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Abstract In amorphous solids as in tissues, neighbor exchanges can relax local stresses and allow the
material to flow. In this paper, we use an anisotropic vertex model to study T1 rearrangements in polygonal
cellular networks. We consider two different physical realizations of the active anisotropic stresses: (i)
anisotropic bond tension and (ii) anisotropic cell stress. Interestingly, the two types of active stress lead to
patterns of relative orientation of T1 transitions and cell elongation that are different. Our work suggests
that these two realizations of anisotropic active stresses can be observed in vivo. We describe and explain
these results through the lens of a continuum description of the tissue as an anisotropic active material. We
furthermore discuss the energetics of the dynamic tissue and express the energy balance in terms of internal
elastic energy, mechanical work, chemical work and heat. This allows us to define active T1 transitions
that can perform mechanical work while consuming chemical energy.

Introduction

During morphogenesis, complex structures emerge start-
ing from a single fertilized egg as the results of the col-
lective organization of a large number of cells. Under-
standing principles that govern self-organization of cells
into complex structures and organs is one of the major
challenges of biology and biophysics. The collective
behavior of cells relies on chemical signals [1–4], but also
depends on cellular force generation and active mechan-
ical processes as well as tissue mechanical properties
[5,6]. Morphogenesis, i.e., the generation of shape, is
therefore a result of self-organized processes that cou-
ple chemical signalling with mechanical activity [7–10].

Change in tissue shape involves anisotropic active
processes and cell rearrangements. The physics of tissue
dynamics is based on a description of tissues as active
viscoelastic and viscoplastic materials [11–14]. Depend-
ing on timescales, tissues can behave like solids, able to
withstand external shear stresses, or like fluids, and can
rearrange their cells and exhibit cell flows [12–14]. Such
rearrangements permit the maintenance of mechanical
integrity of a tissue while changing local connectivity
and the overall shape. In tissues, rearrangements can
result from cell divisions or extrusions, where new cells
are added or removed from the tissue, which has been
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shown to permit tissue fluidization [15]. In addition,
cells can also rearrange and change neighbors in so-
called T1 transitions.

T1 transitions have been studied first in passive
materials such as foams, where they occur in response
to external shear forces that can drive material flow
[16,17]. Tissues, however, are active materials, that
can deform spontaneously, driven by internally gen-
erated stresses, and can therefore also perform work
on their environment. Such active deformations are
for instance observed during convergence-extension, a
widespread morphogenetic process driven by oriented
T1 transitions that leads to anisotropic tissue defor-
mation [18,19]. In contrast to passive foams, where T1
transitions dissipate energy and relax elastic stresses
resulting from external forcing, T1 transitions in tis-
sues can be active and perform work, and therefore can
build up stresses rather than relaxing them. The orien-
tation of T1 transitions can be guided by tissue polar-
ity cues, that are linked to chemical signals such as the
planar polarity pathways [20,21]. Thereby, tissues can
extend along axes that are defined by chemical pat-
terns. Such processes can be observed in developmen-
tal model systems. For example, during the germ-band
extension of Drosophila embryo, experiments show that
the tissue deforms anisotropically as a consequence of
oriented T1 transitions, driven by active processes in
the acto-myosin cytoskeleton. Two scenarios have been
proposed: anisotropic accumulation of myosin II at cell–
cell junctions [22–25], and anisotropic active stresses
mediated by medial myosin pulses [26]. Similarly, data
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from the pupal wing blade of Drosophila reveal multiple
roles of T1 transitions over time: they drive anisotropic
cell and tissue elongation at early stages, while later
they are responsible for a relaxation of cell shape elon-
gation [8]. Finally, cells can actively propel themselves
on a substrate. Such motion can also cause T1 transi-
tions and tissue shape changes [27–29], and can trigger a
solid-to-fluid transition in cell tissues model [30]. Here,
we focus of anisotropic stresses generated in a tissue in
the absence of active self-propulsion.

