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Broken living layers: Dislocations in active smectic liquid crystals
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We show that dislocations in active two-dimensional (2D) smectic liquid crystals with underlying rotational
symmetry are always unbound in the presence of noise, meaning the active smectic phase does not exist for
nonzero noise in d = 2. The active smectic phase can, like equilibrium smectics in 2D, be stabilized by applying
rotational symmetry-breaking fields; however, even in the presence of such fields, active smectics are still much
less stable against noise than equilibrium ones, when the symmetry-breaking field(s) are weak.
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I. INTRODUCTION

Much of the richness of condensed matter physics is due to
the great variety of possible different phases of matter. Each
distinct phase breaks different symmetries of the underlying
physical laws of the universe [1]. One of the most inter-
esting equilibrium phases of matter is the smectic-A phase
[2]. This liquid crystalline phase is, as the term “liquid crys-
tal” suggests, a hybrid of a liquid and a crystalline solid.
Specifically, a d-dimensional smectic A can be thought of
as a one-dimensional stack of d − 1-dimensional isotropic
fluids. In three dimensions, this is a stack of two-dimensional
fluid layers. These fascinating phases exhibit a number of
unique properties, including quasi-long-ranged order—i.e.,
algebraically decaying translational correlations—in three di-
mensions [3], and a breakdown of linearized hydrodynamics
[4]. A priori, all of the phases found in equilibrium could
also be exhibited by active matter [5–16] systems, in which
the building blocks are kept out of equilibrium by constant
transduction of energy. Examples of such systems are living
organisms, molecular motors, and robots, to name just a few.
In this paper, we consider active smectics A.

Whether or not a particular active phase is stable, and
robust against noise, is, obviously, the first question one must
ask about any potential phase of active matter. Some phases
of active matter—e.g., polar ordered active matter, of which
a uniformly moving flock is the most obvious example—are
actually more robust than their equilibrium counterparts. Polar
ordered flocks, for example, can exhibit long-ranged order
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in two dimensions, while their nearest equilibrium analog,
ferromagnets, can exhibit only quasi-long ranged order in two
dimensions in the presence of noise—i.e., at finite tempera-
ture. Other active phases, on the other hand, are less stable
than their equilibrium counterparts. “Wet” active nematics—
that is, active nematics with momentum conservation—are
actually unstable [17].

So in this paper, we ask the question of whether or not
active smectics are robust against noise. These systems have
already been shown [18,19] to be stable at zero noise, and
to be stable against noise if topological defects are ignored.
These papers also asserted that these systems can be stable
in two spatial dimensions in the presence of noise against
topological defects as well. Here, we show that this is not the
case, for the two simplest possible types of active smectic:
dry Malthusian active smectics and dry incompressible active
smectics. We will now define these phases.

A dry Malthusian active smectic is one in which nothing—
not energy, not momentum, not even particle number [10]—is
conserved [18,19]. As a further simplification, we will con-
sider only apolar smectics; that is, smectics with up-down
symmetry (that is, symmetry between the two directions
normal to the smectic layers). A dry incompressible active
smectic is simply an active smectic with no momentum con-
servation whose mean density is fixed. By “mean” density,
we mean the small wavelength components of the density; the
components at q0 ≡ 2nπ

a , with a the smectic layer spacing,
are nonzero for all integer n as a result of the spontaneous
density modulation that defines the smectic. Such completely
nonconservative systems are by no means of purely academic
interest. We provide examples of such systems in Appendix A.

In addition, we think our results shed considerable light
on the dislocation behavior one might expect in more com-
plex active smectic systems in which one or more quantities
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are conserved. For instance, our results are valid in 2D in-
compressible systems with boundary conditions allowing for
layer number variation as shown in the last section of this
manuscript. This is for instance the case for the roll structures
in Rayleigh-Benard instabilities [20].

We find that, despite being more stable in spin-wave
theory—that is, when topological defects (i.e., dislocations)
are neglected—active smectics in rotation invariant environ-
ments (which we will hereafter refer to by the shorthand
“rotation invariant active smectics”) are unstable against dis-
location unbinding in the presence of any noise, no matter how
small. Furthermore, although they can be stabilized by rota-
tional symmetry-breaking fields, they are still less stable than
equilibrium smectics in symmetry-breaking fields of the same
strength. Specifically, in the active smectics we study here,
we will define �c as the critical value of the noise strength �

above which dislocations unbind, causing the smectic to melt
into an active nematic. This critical value �c grows linearly
with the applied symmetry-breaking field strength g for small
g; that is

�c ∝ g as g → 0. (1)

This result should be contrasted with the equilibrium result
[21] for the transition temperature Tc (temperature is the equi-
librium analog of the noise strength in active smectics):

T eq
c ∝ √

g as g → 0, (2)

whose derivation we will review in Sec. II B. We therefore see
that, for small symmetry-breaking fields g, the critical noise
strength �c for dislocation unbinding and the melting of the
smectic phase is much smaller for active smectics than for
equilibrium smectics. That is, active smectics are less robust
against melting, even in the presence of symmetry-breaking
fields, than their equilibrium counterparts.

Like equilibrium smectics in the presence of a rota-
tional symmetry-breaking field, active smectics in such a
symmetry-breaking field exhibit quasi-long-ranged transla-
tional correlations for noise strength smaller than the critical
value. This is most clearly manifest in the Fourier transformed
density-density correlation function (which is also the x-ray
structure factor in scattering experiments). It exhibits peaks
at wave vectors qn = nq0ŷ + δq, where q0 = 2π

a , with a the
smectic layer spacing. Near these peaks, we have

〈|ρ(q, t )|2〉 ∝ |δq|−2+n2η(g,�), (3)

with η(g,�) a nonuniversal exponent that depends on the
symmetry-breaking field strength g and the noise strength �

(as well as other smectic parameters). Another consequence
of our result (1) is that the critical value ηc of the exponent η

vanishes linearly with symmetry-breaking field:

ηc ∝ g as g → 0, (4)

in contrast to equilibrium smectics, for which ηc = 1/4, uni-
versally, independent of the applied symmetry-breaking field.

The remainder of this paper is organized as follows: In
Sec. II, we review the theory of equilibrium smectics, both
in rotation-invariant systems (Sec. II A) and with rotational
symmetry-breaking fields (Sec. II B). In Sec. III, we review
the spin-wave theory of active smectics (that is, the theory

FIG. 1. Schematic of the ideal smectic state, in which the layers
are parallel and uniformly spaced. We choose our coordinates (x, y)
so that the x axis runs parallel to the layers, as shown.

in which dislocations are neglected). Section IV presents the
calculation of the fields due to dislocations, which prove to
be identical in form to those found in equilibrium smectics
in the presence of a rotational symmetry-breaking field. Sec-
tion V derives the equation of motion for dislocations in an
active, rotation invariant smectic. In Sec. VI, we show that
this equation of motion leads, for fixed boundary conditions,
to the achievement of a type of “homeostasis,” in which iso-
lated dislocations do not spontaneously move. For “constant
stress” boundary conditions, on the other hand, the smectic
will either collapse, or grow without bound. In Sec. VII, we
show that even in the homeostatic state, in the presence of
noise, dislocations are always unbound in rotation invariant
smectics. Rotational symmetry-breaking fields can stabi-
lize smectic quasi-long-ranged order in active smectics, as
we show in Sec. VIII. We also show in that section that
although symmetry-breaking fields do stabilize smectic order,
the resultant order is still very weak for small fields, in the
sense that it can be much more easily destroyed by noise
than in equilibrium smectics. We then generalize these results
to the case of incompressible dry active smectics. Finally, in
Sec. X, we summarize our results, speculate about the behav-
ior of more complicated smectic systems with conservation
laws, and suggest avenues for further work.

II. REVIEW OF EQUILIBRIUM 2D SMECTICS

A. Rotation invariant 2D equilibrium smectics

1. “Spin-wave” (Phonon) theory

Any smectic-A phase (either equilibrium or active) is
characterized by the spontaneous breaking of translational
invariance in one direction (in contrast to a crystal, in which
translational invariance is broken in all d dimensions, where d
is the dimension of space). This is equivalent to saying that the
system spontaneously layers, with the additional requirement
that the layers are “liquid-like,” in the sense of being ho-
mogeneous along the layers. We will choose our coordinates
throughout this paper so that the direction in which transla-
tional invariance is broken is y. This means the layers, in the
absence of fluctuations, run parallel to x (see Fig. 1).

Since the smectic breaks the continuous translational sym-
metry of free space, such systems (again whether equilibrium
or active) have a “Goldstone mode” associated with the
breaking of this symmetry. In smectics, we usually take this
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FIG. 2. Definition of the layer displacement field u(r, t ). The
straight parallel lines are the reference positions of the layers, while
the curved lines depict a fluctuation in the layer positions. The layer
displacement field u(r, t ) is the distance from the reference position
to the fluctuating position of the layers in the vicinity of the spatial
point r, as illustrated.

Goldstone mode to be the local displacement u(r, t ) of the
layers in the vicinity of the spatial point r away from some
reference set of parallel, regularly spaced layer positions (see
Fig. 2).

To describe such systems in equilibrium, one introduces
[1–3] a phenomenological elastic Hamiltonian (sometimes
called the elastic free energy). This is constructed as an ex-
pansion in powers of spatial gradients of the displacement
field u(r, t ), keeping all terms to leading order in spatial gra-
dients allowed by the symmetries of the system. Translational
invariance requires that all terms involve at least one spatial
derivative of u(r, t ), since a spatially uniform displacement
[i.e., u(r, t ) = constant] must cost no energy.

Rotation invariance is somewhat more subtle. Its implica-
tions can be understood by recognizing that a uniform rotation
of the layers by a small angle φ � 1 can be represented in our
coordinate system by a nonuniform displacement field

u(r, t ) = φx. (5)

From this expression, we see that

∂xu = φ, (6)

that is, the x derivative of the displacement field u gives the
rotation angle of the layers away from their reference orienta-
tion.

The relation (6) continues to apply for arbitrary layer dis-
tortions; that is, the x derivative of u locally gives the local
tilt of the layers away from their reference orientation (pro-
vided that tilt is small, of course). We will make much use
of this relationship throughout this paper. Rotation invariance
therefore forbids the inclusion of terms that depend on ∂xu
in the elastic Hamiltonian, since such terms will be nonzero
for the uniform rotation (5). Therefore, the leading order term
involving x derivatives of u(r, t ) in H is a term proportional
to (∂2

x u)2, which represents the energy cost of bending the
layers. There is no such prohibition against terms involving
∂yu. Indeed, a term proportional to (∂yu)2 can easily be seen
to represent the energy cost of compressing the layers closer
together (for ∂yu < 0) or stretching them further apart (for
∂yu > 0). It is straightforward to show that

δa = a∂yu, (7)

where δa is the departure of the local layer spacing from its
energetically optimal value a. This is another relation which
we will use repeatedly throughout this paper.

These considerations lead, to quadratic order in u, to the
elastic Hamiltonian [1–3]:

Hsm = 1

2

∫
d2r

[
B(∂yu)2 + K

(
∂2

x u
)2]

. (8)

While higher than quadratic order in u terms are actually im-
portant in 2D equilibrium smectics [22], we will not consider
them here, since they do not play any role in active apolar
smectics [19,23].

