motors that pull on the channels, and fast calcium
feedback. This interplay can be described by two coupled stochastic differential equations for the position of
the bundle X1 and of the center of mass of a collection of molecular motors X2 [2, 59, 61] (see appendix D):

λ1Ẋ1 = − ∂V

∂X1
+
√

2kBTλ1ξ1 (12)

λ2Ẋ2 = − ∂V

∂X2
− Fact +

√
2kBTeffλ2ξ2. (13)

Here, λ1 and λ2 are friction coefficients and ξ1 and ξ2 in (12)–(13) are two independent Gaussian white
noises with zero mean 〈ξi(t)〉 = 0 (i = 1, 2) and correlation 〈ξ i(t)ξj(t′)〉 = δijδ(t − t′), with i, j = 1, 2 and δij

the Kronecker’s delta. T is the temperature of the environment, whereas the parameter Teff > T is an
effective temperature that characterizes fluctuations of the motors. This model can be interpreted as a
system affected by two nonequilibrium constraints: the active force Fact and its fluctuations whose
magnitude is described by an effective temperature Teff that differs from the actual temperature T. Recall,
however, that the real system is at temperature T and that the effective temperature Teff has the same origin
as the active force, which is the activity of the motors. The conservative forces derive from the potential
associated with elastic elements and mechano-sensitive ion channels

V(X1, X2) =
kgs(X1 − X2)2 + kspX2

1

2
− NkBT ln

[
exp

(
kgsD(X1 − X2)

NkBT

)
+ A

]
, (14)

where kgs and ksp are stiffness coefficients; D is the gating swing of a transduction channel; and
A = exp[(ΔG + (kgsD2)/2N)/(kBT)], ΔG being the energy difference between open and closed states of the
channels and N the number of transduction elements. The force

Fact(X1, X2) = Fmax(1 − SPo(X1, X2)), (15)

7
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Figure 4. (A) and (B) Trajectories of the reduced variables X1 (hair-cell bundle’s tip position) (A) and X2 (center of mass of
adaptation motors) (B) as a function of time obtained from a simulation of the stochastic model given by equations (12) and
(13). (C) Representation of a 5s simulation in the {X1(t), X2(t)} plane for the data shown in (A, B). The black arrows illustrate
the value of the instantaneous velocity and the base of the arrow the position. Parameters of the simulations: λ1 = 2.8 μN s /m,
λ2 = 10 μN s /m, kgs = 0.75 pN/nm, ksp = 0.6 pN/nm, D = 61 nm, S = 0.94, Fmax = 57.14 pN, N = 50, ΔG = 10kBT,
kBT = 4.143 pNnm and Teff/T = 1.5. We remark that the hair-bundle tip position X1 is measurable experimentally whereas the
motors’ position X2 is a hidden variable that is not accessible experimentally. A rationale for the choice of parameter values can
be found in references [2, 25] and in appendix D. In (A-C) we substracted to X1 and X2 their respective mean values.

is an active nonconservative force exerted by the molecular motors with a maximum value Fmax. The
parameter S quantifies calcium-mediated feedback on the motor force [25] and

Po(X1, X2) =
1

1 + A exp(−kgsD(X1 − X2)/NkBT)
, (16)

is the open probability of the transduction channels. Note that equation (16) is the open probability of a
two-state equilibrium model of a channel with a free-energy difference between open and close states
depending linearly on the distance X1 − X2. The parameter values in the model are constrained by
experiments as discussed in [2, 59, 61]. As shown earlier [2, 25], this model can capture key features of
noisy spontaneous oscillations of hair-bundle position X1 that have been observed experimentally
(figure 4(A)). The oscillation of the motors’ position (figure 4(B)) is known in the model but hidden in
experiments. Trajectories of only X1(t) or X2(t) do not reveal obvious signs of a net current, which here
would correspond to a drift. However, trajectories in the (X1, X2) plane show a net current which is a
signature of entropy production (figure 1(C)). In the following, we will use this stochastic model to
compare the irreversibility measure σ̂1 to the total entropy production σtot.

