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Energy and Matter Supply for Active Droplets

Jonathan Bauermann, Christoph A. Weber,* and Frank Jülicher*

Chemically active droplets provide simple models for cell-like systems that
can grow and divide. Such active droplet systems are driven away from
thermodynamic equilibrium and turn over chemically, which corresponds to a
simple metabolism. Two scenarios of nonequilibrium driving are considered.
First, droplets are driven via the system boundaries by external reservoirs that
supply nutrient and remove waste (boundary-driven). Second, droplets are
driven by a chemical energy provided by a fuel in the bulk (bulk-driven). For
both scenarios, the conservation of energy and matter as well as the balance
of entropy are discussed. Conserved and nonconserved fields are used to
analyse the nonequilibrium steady states of active droplets. Using an effective
droplet model, droplet stability and instabilities leading to droplet division are
explored. This work reveals that droplet division occurs quite generally in
active droplet systems. The results suggest that life-like processes such as
metabolism and division can emerge in simple nonequilibrium systems that
combine the physics of phase separation and chemical reactions.

1. Introduction

Chemical processes in living cells are organized in distinct com-
partments. Some of these compartments use membranes, oth-
ers use interfaces that separate coexisting phases.[1–4] An impor-
tant question is how compartmentalization provided by droplets
affects chemical processes[5–8] It has already been proposed

J. Bauermann, F. Jülicher
Max Planck Institute for the Physics of Complex Systems
Nöthnitzer Straße 38, 01187 Dresden, Germany
E-mail: julicher@pks.mpg.de
C. A. Weber
Faculty of Mathematics
Natural Sciences, and Materials Engineering: Institute of Physics
University of Augsburg
Universitätsstraße 1, 86159 Augsburg, Germany
E-mail: christoph.weber@physik.uni-augsburg.de
F. Jülicher
Center for Systems Biology Dresden
Pfotenhauerstrasse 108, 01307 Dresden, Germany
F. Jülicher
Cluster of Excellence Physics of Life
TU Dresden, 01062 Dresden, Germany

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/andp.202200132

© 2022 The Authors. Annalen der Physik published by Wiley-VCH
GmbH. This is an open access article under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivs License, which permits
use and distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no modifications or
adaptations are made.

DOI: 10.1002/andp.202200132

100 years ago that chemical compartmen-
talization by phase-separated coacervates
could have played a key role at the origin
of life.[9–12] In particular, phase-separated
droplets could serve as simple models of
protocells with life-like behaviors when
maintained away from equilibrium:

(i) Droplets enrich and confine cer-
tain components providing a dis-
tinct chemical environment.

(ii) Such droplets can localize chem-
ical reactions defining a proto-
metabolism.

(iii) Chemical activity can drive droplet
growth.

(iv) Chemically active droplets can un-
dergo a shape instability, and di-
vide into daughter droplets. The life-
life behaviors (i)–(iv) have been dis-
cussed theoretically using minimal

models as a proof of principle[13–15] Such minimal mod-
els, however, consider simple binary mixtures that are com-
posed of two components which undergo demixing and also
can chemically convert into each other—a simplification
that can be hardly realized in experimental chemical system.

In this work, we discuss more realistic scenarios of droplet
models of protocells. These scenarios distinguish between nutri-
ent, droplet material, waste, and solvent. Such systems are versa-
tile and open new possibilities for experimental realizations since
real chemical systems with active droplets[16–19] are not binary
and the spatial distribution of nutrients and waste is in general
relevant for the emergence of the aforementioned life-like behav-
iors. Droplet systems also provide appealing models of simple
but realistic protocells and permit to consider both energy and
matter flows.
The paper is organized as follows. In Section 2, we first intro-

duce two complementary cases of active droplets which provide
models of protocells which differ in the supply of matter and en-
ergy. In Section 3, building upon recently developed theoretical
concepts,[8,15,20] we present a general theory of droplet systems in
the presence of chemical reactions. We use this approach in Sec-
tion 4 to discuss the dynamics of protocells for the two cases. In
Section 5, we discuss the energy, mass, and entropy balance in
these systems and we discuss our results in Section 6.