We use a two-dimensional vertex model to study
how anisotropic tissue stresses can drive oriented cell
rearrangements and anisotropic tissue shape changes.
In particular, we discuss active T1 transitions that
can perform mechanical work, in contrast to passive
T1 transitions that relax elastic stresses. Vertex mod-
els provide simple models of tissue physics that can
capture cell shape, packing geometry and cell rear-
rangements [8,30–36]. The role of anisotropic inter-
nal stresses has been studied within the vertex model
framework, for instance using anisotropy in cell bond
tension [23,25], or by introducing cell bond tension that
depends on the identity of adjacent cells [24]. Follow-
ing Ref. [37], we consider a cell network where a pre-
ferred axis is set by a nematic field that represents tis-
sue polarity. We discuss two different physical realiza-
tions of anisotropic active stress: (i) anisotropic bond
tension, where the contractility of bonds is increased
along a preferred axis, and (ii) anisotropic cell stress,
where the bulk of the cells exhibits an anisotropic stress
that is contractile along a preferred axis. Surprisingly,
we find that these two realizations, although involving
an anisotropic active stress along the same direction,
lead to cell rearrangements and cell elongation patterns
which are very different. Our analysis suggests that the
early stages of Drosophila pupal wing morphogenesis
could be an example where anisotropic bond tension
dominates, while both realizations of anisotropic active
stress could contribute during germ-band extension in
the Drosophila embryo. In the latter case, anisotropic
cell stress could be a consequence of medial myosin
II pulses that favors the opening of newly-formed cell
bonds [26]. We complement our analysis and under-
standing by using a coarse-grained continuum descrip-
tion of the cell network. This description uses concepts
from active matter theory [38–40] and has proven valu-
able to characterize the large-scale properties of tissues
[41–45]. By considering the energetics of the cell net-
work, we show that active stresses can induce T1 tran-
sitions that perform mechanical work. We call these
active T1 transitions.

The paper is organized as follows. In Sect. 1, we
present the vertex model and its modification to
account for anisotropic bond tension and cell stress. We
then introduce a linear anisotropic continuum model to
capture tissue dynamics. In Sect. 2, we quantify the out-
come of anisotropic vertex model simulations and high-
light the differences between the two implementation of
anisotropy. Fits of the continuum model to the simula-
tion results provides us with a better understanding of
the mechanisms at play. We finally discuss the energet-

ics of the tissues, allowing us to provide a definition of
active T1 transitions.

1 Mechanics of anisotropic cell networks

The apical junctions of an epithelial tissue can be
described by a packing of convex polygons and its
mechanics can be described by a vertex model, where
cells are represented as polygons that are outlined by
straight edges connecting vertices [46]. We consider a
polygonal cell network consisting of Nc cells. Each cell
α is characterized in terms of its area Aα, its perimeter
Lα and the lengths Lmn of the bonds that form the out-
line of the cell, where m and n label the vertices that
they connect (see Fig. 1 for illustration).

We employ a quasistatic representation of epithelia
where the cell network is at any instant in a mechan-
ical equilibrium, while the parameters describing cell
properties can slowly change with time. At each vertex
m, the total force Fm = −∂E0/∂Rm vanishes, where
Rm is the position of the vertex, and E0 is the vertex
model work function and reads [46,47]:

E0 =
∑

α

1
2
Kα (Aα − Aα

0 )2

+
∑

〈m,n〉
ΛmnLmn +

∑

α

1
2
Γα(Lα)2. (1)

Note that for clarity, upper-case letters are used here
and in the following for quantities related to the vertex
model, while lower-case letters will be used for the con-
tinuum model. The first term describes an area elastic-
ity contribution, with Aα

0 the preferred cell area and Kα

the area stiffness. The second term describes a contri-
bution due to the tension of network bonds with length
Lmn and line tension Λmn. The third term describes an
elasticity of the cell perimeter with stiffness Γα.

Nonequilibrium dynamics of the vertex model are
captured by a time-dependent line tension Λmn(t). The
line tension dynamics of individual bonds in the net-
work follows an Ornstein–Uhlenbeck process:

dΛmn

dt
= − 1

τΛ
(Λmn(t) − Λ̄mn) + ΔΛ

√
2/τΛ Ξmn(t) ,

(2)

where Ξmn(t) is a Gaussian white noise with zero
mean 〈Ξmn(t)〉 = 0, and correlations 〈Ξmn(t)Ξop(t′)〉 =
δ〈mn〉,〈op〉δ(t−t′) where δ〈mn〉,〈op〉 = 1 if bonds 〈mn〉 and
〈op〉 are the same and 0 otherwise [46,48]. The line ten-
sion of every bond relaxes toward its mean value Λ̄mn

with a characteristic time τΛ, which sets the timescale
of the dynamics and is of the order of the acto-myosin
cortex turn-over time.