The simplest, purely relaxational, equilibrium dynam-
ics associated with this Hamiltonian is the time-dependent
Landau-Ginsburg-Wilson equation of motion:

∂t u = −	
δHsm

δu
+ fu, (9)

where fu(r, t ) is a Gaussian, zero-mean white noise that drives
the smectic to thermal equilibrium, governed by the Hamilto-
nian Hsm at temperature T . To do this, its variance must obey
the “fluctuation-dissipation theorem” [1], which requires

〈 fu(r, t ) fu(r′, t ′)〉 = 2	kBT δ(r − r′)δ(t − t ′). (10)

Using the Hamiltonian (8) in the equation of motion (9)
gives

∂t u = 	B∂2
z u − 	K∂4

x u + fu. (11)

Note that this equation exhibits subdiffusive behavior in
the x direction. That is, relaxation along the x direction is
even slower than diffusive; specifically, the lifetime of a plane
wave u field running along x with wavelength λ grows like λ4

for large λ, in contrast to the λ2 scaling of simple diffusion.
This slowness of response to distortions in the x direction,
like the corresponding “softness” in the x direction of the
elastic Hamiltonian (8), is a direct consequence of the rotation
invariance [i.e., the zero-energy cost of pure rotations (5)]
discussed earlier. This rotation invariance can be removed
by applying an external symmetry-breaking field, as we will
discuss in Sec. II B.

2. Dislocation effects: There are no 2D equilibrium
smectics at T �= 0

The preceding discussion constitutes what is normally
called “spin-wave” theory. It assumes that it is possible to
define throughout the entire system a unique, single valued
displacement field u(r, t ) throughout the system. This is in
fact not the case if dislocations (see Fig. 3) are present in
the system. We will now review the theory of these defects
in equilibrium, as first developed by Pershan [24].

As can easily be seen from Fig. 3, one can think of a
dislocation in a smectic as a place where a layer ends. That
these “topological defects” make it impossible to define a
single valued u field can be seen by the well-known “Burg-
ers’ construction,” which is also illustrated in Fig. 3. In this
construction, one “walks” in a closed loop around the dislo-
cation, crossing equal numbers of layers while moving up and
moving down. In the example of Fig. 3, one crosses two layers
while going up from the starting point S to the corner A, plus
another two while moving from the lower right corner E to
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FIG. 3. Illustration of the Burgers’ construction for dislocations
described in the text.

the final point F, for a total of four going up, and crosses four
going down between the upper left corner B and the lower
left corner C. Clearly, if the dislocation (at point D in Fig. 3)
were not there, or if the path did not enclose the dislocation
(i.e., the point D), this path would have returned to the starting
point S. Equally clearly, when it does enclose the dislocation,
the path does not return to S, but, rather, overshoots closure
by the length of the thick blue arrow between S and F, whose
length is clearly the layer spacing a. This failure to close is
known as the “Burgers’ number” b for the dislocation, and in
this case b = +1. It is straightforward to see that in general,
the Burgers’ number will be an integer, the integer being
simply the difference between the number of layers coming in
from the left that end inside the loop, and the number coming
in from the right that do so. The Burgers’ number, defined
in this way, is the analog for smectics (which, we remind
the reader, only translationally order in one direction) to the
better-known “Burgers’ vector” defined by an almost identical
construction in crystalline solids (which translationally order
in all directions). One way of thinking about this result is
that, if we had defined the displacement field at the starting
point S to be u(S) = 0, we would, after having completed
the loop, found that the layer had been displaced up by an
amount na for b = n. That is, u is no longer single valued,
but instead increases by ba every time one moves around a
loop enclosing the dislocation. Mathematically, the contour
integral

∫
C mn̂ · dl counts the number of layers traversed along

the integration path C, where m = 1/a(r) is the local layer
density at the point r, and n̂(r) is the unit normal to the layers
at the point r. The statement that u is not single valued, but
changes when moving around a loop enclosing dislocations,
is equivalent to the statement that a nonvanishing number of
layers is encountered by a closed loop,∮

mn̂ · dl =
∑

α

bα. (12)

Here we have now generalized to the case of many disloca-
tions, labeled by α, with Burgers’ numbers bα , at positions rα

that are enclosed by the loop over which the contour integral
on the left-hand side of Eq. (12) is done. We reiterate that the

Burgers’ number bα of each dislocation must be an integer
that is, bα = n, with n an integer.

Applying Stokes’ theorem to Eq. (12) gives

∇ × mn̂ =
∑

α

bαδ(r − rα ), (13)

In Eq. (13), we have defined the curl in two dimensions in
the usual way; that is, as a scalar given, for any vector v, by
∇ × v ≡ ∂xvy − ∂yvx.

It is convenient to define w = (a0m − 1)n̂, where a0 is the
layer spacing in a reference state. For small displacements it
can be written as

w(r, t ) 
 φ(r, t )x̂ +
(

δa(r, t )

a0

)
ŷ, (14)

with φ(r, t ) and δa(r, t ), respectively, the local tilt of the
layers at r at time t , and the local change in the layer spacing.

Keeping in mind our earlier discussion of the relationships
(6) and (7) which hold between these two quantities φ(r, t )
and δa(r, t ) and the layer displacement field u(r, t ) in the
absence of dislocations, we see that w is clearly simply the
generalization of ∇u to situations in which dislocations are
present. To say this another way, when dislocations are absent,

w = ∇u, no dislocations. (15)

Thus, w is the natural generalization of the vector field ∇u in
the presence of dislocations, see Appendix B.

We can use this idea to calculate the w field of a disloca-
tion. That will be the field that minimizes the energy of the
system for a given configuration of dislocations. That is, we
wish to find the field w(r) that minimizes the energy of the
system subject to the constraint

∇ × w(r) =
∑

α

a0bαδ(r − rα ), (16)

which is where the dislocation configuration {bα, rα} enters
the calculation.

In the absence of dislocations, the minimum energy con-
figuration u(r) can be obtained from the Euler-Lagrange
equation associated with the smectic elastic Hamiltonian (8).
That equation is easily seen to be

B∂2
y u(r) − K∂4

x u(r) = 0. (17)

We can obviously rewrite this as

B∂y[∂yu(r)] − K∂3
x [∂xu(r)] = 0. (18)

Now generalizing this equation to situations in which disloca-
tions are present by replacing ∇u with w gives

B∂ywy(r) − K∂3
x wx(r) = 0. (19)

The other condition on dislocations is the Burgers’ condi-
tion (16). These two simultaneous linear equations (19) and
(16) can be easily solved by Fourier transforming in space;
this gives

Bqywy(q) + Kq3
xwx(q) = 0 (20)

and

qxwy(q) − qywx(q) = −i
∑

α

a0bαe−iq·rα . (21)
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Solving these simple linear equations gives

wx(q) = iBqy

Bq2
y + Kq4

x

∑
α

a0bαe−iq·rα , (22)

wy(q) = −iKq3
x

Bq2
y + Kq4

x

∑
α

a0bαe−iq·rα . (23)

Fourier transforming these solutions back to real space
gives

wx(r) =
∑

α

a0bαGx(r − rα ), (24)

wy(r) =
∑

α

a0bαGy(r − rα ), (25)

where the Green’s functions Gx,y are given by

Gx(r) = − 1

4
√

πλ|y| exp

[
−

(
x2

4λ|y|
)]

sgn(y), (26)

Gy(r) = x

8
√

πλ|y|3 exp

[
−

(
x2

4λ|y|
)]

, (27)

where we have defined λ ≡ (K/B)1/2.
The alert reader will note that we derived the dislocation

fields (24), (25) using the harmonic elastic theory (8), or,
equivalently, the linear Euler-Lagrange equation (11). The
linear approximation is, of course, only justified if the strain w
is small. As can be seen from Eqs. (24), (25), this assumption
will clearly beak down sufficiently close to the dislocation,
where the strains diverge. This does not invalidate our ap-
proach, however, it merely means that Eqs. (24), (25) must
break down sufficiently close to any dislocation. Fortunately,
our results, here, and throughout this paper, only depend on
the behavior of the fields far from the dislocations, where the
strains w become small [as can be seen from Eqs. (24), (25)],
and, hence, the linear approximation is justified.

This holds true for smectics with symmetry-breaking
fields, and for active smectics, as well. Hence, we will con-
tinue to use the results of linear theories throughout this paper.

We can also obtain the energy of interaction between dis-
locations by inserting the solution (22), (23) for w into our
elastic Hamiltonian (8). To do so, we must first rewrite Eq. (8)
in terms of w using the same replacement ∇u → w we have
been using. This gives

Hsm = 1

2

∫
d2r

[
Bw2

y + K (∂xwx )2]. (28)

Fourier transforming this, inserting the solution (22), (23) for
w into the result, and Fourier transforming back to real space
gives

H ({bα, rα}) =
∑
α,β

a2
0bαbβU (rα − rβ ), (29)

where the pairwise interaction potential

U (r) = B

4

√
λ

π |y| exp

[
−

(
x2

4λ|y|
)]

. (30)

Because this vanishes as the separation between disloca-
tions goes to infinity, dislocations will always be unbound in
smectics at any nonzero temperature, thereby destroying the

smectic order. This means that 2D smectics do not actually
exist in rotation invariant systems at nonzero temperature, as
first shown (using exactly this argument) in Ref. [20].

While we do not need the equation of motion for the
dislocations in this equilibrium system, since the statistical
mechanics is determined entirely by the Hamiltonian (8), it
is instructive to formulate those equations of motion. This
will allow us later to compare and contrast them with the
equations of motion for dislocations in active smectics, for
which the equation of motion is the only information we have
about the behavior of dislocations in those nonequilibrium
systems. To obtain the equations of motion, we first calculate
the forces arising from the potential (30).

Consider a system with only two dislocations α = (1, 2)
of Burgers’ charges: b1 and b2, at positions r1 = 0, r2 = r =
xx̂ + yŷ. The dislocation Hamiltonian (29) then implies that
the energy of this pair will be

V (r) = Bb1b2a2
0

4

√
λ

π |y| exp

[
−

(
x2

4λ|y|
)]

. (31)

The force experienced by dislocation α = 2 will therefore be
F = Fxx̂ + Fyŷ, with its Cartesian components Fx,y given by

Fx = −∂xV (r) = Bb1b2a2
0x

8
√

πλ|y|3 exp

[
−

(
x2

4λ|y|
)]

= Bb2a0w
(1)
y (r),

Fy = −∂yV (r)

= −Bb1b2a2
0sgn(y)

16
√

πλ|y|5
{x2 − 2λ|y|} exp

[
−

(
x2

4λ|y|
)]

= Kb2a0∂
2
x w(1)

x (r), (32)

where by w1(r), we mean the contribution to the field w at the
position r of the α = 2 dislocation coming from the α = 1 dis-
location (i.e., neglecting the field created by dislocation α = 2
itself). It is straightforward to show that the generalization of
these forces to configurations with more than two dislocations
is

Fα
x = Bbαa0wy(rα ),

Fα
y = Kbαa0∂

2
x wx(rα ), (33)

where by w(rα ), we mean the contribution to the field w at the
position rα of the αth dislocation coming from all of the other
dislocations (i.e., neglecting the field created by dislocation α

itself).
Since the dislocation cannot “tell” whether the local field

w is created by other dislocations, by spin waves, or by ex-
ternally applied stresses, we expect Eq. (33) to hold more
generally if we take wα on the right-hand side of those
equations to be the entire w field, excluding the part due to
dislocation α itself. This proves to be important when we
consider the effect of stresses at the boundary on dislocation
motion.

There are two important features of the result (33) that
should be noted:

(1) The force on a given dislocation α is determined en-
tirely by the local value of the field w(rα ) (and its derivatives)
at the location rα of that dislocation (excluding the part of that
field due to the given dislocation itself).
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(2) The dependence of the force on the x component wx

involves spatial derivatives of that component; a uniform wx

does not generate any force on the dislocation. This is a
consequence of rotation invariance: As shown by Eq. (33), a
spatially uniform wx corresponds to a uniform rotation of the
layers, which clearly cannot lead to any force on the dislo-
cation in a rotation-invariant system. This consideration will
continue to apply in active smectics, and will forbid certain
terms in the force in those systems which one might otherwise
expect, as we will see in Sec. V.