2. Active Droplet Models of Simple Protocells

We introduce active droplet models based on four components,
i = S,D,N,W. These components are solvent S, droplet material
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Figure 1. Chemical reactions maintained away from equilibrium by reser-
voirs of nutrient and waste. A) Boundary-driven case with nutrient and
waste reservoirs at the system boundary. B) Bulk-driven case with energy
supply via chemical reactions with broken detailed balance in the outside
phase.

D, nutrient N, and wasteW. We first specify the components in-
volved in phase separation and introduce the chemical reactions.
We then discuss the conditions by which the system is driven out
of thermodynamic equilibrium.

2.1. Phase Separation and Chemical Reactions

We consider an incompressible, phase-separating system that
undergoes chemical reactions, see Figure 1. Droplet material
D phase-separates from a solvent S leading to droplets. A nu-
trient component N can chemically convert to droplet material
D, thereby feeding the droplet. Droplet material can undergo a
chemical change to becomewasteW. These reactions can bewrit-
ten as

N ⇌ D (𝛼 = 1) (1)

D ⇌ W (𝛼 = 2) (2)

and are indexed with 𝛼 = 1, 2. For simplicity, we consider that
reactions involving the droplet material only occur inside the
droplets. This is motivated by the idea that these reactions are
enabled by catalysts that are absent outside and thus solely lo-
cated inside droplets. We also consider the possibility that waste
W can be directly converted to nutrient N.
This reaction can be written as

W ⇌ N (𝛼 = 3) (3)

This reaction, for simplicity, only occurs outside of the droplet.

2.2. Energy and Matter Supply

In order to discuss the energy balance, we need to introduce the
exchange chemical potentials 𝜇D, 𝜇N , and 𝜇W with respect to the
solvent component.We discuss two different cases of nonequilib-
rium driving, boundary-driven and bulk-driven, see Figure 1A,B.
In the boundary driven case (A), the concentrations of nutri-

ent N, waste W and droplet material D at the system bound-
ary are fixed via concentration boundary conditions, correspond-
ing to a coupling to a reservoir. This reservoir set values of the
chemical potentials at the boundary 𝜇∞

i . We choose conditions

where 𝜇∞
N > 𝜇∞

D > 𝜇∞
W such that the direction of chemical reac-

tions is from nutrient via droplet material to waste. Therefore,
nutrient will be provided and waste will be absorbed by the reser-
voir. In this case, we do not consider the direct reaction between
waste and nutrient Equation (3). In this case (A), the free en-
ergy provided by the reservoir per consumed nutrientmolecule is
𝜇∞
N − 𝜇∞

W > 0. This difference maintains the system out of equi-
librium and drives a constant flux of molecules through the sys-
tem. The total volume fraction 𝜓 = 𝜙D + 𝜙N + 𝜙W , where 𝜙i de-
notes the volume fraction of component i, is a conserved quan-
tity. It obeys the continuity equation, 𝜕t𝜓 + ∇ ⋅ j𝜓 = 0, where j𝜓 is
the associated, conserved current. The conserved quantity is pro-
vided by the reservoir and can feed droplet growth. Therefore,
droplet size is not limited by the conservation law.
In the bulk driven case (B), we impose no-flux boundary con-

ditions, considering that no exchange of molecules with reser-
voirs occurs at the boundaries. The system is maintained out-
of-equilibrium by introducing an external energy input Δ𝜇act to
the reaction Equation (3) (𝛼 = 3). This energy input could, for ex-
ample, be provided by chemical fuel or by radiation. The energy
input Δ𝜇act drives the reaction which would spontaneously run
from N toW in the opposite direction and allows nutrient to be
recycled to waste. This can be achieved when Δ𝜇act + 𝜇W > 𝜇N .
The quantity 𝜓 is again a conserved quantity. Since there is no
exchange at the boundaries, the amount of this conserved quan-
tity 𝜓 is fixed inside the system. Therefore, the amount of droplet
material D is limited by the conserved quantity. This is implied
that even though free energy Δ𝜇act is continuously supplied to
the system, the droplet size is limited by the conservation law.