As discussed for instance in Refs. [36,37], the mag-
nitude of bond tension fluctuations ΔΛ has a crucial
role in the rheological properties of cell networks. A
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Cell extrusion

Fig. 1 Mechanics and dynamics of cellular networks. A
Definition of the cell state variables. Left shows the cell
area Aα (blue patch), cell perimeter Lα (green line) and
bond length Lmn (red line) between the vertices with posi-
tions Rm and Rn. Right shows the cell elongation tensor G
which is constructed from the bond nematic tensors Hmn

as defined in Eq. (6). B Cell dynamic processes can lead

to tissue deformation as an effect of cell shape changes, T1
transitions, cell divisions or cell extrusions. C Large-scale
tissue deformation can be driven by collective cell dynamics:
cell shape changes (top), anisotropic T1 transitions (middle)
and anisotropic cell divisions (bottom). The tissue may also
deform as a result of changes in the mean cell shape of the
cellular network

low value of this fluctuation magnitude leads to a glassy
dynamics and non-linearities dominate. In the follow-
ing, we are interested in a regime where ΔΛ is suf-
ficiently large, such that the vertex model has linear
viscoelastic properties.

A polygonal network described by the work func-
tion (1) has isotropic properties. In the following,
we consider how this description can be extended to
describe anisotropic cell networks.

1.1 Anisotropic cellular networks

Motivated by planar cell polarity in tissues [20,21], we
consider that the anisotropy of the network can be
described by a unit nematic field P assigned to each
polygon and which gives locally a preferred axis. In
two dimensions, the nematic field P can be parame-
terized by a single angle Ψ which defines the direction
of the anisotropy axis (see App. B4 of the Supplemen-
tary Material for details). For simplicity, we consider
in the following that Ψ is constant and thus provides a
global preferred axis in the tissue.
Anisotropic bond tension. To include the effect of
such a nematic field in the dynamics of the vertex
model, we first consider an anisotropic bond tension,
such that its mean magnitude Λ̄mn depends on the ori-
entation of the bond with respect to the nematic field P.
We choose

Λ̄mn = Λ̄0
mn

(
1 + βP : Ĥmn

)
, (3)

where A : B = Tr(A · B) denotes the full tensor con-
traction, and where β ≥ 0 is dimensionless and sets the
magnitude of the anisotropy. We have introduced the
unit bond nematic Ĥmn = Hmn/L2

mn between vertices

m and n. Here, Hmn is the nematic tensor constructed
from the vector Lmn pointing from vertex m to vertex
n as Hmn = Lmn ⊗ Lmn − L2

mn1/2 with 1 the unit
tensor in two dimensions (see Fig. 1). With this defini-
tion, a bond making an angle Φ with the local nematic
field has a mean bond tension that reads:

Λ̄mn = Λ̄0
mn (1 + β cos(2Φ)) . (4)

Consistently with our convention for the anisotropic cell
stress, the definition given by Eq. (3) with β > 0 implies
that cells have a higher bond tension along the axis set
by P . As a consequence, they are more likely to undergo
a T1 transition along this axis.
Anisotropic cell stress. An alternative description
of anisotropic tissues can be obtained by considering
an anisotropic cell stress Σa = ΣaP , where Σa is the
magnitude of the active stress. The work performed by
this anisotropic stress is added to the vertex model work
function as1:

E = E0 +
∑

α

1
2
AαΣa : Gα , (5)

where Gα is the cell shape tensor of each cell α

Gα =
1

Aα

∑

〈m,n〉
Hmn . (6)

The cell shape tensor Gα quantifies the deviation of the
cell shape from isotropic shapes, for which Gα vanishes.
See Fig. 1 for an illustration. With the definition of

1 Note that we are using a different sign convention com-
pared to Ref. [37].
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Eq. (5) and Σa > 0, the anisotropic cell stress implies
a stronger contractility of the cells along the direction
set by P , and cells therefore tend to elongate in the
direction orthogonal to P .

Note that for simplicity, we use in the following the
same constant values of the parameters Kα, Aα

0 , Γα

for all cells and the same value Λ̄0
mn = Λ̄0 for all bonds.

Note that the presence of bond tension fluctuations pre-
vents crystalization of the cellular pattern that could be
otherwise observed in a monodisperse system [49,50]. In
App. A of the Supplementary Material, we give details
on the numerical implementation of the vertex model.
Values of the (dimensionless) parameters used in the
simulations are given in Table S1 of the Supplementary
Material.