Since there will be friction between the dislocations and
the underlying substrate, we expect the velocity v (rather than
the acceleration v̇) of the dislocations to be linear in the force
F. That is,

vα = μFα, (34)

where μ is a constant “mobility tensor.” On symmetry
grounds, we expect this tensor to be diagonal in our (x, y)
coordinate system (i.e., with the x and y axes respectively
parallel and perpendicular to the mean smectic layers); hence,

vα
x = μxFα

x , vα
y = μyFα

y . (35)

Using our earlier results (33) for the forces on the disloca-
tions, we can rewrite these as

vα
x = μxBbαa0wy(rα ),

vα
y = Kbαa0∂

2
x wx(rα ). (36)

We see that, like the component Fy of the force, the y
component of the dislocation velocity (which is, after all, pro-
portional to Fy) vanishes for spatially uniform wx. And it does
so for the same reason: a spatially uniform wx corresponds to
a uniform rotation, which cannot lead to dislocation motion in
a rotation invariant system. This result, based as it is purely on
symmetry, proves to continue to apply even in active, rotation
invariant smectics, as we will see in Sec. V.

B. Nonrotation invariant 2D equilibrium smectics:
Effects of a symmetry-breaking field

1. “Spin-wave” (Phonon) theory with a symmetry-breaking field:
Quasi-long-ranged order

As we have seen, rotation invariance plays a crucial role
in the behavior of equilibrium two-dimensional smectics—
indeed, in some sense, it makes the smectic phase impos-
sible(at nonzero temperature) in d = 2. One can, however,
make a 2D smectic nonrotation invariant. This can be done
in a number of ways. Two of the simplest are:

(1) applying a magnetic field (H),
(2) preparing the 2D surface on which the smectic lives in

some nonrotation invariant way. For example, one could rub
the surface in one direction with an abrasive cloth, or etch a
set of parallel grooves along it.

Magnetic fields break rotation invariance by picking out a
preferred direction for the layer normal

n̂(r) = − sin[φ(r)] x̂ + cos[φ(r)] ŷ, (37)

where φ(r) is the angle between the local layers at r and
the y axis. They do this due to the fact that the magnetic
susceptibility tensor χH

i j must, by symmetry, have the layer

normal n̂ as one of their principal axes. This implies that the
susceptibility tensor can be written in the form [1,2]

χH
i j = χH

0 δi j − �χH nin j, (38)

where the material parameters χH
0 and �χH are, respectively,

the isotropic and anisotropic parts of the susceptibility.
The expression (38) in turn implies that the magnetic

energy of the smectic is given by (note that the H on the
left-hand side of the following expressions stands for “Hamil-
tonian,” while the H on the right-hand side of the first of them
stands for magnetic field):

Hmag = 1

2

∫
d2rχH

i j HiHj

= −1

2

∫
d2r�χH (H · n̂)2 + constant, (39)

where the “constant” includes those parts of the energy inde-
pendent of the layer normal n̂.

Inserting our expression (37) for n̂, and choosing our y axis
to be along the magnetic field, gives

Hmag = −1

2

∫
d2r�χH H2 cos2[φ(r)] + constant. (40)

Clearly, the magnetic energy favors (for positive �χH ) align-
ment of n̂ along the magnetic fields (i.e., φ = 0). If, e.g., �χH

is negative, then the lowest energy configuration will have the
layer normal n̂ perpendicular to H. In these cases, we can still
arrive at the expression (40) simply by choosing the y axis to
be perpendicular to the applied field. So the result (40) can
easily be made to hold in general.

Now assuming that fluctuations away from this minimum
energy state are small, we can expand (40) for small φ, ob-
taining

Hmag = 1

2

∫
d2r�χH H2[φ(r)]2 + constant. (41)

Finally, using the relation ∂xu = φ [i.e., Eq. (6)] between φ

and the layer displacement field u, we can rewrite this as

Hmag = 1

2

∫
d2r g(∂xu)2 + constant, (42)

where we have defined the “symmetry-breaking field
strength” g via

g ≡ �χH H2 (43)

for the case of an applied magnetic field.
Note that the symmetry-breaking field strength g is ac-

tually proportional to the square of the applied field. This
is a consequence of the fact that the smectic is apolar; in a
pseudopolar smectic, this symmetry breaking would be linear
in the applied field, since the constituents of the smectic would
then have a spontaneous magnetic moment.

The second approach mentioned above, of breaking sym-
metry by preparing the surface in a nonrotation invariant way,
can be shown by similar arguments to lead to a symmetry-
breaking contribution to the Hamiltonian of the form (42) as
well. The dependence of g on whatever quantity one uses to
characterize the strength of the symmetry breaking of the sur-
face preparation need not be quadratic, however. For example,
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if the preparation consisted of etching or rubbing a set of
grooves onto the substrate, then we would expect g in (42)
to be linear, not quadratic, in the density of such grooves, at
least when that density is small.

Adding this additional symmetry-breaking energy (43) to
the terms already present in our smectic energy gives the total
smectic Hamiltonian for the nonrotation invariant case:

Hsm = 1

2

∫
d2r

[
B(∂yu)2 + g(∂xu)2 + K

(
∂2

x u
)2]

. (44)

The bend elasticity term K (∂2
x u)2 is clearly negligible, at

long wavelengths (i.e., for small spatial gradients) relative
to the symmetry-breaking term g(∂xu)2. We will therefore
henceforth drop it, which leaves our Hamiltonian in the form

Hsm = 1

2

∫
d2r[B(∂yu)2 + g(∂xu)2]. (45)

This nonrotation invariant smectic problem can readily be
seen to be equivalent to an XY model. To see this, make
a simple linear change of variables from the layer spacing
u(r, t ) to an “angle field” θ (r, t ) defined via

θ ≡ q0u, (46)

where q0 ≡ 2π
a0

is the wave vector of the smectic layering.
This has the effect of converting the invariance of the smectic
system under the translation u(r, t ) → u(r, t ) + a0 (which is
a symmetry since the smectic structure is periodic with period
a0 in the y direction) to invariance under θ → θ + 2π . The
latter symmetry implies that θ can be interpreted as the angle
between a unit spin and some reference direction, or, equiva-
lently, as the phase of a complex scalar. Both of these systems
are XY models.

With the change of variables (46), the Hamiltonian (45)
becomes

HXY = 1

2

∫
d2r[Ky(∂yθ )2 + Kx(∂xθ )2], (47)

with

Ky = Bq−2
0 , Kx = gq−2

0 . (48)

We can convert this into the most familiar, isotropic form
of the XY model by rescaling lengths anisotropically to make
the coefficients of the two terms in Eq. (50) equal. It is easy to
show that the change of variables

x = x′
√

Kx

Ky
= x′

√
g

B
(49)

accomplishes this, leading to an isotropic model

HXY iso = K̄

2

∫
dx′dy|∇′θ |2, (50)

where ∇′ ≡ ∂x′ x̂′ + ∂yŷ, and the spin-wave stiffness K̄ is just
the geometric mean of Kx and Ky:

K̄ = √
KxKy. (51)

The model (50) with the “compactness condition” that the
operation θ → θ + 2π takes one to the same physical state is
the extremely well-studied “XY model” [21]. It describes spin

systems, with the local spin S(r′) = {cos[θ (r′)], sin[θ (r′)]},
where

r′ ≡ (x′, y) =
(

x

√
B

g
, y

)
. (52)

It exhibits quasi-long-ranged order, that is, algebraically de-
caying spin correlations [21]:

〈S(r′
1) · S(r′

2)〉 ∝ |r′
1 − r′

2|−η(T ), (53)

with the nonuniversal, temperature-dependent exponent [21]

η(T ) = kBT

2π K̄
= kBT

2π
√

KxKy
= kBT q2

0

2π
√

gB
. (54)

The correlation function in smectics most closely anal-
ogous to the spin-spin correlation function (53) is the
density-density correlation function. This follows from a stan-
dard result of the scattering theory of smectics [2], which
states that the Fourier transformed equal-time correlations of
the density near the nth Bragg peak (i.e., near wave vector
q = nq0ŷ with integer n) are given by

〈|ρ(q, t )|2〉 ∝ FT(〈exp{inq0[u(r′
1) − u(r′

2)]}〉)|δq, (55)

where FT denotes a Fourier transform and δq ≡ q − nq0ŷ.
Mapping this to the XY problem by using the change of fields
from θ to u (46), and the change of coordinates from x to
x′ (49), we obtain power-law correlations for the complex
exponential in Eq. (55):

〈exp{inq0[u(r′
1) − u(r′

2)]}〉 ∝ |r′
1 − r′

2|−n2η(T ). (56)

This is easily shown to imply that the Bragg peaks become
power-law singularities near the nth Bragg peak:

〈|ρ(q, t )|2〉 ∝ |δq|−2+n2η(T ). (57)

This can be measured experimentally by various scattering
techniques (either x-ray or light scattering, depending on the
layer spacing a), or, in experiments in which the constituent
particles can actually be imaged, by simply constructing
the spatially Fourier transformed density correlations directly
from particle positions.

2. Equation of motion for the nonrotation invariant case

Again taking the simplest, purely relaxational, equilibrium
dynamics associated with this Hamiltonian, which is the time-
dependent Landau-Ginsburg-Wilson EOM (9), we obtain

∂t u = Dy∂
2
y u + Dx∂

2
x u + fu, (58)

where we have defined Dy ≡ 	B and Dx ≡ 	g.
In Eq. (58), we have, as in the rotation-invariant case,

added a Gaussian white noise fu with correlations,

〈 fu(r, t ) fu(r′, t ′)〉 = 2	kBT δ(r − r′)δ(t − t ′), (59)

where the coefficient 	kBT is required by the fluctuation-
dissipation theorem [1].

One somewhat surprising feature of the equation of
motion (58) is that, although it was derived from the non-
rotation invariant free energy (45), the equation of motion
(58) itself is rotation invariant, as can be seen by noting
that the equation remains unchanged under the substitution
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u(r, t ) → u(r, t ) + φx, which corresponds to a uniform rota-
tion of all the smectic layers by an angle φ � 1. We will use
this observation later to argue that (58) is therefore the spin-
wave equation of motion we would expect even for rotation
invariant active smectics, for which there is no free energy.

3. Dislocation effects: Kosterlitz-Thouless transition

We can now treat dislocations in smectics without rotation
invariance exactly as we treated those with rotation invariance
in the previous section. The definition of the field w as the
generalization of ∇u in the presence of dislocations is un-
changed, as is the Burgers’ condition (16). All that changes is
the Hamiltonian, which is now Eq. (45) rather than Eq. (28).
As a result, the Euler-Lagrange equation now becomes

g∂xwx(r) + B∂ywy(r) = 0, (60)

which can be rewritten in Fourier space as

gqxwx(q) + Bqywy(q) = 0. (61)

Solving this simultaneously with the unchanged Burgers’ con-
dition (16) gives

wx(q) = iBqy

gq2
x + Bq2

y

∑
α

a0bαeiq·rα , (62)

wy(q) = −igqx

gq2
x + Bq2

y

∑
α

a0bαeiq·rα . (63)

Fourier transforming these solutions back to real space
gives

wx(r) =
∑

α

a0bαGx(r − rα ), (64)

wy(r) =
∑

α

a0bαGy(r − rα ), (65)

where the Green’s functions Gx,y are now given by

Gx(r) = − y
√

gB

2π (gy2 + Bx2)
, (66)

Gy(r) = x
√

gB

2π (gy2 + Bx2)
. (67)

As we did for the rotation invariant smectic, we can cal-
culate the energy of a dislocation configuration by inserting
these results into the elastic Hamiltonian (45), which can be
rewritten in terms of the components of w as

Hsm = 1

2

∫
d2r

[
gw2

x + Bw2
y

]
. (68)

Inserting our results (64)–(67) into this expression, and
performing the integral over r gives our dislocation
Hamiltonian Hdisl for nonrotation invariant smectics:

Hdisl = −
√

gB

2π

∑
〈α �=β〉

a2
0bαbβ ln

( |r′
α − r′

β |
a

)
, (69)

where the sum is over pairs α, β of dislocations, with each
pair counted once, and α �= β. We remind the reader that r ≡
(x, y) and r′ ≡ (x

√
B
g , y). Note that the sign of this expression

implies that the potential between two oppositely charged
dislocations is attractive. From the form of this Hamiltonian, it

is possible to see why a Kosterlitz-Thouless defect unbinding
transition must occur, and to even determine its temperature,
by the following very simple argument, originally given (in a
slightly different form) by Kosterlitz and Thouless [21].