2.3. Droplet Dynamics and Droplet Division

These cases can be compared to the minimal protocell model
based on a binary system studied previously.[14] In this simple
system, two components phase-separate from each other and can
also be chemical converted into each other. Active droplets in this
binary system are driven in the bulk by the chemical energy input
Δ𝜇act. However, in this binary system, there is only one indepen-
dent volume fraction and no conservation law. Therefore, droplet
size is not limited by a conservation law. In previous work,[14] it
was shown that droplets can either shrink and disappear, grow
until droplets reach a stable size or undergo a shape instability
and divide. In the latter case, cycles of growth and division can
lead to many daughter droplets that together occupy an increas-
ing volume.
Motivated by these findings, we study here the dynamics and

properties of active droplets in the more realistic protocell mod-
els introduced here. These models differ from the binary model
by taking into account a solvent S which phase-separates from
the droplet material D. Most importantly, this solvent does not
undergo chemical transitions with the droplet materialD. There-
fore, the proposed models in our work are closer to existing ex-
perimental systems.[16–19]

As we will show in the following, our simple protocell models
also exhibit regimes where droplets are stable with a finite size,
and regimes where droplets divide via a shape instability. Exam-
ples of droplet dynamics in the boundary driven case are shown
in Figure 2 as snapshots of configurations of droplet material at

Ann. Phys. (Berlin) 2022, 2200132 2200132 (2 of 13) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Figure 2. Shape dynamics of active droplets. A–C) Volume fraction fields of droplet material 𝜙D for different time points t in boundary-driven systems
for three values of 𝜙N as indicated. Last panel in (B) shows density distributions of 𝜙N and 𝜙W on a planar cross section. Solutions were obtained by
numerical integration of Equation (4), initializing with a slightly elongated droplet at t = 0. Parameter values are given in Table C1 and Appendix C.

different time points and for different nutrient reservoir volume
fractions 𝜙∞

N . For all cases, we initialize an almost spherical
droplet with small shape elongation that is positioned at the
system center. For small nutrient supply (𝜙∞

N = 0.04), an initially
prepared droplet tends to shrink as the waste release from the
droplets exceeds the nutrient supply. In this case, the rate of
nutrient supply set by the boundary conditions, which leads to
generation of new droplet material is insufficient to compen-
sate for droplet material loss via its transition to waste, which
leaves the system at the boundaries. For larger nutrient supply
(𝜙∞

N = 0.08), an active droplet is stationary with a size that is
determined by the nutrient supply. At this stationary state, the
transition of nutrient to droplet material within the droplet
balances the loss of droplet material transitioning to waste.
Increasing the nutrient supply further (𝜙∞

N = 0.13), the spherical
shape becomes unstable with respect to small perturbations and
droplet division occurs. These different cases will be discussed
in more detail in Sections 4 and 5.
In the next chapter we present the general theory of multi-

component active droplets and discuss in detail the energetics
and the conservation laws.

3. Theory of Chemically Active Droplets

In this section, we derive the theory for chemically active droplets
using nonequilibrium thermodynamics; for a discussion of ho-
mogeneous, nondilute mixtures with chemical reactions, see ref.
[21]. The dynamics of such systems are governed by chemical po-
tential differences .[15] In the case of active droplets, these chemi-
cal potentials determine both the thermodynamics of phase sep-
aration and the thermodynamics of chemical reactions.