In the stochastic model of hair-bundle oscillations given by equations (12) and (13) we deal with only
two variables, therefore σtot = σ2. From the analytical expression of σ2, we find that the steady-state
entropy production rate can be written as (see references [46, 62, 63] and appendix E)

σtot =
1

T

〈
F1 ◦

dX1

dt

〉
+

1

Teff

〈
F2 ◦

dX2

dt

〉
= −〈Q̇1〉

(
1

T
− 1

Teff

)
+

〈Ẇ act〉
Teff

, (17)

where

F1(X1, X2) = −∂V(X1, X2)

∂X1
(18)

F2(X1, X2) = −∂V(X1, X2)

∂X2
− Fact(X1, X2), (19)

are the conjugated forces to X1 and X2, respectively. We have also introduced the steady-state average heat
−〈Q̇1〉 = −〈(∂V/∂X1) ◦ Ẋ1〉 dissipated to the thermal bath at temperature T and the power
〈Ẇ act〉 = −〈Fact ◦ Ẋ2〉 exerted by the active force on the motors. Equation (17) takes into account the
nonequilibrium effects produced in the model by the activity of the motors: the difference of effective
temperature and temperature, and the active force.

We performed numerical simulations of equations (12) and (13) for different values of the control
parameters Fmax and S (figure 5) to explore entropy production throughout the state diagram of the system.
The quality factor Q of the oscillation —given by the ratio between the oscillation frequency and the
bandwidth at half the maximal height of the power spectrum (see appendix F)—and the average open
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Figure 5. Dynamical and thermodynamic features of spontaneous hair-bundle oscillations as a function the calcium-feedback
strength S and maximal motor force Fmax obtained from numerical simulations of the model given by equations (12) and (13).
(A) Quality factor Q; (B) steady-state average 〈Po〉 of the open channel probability; (C) irreversibility measure σ̂1; (D)
steady-state entropy production rate σtot. In (B), (C) and (D) we indicate the parameter values for which 〈Po〉 = 0.1, 0.5 and 0.9
(white dashed lines from top to bottom, respectively) and the parameter values used in figure 4 (black disk). The results are
obtained from numerical simulations of equations (12) and (13) of total duration 300 s and sampling frequency fs = 1 kHz. The
rest of the parameter values are the same as in figure 4.

probability 〈Po〉 at steady state are displayed in figures 5(A) and (B) in the state diagram. The irreversibility
measure σ̂1 for trajectories X1(t) of spontaneous oscillations is shown in figure 5(C). This measure can be
compared to the quantification of total entropy production σtot of the model, given by equation (17), which
is shown in figure 5(D). Irreversibility of trajectories and total entropy production correlate strongly. As
expected, σ̂1 provides a lower bound to the actual dissipation rate. Actually, the rate of entropy production
estimated from σ̂1 is here typically three orders of magnitude smaller than the total entropy production.
Clearly, measuring other degrees of freedom additional to the hair-bundle position would be required to
obtain tighter bounds to the rate of entropy production with our method or other estimation techniques
[52, 64–68].

5. Thermodynamic uncertainty relation (TUR) in the ear of the bullfrog

Noisy limit-cycle oscillations in, for instance, a two-dimensional phase space can reveal irreversibility in the
form of probability currents. As discussed in section 2.2, the so-called TURs provide lower bounds to the
rate of entropy production in terms of the mean and the variance of empirical time-integrated currents (see
e.g. [18, 19]). Here, we apply the finite-time TUR (8) to predict how much entropy production one can
assess by measuring two mesoscopic degrees of freedom: the tip position X1 of the hair bundle and the
transduction current, normalized to its maximum value, Po = I/Imax (see equation (16)). Specifically, we
analyze two-dimensional stochastic trajectories Γ[0,τ] ≡ {(X1(s), Po(s))}τs=0 obtained from simulations of
equations (12) and (13) in the quiescent (figure 6(A)) and oscillatory region (figure 6(D)) of the state
diagram shown in figure 5. These trajectories reveal a larger circulating probability current within the
oscillatory region, as expected, but also a smaller relative uncertainty.