Consider a minimal neutral pair of dislocations α = (1, 2)
of Burgers’ charges: b1 = 1 and b2 = −1. From the disloca-
tion Hamiltonian (69), we see that the energy of this pair will
be

V (R) =
√

gBa2
0

2π
ln

( |r′
1 − r′

2|
a

)
+ 2Ec, (70)

where R ≡ r1 − r2 is the separation of the pair, and Ec is
a“core energy” that we have added to the energy of the pair to
take into account the energy coming from distortions within
a distance a of the cores of the two dislocations, which are
not accurately captured by our elastic theory, because that
theory is only valid at long distances. This core energy Ec also
contains some constant (R-independent) contributions to the
energy of the pair coming from the elastic energy outside this
region. Hence, by simple Boltzmann statistics, the probability
density p(R) for this pair is

p(R) = exp

[
−V (R)

kBT

]
= κ2|R′|−ν, (71)

where we have defined the “dislocation fugacity” κ ≡
exp(−Ec/kBT ), R′ ≡ (Rx

√
B
g , Ry), and

ν ≡
√

gBa2
0

2πkBT
. (72)

The mean-squared size of this dipole is

〈|R|2〉 =
∫

d2R p(R)|R|2 = κ2

√
g

B

∫
d2R′ |R′|2−ν

(
R

R′

)2

.

(73)

Since R
R′ is bounded between 1 and

√
B
g , as the reader can

easily convince herself, this mean-squared value clearly di-
verges if ν � 4. This signals dislocation unbinding; i.e., the
Kosterlitz-Thouless transition, which corresponds to the loss
of quasi-long-ranged translational order, or equivalently, the
melting of the smectic into a nematic. This transition clearly
occurs at the temperature TKT at which ν = 4; hence, using
Eq. (72), we have

√
gBa2

0

2πkBTKT
= 4. (74)

Using this result, and setting T = TKT in our expression (54)
for the exponent for algebraic decay of density correlations,
we recover the famous result [21,25]

η(TKT) = 1/4. (75)

The crucial point the reader should take away from this
discussion is that, when the probability density for the sepa-
ration of a dislocation pair falls off like a power law R−ν with
distance, dislocations will be bound if ν > 4, and unbound if
ν < 4. We will later apply this criterion to active, nonrotation
invariant smectics to determine the critical noise strength at
which dislocations unbind, melting the smectic phase.
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Solving our expression (74) for TKT gives

TKT =
√

gBa2
0

8πkB
∝ √

g. (76)

Thus, we see that the smectic melting temperature grows quite
rapidly with the symmetry-breaking field strength g; specif-
ically, like

√
g. We will see in Sec. VIII that, while active

smectics can also be stabilized against dislocation unbinding
by rotational symmetry-breaking fields, they are much more
delicate. Specifically, the critical noise strength (the analog
in those nonequilibrium systems of the critical temperature)
grows only linearly with the symmetry-breaking field strength
g. Although we do not need to explicitly consider the dy-
namics of dislocations to understand their unbinding in this
equilibrium problem, it is instructive to do so, to facilitate
comparison with the active cases that we will consider next,
for which the dynamics is all we have.

To study the dynamics, consider first a general pair of
dislocations α = (1, 2) of Burgers’ charges: b1 and b2, at posi-
tions r1 = 0, r2 = r = xx̂ + yŷ. The dislocation Hamiltonian
(69) then implies that the energy of this pair will be

V (r) = −
√

gBb1b2a2
0

2π
ln

( |r′|
a

)
. (77)

The force experienced by dislocation α = 2 will therefore
be F = Fxx̂ + Fyŷ, with its Cartesian components Fx,y given
by

Fx = −∂xV (r) = b1b2a2
0xB

√
gB

2π (gy2 + Bx2)
= Ba0b2w

(1)
y (r),

Fy = −∂yV (r) = b1b2a2
0yg

√
gB

2π (gy2 + Bx2)
= −ga0b2w

(1)
x (r), (78)

where by w1(r), we mean the contribution to the field w at the
position r of the α = 2 dislocation coming from the α = 1 dis-
location (i.e., neglecting the field created by dislocation α = 2
itself). It is straightforward to show that the generalization of
these forces to configurations with more than two dislocations
is

Fα
x = −Ba0bαwy(rα ),

Fα
y = ga0bαwx(rα ), (79)

where by w(r), we mean the contribution to the field w at the
position rα of the αth dislocation coming from all of the other
dislocations (i.e., neglecting the field created by dislocation α

itself).
Since the dislocation cannot “tell” whether the local field

w is created by other dislocations, by spin waves, or by ex-
ternally applied stresses, we expect Eq. (79) to hold more
generally if we take wα on the right-hand side of those
equations to be the entire w field, excluding the part due to
dislocation α itself. This proves to be important when we
consider the effect of stresses at the boundary on dislocation
motion. There are two important features of the result (79) that
should be noted:

(1) The force on a given dislocation α is determined en-
tirely by the local value of the field w(rα ) (and its derivatives)
at the location rα of that dislocation (excluding the part of that
field due to the given dislocation itself).

(2) The force in this nonrotation invariant case now de-
pends directly on the x component wx; no spatial derivatives
are required. This means in particular that a uniform wx does
generate a force on the dislocation. This is a consequence
of the lack of rotation invariance: as shown by Eq. (6), a
spatially uniform wx corresponds to a uniform rotation of the
layers, which now can lead to a force on the dislocation, since
the system is not rotation-invariant. This consideration will
continue to apply in active smectics and will allow certain
terms in the force in those systems in the rotation noninvariant
case which are absent in the rotation invariant case.

As in the rotation invariant case, we expect the velocity v
of the dislocations to be linear in the force F. That is,

vα = μFα, (80)

where μ is a constant “mobility tensor.” On the same sym-
metry grounds as before, we expect this tensor to be diagonal
in our (x, y) coordinate system (i.e., with the x and y axes
respectively parallel and perpendicular to the mean smectic
layers); hence,

vα
x = μxFα

x , vα
y = μyFα

y . (81)

Using our earlier results (79) for the forces on the dislocations,
we can rewrite these as

vα
x = −μxBa0bαwy(r),

vα
y = μyga0bαwx(r). (82)

We see that, like the component Fy of the force, the y
component of the dislocation velocity (which is, after all, pro-
portional to Fy) no longer vanishes for spatially uniform wx.
And it need not, since, although a spatially uniform wx still
corresponds to a uniform rotation, in a nonrotation invariant
system, no symmetry forbids a uniform rotation from causing
dislocation motion.

C. Summary of the equilibrium cases

We have seen that, in equilibrium, rotation invariant 2D
smectics, translational order at nonzero temperature is always
short ranged, even in spin-wave theory (i.e., when dislocations
are ignored). Furthermore, dislocations are always unbound at
any nonzero temperature, if the smectic is rotation invariant.
Effectively, this means that 2D smectics melt as soon as the
temperature becomes nonzero. Another way to say this is that
2D smectics do not exist at temperatures T > 0.

Breaking rotation invariance by, e.g., applying a rota-
tional symmetry-breaking magnetic field, or breaking the
underlying rotation invariance in other ways, can stabilize
quasi-long-ranged translational order (i.e., power-law decay
of translational correlations) in spin-wave theory. Rotational
symmetry breaking also stabilizes two-dimensional equilib-
rium smectics against dislocation unbinding. The temperature
Tm at which these systems melt vanishes as the strength g of
the applied symmetry-breaking field vanishes, according to
the law (76).

We will see that, while the presence or absence of rotation
invariance has no important effect on the spin-wave dynamics
of active smectics, nor on the fields created by dislocations,
it has a profound effect on the motion of dislocations. In
fact, like equilibrium 2D smectics, active 2D smectics are
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only stable against dislocations if rotation invariance has been
explicitly broken by an externally applied symmetry-breaking
field. Furthermore, the field required to stabilize active 2D
smectics against dislocations is much higher than the field
needed in equilibrium 2D smectics.

III. “SPIN-WAVE” (PHONON) THEORY
OF ACTIVE SMECTICS

A. Rotation invariant 2D active smectics: Spin-wave theory

In this section, we will review the hydrodynamic theory of
active, rotation-invariant, apolar smectics. For more details,
the interested reader is referred to Ref. [18]. We will first limit
our discussion to “spin-wave theory”; that is, dislocation-free
smectics.

Because there are no conserved quantities, the only hy-
drodynamic field in our problem is the layer displacement
u, which is the “Goldstone mode” associated with the
breaking of translational symmetry by the layering. The long-
wavelength hydrodynamics of this field is therefore simply the
most general equation of motion, to leading order in space and
time derivatives, that respects the symmetries of this system.
These symmetries are rotation and translation invariance. As
we noted earlier in our discussion of the nonrotation invari-
ant equilibrium smectic, the equation of motion (58) for that
system, oddly, is rotation invariant. Therefore, that equation,
which we repeat here for the readers’ convenience, also de-
scribes active, rotation invariant smectics:

∂t u = Dy∂
2
y u + Dx∂

2
x u + f , (83)

where f u is a Gaussian, zero-mean spatiotemporally white
noise with

〈 fu(r, t ) fu(r′, t ′)〉 = 2�δ(r − r′)δ(t − t ′). (84)

Because this is a nonequilibrium system, there is no longer a
fluctuation-dissipation theorem [1] relating the noise variance
� to the dissipative terms in Eq. (83). However, the equa-
tion of motion (83), with the noise correlations (84) is, as
noted, identical to that of an equilibrium, nonrotation invariant
smectic with

	kBT = � , 	B = Dy , 	g = Dx. (85)

We can therefore use these relations to obtain any spin-wave
correlation function in the active, rotation-invariant smectic
from the corresponding correlation function in an equilibrium,
nonrotation invariant smectic. In particular, this reasoning
predicts, in the absence of dislocations, that active, rotation
invariant smectics will exhibit power-law singularities near
the nth Bragg peak (i.e., for wave vector q = nq0ŷ + δq with
integer n and |δq| � q0):

〈|ρ(q, t )|2〉 ∝ |δq|−2+n2η(�), (86)

with the nonuniversal exponent [21]

η(Dx, Dy,�) = �q2
0

2π
√

DxDy
. (87)

As in equilibrium systems, this can be measured exper-
imentally by various scattering techniques (either x-ray or
light scattering, depending on the layer spacing a), or, in

experiments in which the constituent particles can actually
be imaged, by simply constructing the spatially Fourier trans-
formed density correlations directly from particle positions. It
can be determined from simulations by the latter approach as
well.

Interestingly, as we shall see, in rotation invariant active
smectics, this quasi-long-ranged order is destroyed by un-
bound dislocations, and they therefore do not exhibit any
singular behavior at the Bragg spots at all. In rotation non-
invariant active smectics, however, the results (86) and (88)
will hold for sufficiently small noise. Clearly, the nonuniversal
exponent η(Dx, Dy,�) for algebraic decay of translational
correlations, when expressed in terms of Dx and Dy, will
continue to be given in terms of Dx, Dy, and the noise strength
� (which we also expect to be independent of the symmetry-
breaking field g for small g) by the result found earlier for
rotation invariant active smectics; i.e.,

η(T ) = kBT q2
0

2π
√

gB
= �q2

0

2π
√

DxDy
. (88)

Thus, it would appear, from this spin-wave theory, that
active smectics are more robust against fluctuations than
equilibrium ones: it looks like we can get quasi-long-ranged
translational order in these systems even without breaking
rotation invariance. As we will see in Sec. VII, this conclusion
is actually wrong, due to the unbinding of dislocations.