3.1. Irreversible Thermodynamics of Phase Separation and
Reactions

We consider an incompressible mixture ofM + 1 chemical com-
ponents, denoted as Ci, with i = 0,… ,M. The local composition
is given by the volume fractions 𝜙i with i = 1,… ,M indicating
the different components. The volume fraction 𝜙0, which we
identify with the solvent S, is not an independent variable, be-
cause of the constraint

∑M
i=0 𝜙i = 1. The volume fractions are re-

lated to the local concentrations ni via 𝜙i = 𝜈ini, where 𝜈i is the
molecular volume of components i. Incompressibility implies
that themolecular volumes 𝜈i are constant parameters at constant
temperature. The dynamical equations for the volume fractions
read

𝜕t𝜙i = −𝛁 ⋅ ji + ri (4)

where ji is a diffusive current of volume fraction and ri denote
source and sink terms resulting from chemical reactions. Incom-
pressibility requires that chemical reactions conserve volume,
which implies

∑M
i=0 ri = 0.

The diffusive flux arises due to spatial gradients of the ex-
change chemical potentials 𝜇i = 𝜈i𝛿F∕𝛿𝜙i, where F[𝜙1,… ,𝜙M] is
the free energy and 𝛿F∕𝛿𝜙i denotes a functional derivative. In
general, we can write

𝜇i = kBT log
(
𝛾i𝜙i

)
+ 𝜔i − 𝜅i∇2𝜙i (5)

where (𝛾i𝜙i) is the exchange activity of components i relative to
the solvent, 𝛾i is the corresponding activity coefficient and 𝜔i are
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the reference chemical potentials. For mean-field models up to
the second virial coefficients, the activity coefficient has the form

𝛾i = 𝜙
− 𝜈i

𝜈0
0 exp

⎛⎜⎜⎝𝜈i
∑M

j=1(𝜒ij − 𝜒i0 − 𝜒j0)𝜙j

kBT

⎞⎟⎟⎠ (6)

where thematrix 𝜒ij describes themolecular interactions, see Ap-
pendix A. The contribution𝜔k is independent of composition and
corresponds to a reference chemical potential. Furthermore, kB
is the Boltzmann constant and T temperature. The coefficient 𝜅i
characterizes the free energy contributions due to gradients of
composition and is related to interfacial tension.
The diffusive flux of volume fraction is driven by chemical po-

tential gradients

ji = −𝜈i
M∑
j=1

Λij𝛁𝜇j (7)

where Λij denotes the mobility matrix with Λij = Λji. For simplic-
ity, we choose Λij = 𝜆𝜙i(𝛿ij − 𝜙j), where 𝜆 is a molecular mobility.
The diffusion matrix is then given by

Dij = 𝜈i

M∑
k=1

Λik

𝜕𝜇k(𝜙)
𝜕𝜙j

(8)

which becomes diagonal Dij = kBT𝜆 𝛿ij for vanishing molecular
interactions and all molecular volumes being equal, 𝜈i = 𝜈. Thus,
all molecular components diffusive independently of each other
with the same diffusion coefficient.
The source rate ri of component i in Equation (4) stems from

chemical reactions. Each chemical reaction 𝛼 = 1,… , L can be
written as

M∑
i=0

𝜎+
i𝛼Ci

r+
𝛼

⇌
r−
𝛼

M∑
i=0

𝜎−
i𝛼Ci (9)

where Ci is the chemical symbol of components i and 𝜎±
i𝛼 are sto-

ichiometric coefficients. The net chemical rate per volume r𝛼 =
r+
𝛼
− r−

𝛼
can bewritten as a difference of the forward and backward

rates. We also define the stoichiometric matrix 𝜎i𝛼 = 𝜎−
i𝛼 − 𝜎+

i𝛼 .
The relation between the source rates ri and the chemical rates

r𝛼 reads

ri =
S∑

𝛼=1
𝜈i𝜎i𝛼r𝛼 (10)

and the stoichiometric coefficients 𝜎i𝛼 for volume conserving re-
actions must obey

M∑
i=0

𝜈i𝜎i𝛼 = 0 (11)