1.2 Dynamics of a polygonal cell network and shear
decomposition

The deformation of a cellular network is quantified by
its shear rate, which can be decomposed into cellu-
lar contributions. For flat polygonal networks, such a
decomposition can be done exactly [8,51]. Following
Ref. [51], the large-scale shear-rate tensor Ṽij of the
cellular network can be decomposed as:

Ṽij =
DQij

Dt
+ Rij . (7)

Here and in the following, i and j corresponds to 2d
Cartesian indices, Qij is the mean cell elongation ten-
sor and D/Dt is the corotational time derivative of a
tensor (defined in Eq. (B3) of App. B of the Supple-
mentary Material). The tensor Rij accounts for shear
rate due to topological rearrangements and is a sum of
four contributions:

Rij = Tij + Cij + Eij + Dij , (8)

where the tensors Tij , Cij and Eij account for shear rate
due to T1 transitions, cell divisions and cell extrusions,
respectively. The tensor Dij is a shear rate associated
with heterogeneities and fluctuations. If such fluctua-
tions are correlated, they contribute to shear even if
they vanish on average. In particular, the tensor Dij

includes shear stemming from correlations between tri-
angle rotations and triangle elongation as well as corre-
lations between triangle area changes and triangle elon-
gation [8,51]. Note finally that all the tensors intro-
duced in Eqs. (7) and (8) are two-dimensional nematic
tensors. It means that they are symmetric traceless ten-
sors that define an orientation and a magnitude. They
are fully characterized by two independent quantities: a
norm and an angle with respect to the x-axis (see also
App. B4 of the Supplementary Material).

Note that the trace of the velocity gradient tensor Vkk

(summation over repeated indices is implied), which
corresponds to isotropic tissue growth, can also be
decomposed into cellular contributions [41,51]. Here, we
only focus on the anisotropic contributions. Finally, the

tissue stress tensor Σij in the simulations is symmetric
and can be decomposed into an isotropic pressure and
a symmetric traceless part, the shear stress Σ̃ij .

1.3 Hydrodynamic model for cellular networks
under anisotropic active stress

The viscoelastic behavior of stochastic cellular networks
can be captured by a continuum model of tissues [8,37,
41,52]. Such a coarse-grained description does not hold
at a single-cell level but requires an averaging over many
cells, as provided by the shear decomposition (7) of a
triangulated network discussed above.

In the continuum description, we therefore introduce
the anisotropic part of the deformation rate tensor ṽij ,
which can be decomposed into cellular contributions
due to changes in the mean cell elongation tensor qij

and shear rij caused by topological rearrangements.
Note that we use lower-case letters for the continuum
model description. We therefore have:

ṽij =
Dqij

Dt
+ rij , (9a)

where D/Dt denotes the corotational derivative defined
in Eq. (B3) of the Supplementary Material.

We also include in our continuum description the fact
that the axis of topological rearrangements is biased
both by the axis of cell elongation and the axis of active
anisotropic processes. This fact is captured by intro-
ducing linear relationships between the shear contribu-
tion from topological rearrangements rij , the cell elon-
gation qij , and the anisotropic axis pij . It reads [37,41]:

rij =
1
τ

qij + λpij , (9b)

where τ is the characteristic timescale of topological
rearrangements and λ is the rate of anisotropic cell rear-
rangements.

We also introduce the tissue stress σij , which we
decompose into an isotropic part and an anisotropic
symmetric traceless part, the tissue shear stress σ̃ij .
We consider that the cellular network is an active elas-
tic material, such that to linear order, the shear stress
can be written as:

σ̃ij = μ qij + ζpij , (9c)

where μ is the shear modulus of the tissue and ζ is the
anisotropic active stress magnitude.

2 Cell elongation and T1 transitions driven
by active processes

We now discuss the role of anisotropy on the vertex
model dynamics. For this purpose, we study the relax-
ation of the vertex model from an isotropic disordered
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steady state to an anisotropic steady state (see App. A
of the Supplementary Material for details of the simula-
tions). To understand the transient dynamics between
these two steady states, we consider in the following a
gradual activation of the anisotropic cell stress or of the
anisotropic bond tension, given by:

Σa(t) = Σa
0

(
1 − e−t/Ta

)
Θ(t) ,

β(t) = β0

(
1 − e−t/Ta

)
Θ(t) , (10)

where Θ(t < 0) = 0 and Θ(t ≥ 0) = 1. We have
introduced an activation time Ta, and Σa

0 and β0 are
the steady-state anisotropic stress magnitude and bond
tension magnitude, respectively. We have also consid-
ered an instantaneous activation where Σa(t) = Σa

0Θ(t)
and β(t) = β0Θ(t). This case is presented in App. C of
the Supplementary Material.