One last comment about our equation of motion (83)
for active, rotation-invariant smectics is in order. The term
Dx∂

2
x u [26,27] is, as we discussed in Sec. II A, forbidden in

equilibrium rotation-invariant smectic, where it would corre-
spond to a term ∝ (∂xu)2 in the Hamiltonian (8), which is
forbidden by rotation invariance. In our out-of-equilibrium
system, however, only the equation of motion itself must
be rotation-invariant, which we have already shown equa-
tion (83) is. Physically, the origin of this term is that local
vectorial asymmetry of a curved layer must inevitably lead to
directed motion in a self-driven system.

B. Nonrotation invariant 2D active smectics:
Effects of a symmetry-breaking field (spin-wave theory)

We now turn to the spin-wave theory for active smectics
in the presence of a symmetry-breaking field. Even when
rotational symmetry is broken, the lowest order in derivative
terms allowed by x → −x, y → −y symmetry are still second
order derivatives. Therefore, the equation of motion is still

∂t u = Dy∂
2
y u + Dx∂

2
x u + f , (89)

where f u is a Gaussian, zero-mean spatiotemporally white
noise with

〈 fu(r, t ) fu(r′, t ′)〉 = 2�δ(r − r′)δ(t − t ′), (90)

as in the rotation-invariant case. The only difference between
this and the equilibrium case is that, in equilibrium, Dx can
only be nonzero due to the presence of the symmetry-breaking
field. Indeed, we expect Dx ∝ g. In active smectics, on the
other hand, as we have just seen, Dx can be nonzero simply
due to the activity. Thus, for small symmetry-breaking field g
(the limit we will consider later), we expect Dx to be essen-
tially independent of the symmetry-breaking field g.
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IV. DISLOCATIONS IN ACTIVE
SMECTICS: CONFIGURATIONS

In our nonequilibrium system, we can no longer determine
the fields of the dislocations by minimizing the free energy,
since there is no free energy for a nonequilibrium system.
However, we can readily obtain the fields of static dislo-
cations simply by looking for steady-state solutions of the
equations of motion (83), once those equations are suitably
rewritten to take into account the presence of dislocations.
As has already been discussed, this amounts to making the
replacements ∂xu → wx and ∂yu → wy. Doing so in the equa-
tion of motion (83), and setting all time derivatives to zero,
gives

Dx∂xwx(r) + Dy∂ywy(r) = 0. (91)

The other condition on dislocations is the Burgers’ condi-
tion, which can be written

∂xwy(r) − ∂ywx(r) =
∑

α

a0bαδ(r − rα ). (92)

These two simultaneous linear equations (20) and (21)
are exactly the same as those we obtained for nonrotation-
invariant, equilibrium smectics if we make the identifications
(85). Therefore, we can simply transcribe the solutions we
obtained for that problem here. This gives

wx(r) =
∑

α

a0bαGx(r − rα ), (93)

wy(r) =
∑

α

a0bαGy(r − rα ), (94)

where the Green’s functions Gx,y are now given by

Gx(r) = − y
√

DxDy

2π (Dxy2 + Dyx2)
, (95)

Gy(r) = x
√

DxDy

2π (Dxy2 + Dyx2)
. (96)

Note that we can write these Greens functions in terms of
the gradient of a potential:

Gx(r) = −�∂yV (r),

Gy(r) = 1

�
∂xV (r), (97)

where the potential

V (r) = 1

2π
ln

( |r′|
a0

)
= 1

4π
ln

(
Dyx2 + Dxy2

Dxa2
0

)
, (98)

and we have defined � ≡
√

Dy

Dx
and r′ ≡ (x

√
Dy

Dx
, y).

These dislocation fields are essentially identical in form to
those we found for equilibrium, nonrotation invariant smec-
tics in Sec. II B. However, we will see in the next section that
the motion of dislocations in response to these fields is very
different from that case.

V. DISLOCATION EQUATION OF MOTION FOR
ROTATION INVARIANT ACTIVE SMECTICS

We have established that both the spin-wave theory of ac-
tive, rotation-invariant smectics, and the field w(r) generated

by dislocations, are the same as those found for a nonrota-
tion invariant equilibrium smectic. It might therefore seem
reasonable to assume that the motion of dislocations, and, as
a result, the dislocation unbinding transition in these active,
rotation invariant systems would be the same as those of the
equilibrium, nonrotation invariant system. Indeed, precisely
this argument was made in earlier publications by one of us
[18,19].

However, this conclusion proves to be wrong. The reason
is that, despite the just noted similarities between active rota-
tion invariant systems and equilibrium, nonrotation invariant
systems, active, rotation invariant smectics are still rotation
invariant. This fairly obvious (indeed, tautological!) statement
makes the motion of dislocations in an active, rotation-
invariant smectic very different from that in an equilibrium,
nonrotation invariant one. The motion is so different, in fact,
that although dislocations are always bound at sufficiently low
temperatures in equilibrium, nonrotation invariant smectics
at sufficiently low temperature, they are never bound in an
active, rotation-invariant smectic with any nonzero noise, no
matter how small.

We will now demonstrate this. We begin by deriving the
equation of motion for dislocations in an active, rotation-
invariant smectic.

We restrict ourselves to “unit” dislocations, by which we
mean a dislocation whose Burgers’ number b has the smallest
possible magnitude; i.e., b = ±1.

As can be seen from Fig. 3, and from our analytic solutions
(93), (94) for the dislocation fields, a dislocation in a smectic
is an inherently polar object; it breaks the left-right symmetry
along the layers. This means that, in an active system, there
is no symmetry forbidding spontaneous motion of disloca-
tions either left or right along the layers. Therefore, by the
Curie principle [28], that “anything that is not forbidden is
compulsory,” we expect such motion to occur. Since a unit
dislocation with b = −1 is just the mirror image of one with
b = 1, if b = +1 dislocations spontaneously move to the left,
b = −1 must spontaneously move to the right, and viceversa.
The motion should be along the local layer direction, since
spontaneous motion perpendicular to the layers is forbidden
by the fact that dislocations do not break up-down symmetry.
Of course, a local curvature of the layers will break up-down
symmetry. Indeed, this is the origin of the force in equilibrium
smectics in the y direction given in Eq. (33). Note, however,
that because this effect involves curvature, it involves at least
two derivatives of the displacement field, or, equivalently,
one derivative of w. Hence, to leading (i.e., zeroth) order in
derivatives of w, the motion of a dislocation must be along
the layers. This has profound implications for the stability of
the active smectic state in rotation invariant systems, as we
will see.

These considerations imply that, to zeroth order in gradi-
ents of w, the velocity vα of the αth dislocation must take the
form

vα = vssgn(bα )ẑ × n̂(rα ), (99)

where

n̂ ≈ ŷ − φ(r)x̂ (100)
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is the local normal to the smectic layers. The characteristic
speed vs appearing in Eq. (99) is a system-dependent param-
eter. It will depend, importantly, on local properties like the
mean layer spacing a of the active smectic. It is this depen-
dence that makes it possible for the active smectic to reach
homeostasis, as we will argue below. The direction ẑ × n̂ of
v is dictated by the requirement that this spontaneous motion
be along the layers, which, as we just discussed, is required
by up-down symmetry. The factor of sgn(bα ) simply reflects
the fact noted above that oppositely charged dislocations must
move in opposite directions. Since our definition (14) of w
implies that the local layer spacing is simply

a(r) = a0[1 + wy(r)], (101)

where a0 is the “reference” layer spacing, relative to which we
measure w, the dependence of the spontaneous speed vs on the
layer spacing a is equivalent to dependence on wy. That is, we
can (and will!) take vs to be a local function of wy. Note that
rotation invariance forbids any dependence of vs on wx, since
a uniform wx corresponds to a pure rotation, which cannot
change the spontaneous speed (or, indeed, any local scalar) in
a rotation invariant system. These arguments imply that the
spontaneous speed vs(r) at a point r can be written as

vs(r) = vs[a(r)] = vs{a0[1 + wy(r)]} ≡ vs[wy(r)]. (102)

Using Eq. (102) in our expression (99) for the dislocation
velocity gives

vα
x = vssgn(bα ) + μxbαwy(rα ),

vα
y = vssgn(bα )wx(rα ). (103)

Strictly speaking, the spontaneous dislocation speed vs will
in general also depend on the magnitude |bα| of the Burgers’
charge as well as on its sign. In the rest of this paper, we will
avoid this complication by restricting our attention entirely to
dislocations of unit charge (that is, b = ±1). This is justified
by the fact that dislocations of higher charge are always unsta-
ble to spontaneously splitting into dislocations of unit charge,
or to merge with other dislocations to yield a unit charge
dislocation; both processes result in a finite lifetime. Hence,
only unit dislocations have the potential to live long enough
to become widely separated, or move across the system. As
a result, only unit dislocations have the potential to destroy
quasi-long ranged translational order. We will therefore re-
strict our attention to unit dislocations for the remainder of
this paper.

We will argue in the next section that, for an active smectic
confined between fixed boundaries, vs vanishes in the steady
state. We will refer to this state as the state of “homeostasis.”
Note that this implies that there is no motion in the y direction
(i.e., normal to the smectic layers) in the homeostatic state.
This in turn implies that, in the presence of noise, dislocations
in an active smectic are always unbound. As a result, the active
smectic state is, at any nonzero noise, always destroyed by
dislocation unbinding in rotation invariant active smectics.

VI. DISLOCATIONS: SELF-PROPULSION AND THE
APPROACH TO HOMEOSTASIS

The dominant term in the equations of motion (103) is the
“self-propulsion” term vssgn(bα ). For vs > 0, this term will
make positive dislocations move to the right, and negative
dislocations move to the left. Obviously, this switches for
vs < 0. Because wx,y(rα ) → 0 as |r| → ∞ [as can be seen
from Eqs. (93), (94)], the interactions between dislocations
cannot compete with this constant “external force”-like mo-
tion. Hence, even tightly bound pairs of dislocations will
eventually be rent asunder by the spontaneous motion, with all
of the positive dislocations moving to one side, and all of the
negative dislocations moving to the other. We therefore expect
dislocation pairs to constantly nucleate, be ripped apart by this
spontaneous velocity, and traverse the system.

Consider first the case vs(wy = 0) > 0. In this case, all
positive dislocations will eventually traverse the system from
left to right, while all negative dislocations will eventually
traverse the system from right to left. It is easy to see, both by
inspection of Fig. 3, and from our expressions for the disloca-
tion fields, that each time one of these happens (i.e., each time
either a positive dislocation traverses the system from left to
right, or a negative dislocation traverses the system from right
to left), the number of layers in the system is increased by
one. Therefore, if the boundaries of the system at the top and
bottom remain fixed, then the strain wy will decrease (i.e., be-
come more negative), since the mean layer spacing is reduced.
The crucial point here is that this self-propelled dislocation
motion changes the mean strain wy in the system. But since
the dislocation self-propulsion speed vs(wy) is itself a function
of wy, this implies that, as this process of pair nucleation,
separation, and motion across the system continues, the strain
wy will continue to evolve.