The chemical reactions are driven by the reaction Gibbs free en-
ergy

Δ𝜇𝛼 =
M∑
i=1

𝜎i𝛼𝜇i (12)

which can be expressed in terms of the exchange chemical po-
tential 𝜇i given in Equation (5). The Gibbs free energy is the free
energy change associated with a single event of reaction 𝛼. Mi-
croscopic reversibility imposes a detailed balance condition for
forward and backward rates

r+
𝛼

r−
𝛼

= exp
(
−
Δ𝜇𝛼

kBT

)
(13)

This condition ensures that the system relaxes toward thermody-
namic equilibrium in the absence of driving. Chemical rates that
satisfy this detailed balance condition can in general be written
as

r±
𝛼
= k𝛼 exp

(∑M
i=1 𝜎

±
i𝛼𝜇i

kBT

)
(14)

where k𝛼 is a kinetic coefficient. The kinetics of the reactions is
specified by the values and composition dependence of the ki-
netic coefficients k𝛼 . We will use the freedom to choose this de-
pendence of k𝛼 on 𝜙i to localize reactions either inside or outside
of droplets.
Substituting the exchange chemical potentials (5) in the rela-

tion of the source rate (10) gives

ri =
S∑

𝛼=1
k𝛼𝜎i𝛼𝜈i

(
M∏
n=0

(𝜌n𝜙n)
𝜎+n𝛼 −

M∏
n=0

(𝜌n𝜙n)
𝜎−n𝛼

)
(15)

where

𝜌n = 𝛾n exp
(
𝜔n − 𝜅n∇2𝜙n

kBT

)
(16)

In dilute and homogeneous systems, 𝜌n are constant parame-
ters, while in phase-separated systems, the coefficients 𝜌n depend
on composition.

3.2. Conserved and Nonconserved Densities

The volume fractions 𝜙i are not conserved, which follows from
the presence of the source rates ri in the balance equation (4).
In general, there are L′ ≤ M linearly independent chemical re-
actions. Therefore, there remain C = M − L′ conserved densities
in addition to the conserved volume. These conserved densities
can be expressed as linear combinations of volume fractions. We
write the conserved densities as

𝜓j =
M∑
i=0

Aji𝜙i (17)

where j = 0, 1,… , C. Here, the matrix A obeys the relation∑M
i=0 Aji𝜈i𝜎i𝛼 = 0, that is, the rows of the matrix A are linearly in-

dependent null-vectors of the matrix 𝜈i𝜎i𝛼 . The conservation law
Equation (11) corresponds to j = 0 with A0i = 1∕𝜈0, which also
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clarifies that the units of 𝜓j are inverse volume. We can also de-
fine the L′ = M − C non-conserved densities

𝜉𝛼 =
M∑
0=1

B𝛼i𝜙i (18)

where 𝛼 = 1,… , L′, which are the extents of reactions. The re-
action extents 𝜉𝛼 measure the cumulative number of reaction
events that have occurred per volume. Here, the densities 𝜓j and
𝜉𝛼 obey

𝜕t𝜓j = −∇ ⋅ j𝜓j (19a)

𝜕t𝜉𝛼 = −∇ ⋅ j𝜉
𝛼
+ r𝛼 (19b)

where we introduce the currents j𝜓j =
∑M

i=0 Ajiji of the conserved

densities and the extent currents and j𝜉
𝛼
=
∑M

i=0 B𝛼iji. Note that
volume conservation corresponds to 𝜓0 =

∑M
i=0 𝜙i∕𝜈0 = 1∕𝜈0 is

not a dynamical variable and j𝜓0 = 0.
The matrices A and B define the matrix elements of an invert-