In the following, we consider vertex model simula-
tions with two types of boundary conditions: (i) fixed
box boundary condition, for which the box size is fixed
and the total tissue shear rate Ṽij vanishes; (ii) stress-
free boundary condition, for which the total stress on
the simulation box vanish and Σij = 0, such that cells
can rearrange and flow. Examples of realization of these
two types of boundary conditions are shown in Movies
1 to 4.

2.1 T1 transitions driven by anisotropic bond
tensions

We now focus on the case of anisotropic bond tension
(see Eq. (3)) with a nematic tensor P aligned with the
vertical axis, such that bonds are more contractile along
this direction. In the continuum model, we translate
this choice by taking pxx = −1, pyy = 1 and pxy =
pyx = 0.

The left panel of Fig. 3 displays the outcome of ver-
tex model simulations in the case of fixed box bound-
ary conditions. See Movie 1 for an example of a vertex
model simulation. In this case, the larger contractility of
bonds along the y axis biases active T1 transitions along
the same direction: bonds preferentially close along the
y axis and new bonds are opened along the x axis. It
results in a positive rate of rearrangements along the
x axis: Rxx > 0 (red crosses). This is captured in the
continuum model (solid lines) by the fact that the fit-
ted active T1 rate λ in Eq. (9b) is positive (see App. D
of the Supplementary Material for details of the fitting
procedure), meaning that rearrangements are biased in
the direction of the nematic tensor. Additionally, the
fixed box imposes that the overall tissue is not sheared
(Ṽij = 0, blue crosses), and cells thus elongate in the
direction orthogonal to that of the active T1 (green
crosses). See also the lower left panel of Fig. 2 for a
schematic explanation of the mechanism. Note that the
tissue stress is along the y direction (Σ̃xx < 0, grey
curve). This is consistent with the fact that cells are
elongated along the y direction, which induces an elastic

stress along the same direction (μqxx < 0 in Eq. (9c)).
This elastic contribution adds up with the anisotropic
one ζpxx (with pxx = −1), where ζ is found to be posi-
tive from fits to the data, consistent with our definition
of anisotropic bond tension which implies a larger stress
along the elongation axis.

The case of stress-free boundary conditions is also
illuminating, see left panel of Fig. 3 and Movie 2. The
larger bond tension along the vertical axis leads to
shorter vertical bonds, and to an active triggering of
T1 transitions that close these short bonds and open
horizontal bonds with lower tension (as sketched in the
lower left panel of Fig. 3). These active rearrangements
(red crosses) drive the shearing of the tissue along the
x axis (blue crosses). In addition, cells are elongated
along the x axis. Indeed, since ζ is positive, and since
σ̃xx = 0 for stress-free boundary conditions, we deduce
from Eq. (9c) that qxx is positive. Note finally that a
constant shear rate is obtained in the absence of exter-
nal driving, which illustrates the active nature of the
anisotropic bond tension.

2.2 T1 transitions driven by anisotropic cell stress

Interestingly, implementing anisotropy via an
anisotropic cell stress as defined in Eq. (5) gives rise to
a completely different behavior of the cellular network.
As in the case of the anisotropic bond tension presented
above, we consider a nematic tensor P aligned with the
vertical axis, such that cells elongated along the y axis
experience a higher stress.

We first consider a fixed box boundary condition,
see right panel of Fig. 2 and Movie 3. In this case,
cells elongate in the direction orthogonal to the nematic
axis since the anisotropic cell stress is higher along its
direction (green crosses). This means, in the continuum
model description, that the anisotropic stress magni-
tude ζ is positive, as in the case of anisotropic bond
tension. As a consequence, note that the tissue stress
(grey crosses) changes sign during the simulation. At
the beginning, tissue stress (9c) is dominated by the
anisotropic cell stress ζpxx < 0, which is higher in the
y direction, leading to a σ̃xx < 0. As cells elongate in
the x direction in response to this stress, qxx grows and
the elastic stress caused by this elongation starts over-
taking the anisotropic one and the overall tissue stress
changes sign. In a fixed box condition, cell elongation
has to be compensated by T1 transitions in the oppo-
site direction (Rxx < 0, red crosses), see also bottom
right panel of Fig. 2 for a schematic explanation. Cru-
cially, the orientation of these T1 transitions (that is,
the direction in which new bonds are opened) is orthog-
onal to the orientation described in the previous section
for the anisotropic bond tension (see also Table 1). This
fact is reflected by the rate λ of anisotropic rearrange-
ments in the continuum model, which is now found to
be positive for anisotropic cell stress, whereas it was
negative for anisotropic bond tension.