Will it ever stop? Yes, it will, provided that the speed
vs(wy) vanishes at some negative wy. We would expect it to do
so: as shown by Eq. (82), in an equilibrium smectic, a more
negative wy causes positive dislocations to move to the left
dislocation with a speed proportional to wy. Stability requires
that the negative strain induced by the process just described
will oppose the motion of positive dislocations to the right.
This opposition should get stronger as wy becomes more
negative, so it is very plausible that a type of “homeostasis”
will eventually be reached, at which the strain wy takes on a
value wy,h such that

vs(wy,h) = 0. (104)

This will almost always happen whenever the direction of
spontaneous motion of the dislocations causes them to move
in a direction that makes the strain evolve in such a way as
to oppose the spontaneous motion of the dislocations. As just
discussed, this is most likely to occur if vs(wy = 0) > 0, and
dvs
dwy

> 0 giving rise to a steady-state extensile stress normal to

the layers. The opposite case of vs(wy = 0) < 0, and dvs
dwy

<

0 will also reach homeostasis, and give rise to a contractile
steady-state stress normal to the layers.

So we expect stable active smectic systems to reach
homeostasis, as defined by Eq. (104). In such systems, the
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homeostatic layer spacing ah will be

ah = a0(1 + wy,h). (105)

It clearly makes sense to define this homeostatic layer spacing
as our reference layer spacing, and measure our displacement
field u relative to that. It is easy to relate the u field uh(r)
defined relative to this homeostatic state to that u0(r) defined
relative to the initial state with layer spacing a0; the required
transformation is just a linear function of the Cartesian coor-
dinate y:

uh(r) = u0(r) − wy,hy. (106)

Henceforth, we will drop the subscript h, and implicitly as-
sume that our u field is measured relative to the homeostatic
state. With this choice of variables, the homeostatic condition
(104) becomes simply

vs(wy = 0) = 0. (107)

Note that the argument just presented for the approach
of active smectics to the homeostatic state depended on the
presence of fixed boundaries without layer flux at the top
and bottom of the system. For active smectics confined un-
der constant stress between movable boundaries, however, a
homeostatic state is never reached. Instead, the active smectic
either grows arbitrarily large, pushing the boundaries ever
further out, or shrinks and disappears. The unbounded growth
scenario occurs if the applied normal stress σn at the bound-
aries is less than some homeostatic value σc, while shrinkage
and disappearance occurs if σn > σc. The reason for this be-
havior is clear: like all elastic systems, fixing the stress is
equivalent to fixing the strain. In smectics, the “strain” is just
wy. Hence, by fixing the stress at the boundary, we fix wy. If
wy is fixed at a value such that vs(wy) > 0 (this corresponds to
σn < σc), then positive dislocations will move to the right, and
negative ones to the left, thereby adding layers to the system.
The only way to keep wy fixed, therefore, is for the top and
bottom surfaces to move out, to accommodate the extra layers.
This process will continue indefinitely. On the other hand, if
wy is fixed at a value such that vs(wy) < 0 (this corresponds to
σn > σc), then positive dislocations will move to the right, and
negative ones to the left, thereby adding layers to the system.
The only way to keep wy fixed, therefore, is for the top and
bottom surfaces to move in, to accommodate the loss of layers.
This process will continue until the active smectic disappears
completely. This behavior is reminiscent of that predicted for
tissues and observed in epithelia [29–31]. The addition and
removal of layers corresponds to the addition of cells by cell
division and the removal of cells by cell death. In a tissue
under homeostatic conditions, the cell division rate is exactly
balanced by cell death rate. Since both cell division and cell
death depend on tissue pressure, in general, there will be only
one tissue pressure value for which these rates balance exactly.
This defines the homeostatic pressure, corresponding to the
stress σc in the homeostatic state of the smectic. If the tissue
is given a prescribed volume, keeping constant biochemical
conditions, then cells will divide and the tissue will grow to
occupy all space and settle to steady state, i.e., homeostasis,
when the tissue pressure reaches the homeostatic pressure.
Alternatively, if the tissue is kept at a constant pressure larger
than the homeostatic one, cell death will win over cell division

and the tissue will disappear. If the pressure is kept at a lower
value, then the tissue will invade all space. Tissue invasion of
one type of tissue by another one will occur if the homeostatic
pressure of the invading tissue is larger than the homeostatic
pressure of the invaded tissue. While the above discussion
has been very physical, biochemistry nonetheless plays an
important role, since the homeostatic pressure values depend
on local biochemical conditions.

Returning now to the case of fixed boundaries, and the
resultant homeostatic state, we can now ask, since the spon-
taneous velocity tearing dislocation pairs apart vanishes in
the homeostatic state, whether or not it is possible to achieve
a state free of unbound dislocations. Only if such a state is
possible can we have a true smectic. In the presence of noise,
the answer to this question proves to be no: dislocations in a
rotation invariant active smectic will always be unbound. We
will demonstrate this in the next section.

VII. MOTION AT HOMEOSTASIS AND THE
DESTRUCTION OF THE ACTIVE SMECTIC PHASE

As shown in the last section, at homeostasis,

vs(r) = vs[a(r)] = vs{ah[1 + wy(r)]} ≈ μxwy(r), (108)

where in the last, approximate, equality, we have expanded for
small wy(r), and defined the “mobility” μx ≡ a( dvs (a)

da )a=ah .
We have also used the fact that

vs(ah) = 0, (109)

since, as discussed above, isolated dislocations do not sponta-
neously move in the homeostatic state.

Inserting Eq. (108) into our general equation of motion
(103) for the dislocations, and linearizing those equations in
the strain field w gives

vα
x (t ) = μxbαwy(rα, t ) + f α

x (t ),

vα
y = f α

y (t ), (110)

where we have added a “Langevin force”—i.e., a random
white noise fα—to the equation of motion. In equilibrium,
these would simply be thermal noises, with variances pro-
portional to temperature. In our nonequilibrium system, they
can have nonthermal, active contributions as well. We will
assume, as seems reasonable, that these forces are white,
Gaussian, zero-mean, and decorrelated between different dis-
locations. Taking these conditions together with the x → −x,
y → −y symmetries of the apolar smectic state we are consid-
ering in this paper, implies that these forces have correlations

〈fα (t )〉 = 0 ,〈
f α
i (t ) f β

j (t ′)
〉 = (

�xδ
x
i j + �yδ

y
i j

)
δ(t − t ′)δαβ. (111)

Here δk
i j = 1, when i = j = k and 0 otherwise. Since the

forces are assumed to be Gaussian random variables (as
suggested by the central limit theorem), these correlations
completely specify the distribution of the forces fα (t ). This
implies that, to linear order in the field w, dislocation mo-
tion in the y direction is a perfectly random walk. Therefore,
any pair of dislocations will eventually wander arbitrarily far
apart in the y direction. Hence, dislocations in active, rotation
invariant smectics are always unbound. Another way to say
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this is that a true active smectic phase cannot exist in a noisy,
rotation invariant system.

VIII. BINDING DISLOCATIONS WITH A
SYMMETRY-BREAKING FIELD

As in equilibrium smectics, it is possible to make dislo-
cations bind in 2D active smectics by applying symmetry-
breaking fields. Once we do so, there is no longer any
symmetry argument forcing the dislocation velocity vs to be
independent of the “rotational” component of the strain wx.
Nor must this velocity be directed along the layers. Therefore,
we can write in general:

vα
s = [vs‖ẑ × n̂(rα ) + vs⊥n̂(rα )]sgn(bα ). (112)

By up-down symmetry, vs⊥(wx = 0) = 0. Therefore, the
leading-order term in the expansion of vs⊥(wx ) in powers of
wx is the linear term,

vs⊥(wx ) = −μywx, (113)

where we have defined

μy ≡ −
[

dvd⊥(wx )

dwx

]
wx=0

. (114)

By the same reasoning about homeostasis that we applied
to the rotation invariant case, we expect that, at homeostasis,

vs‖(ah) = 0. (115)

We can therefore again choose the state with a = ah to be our
reference state, and expand for small strain wy, obtaining, just
as we did for the rotation invariant case,

vs‖(r) = vs[a(r)] = vs{ah[1 + wy(r)]} ≈ μxwy(r), (116)

where again, we have excluded a term proportional to wx by
up-down symmetry.

Inserting the results (113) and (116) into Eq. (112), using
again the relation (100) n̂ ≈ ŷ − φ(r)x̂ between the layer nor-
mal n̂ and the strain wx, and expanding to linear order in the
strain w, we obtain

vx = μxwy, vy = −μywx. (117)

Since the μy term in Eq. (117) only appears due to the
rotational symmetry-breaking field, μy must vanish as the
strength g of that symmetry-breaking field goes to zero. We
therefore expect

μy ∝ g (118)

for small symmetry-breaking field strength g. This is the only
parameter in the dislocation dynamics that we expect to ex-
hibit any strong dependence on g at small g. We will use
this fact later to determine the behavior of the critical noise
strength at which dislocation unbinding occurs with g.

Note also that, as we saw in our discussion in Sec. II B 1
of symmetry-breaking fields in equilibrium smectics, g could
scale nonlinearly with experimentally tunable parameters like
magnetic field H . Indeed, we expect that, as in equilibrium,
g ∝ H2 for magnetic symmetry-breaking fields. On the other
hand, for symmetry breaking induced by etching grooves into
the 2D surface, we expect g to scale linearly with the density
of those grooves.

Consider now an isolated neutral pair of fundamental dislo-
cations, one with Burgers’ number b+ = +1 located at r+ ≡
(x+, y+), the other with Burgers’ number b− = −1 located
at r− ≡ (x−, y−). Since, as discussed earlier, the spin-wave
equation of motion (89) is unchanged in form by the presence
of the symmetry-breaking fields, and since, furthermore, the
Burgers’ condition is also unchanged, we can use the expres-
sions (93), (94) for the dislocation fields for active, rotation
invariant active smectics for this nonrotation invariant case as
well. Therefore, the strain field w(r+) due to the − dislocation
at the position r+ of the + dislocation is, from Eq. (94),

wx(r+) = −aGx(r) , wy(r+) = −aGy(r), (119)

where we have defined the relative displacement r ≡ (x+ −
x−, y+ − y−) ≡ (x, y). As always, we exclude the field of
the + dislocation at r+ from the field w above, since the +
dislocation only responds to the field of the other dislocation.
Likewise, the strain field w(r−) due to the + dislocation at the
position r− of the − dislocation is, from Eq. (94),

wx = aGx(r) , wy = aGy(r). (120)

Using the dislocation equation of motion (117), together
with our expressions (119) and (120) for the fields at the +
and − dislocations, we obtain the equations of motion for the
dislocations:

dx±
dt

= ∓μxaGy(r) + f ±
x (t ),

dy±
dt

= ±μyaGx(r) + f ±
y (t ), (121)

where, as we did for the rotation invariant case, we have added
random noises f± to the equation of motion for each dislo-
cation, to take into account random microscopic processes
(including, but not limited to, thermal fluctuations) that move
the dislocations. We will continue to take these noises to have
correlations given by (111), with the indices α and β running
over the two values + and −.