ible square matrix

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00 ⋯ A0i ⋯ A0M

⋯ Aji ⋯

AC0 ⋯ ACi ⋯ ACM

B1i … B1i … B1M

… B𝛼i …
BL′0 … BL′i … BL′M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

A property of the inverse matrixU−1 isU−1
i𝛼

= 𝜈i𝜎i𝛼 . Note that the

matrix A and the conserved densities 𝜓j are not unique. Any lin-

ear combination of conserved densities is also a conserved den-
sity. A choice of linearly independent conserved densities spec-
ifies the matrix A uniquely. Similarly, the matrix B is also not

unique, because each reaction extent is defined with respect to a
reference value.
From the conserved densities 𝜓j and the reaction extents 𝜉𝛼 ,

we can obtain the volume fractions,

𝜙i =
C∑
j=0

U−1
ij 𝜓j +

L′∑
𝛼=1

𝜈i𝜎i𝛼𝜉𝛼 (21)

3.3. Energetics and Entropy Production

We now discuss the energetics and thermodynamics of chemi-
cally active droplets. The free energy of the system, F = ∫ d3x f ,
fromwhichwe derive the chemical potential (5), can be expressed
in terms of the free energy density f . The density of internal en-
ergy, e = f + Ts, can be decomposed into the free energy density
and an entropy density s = −𝜕f ∕𝜕T . Energy conservation can be
written as

𝜕te + ∇ ⋅ jh = −∇ ⋅ jq (22)

where we decompose the flux of energy into a heat flux jq and
an enthalpy flux jh. Note that Equation (22) defines the heat flux.
For simplicity, we focus on isothermal systems at constant tem-
perature T . The heat flux is determined by the constraint of fixed
temperature, which corresponds to the limit of large heat con-
ductance.
The flux of enthalpy is given as jh =

∑M
i=1 hiji∕𝜈i, where we de-

fine the enthalpy hi = 𝜇i + Tsi per molecule Ci with si = −𝜕𝜇i∕𝜕T
denoting the entropy per molecule.
The rate of change of internal energy density reads 𝜕te =∑M
i=1 hi𝜕t𝜙i∕𝜈i. Using Equation (22), we can identify the heat pro-

duction rate as

∇ ⋅ jq = −
L′∑
𝛼=1

r𝛼Δh𝛼 −
M∑
i=1

ji
𝜈i

⋅ ∇hi (23)

where Δh𝛼 =
∑M

i=1 𝜎i𝛼hi is the reaction enthalpy. Using the defi-
nitions of the entropy density s and energy density e, we obtain
the entropy balance

𝜕ts + ∇ ⋅ js = Θ̇ (24)

where the entropy flux is js =
∑M

i=1 siji∕𝜈i + jq∕T . The entropy pro-
duction rate Θ̇ obeys

TΘ̇ = −
L′∑
𝛼=1

r𝛼Δ𝜇𝛼 −
M∑
i=1

ji
𝜈i

⋅ ∇𝜇i (25)

which is zero or positive according to the second law of thermo-
dynamics.
In summary, we have derived a complete description for phase-

separated systems in the presence of chemical reactions at con-
stant temperature. The system is captured by C conserved quan-
tities 𝜓 , and L′ reaction extents 𝜉, described by Equation (19a)
and Equation (19b) and obeys the energy conservation, as well as
heat and entropy production are described by Equations (23) and
(25). Note that volume changes of coexisting phases are associ-
ated with conserved fluxes j𝜓 .

4. Dynamics of Protocells

In this section we specify the particular model introduced in Sec-
tion 2.1 and study the dynamics of active droplets in the boundary
and bulk driven cases, respectively.