To quantify these effects, we make use of the estimate for entropy production (10) based on the
finite-time TUR applied to two different currents in the (X1, Po) plane. More precisely, we analyze the
fluctuations of the counterclockwise current φ and of the environmental entropy change Senv, as described
below. First, we map the dynamics into the complex plane z(t) = X̄1(t) + iP̄o(t) and measure
θ(t) = φ(t) + 2πNφ(t), where φ(t) = tan−1(P̄o(t)/X̄1(t)) ∈ [0, 2π] is the phase and Nφ(t) is the net number

9
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Figure 6. Estimating entropy production using the finite-time TUR. (A) and (D) Scatter plots of a sample trajectories
Γ[0,τ] ≡ {(X1(s), Po(s))}τs=0 of duration τ = 30 s (symbols) obtained from a numerical simulations of equations (12) and (13).
The black lines show the initial 0.3 s of the sampled trajectory. (B) and (E) Sample trajectories of the counterclockwise current of
the phase θ(t) = tan−1[P̄o(t)/X̄1(t)] obtained from the reduced variables P̄o(t) = Po(t) − 〈Po(t)〉 and X̄1(t) = X1(t) − 〈X1(t)〉
for the quiescent (blue line) and oscillatory (red line) simulations. For comparison, we show in (E) (light blue lines) the same
trajectories displayed in (B). Note that, even in the quiescent regime, we can detect a current in the (X1, Po) space, revealing
activity in the fluctuations. These current fluctuations show both smaller mean and larger relative uncertainty compared to those
obtained with simulations in the oscillatory regime. (C) and (F) Histograms of the cumulated current up to τ = 2 s obtained
from in the quiescent (blue bars, (C)) and the oscillatory (red bars, (F)) regimes. (G) Comparison between the irreversibility
estimate σ̂2 from the TUR (equation (10), symbols) and the total entropy production rate σtot (equation (17), lines) as a function
of the observation time τ in the quiescent (blue squares, blue dotted line) and oscillatory (red circles, red dashed line) regimes.
(H) Comparison between the total entropy production rate σtot (black diamonds), the one-variable irreversibility measure σ̂1

(green squares), and the two-variable irreversibility measure from the TUR (equation (10)), as a function of the maximum motor
force Fmax. For the latter case, we employ the counterclockwise current φ (σ̂φ

2 , orange circles) and the environmental entropy
change (σ̂S

2, red circles). In (G) and (H) the lines are a guide to the eye. Simulations were run for a total duration of 300 s at the
two operating points with maximum motor force Fmax = 31 pN (A)–(C) and Fmax = 62 pN (D)–(F), corresponding to
quiescent and oscillatory regimes, respectively. The rest of the simulation parameters were set to the same values as in figure 4.

of counterclockwise turns—the winding number. Here, X̄1(t) = X1(t) − 〈X1〉, P̄o(t) = Po(t) − 〈Po〉. Using
sample trajectories of duration τ = 2 s, we found that the counterclockwise current jφ(t) = φ(t)/τ displays
both a larger absolute mean and a larger signal-to-noise ratio, corresponding to more accurate currents,
when the system operates in the oscillatory (figure 6(D-E)) rather than in the quiescent regime of the
dynamics (figure 6(A-B)). We show estimates σ̂φ

2 for the two case studies in (figure 6(G)). These estimates
are obtained using the relative fluctuations of the current, i.e. σ̂φ

2 is given by equation (10) applied to the
current φ. For an example trajectory in the quiescent regime of the dynamics, σ̂φ

2 ∼1kB/s is of the same
order of magnitude as σ̂1 (figure 6(G), blue squares). Remarkably, operating in the oscillatory regime
instead yields an estimate σ̂φ

2 ∼ 103kB/s (figure 6G, red circles), which is three orders of magnitude larger
than σ̂1 and only a few fold smaller than σtot.

To get further insights on entropy production upon varying the operating point in the state diagram of
the system, we plot σ̂φ

2 as a function of the maximal motor force Fmax which is a control parameter of the
Hopf bifurcation at fixed S = 0.94 (figure 6(H)). In the quiescent region, Fmax < Fc 
 50 pN, σ̂φ

2 is not
significantly different from σ̂1, underestimating entropy production (∼1kB/s) by about one order of
magnitude below σtot ∼ 6kB/s. Increasing Fmax, the two-variable irreversibility measure σ̂φ

2 and the total
entropy production σtot both exhibit a jump when the system enters the oscillatory region of the dynamics,
which is indicative of the underlying Hopf bifurcation, as also observed for other oscillatory systems e.g. in
references [69, 70]. We note here that there are multiple ways to define a current from measurements of X1

and I. In principle, one could develop an optimization procedure to find the current that provides the
tightest bound to entropy production [54–57]. Although we did not attempt here to employ such a
procedure, it is useful to compare σ̂φ