The consequences of an anisotropic cell stress can
also be observed in the case of stress-free boundary
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Fig. 2 Relaxation dynamics after activation of anisotropic
active stress under a fixed box boundary condition
with anisotropic bond tension (left) or anisotropic cell
stress (right). Top row. Total tissue shear (blue) decom-
posed into contributions of cell elongation change (green)
and shear by topological rearrangements (red). The tissue
stress is shown in grey. Only xx-components of the tensors

are shown, xy-components are zero. Crosses are data from
the vertex model averaged over 100 realizations. Error bars
are smaller than the marker size. Solid lines are obtained
by fits of the continuum model. Bottom row. Schemat-
ics of the cell rearrangement and elongation explaining the
observed dynamics

Fig. 3 Dynamics of tissue shear in a network with
anisotropic bond tension (left) or anisotropic cell stress
(right) under a stress-free boundary condition. Top row.
Total tissue shear (blue) decomposed into contributions
of cell elongation change (green) and shear by topolog-
ical rearrangements (red). The tissue stress is shown in
grey (and vanishes as stress-free boundary conditions are

used here). Only xx-components of the tensors are shown,
xy-components are zero. Crosses are data from the ver-
tex model averaged over 100 realizations. Error bars are
smaller than the marker size. Solid lines are obtained by fits
of the continuum model. Bottom row. Schematics of the
cell rearrangement and elongation explaining the observed
dynamics
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Table 1 Summary of the steady-state relative orientations.
The tensor P gives the direction of the tissue polarity. The
tensor R indicates the direction of topological transitions
(along which new bonds are opened), Q̇ = DQ/Dt is the

tensor for the rate of change of cell elongation and ˜V is the
tissue shear rate, which indicates the direction along which
the tissue elongates

Fixed box Stress-free

Anisotropic bond tension Q̇ ‖ P Q̇ ⊥ P
R ⊥ P R, ˜V ⊥ P

Anisotropic cell stress Q̇ ⊥ P Q̇ ⊥ P
R ‖ P R, ˜V ‖ P

conditions. Movie 4 shows an example of vertex model
simulation in this case, and a quantification in terms
of cumulative shear decomposition is displayed on the
right panel of Fig. 3. Anisotropic cell stress drives cells
to elongate in the direction orthogonal to the y axis, and
we therefore have Qxx > 0 (green crosses). As a con-
sequence, cells have shorter bonds along their axis of
elongation (the x axis) and T1 transitions close prefer-
entially bonds along this axis and open new ones along
the y axis (hence Rxx < 0, red crosses), see sketch
in the lower right panel of Fig. 3. The tissue is there-
fore sheared along the vertical direction (blue crosses),
which is opposite to the anisotropic bond tension case.
Note also the change of sign of the tissue shear Ṽxx

at short times. At the beginning of the simulation, the
anisotropic cell stress immediately drives the elongation
of cells, implying Ṽxx � DQxx/Dt > 0 at short time.
With a delay, T1 transitions respond to this elongation
and start contributing to the total tissue shear. They
eventually dominate (at t � 3), and account for the
steady-state shear flow.

The different anisotropic stress realizations and
boundary conditions lead to different relative steady-
state orientations of cell elongation, T1 transitions and
tissue shear with respect to the polarity axis. We sum-
marize them in Table 1.

3 Energy balance in a tissue

In order to define the work performed by T1 transitions,
we now discuss the energy balance of a cellular networks
subject to active processes and external stresses. For
simplicity and since this work is focused on shear, we
limit our discussion to shape changes and shear defor-
mations but do not include changes of tissue size. In
the presence of an external shear stress σ̃ext applied
to a tissue, the mechanical work per unit time ẇmech

performed on the tissue reads:

ẇmech = σ̃ext : ṽ . (11)

At force balance and for a homogeneous tissue, we have
σ̃ext = σ̃. Using the shear decomposition (9a) and the
constitutive equations (9b)-(9c), the balance of elastic
energy e = μq : q/2 reads

ė = q̇heat + ẇmech + ẇchem . (12)

Here, we have defined the power q̇heat supplied to the
system in the form of heat, and the rate of chemical
work by the environment on the system ẇchem. These
quantities are given by

ė = μq :
Dq

Dt
, q̇heat = −ηr : r ,

ẇchem = ηλ̃p : r − ζp :
Dq

Dt
, (13)

where η = μτ is the effective tissue viscosity, and
we have defined the rate of active T1 transitions
λ̃ = λ − ζ/(μτ). Note that the rate of heat produc-
tion q̇heat is always negative, indicating that the system
releases heat to its surrounding.