4.1. Model Parameters

Molecular interactions are described by the matrix with elements
𝜒ij. We considerM = 3 nonsolvent components D, N, andW as
well a solvent S. For simplicity, all molecular components have
the same molecular volume 𝜈i = 𝜈. The choice of interactions is
based on the idea that droplet material phase-separates from the
solvent. The matrix is symmetric and the diagonal elements can
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be chosen to zero, 𝜒ii = 0, without loss of generality. Thus, there
are a six independent entries in the interaction matrix

𝜒 =

S D N W

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

0 𝜒DS 𝜒NS 𝜒WS S

𝜒DS 0 𝜒DN 𝜒DW D

𝜒NS 𝜒DN 0 𝜒NW N

𝜒WS 𝜒DW 𝜒NW 0 W

(26)

For the chemical reactions depicted in Figure 1, we have L = 3
reactions out of which L′ = 2 are linearly independent, see Equa-
tions (1)–(2). The stoichiometricmatrix of the linear independent
reactions 𝛼 = 1 and 𝛼 = 2 is given by

𝜎 =

𝛼 = 1 𝛼 = 2

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

0 0 S

1 −1 D

−1 0 N

0 1 W

(27)

Conserved densities 𝜓j and reaction extents 𝜉𝛼 are obtained from
volume fractions via the transformation matrix

U = 𝜈−1

⎛⎜⎜⎜⎜⎜⎝

1 1 1 1

0 1 1 1

0 0 −1 0

0 1 1 2

⎞⎟⎟⎟⎟⎟⎠
(28)

see Equation (20). In addition to the volume conservation, the
relevant conserved density 𝜓 = (𝜙D + 𝜙N + 𝜙W )∕𝜈 describes the
conservation of nonsolvent components. The reaction extent vari-
ables are 𝜉1 = −𝜙N∕𝜈 and 𝜉2 = (𝜙D + 𝜙N − 2𝜙W )∕𝜈. The inverse
transformation matrix is given by

U−1 = 𝜈

⎛⎜⎜⎜⎜⎜⎝

1 −1 0 0

0 2 1 −1

0 0 −1 0

0 −1 0 1

⎞⎟⎟⎟⎟⎟⎠
(29)

and obeys the equation U−1
i𝛼 = 𝜈i𝜎i𝛼 .

Reaction rates are specified by kinetic coefficients k𝛼 which de-
pend on composition. In our model, the reactions 𝛼 = 1, 2 occur
only inside the droplet phase with a rate

k𝛼 =
K𝛼

2

(
1 + tanh

(
𝜙D − Φ

𝜖

))
(30)

where K𝛼 is a rate constant. Moreover, Φ denotes a parameter
corresponding to the value of the volume fraction 𝜙D at the inter-
face between droplet phase and solvent phase, and 𝜖 > 0 charac-

terizes how much the reaction 𝛼 = 1, 2 is suppressed outside the
droplet. In the bulk driven case, the reaction 𝛼 = 3 occurs out-
side the droplet, corresponding to 𝜖 < 0. In addition, the system
is driven by an external energy input Δ𝜇act. Therefore, we use for
𝛼 = 3, instead of Equation (14), the following forward reaction
rate

r+3 = k3(𝜙D) exp
(
𝜇W + Δ𝜇act

kBT

)
(31)

and for rate of the backward reaction, we consider

r−3 = k3(𝜙D) exp
(

𝜇N

kBT

)
(32)

4.2. Steady State Droplets

In order to characterize steady states of spherical droplets and
their stability, we consider, for simplicity, the case of a sharp in-
terface and an infinitely large system volume; see Appendix B.
In this limit of a sharp interface, we obtain linear reaction–
diffusion equations (B1) inside and outside the droplet. These
equations are derived by linearization around the concentrations
that coexist at the interface which is at local equilibrium. We im-
pose boundary conditions at the interface that ensure currents
across the interface being continuous at steady state. This con-
tinuity of currents selects an unique tie line which connects the
coexisting concentrations in the phase diagram.
In the boundary driven case, we impose concentration bound-

ary conditions at infinity with values 𝜙∞
D , 𝜙

∞
N , and 𝜙

∞
W for the vol-

ume fractions of droplet material D, nutrient N, and waste W.
Fixed concentration boundary conditions imply that material is
supplied via net currents at infinity.
Figure 3A shows profiles of volume fractions of droplet ma-