2 to the estimate σ̂S
2, which results from the environmental entropy

current jS(t) = Senv(t)/τ and has been being proposed to provide a near-optimal estimate [54, 56]. Here,
Senv(t) is given by equation (9) for the choice G1 = F1(X1, X2)/T and G2 = F2(X1, X2)/Teff . In figure 6(H)
we show that σ̂φ

2 and σ̂S
2 are similar in the oscillatory region (Fmax ∼ 60 pN), but that σ̂S

2 provides a tighter
bound for small (Fmax < 40 pN) and large (Fmax > 120 pN) maximal motor force where the hair bundle
does not oscillate.
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6. Discussion

In this work, we have shown that fluctuations of active systems can reveal the arrow of time even in the
absence of net drifts or currents. The hierarchy of measures of time irreversibility introduced here provides
lower bounds for the entropy production of an active process. We have demonstrated the applicability of
the approach by estimating entropy production associated with experimental noisy oscillations of a single
degree of freedom in the case of mechanosensory hair bundles from the bullfrog’s ear. We have shown that
quantifications of the arrow of time can efficiently discriminate quiescent and oscillatory hair bundles, as
well as reveal transitions between the two regimes in response to changes in a control parameter (e.g. the
calcium concentration as in reference [2]). However, using a model of active hair bundle oscillations, we
also showed that estimating the rate of entropy production with only one degree of freedom yields a lower
bound that can be orders of magnitude smaller than the total entropy production rate in the system. In the
case of hair-bundle oscillations, we predict that measuring a second degree of freedom, e.g. the transduction
current, would add sufficient information to get a tight bound. With two degrees of freedoms, the current
in the phase space and its fluctuations can be used to bound entropy production by means of
thermodynamic uncertainty relations. Overall, our results show that irreversibility measures can quantify
entropy production in active matter, including living systems, from fluctuations of only a few mesoscopic
degrees of freedom.
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Appendix A. Bounds on the multivariate KLD

Here we prove a general lower bound for the KLD between two multivariate probability densities
PX(x1, . . . , xn) and QX(x1, . . . , xn) that fulfill the following: there exits a one-to-one map ξ i = ξi(x1, . . . , xn)
with i = 1, . . . , n, such that

(a) The transformed variables ξi are identically distributed under both P and Q, that is, the distributions
PΞ(ξ1, . . . , ξn) and QΞ(ξ1, . . . , ξn) have, respectively, identical marginal distributions p(ξ) and q(ξ) for
any ξi (i = 1, . . . , n);

(b) The transformed variables ξi are i.i.d. under the distribution Q, that is, QΞ(ξ1, . . . , ξn) = Πiq(ξ).

The first step in the derivation is a simple application of the invariance of the KL distance under a
one-to-one map:

D
[
PX(x1, . . . , xn)‖QX(x1, . . . , xn)

]
= D

[
PΞ(ξ1, . . . , ξn)‖QΞ(ξ1, . . . , ξn)

]
. (A1)
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Second, we can rewrite the relative entropy as

D
[
PΞ(ξ1, . . . , ξn)‖QΞ(ξ1, . . . , ξn)

]
=

∫
dξ1 . . .

∫
dξnPΞ(ξ1, . . . , ξn) ln

PΞ(ξ1, . . . , ξn)

Πi q(ξi)

=

∫
dξ1 . . .

∫
dξn

[
PΞ(ξ1, . . . , ξn) ln

Πi p(ξi)

Πi q(ξi)

+ PΞ(ξ1, . . . , ξn) ln
PΞ(ξ1, . . . , ξn)

Πip(ξi)

]

= nD[p(ξ)‖q(ξ)] + D
[
PΞ(ξ1, . . . , ξn)‖Πip(ξi)

]
. (A2)

Because the KLD between two distributions is always positive, equations (A1) and (A2) yield the bound

D
[
PX(x1, . . . , xn)‖QX(x1, . . . , xn)

]
� nD[p(ξ)‖q(ξ)], (A3)

and the inequality saturates if the transformed variables ξi (i = 1, . . . , n) are also i.i.d. under PΞ(ξ1, . . . , ξn),
i.e. when PΞ(ξ1, . . . , ξn) = Πip(ξi). If one can find a one-to-one map that transforms the original random
variables into i.i.d. variables under both distributions P and Q, then (A3) becomes an equality and the exact
KLD between the two multivariate distributions PX and QX can be reduced to the KLD between single
variable distributions p(ξ) and q(ξ), which is much easier to evaluate from real data. This is the key idea of
our method to estimate the irreversibility of experimental time series.