The chemical power ẇchem is an active contribution
that would be vanishing for passive materials. There
are two contributions to the chemical power stemming
from different processes:

ẇchem = ẇT1 + ẇcell , (14)

where ẇT1 = μτλ̃p : r is the rate of work by T1 tran-
sitions, and ẇcell = −ζp : Dq/Dt is the rate of work
by cell deformations. Importantly, these contributions
can be either positive or negative. A positive sign indi-
cates that the process is performing work on the tis-
sue, while a negative sign indicates that the process is
typically dissipative, but it could also generate chemi-
cal free energy. Based on these considerations, we thus
define active T1 transitions as T1 transitions for which
ẇT1 > 0.

Determining the effective parameters from vertex
model simulations reveal that the rate of active T1 tran-
sitions λ̃ is negative for the anisotropic bond tension but
positive for anisotropic cell stress (see Table S2 of the
Supplementary Material). However, the chemical work
performed by T1 transitions ẇT1 is positive in both
cases. This is because p : r is negative for anisotropic
bond tension, while it is positive for anisotropic cell
stress. We thus conclude that T1 transitions are active
and perform chemical work on the tissue in both realiza-
tions of anisotropic active stress. The sign of ẇT1 could
become negative if external stress induces shear along
an axis perpendicular to the axis of spontaneous shear,
i.e., by inducing shear (and rearrangements) along the y
axis for the anisotropic bond tension case, or along the
x axis in the anisotropic cell stress case. In this case, T1
transitions would be passive and the chemical energy of
the active process would be dissipated.

Interestingly, the situation is slightly different for the
chemical work performed by cells. Indeed, analysis of
the vertex model simulations shows that ζ is positive
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both for anisotropic bond tension and anisotropic cell
stress (see Table S2 of the Supplementary Material).
For fixed box boundary conditions, p : Dq/Dt is posi-
tive for anisotropic bond tension but it is negative for
anisotropic cell stress (see Fig. 2). This reveals that the
work performed by cell deformations ẇcell is positive
and active for anisotropic cell stress, while it is neg-
ative and passive for the anisotropic bond tension. In
the case of anisotropic bond tension which drive active
T1 transitions, cells elongate for fixed box boundary
conditions along the y axis, thus increasing the length
of bonds with large contractility, corresponding to ẇcell

being negative and typically dissipative. In contrast, in
the case of the anisotropic cell stress, both T1 tran-
sitions and cell deformations are active and perform
work. For stress-free boundary conditions, we find that
for both anisotropic bond tension and anisotropic cell
stress, p : Dq/Dt < 0 and therefore the work of cell
deformations ẇcell is always positive. Therefore, both
T1 transitions and cell deformations are performing
work on the tissue to shear it.

Discussion and conclusion

Using a vertex model with a preferred axis set by a
prescribed nematic field, we have proposed two real-
izations of anisotropic active processes in tissues. The
first one considers anisotropic bond tensions, for which
cell bonds aligned with the nematic axis have higher
contractility than those oriented perpendicularly. The
second one involves an anisotropic cell stress aligned
with the nematic axis. Importantly, although in both
cases an active anisotropic stress exists that is contrac-
tile along the nematic axis, these two systems exhibit
different orientations of T1 transitions and cell elonga-
tion (see Figs. 2 and 3).

In the case of anisotropic bond tension, cell bonds
shorten and trigger T1 transitions. For fixed box bound-
ary conditions, we therefore observe that cells elon-
gate along an axis parallel to the nematic axis and
orthogonal to the orientation of bonds opened by T1
transitions. For stress-free boundary conditions, both
cell elongation and T1 transitions are perpendicular to
the nematic axis. Anisotropic cell bond tension cap-
tures the behavior observed during the early stages
of pupal wing development in Drosophila [8]. In that
case, the increased contractility is oriented along the
proximal-distal axis. The phenomenological parameters
were measured as ζ/μ � 0.33, τ � 1.7 h, and λ �
−0.11 h−1, which corresponds to λ̃ � −0.31 h−1. This
suggests that T1 transitions are active in these early
stages and driven by anisotropic bond tension. Overall
tissue shear was smaller than the cell shape change, cor-
responding to a case where the boundaries are slowly
moving, not too far from the fixed box boundary con-
ditions.