From Eqs. (121), it follows that the relative displacement r
obeys

dx

dt
= dx+

dt
− dx−

dt
= −2μxaGy(r) + fx(t ),

dy

dt
= dy+

dt
− dy−

dt
= 2μyaGx(r) + fy(t ), (122)

where the “relative force” f = f+ − f−. From this, it follows
that the relative force is also Gaussian, with mean and variance
given by

〈f (t )〉 = 0 ,

〈 fi(t ) f j (t
′)〉 = 2

(
�xδ

x
i j + �yδ

y
i j

)
δ(t − t ′)δαβ. (123)

Using our earlier expression (97) relating the Greens func-
tions Gx,y to the gradient of the potential (98), we can rewrite
this as

dx

dt
= −2

μx

�
a∂xV (r) + fx(t ),

dy

dt
= −2μy�a∂yV (r) + fy(t ). (124)

054607-14



BROKEN LIVING LAYERS: DISLOCATIONS IN ACTIVE … PHYSICAL REVIEW E 106, 054607 (2022)

Note that if the noise variances �x,y and the effective “rel-
ative mobilities”

μrel
x ≡ 2aμx

�
, μrel

y ≡ 2aμy� (125)

satisfied

�x

�y
= μrel

x

μrel
y

, (126)

then the equations of motion (124) could be written in the
form

dri

dt
= −	̃i j∂ jU (r) + fi(t ), (127)

with U (r) = KV (r), a diagonal kinetic coefficient tensor

	̃i j = (
	̃xδ

x
i j + 	̃yδ

y
i j

)
, (128)

and the noise correlations given by〈
f α
i (t ) f β

j (t ′)
〉 = 2kBT 	̃i jδ(t − t ′)δαβ. (129)

The reader can easily show for herself that this works provided
the temperature T , kinetic coefficient tensor components 	̃x,y,
and effective spin-wave stiffness K obey

kBT

K
= �x

μrel
x

= �y

μrel
y

, 	̃x,y = μrel
x,y

K
. (130)

The relation (129) between these noise correlations and
the kinetic coefficient tensor 	̃i j is exactly that required by
the fluctuation-dissipation relations [1]. Therefore, the relative
motion of the dislocation pair is exactly that of a pair moving
in equilibrium in the potential U (r). This is precisely the equi-
librium model for the Kosterlitz-Thouless transition discussed
in Sec. II B 3. Therefore, if this system did happen to satisfy
the relation (126), it would undergo a Kosterlitz-Thouless
unbinding transition as noise was increased. Most importantly,
at sufficiently small, but nonzero, noise (i.e., sufficiently low
temperature in the equilibrium model), dislocations would
remain bound, and the active smectic phase would be stable.
However, in a weak symmetry-breaking field, the system will
always be far from satisfying the relation (126). This can be
seen from limiting behaviors of the �’s and μ’s in the limit of
weak symmetry-breaking field g: they all go to finite constants
as g → 0 except μy, which, as discussed earlier, vanishes
according to μy ∝ g as g → 0. Even if the symmetry-breaking
field is not weak, there is no reason our nonequilibrium active
smectic should obey (126). Therefore, the connection to the
equilibrium Kosterlitz-Thouless transition just made for the
special case in which equation (126) is satisfied will not, in
general, hold. Nonetheless, we expect this system to undergo
something very like a Kosterlitz-Thouless transition, at least
for very weak symmetry-breaking fields. To establish this,
however, we cannot use equilibrium arguments. Instead, we
must use the more general Fokker-Planck equation for the
generic nonequilibrium system, to which we now turn.

Using standard techniques [1], we can show that the
stochastic equation of motion (124) for the relative displace-
ment r of the two dislocations implies that the probability
density ρ(x, y, t ) for the relative displacement vector r obeys
the Fokker-Planck equation:

∂tρ + ∇ · (uρ) − (
�x∂

2
x + �y∂

2
y

)
ρ = 0, (131)

where

ui(r) ≡ −μi j∂ jV (r), (132)

with the effective relative mobility tensor

μi j = (
μrel

x δx
i j + μrel

y δ
y
i j

)
, (133)

is the deterministic part of the relative dislocation velocity in
Eq. (124).

Looking for steady-state solutions to this equation, we can
set the time derivative to zero, and drop the time dependence
of ρ(x, y, t ) [that is, set ρ(x, y, t ) = ρ(x, y)]. Doing so, and
using our expression (98) for V (r), leads to the steady-state
equation:

(
�x∂

2
x + �y∂

2
y

)
ρ + ∂x

(
γxxρ

x2 + αy2

)
+ ∂y

(
γyyρ

x2 + αy2

)
= 0,

(134)

where we have defined

α ≡ Dx

Dy
= 1

� 2
(135)

and

γi = μrel
i

2π
, i = (x, y). (136)

Since we expect that, for small symmetry-breaking field g,
μy ∝ g, while all other parameters should go to finite, nonzero
constants as g → 0, we therefore expect

γy ∝ g as g → 0. (137)

We will use this scaling law later to determine how the critical
noise strength �c

y(ζ , g) at which noise destroys smectic order
depends on activity ζ and symmetry-breaking field strength
g. Our experience with the equilibrium case suggests that we
seek a solution of this equation which falls off like a power
law; i.e., ρ(r) ∝ r−ν for large r. We will therefore insert the
scaling ansatz

ρ(x, y) = y−ν�(x/y) (138)

into Eq. (134).
Doing so, we find that such a solution will indeed work,

provided that the scaling function �(z) obeys the ODE:

�x�
′′(z) + �y[z2�′′(z) + 2(ν + 1)z�′(z) + ν(ν + 1)�(z)]

= −γx
d

dz

[
z�(z)

z2 + α

]
+γy

{
(1 + ν)�(z)

z2 + α
+ z

d

dz

[
�(z)

z2 + α

]}
.

(139)

We will not need to solve this equation (fortunately!);
rather, we will use it simply to establish that the scaling
function �(z) does nothing singular as γy → 0; that is, as the
symmetry-breaking field strength goes to zero. In particular,
the range of �(z)—that is, the value of z at which �(z) starts
falling off fast enough that its integral converges—does not
diverge as γy → 0. To see this, consider Eq. (140) at z = 0,
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where it reads

�′′(z = 0)

= −
{(

�y

�x

)
ν(1 + ν) + [γx − γy(1 + ν)]

α�x

}
�(z = 0).

(140)

Since �x and �y are of the same order of magnitude,
the coefficient of �(z = 0) in Eq. (140) is at least O(1).
Therefore, �′′(z = 0) is a negative number whose magni-
tude is �O(1) times �(z = 0). This means that we would
expect �(z) to drop from �(z = 0) to small values on a
scale no larger than O(1). For large z the behavior of �(z)
obeys z2�′′(z) + 2(ν + 1)z�′(z) + ν(ν + 1)�(z) = 0, which
implies �(z) ∼ z−ν for large z.

Our scaling ansatz (138) implies that

f (y) ≡
∫ ∞

−∞
ρ(x, y)dx =

∫ ∞

−∞
y−ν�(x/y)dx = y1−νϒ1,

(141)
where we have defined

ϒ1 ≡
∫ ∞

−∞
�(z)dz. (142)

Our above observation that �(z) becomes small for z �
O(1) regardless of the value of γy implies that ϒ1 = O(1)
regardless of the value of γy as well. Note also that ϒ1 is
independent of y.

Now, integrating Eq. (134) over x from −∞ to ∞ gives

�y f ′′(y) = −γy
d

dy

[
y
∫ ∞

−∞

ρ(x, y)dx

x2 + αy2

]
. (143)

In deriving this equation, we have dropped surface terms that
must vanish since the scaling function �(z) vanishes suffi-
ciently rapidly to be integrable. Using our scaling ansatz (138)
enables us to rewrite∫ ∞

−∞

ρ(x, y)dx

x2 + αy2
=

∫ ∞

−∞

y−ν�(x/y)dx

x2 + αy2
= y−1−νϒ2, (144)

where we have defined

ϒ2 ≡
∫ ∞

−∞

�(z)dz

z2 + α
. (145)

Like ϒ1, ϒ2 can be readily seen to be O(1), even when γy →
0. Thus, Eq. (143) can be rewritten as

�y
d2

dy2
(ϒ1y1−ν ) = −γy

d

dy
(ϒ2y−ν ), (146)

which can readily be seen to work [because both sides scale
the same way with y; specifically, like y−(ν+1)] provided

�yϒ1ν(ν − 1) = γyϒ2ν. (147)

Since ν = 4 at the dislocation unbinding transition, Eq. (147)
implies that the value �c

y of �y at the transition obeys

�c
y = γy

(
ϒ2

3ϒ1

)
. (148)

Since ϒ1 and ϒ2 are of O(1), even when γy → 0, Eq. (148)
implies that

�c
y = γy × O(1). (149)

Given our earlier argument that γy should vanish linearly
with the symmetry-breaking field g as g → 0, this result
implies that the noise strength �c

y at the transition should
also vanish linearly with g as g → 0. Since we also expect
that the noise strengths �x,y in the dislocation equation of
motion noise correlations (123) are both proportional to the
spin-wave noise strength �, this implies that the value �c of
the spin-wave noise strength � at the transition should also
scale linearly with the symmetry-breaking field strength g for
small g; that is

�c ∝ g as g → 0. (150)

This result should be contrasted with the equilibrium result

�eq
c ∝ √

g as g → 0, (151)

which follows from Eq. (76) if we interpret TKT as the critical
noise correlation strength. We therefore see that, for small
symmetry-breaking fields g, the critical noise strength �c for
dislocation unbinding and the melting of the smectic phase is
much weaker for active smectics than for equilibrium smec-
tics. Active smectics are less robust against melting, even in
the presence of symmetry-breaking fields, than their equilib-
rium counterparts. Another consequence of this result (150) is
that the critical value ηc of the exponent η for algebraic decay
of smectic translational order becomes nonuniversal. Indeed,
since the diffusion constants Dx and Dy go to finite, nonzero
constants as the symmetry-breaking field g → 0, while the
critical noise strength �c vanishes according to 150, the value
of ηc also vanishes linearly with symmetry-breaking field:

ηc ∝ γy√
DxDy

∝ g as g → 0. (152)

IX. FROM MALTHUSIAN TO INCOMPRESSIBLE
ACTIVE SMECTICS

In the preceding paragraphs, for the sake of simplicity we
have ignored the existence of a local velocity field v(r). This
field has two effects: It can advect the dislocations, and it can
modify the expressions of wx(r) and wy(r). The equations of
motion for the dislocation pair separation now read

dx

dt
= 2ψvx(r) − 2μxwy(r) + fx(t ),

dy

dt
= 2ψvy(r) + 2μywx(r) + fy(t ), (153)

where by v(r) we mean the velocity field at the point r gen-
erated by a +1 dislocation, and the factor of 2 comes from
the fact that an equal and opposite velocity field is generated
by the −1 dislocation at the position of the +1 dislocation,
and the two effects on the relative motion add. Note that the
prefactors of vx(r) and vy(r) are not 2, as one might naively
expect, but 2ψ , where the factor ψ captures the effects of
drag between the dislocations and the substrate, as discussed
in the Appendix B. However, these effects do not modify our
analysis since we will show that the velocity contribution is
subdominant compared to that of wx,wy. The equations for
the velocity field involve the force balance, the layer dynam-
ics equation and the density nonconservation equation. At
steady state the layer dynamical equation (83) becomes (see
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Appendix B)

0 = vy(r) + Dy∂ywy + Dx∂xwx + f . (154)

This equation shows that v(r) is of the order of derivatives
of ∂xwx, ∂ywy which lead to terms subdominant compared to
w in the long distance limit. This confirms our claim that
the advection term in Eq. (153) is subdominant. The force
balance expresses the fact that the momentum extracted from
the substrate is balanced by the divergence of the stress. The
momentum exchange with the substrate involves not only the
usual friction term, but because we are dealing with an active
system, also involves gradients of layer spacing plus bend
and splay of the layer normal. The stress tensor involves the
layer compression term as in conventional smectics, the pres-
sure term and the usual active stress of anisotropic systems.
The viscous term which is of higher order in gradients than
substrate friction may be omitted. The density balance equa-
tion involves a source term which expresses that whenever
the pressure departs from its homeostatic value, the elements
building the active smectic are either created or destroyed. It
has been shown that under these conditions on long timescales
one can replace the pressure term by a bulk viscous term
[30]. As already pointed out viscous terms can be omitted
in the long wavelength limit and it is then straightforward to
show that the equation we found for wx,wy given in Eq. (91)
is valid and the effect of flow is simply to renormalize the
coefficients. Thus, our conclusions concerning the Malthusian
case are valid even when one takes into account a momentum
exchange with the substrate more complex than just friction.