Appendix B. Irreversibility in continuous time series: the whitening transformation

The estimation of the KLD rate from single stationary trajectories of both discrete and continuous random
variables have been previously discussed [40]. For continuous random variables, the most common strategy
is to make a symbolization or discretization of the time series [38]. Then, the KLD is estimated from the
statistics of substrings of increasing length [15, 16]. The main limitation of this method is that one easily
reaches lack of statistics even for short substrings. If the observed time series is non-Markovian, this
limitation could yield inaccurate bounds for the entropy production. For instance, the KLD between two
data substrings can be zero in non-equilibrium stationary states without observable currents [15, 16, 40].

Here we introduce a new method to estimate the KLD rate

σ1

kB
≡ lim

t→∞

1

t
D
[
P
(
{x(s)}t

s=0

)
‖P

(
{x(t − s)}t

s=0

)]
, (B1)

that is valid for continuous and possibly non-Markovian stochastic processes X(t). First, in practice one has
access to discrete-time observations of the process xi ≡ X(iΔt), i = 1, . . . , n, i.e. a time series containing
n = t/Δt consecutive samples of the process with sampling rate fs = 1/Δt. The time discretization implies
a loss of information yielding a lower bound to the KLD rate:

σ1

kB
� fs lim

n→∞

1

n
D[PX(x1, . . . , xn)‖QX(x1, . . . , xn)], (B2)

where QX(x1, . . . , xn) = PX(xn, . . . , x1) is the probability to observe the reverse trajectory (xn, . . . , x1).
We can now apply the inequality (A3) to the right-hand side in equation (B2). To do that, it is necessary

to find a one-to-one map ξi = ξi(x1, . . . , xn) that transforms the reverse time series (xn, . . . , x1) into a
sequence of n i.i.d. random variables, that is, into a white noise. Such a transformation is usually termed
whitening transformation.

An example of whitening transformation is the time series formed by the residuals of an autoregressive
(AR) model, which is the transformation that we will use along this paper. A discrete-time stochastic
process Yi is called AR of order m, AR(m), when its value at a given time is given by a linear combination of
its m previous values plus a noise term. Such process is univocally determined by m � 1 real coefficients,
a1, a2, . . . , am, a discrete-time white noise ηi and a set of initial values Y1, Y2, . . . , Ym. The values of Yi for
i > m are given by

12
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the linear recursion

Yi =

m∑
j=1

ajYi−j + ηi. (B3)

Inspired by the AR(m) process, we introduce the following one-to-one map

ξi =

⎧⎪⎪⎨
⎪⎪⎩

xi if i � m

xi −
m∑

j=1

ajxi−j if i > m
, (B4)

which is a linear transformation defined by a unitriangular matrix with Jacobian equal to one. With an
appropriate choice of the coefficients aj, one can get a new process (ξ1, . . . , ξn) which is approximately i.i.d..
A good choice is given by a maximum likelihood fit of the process to the AR(m) model. In that case, the
elements ξi in this new time series for i > m are usually called residuals of the original time series
(x1, . . . , xn) with respect to the AR(m) model. Notice also that, if (x1, . . . , xn) is indeed a realization of the
stochastic process (B3), then the residuals are i.i.d. random variables and the process (ξm+1, . . . , ξn) has
correlations 〈ξ iξj〉 = δij for all i, j > m.