A different situation arises in the case of anisotropic
cell stress, in which cells elongate and trigger T1 tran-
sitions. For fixed box boundary conditions, cells elon-

gate perpendicular to the nematic axis, and T1 tran-
sitions are oriented parallel to the nematic axis. These
orientations remain the same for stress-free boundary
conditions (see Figs. 2 and 3). Anisotropic cell stress
could contribute to the behavior observed during germ-
band extension in the Drosophila embryo [22,26]. The
tissue extends along the anterior-posterior (AP) axis,
which suggests that anisotropic active stress is orthog-
onal to this axis. Both in wild type and when tis-
sue extension is obstructed by laser cauterization, cells
elongate perpendicular to the AP axis. These obser-
vations are consistent with anisotropic cell stress both
for fixed box boundary conditions (cauterization) and
stress-free boundary conditions (rough approximation
for wild type). In addition, it was reported that tissue
elongation was driven by anisotropic medial myosin II
pulses [26], which are expected to generate anisotropic
cell stress.

We have considered these two realizations of
anisotropic active processes separately. However, in bio-
logical tissues, both types of active stresses could coex-
ist. This is likely the case during Drosophila germ-
band extension, where an anisotropic accumulation of
myosin II at cell junctions is observed [23–25] as well
as anisotropic pulses of medial actin [26], indicating
the existence of anisotropic cell stress. This suggests
that both types of active anisotropic processes could be
simultaneously relevant.

If both processes are at work at the same time with
the polarity P aligned to the same axis, they would be
antagonistic and oppose each other. This case is sim-
ilar to a tug-of-war situation where the resulting T1
transitions would be the net result of the two opposing
anisotropic processes generating shear along orthogo-
nal axes. One can speculate that the relative strength
of these two opposing processes could be fine-tuned
such that the resulting net rate of active T1 transi-
tions would be vanishing, even though the system would
still be chemically active and T1 transitions fluctuate
strongly forward and backward. This could lead to a
fluidization of the tissue or give rise to stress oscilla-
tions. Furthermore, at this balance point, a biological
tissue could be capable of changing rapidly to one of
the two steady states with orthogonal shear axis if the
balance between the opposing activities is lost. Recent
work has proposed more detailed descriptions of T1
transitions, including delay [53] or nonlinear dynamics
[54]. While we expect the qualitative picture studied in
this manuscript to be rather robust, it will be interest-
ing to study the role of such nonlinear or delayed T1
transitions in the anisotropic active processes discussed
here.

Using a linear continuum description that captures
the anisotropic dynamics of the vertex model, we have
shown that the difference between these two realiza-
tions of active stress is captured by a relative sign dif-
ference between the active stress magnitude ζ (positive
in both scenarios) and the active T1 rate λ (positive
for anisotropic cell stress, negative for anisotropic bond
tension). Despite these differences, an analysis of the
energy balance in the system reveal that T1 transitions
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perform chemical work on the tissue in both cases, and
can therefore be referred to as active. The determina-
tion of ζ and λ experimentally is a challenge. However,
the determination of the rate of active T1 transition
λ̃ = λ − ζ/μτ may be accessible by state-of-the-art
experimental techniques. Indeed, at steady state and for
fixed box boundary conditions, the tissue shear stress
reads σ̃ = −μτλ̃p and could therefore provide a read-
out for the sign of this activity coefficient. This local
tissue stress could for instance be measured by inject-
ing liquid oil droplets, as recently shown in the zebrafish
embryo [12,14].
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S. Eaton, F. Jülicher, G. Salbreux, New J. Phys.
19, 033006 (2017). https://doi.org/10.1088/1367-2630/
aa5756

42. R. Alert, C. Blanch-Mercader, J. Casademunt, Phys.
Rev. Lett. 122, 088104 (2019). https://doi.org/10.1103/
PhysRevLett.122.088104
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M. Gómez-González, T. Kolodziej, E. Bazellieres, J.
Casademunt, X. Trepat, Nat. Phys. 15, 79 (2019).
https://doi.org/10.1038/s41567-018-0279-5

44. C. Duclut, N. Sarkar, J. Prost, F. Jülicher, Proc. Natl.
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Sci. U.S.A. 118, e2021972118 (2021). https://doi.org/
10.1073/pnas.2021972118
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