We now turn to the incompressible active smectic case. The
pressure becomes a Lagrange multiplier which can be calcu-
lated with the condition that the divergence of the velocity
field vanishes. Other equations are identical to the one we
just discussed. They can be solved in a straightforward way.
All together, this adds up to eight parameters in the problem.
Following the same logic as before we obtain

wx(r) = − yγ (1)
x

2π (α1y2 + x2)
+ yγ (2)

x

2π (α2y2 + x2)
, (155)

wy(r) = xγ (1)
y

2π (α1y2 + Dyx2)
− xγ (2)

y

2π (α2y2 + Dyx2)
. (156)

We have obtained expressions for
γ (1)

x , γ (2)
x , γ (1)

y , γ (2)
y , α1, α2 in terms of the aforementioned

eight parameters, but they are not very illuminating and so
we will not give them here. In the large friction regime one
recovers the results of the Malthusian case, with γ (2)

x , γ (2)
y

going to zero, γ (1)
x , γ (1)

y going to γx, γy, and α1, α2 going to
α. The important point is that the expressions (155), (156)
appear as the difference between two functions having the
same structure as the one appearing in the Malthusian case,
with the same scaling. Thus, there is an important parameter
space for which the sign of wx(r),wy(r) and the scaling
are the same as in the Malthusian case. This means that the
same procedure as in the preceding section can be followed,
and that the conclusions detailed in the Malthusian case are
valid in general in a broad range of parameters, even in the
incompressible case.

X. SUMMARY, CONCLUSIONS, AND SUGGESTIONS
FOR FUTURE WORK

We have shown that dislocations in dry active Malthusian
smectics—that is, smectics lacking all conservation laws, in-
cluding that of particle number—behave very differently from
those in equilibrium smectics. Specifically:

(1) They can move spontaneously, even in isolation.
(2) Because of this, active smectics with “constant stress”

boundary conditions can never reach a steady state. Instead,
they either grow forever, or shrink and disappear. This behav-
ior is similar to that of tissues [30].

(3) When their boundaries are fixed, active smectics reach
a state of “homeostasis,” in which the spontaneous motion of
isolated dislocations ceases.

(4) However, even in the state of homeostasis, dislocations
are always unbound in rotation invariant active smectics, if
there is any noise, however small. This means that the active
smectic phase does not, in fact, exist at finite noise.

(5) By applying rotational symmetry-breaking fields, ac-
tive smectics can be stabilized against dislocation unbinding
for sufficiently small noise. However, for weak symmetry-
breaking fields, active smectics are less robust against noise
than their equilibrium counterparts. Specifically, the critical
noise strength �c above which dislocations unbind and smec-
tic order is lost scales linearly with the symmetry-breaking
field strength g, in contrast to the

√
g scaling of the critical

temperature in an equilibrium smectic.
(6) As a result, the exponent η for the algebraic de-

cay of smectic correlations [given by Eq. (88)] becomes
nonuniversal at melting, and in fact vanishes linearly with
symmetry-breaking field strength g as g → 0. This should
be contrasted with the universal value η(Tc) = 1/4 of this
exponent in equilibrium smectics with a symmetry-breaking
field, a result that is completely independent of the symmetry-
breaking field g.

Our work here has, of course, focused mainly on a very
particular type of smectic, namely dry Malthusian apolar
smectics. In contrast to equilibrium systems [1], for which the
exact nature of the dynamics—in particular, what conserva-
tion laws the dynamics respects—has no effect on the equal
time correlations of smectic fluctuations, in active systems,
because they are nonequilibrium, all we have is dynamics,
and, so, a priori, results could change if we consider smectics
with conservation laws. The most obvious of these is number
conservation, which our Malthusian smectics lack, due to
“birth and death” of the constituent active particles. One can
of course imagine many situations in which birth and death
are absent (at least on the timescale of an experiment). Such
systems will have very different hydrodynamic equations, be-
cause the conserved particle density will now become a slow,
hydrodynamic variable [33], thereby completely changing the
dynamics. The spin-wave theory for this case has already been
worked out [18], and our analysis of the incompressible case
suggests our results are quite general. Likewise, momentum
conservation, which will hold for freely suspended 2D sys-
tems (i.e., those not in contact with a substrate to which they
can lose momentum) always radically changes the dynamics,
for similar reasons. Finally, polarity (i.e., the absence of head-
tail symmetry) is also known [19] to change the nature of the
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spin-wave theory of active smectics. So its role in dislocation
behavior should also be investigated.

We strongly suspect that in all of these more complicated
systems, our fundamental conclusion—namely, that disloca-
tions in a rotation invariant 2D active smectic will always
be unbound in the presence of noise, meaning that the active
smectic phase cannot exist at finite noise in two dimensions.
We suspect this because, whatever the conserved quantities,
rotation invariance forbids motion of dislocations, other than
Brownian motion driven by noise, or motion driven by cur-
vature of the layers, in the direction perpendicular to the
layers in a rotation invariant system. Because the curvature
field induced by dislocations will always fall off quite rapidly
with distance from the dislocation, the motion induced by
them will always be insufficient to bind a dislocation pair.
Instead, dislocations can always unbind by diffusing apart in
the direction normal to the layers, as we found here for dry
Malthusian active smectics. Obviously, this conclusion is at
best speculative until those other systems enumerated above
are explicitly investigated.
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APPENDIX A: EXAMPLES OF MALTHUSIAN
ACTIVE SMECTICS

Tissues growing or developing on a substrate [32,34] lack
all conservation laws: Cell number is not conserved due to
cell division and death. Momentum is lost due to friction with
the substrate, and can be gained due to active forces between
the cells and that substrate. Finally, energy is not conserved,
both due to friction with the substrate, and because living cells
have a fuel source (i.e., food) which enables them to consume
energy. Hence, if such a system is thin compared to its lateral
extent, and spontaneously forms a layered structure, it is a
two-dimensional dry Malthusian active smectic of exactly the
type we describe here. An example of a tilted active smectic
is provided by the zebrafish myotome [35].

The cell actomyosin system may also provide an example
of a Malthusian active smectic. Cell contractility is known
to result mainly from the action of the myosin II molecular
motors on the cortical actin gel. Myosin II motors have a long
tail, and two active heads. The tails of several motors tend to
bundle in a way similar to the tail bundling of phospholipids,
but at a different scale: The resulting head-to-head distance is
on the order of 300 nm [36]. Often the picture of the bundle,
which is called a minifilament, is that of a symmetric flower
bouquet and their distribution in the actin gel is essentially
random. More ordered structures exist: There is well-defined
3D crystalline order in muscles, and 1D periodic patterns oc-
cur in stress fibers. An intermediate arrangement is observed
in lamellipodia of fibroblasts [36–38]: The myosin heads and

tails arrange in lines similar to patterns of phospholipids,
building a clear 2D smectic order. Dislocations of Burgers’
number b = ±1 are seen. The actin filaments are on average
orthogonal to the myosin lines with no specific translational
order. The bundling and unbundling process does not conserve
myosin number and interactions with the substrate exchange
momentum. Hence, this is a “dry” system in the sense de-
fined earlier. Such systems of stacked myosin II filaments in
cells therefore have all of the characteristics of the dry active
Malthusian smectics discussed in this manuscript.

Roll systems of the Rayleigh-Bénard type usually occur
in incompressible fluids, and conserve neither the number
of rolls nor momentum, since they are sandwiched between
walls. Thus, they correspond to our example discussed in
Sec. IX.

APPENDIX B: THEORY OF ACTIVE SMECTICS

We describe the smectic configuration by the vector field
mn̂ which also defines w(r, t ) = (a0m − 1)n̂, where m = 1/a
is the density of layers, n̂ is a unit vector normal to the layers
and a0 a reference layer spacing. The vector field mn̂ satisfies
a general balance equation

∂t (mn̂) + ∇Jm = −ẑ × Jd . (B1)

Here, the dislocation current is

Jd =
∑

α

bαvαδ(r − rα ), (B2)

where vα is the velocity of dislocation α and bα its Burgers’
number. The layer rate Jm can in the absence of dislocations
be identified with the rate of change of layer displacement:

Jma0 = −∂t u , no dislocations. (B3)

Equations (B1) and (B2) imply Eq. (13).
In a hydrodynamic theory, we write phenomenological

constitutive equations for Jm and for the force balance, using
terms allowed by symmetry at lowest order in spatial deriva-
tives. For an up-down and rotationally symmetric smectic,
these can be written as

Jm = mv · n̂ − Dmn̂ · ∇m + λm∇ · n̂, (B4)

∇ · σ = μ · v + ν · ∇m + λv
b(n̂ · ∇)n̂ + λv

s n̂(∇ · n̂), (B5)

where v is the material flow velocity and we have introduced
phenomenological coefficients Dm, λm, λv

b,s as well as mobil-
ity and kinetic tensors μ, ν and we have omitted the noise for
simplicity.

The stress tensor σ also obeys a constitutive relation which
is of the form

σi j = −Pδi j − B

(
n̂in̂ j − 1

2
δi j

)
m − m0

mh
, (B6)

where P is pressure and we have omitted higher-order and
viscous terms which are subdominant in the hydrodynamic
limit. To study small deformations, we write m = 1/a0 + δm
and n̂ = sin(φ)x̂ − cos(φ)ŷ. To linear order in φ and δm we
then have

a0mn̂ 
 φx̂ − (1 + a0δm)ŷ, (B7)

054607-18



BROKEN LIVING LAYERS: DISLOCATIONS IN ACTIVE … PHYSICAL REVIEW E 106, 054607 (2022)

which is the same as Eq. (14). Furthermore, we have to lowest
order wx 
 φ and wy 
 −a0δm. Finally, Eq. (B4) becomes

−Jma0 = vy + Dx∂xwx + Dy∂ywy, (B8)

where Dy = Dm and Dx = −λma0. In steady state Jm = 0 and
we obtain Eq. (154).

The velocity vy can be determined using Eqs. (B5) and
(B6). Doing so, we have to distinguish the Malthusian from
the incompressible case. In the Malthusian case, material is
not conserved and ∇ · v does not vanish. In this case, P =
−ηb∇ · v, where ηb is a bulk viscosity and the contributions
from viscosity and pressure are irrelevant in the hydrodynamic
limit. The unusual absence of a compression term is due to the
absence of particle number conservation [29]. We then have

μyyvy 

[
λv

s − B

(
m − m0

mh

)]
∂xφ −

(
νyy + B

2mh

)
∂ym.

(B9)
Using this expression in Eq. (B8) to eliminate vy we arrive in
steady state at Eq. (91) of a Malthusian active smectic but with
renormalized coefficients

Dx = −λma0 + λv
s − B(mh − m0)/mh

μyy
, (B10)

Dy = Dm + νyy + B/(2mh)

a0μyy
. (B11)

In the incompressible case the pressure acts as a Lagrange
multiplier to impose the incompressibility constraint ∇ · v =
0. This modifies the hydrodynamic modes; see Sec. IX.

The velocity of dislocation α can also be written on sym-
metry grounds to lowest order as

vα = ψv + B′
(

m − mh

mh

)
bαn̂ × ẑ, (B12)

where mh is the layer density in the homeostatic state and
which is equivalent to Eq. (99).

In the presence of a symmetry-breaking field H rotation in-
variance is broken. In this case additional symmetry-breaking
terms involving a tensor Si j = gĤiĤj are permitted. These
additional terms do not affect Eq. (B8) at linear order; see
Eq. (154). However, Si j allows for an additional term in the
dislocation velocity when rotation invariance is broken

vα = ψv + B′
(

m − mh

mh

)
bαn̂ × ẑ + B′′bαS · n̂ × ẑ, (B13)

where the field H is aligned such that S = gH2x̂ ⊗ x̂, which
corresponds to Eq. (112). The dislocation velocities thus obey
Eq. (117) with μx = B′bα and μy = gH2B′′bα and we obtain
Eq. (118).
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