We now apply the bound (A3) to the KLD in the right-hand side of equation (B2), using the
transformation defined by equation (B4). Since the contribution of the first, possibly correlated, m values of
the time series ξi, vanishes in the limit n →∞, we obtain the following lower bound to the KLD rate
(equation (7) in the main text):

σ1

kB
� fsD[p(ξ)‖q(ξ)]. (B5)

We can obtain empirical estimates of p(ξ) and q(ξ) from a single stationary time series (x1, . . . , xn) as
follows. We apply the transformation (B4) to both the original time series (x1, . . . , xn) and to its time
reversal (xn, . . . , x1) obtaining, respectively, two new time series (ξF

1 , . . . , ξF
n) and (ξR

1 , . . . , ξR
n ), which are

stationary at least for i > m. The empirical PDFs obtained from the data of each series are estimations of,
respectively, p(ξ) and q(ξ). Note that the same transformation (B4) must be applied to both the original
time series (x1, . . . , xn) and its time reverse (xn, . . . , x1), but the inequality (A3) only requires uncorrelated
residuals in the reverse series. For this purpose, we calculate the coefficients a1, . . . , am by fitting the reverse
time series (xn, . . . , x1) to the AR(m) model in equation (B3).

As indicated in the previous section, the inequality (B5) is tighter when the residuals are uncorrelated in
the forward series as well. This is the case of the experimental series that we have analyzed (see, for instance,
figure 1(B) in the main text) although, in principle, it is not guaranteed by this procedure. We remark that
the inequality (B5) is a rigorous result if the transformation (B4) applied to the reverse time series yields an
uncorrelated series (ξR

1 , . . . , ξR
n ). In that case, kBfsD[p(ξ)‖q(ξ)] is an estimate of σ1 with at least two sources

of error: (i) the discrete sampling of the process X(t) and (ii) the remnant correlation time in the residuals
(ξF

1 , . . . , ξF
n) obtained from the forward time series.

To summarize, our theory provides an estimate σ̂1 for the KLD rate σ1 which can be evaluated as
follows:

(a) Estimate the coefficients, a1, . . . , am, by fitting the time-reversed series (xn, . . . , x1) to aAR(m) model of
order m > 1. A reasonable choice is m = 10, but it should be tuned to minimize the correlation time in
the residuals (ξR

1 , . . . , ξR
n ).

(b) Apply the whitening transformation (B4) to the original series (x1, . . . , xn) and to its time reversal
(xn, . . . , x1) to obtain, respectively, new time series (ξF

1 , . . . , ξF
n ) and (ξR

1 , . . . , ξR
n ). Note that the new

processes are not each other’s time reversal.

(c) Obtain the empirical distributions p(ξ) and q(ξ) from the time series (ξF
1 , . . . , ξF

n) and (ξR
1 , . . . , ξR

n ),
respectively.

(d) Calculate the KLD between p(ξ) and q(ξ)

D[p(ξ)‖q(ξ)] =

∫
dξ p(ξ) ln

p(ξ)

q(ξ)
, (B6)

which can be estimated from numerical integration of the right-hand side in (B6) using the empirical
normalized histograms p(ξ) and q(ξ). We call this estimate D̂, which is given by

D̂ = γ
∑

i

p̂i ln
p̂i

q̂i
, (B7)
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Figure 7. Histograms of the irreversibility measure σ̂1/kB for different values of the sampling frequency fs indicated above each
panel of the figure. All the histograms were obtained from the same ensemble of 182 oscillatory hair cells that displayed active
oscillations.

where p̂i = nF
i /(

∑
i nF

i ) and q̂i = nR
i /(

∑
i nR

i ) are the empirical probabilities, obtained from the number
of times nF

i and nR
i that the sequences (ξF

1 , . . . , ξF
n) and (ξR

1 , . . . , ξR
n ) lie in the ith bin, respectively. The

sum in (B7) runs over all bins for which nF
i > 0 and nR

i > 0. For simplicity, we used 100 bins of
equal spacing ranging from the minimum to the maximum values of the residual time series
(ξF

1 , . . . , ξF
n ).

The value of the estimate D̂ of the KLD (B6) is weighted by a prefactor γ � 1 defined in terms of
the probability to reject the null hypothesis p(ξ) = q(ξ). We use this procedure to correct the statistical
bias in the estimation of the KLD that appears when two stochastic processes have similar statistics
[16, 43]. For this purpose, we use the KS statistical test under the null hypothesis H0 : p(ξ) = q(ξ)
which yields a p-value pKS for the two distributions to be equal. Here, small pKS means that there is
stronger statistical evidence in favor of the alternative hypothesis p(ξ) �= q(ξ), thus γ = 1 − pKS serves
as a weight of irreversibility: γ 
 0 when it is hard to reject H0 (reversibility) and γ 
 1 there is a larger
statistical evidence to reject H0.

(e) Finally, our estimate of σ̂1 is thus given by the KLD estimate D̂ times the Boltzmann constant and the
data sampling frequency:

σ̂1 = kBfsD̂. (B8)

Appendix C. Dependency of the irreversibility measure on the sampling frequency

In this section, we analyze the dependency of our irreversibility measure on the sampling frequency fs. For
this purpose, we evaluate σ̂1 defined in equation (B8) for 30 s recordings of the 182 cells that showed
spontaneous oscillations at different sampling frequencies, ranging from 125 Hz to 2500 Hz (the latter
corresponding to the data shown in figure 2(B) in the main text). Figure 7 shows that the distribution of the
irreversibility measure depends strongly on the sampling frequency of the data. Notably, the distributions
shift toward higher irreversibility when the sampling frequency is reduced, until there is too much filtering
fs < 250 Hz such that oscillations cannot be distinguished clearly.

In figure 8 we report the distributions of the parameter γ for the 182 recordings of spontaneous
oscillations at different sampling frequencies. For all the analyzed cases, the distributions are right-sweked
toward values of γ close to 1. Interestingly, the number of cells that display large γ (i.e. KS p-value
pKS < 0.05) attains its maximum in an intermediate frequency range ∼200–600 Hz. To gain further insight
on this result, we plot in figure 9 box plots of the distributions of γ and of the corresponding irreversibility
estimate σ̂1 as a function of the data sampling frequency. Notably, the median of γ is above 0.95 for
intermediate sampling frequencies ranging from 208 to 625 Hz (figure 9(A)). For values of fs of this
frequency band 208–625 Hz, the median of γ is above 0.95 indicating that more than half of the cells
display irreversibility with ‘significant’ KS p-value pKS < 0.05 at those frequencies. Within this band, the
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Figure 8. Histograms of the parameter γ = 1 − pKS with pKS given by the KS p-value for different values of the sampling
frequency fs indicated above each panel of the figure. All the histograms were obtained from the same ensemble of 182 oscillatory
hair cells that displayed active oscillations.

Figure 9. Box plots of the parameter γ (A) and of the irreversibility measure σ̂1 (B) as a function of the sampling frequency
obtained from recordings of the tip position of hair bundles in the entire population of 182 cells. The yellow dashed line in (A) is
set to the threshold γ = 0.95 corresponding to the KS p-value pKS < 0.05. In (B), we highlight (horizontal yellow thick lines) the
median of the distributions of σ̂1 for which the median value of γ is larger than 0.95.

median of the irreversibility measure σ̂1 decreases monotonically with fs from 3.5kB/s (fs = 208 Hz) to
2.6kB/s (fs = 625 Hz).

Appendix D. Biophysics of mechanosensory hair bundles

Details of the experimental procedure have been published elsewhere [2]. In short, an excised preparation
of the bullfrog’s (Rana catesbeiana) sacculus was mounted on a two-compartment chamber to reproduce
the ionic environment of the inner ear. This organ is devoted to sensitive detection of low-frequency
vibrations (5–150 Hz) of the animal’s head in a vertical plane; it contains about 3000 sensory hair cells that
are arranged in a planar epithelium. The basal bodies of hair cells were bathed in a standard saline solution
and the hair bundles projected in an artificial endolymph. The preparation was viewed through a ×60
water-immersion objective of an upright microscope. Under these conditions, spontaneous hair-bundle
oscillations were routinely observed. The oscillations could be recorded by imaging, at a magnification of
×1000, the top of the longest stereociliary row onto a displacement monitor that included a dual
photodiode. Calibration was performed by measuring the output voltages of this photometric system in
response to a series of offset displacements. Here, we analyzed 182 spontaneously oscillating hair bundles
from data previously published [59].
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Figure 10. Estimation of the quality factor Q from numerical simulations of the hair bundle. (A) Values of the quality factor Q
calculated from numerical simulations of duration tsim = 300 s for the same parameter values as in figure 4 in the main text.
(B) Examples of 0.5 s traces of X1 as a function of time for the parameter values indicated in (A): (B.1) [1 in (A)]; (B.2) [2 in
(A)], (B.3) [3 in (A)]; (B.4) [4 in (A)]. (C) Power spectral density (black line) of the numerical simulations with parameter values
indicated with black open circles in (A). The quality factor is estimated from a fit of the power spectra to equation (F1) (red line).
The values of Q and fo extracted from the fits are: Q = 0.5, fo = 7.3 Hz (C.1), Q = 7, fo = 25 Hz (C.2), Q = 0.45, fo = 10.6 Hz
(C.3), Q = 3.8, fo = 41.3 Hz (C.4).

Spontaneous hair-bundle oscillations were described by a published model of active hair-bundle
motility [2] that rests on a necessary condition of negative hair-bundle stiffness, on the presence of
molecular motors that actively pull on the tip links, and on feedback by the calcium component of the
transduction current. Hair-bundle deflections affect tension in tip links that interconnect neighboring
stereocilia of the bundle. Changes in tip-link tension in turn modulate the open probability of
mechano-sensitive ion channels connected to these links. Importantly, the relation between channel gating
and tip-link tension is reciprocal: gating of the transduction channels affects tip-link tension. Consequently,
channel gating effectively reduces the stiffness of a hair bundle, a phenomenon appropriately termed ‘gating
compliance’, which can result in negative stiffness if channel-gating forces are strong enough. Active
hair-bundle movements result from the activity of the adaptation motors. By controlling tip-link tension,
adaptation motors regulate the open probability of the mechanosensitive channels. The force produced by
the motors is in turn regulated by the Ca2+ component of the transduction current which thus provides
negative feedback on the motor force [2]. When the fixed point of this dynamical system corresponds to an
unstable position of negative stiffness, the system oscillates spontaneously. The maximal force exerted by the
motors Fmax and the calcium feedback strength S are control parameters of the system and fully determine
its dynamics (oscillatory, quiescent, bi-stable) [25].

Appendix E. Quantification of entropy production in numerical simulations of hair
bundle oscillations

In this section, we provide numerical results for the stochastic model of the ear hair bundle given by
equations (12) and (13) in the main text. The steady-state entropy production rate of the model is given by

σtot =
1

T

〈
F1 ◦

dX1

dt

〉
+

1

Teff

〈
F2 ◦

dX2

dt

〉
, (E1)

where F1 = F1(X1, X2), F2 = F2(X1, X2) and ◦ denotes the Stratonovich product. Using the definitions of the
forces in equations (18) and (19) one obtains after some algebra equation (17) in the main text. In all our
numerical simulations, we estimate the steady-state averages of the type

〈
F ◦ dX

dt

〉
= lim

t→∞

1

t

∫ t

0
F(t′) ◦ dX(t′), (E2)
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for a generic force F(t) = F(X(t), Y(t)) from a single stationary trajectory of total duration τ = 300 s and
sampling time Δt = 1 ms as follows:

〈
F ◦ dX

dt

〉

 1

τ

n∑
i=1

(
F(ti) + F(ti−1)

2

)
(X(ti) − X(ti−1)), (E3)

where ti = iΔt and n = τ/Δt.

Appendix F. Estimation of the quality factor of stochastic oscillations

We estimate the quality factor Q of spontaneous hair-bundle oscillations from numerical simulations of the
hair-bundle stochastic model given by equations (12) and (13) in the main text. For this purpose, we
generate a single numerical simulation of duration τ = 300 s. We then partition the simulation into ten
consecutive traces of duration T = τ/10 = 30 s. For each of these traces {Xα(t)} (α = 1, . . . , 10) we

compute the power spectral density as Cα(f ) = (1/T)
∣∣∣∫ T

0 Xα(s)e2πift dt
∣∣∣2

. We then calculate the average of

the power spectral density over the ten different traces C̃(f ) = (1/10)
∑10

α=1Cα(f ) and fit the estimate C̃(f )
as a function of f to the sum of two Lorentzian functions [4, 22, 59]

C̃(f ) =
A

(fo/2Q)2 + (f − fo)2
+

A

(fo/2Q)2 + (f + fo)2
, (F1)

where Q is the quality factor, fo is the oscillation frequency and A > 0 is an amplitude parameter. Figure 10
shows examples of numerical simulations for which we apply this procedure to determine the value of the
quality factor by extracting the value Q from the fit of the data to equation (F1). Notably, equation (F1)
reproduces power spectra of hair-bundle simulations for oscillations with values Q that are in a wide range
(figure 10).
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