terial D, nutrient N, and waste W in the boundary driven case
for a spherical droplet of size R as a function of the radial co-
ordinate r. The droplet material is produced by reaction 𝛼 = 1
inside the droplet (gray region) where it is also the majority com-
ponent. The droplet material also occurs outside at low concen-
trations. Nutrient is provided at large distances and diffuse to-
ward the droplet. Waste is produced inside the droplet by the
reaction 𝛼 = 2 and diffuses outward. The system is maintained
out-of-equilibrium by the concentration boundary conditions at
infinity, where 𝜇N ≠ 𝜇W . Note that detailed balance is obeyed ev-
erywhere in the system.
Figure 3B shows the profiles of the conserved density 𝜓 and

the extent of the two reactions 𝜉1, 𝜉2 in the boundary driven
case. The current of the conserved density vanishes, because the
system is at steady state. The divergence of the extent currents
∇ ⋅ j𝜉

𝛼
= r𝛼 indicate chemical activity at rate r𝛼 . Note that outside

the droplet, divergence-free extent currents occur without reac-
tions. The steady state droplet radius depends on the concentra-
tions imposed at infinity, see Figure 3C, which shows stationary
radii of stable (solid lines) and unstable (dashed lines) droplets for
two different values of𝜙∞

D as a function of𝜙∞
N . Droplets nucleated

beyond the critical radius (dashed lines) grow until they reach the
stable stationary radius (solid lines), while droplets larger than
the stable radius shrink. For smaller volume fractions 𝜙∞

D droplet
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Figure 3. Stationary active droplets. Profiles of various quantities for the boundary-driven case (upper row) and the bulk-driven case (lower row). A,D)
Profiles of volume fractions and corresponding diffusive fluxes for droplet material, nutrient and waste. B,E) Profiles of conserved density 𝜉 and non-
conserved reaction extents 𝜉1∕2 and their corresponding diffusive fluxes. Such profiles are obtained from Equations (19a) and (19b). C,F) Stable and
unstable stationary radii Rstat of chemically active droplets. For the boundary-driven case, Rstat is shown as a function of the nutrient volume fraction of
the reservoir 𝜙∞

N for two different reservoir values of the droplet material 𝜙∞
D . For the bulk-driven case, Rstat is depicted as a function of the averaged

conserved quantity �̄� for two different values of external energy inputΔ𝜇act (Equation (31)) that break detailed balance of the rates (13). The parameters
of these systems are given in Parameter values are given in Table C1 and Appendix C.

material is lost by diffusion toward infinity, requiring larger vol-
ume fractions 𝜙∞

N to maintain the droplet.
In the bulk driven case, we impose that no net current of the

conserved quantity j𝜓 exits at infinity. In addition, reaction 𝛼 = 3
is imposed at local chemical equilibrium with Δ𝜇act = 𝜇N − 𝜇W ,
where Δ𝜇act is the chemical free energy supplied by a fuel. Note
that, the reaction 𝛼 = 3 occurs outside of the droplet to regen-
erate nutrient from waste. The profiles of volume fractions of a
steady state droplet are shown in Figure 3D, together with the
corresponding currents. The profiles of volume fraction are qual-
itatively similar to the boundary driven case shown in Figure 3A.
The main difference is that the currents decay more quickly and
no net current remain at infinity. The corresponding conserved
density and reaction extent are shown in Figure 3E.
The boundary driven case and the bulk driven case give simi-

lar profiles for the conserved density 𝜓 and the reaction extents
𝜉1 and 𝜉2 (compare Figure 3A,B,D,E). A key difference is that the
divergence of the extent currents, ∇ ⋅ j𝜉 , in the boundary driven
case vanishes outside the droplets, while for the bulk driven case,
this divergence is nonzero outside, corresponding to the rate of
the reaction that produces nutrient. Note that the reaction in the
bulk driven case cannot alter the amount of conserved material,
therefore, the droplets growth is limited via the conserved mate-
rial.
The stable and unstable radii of stationary droplets are shown

in Figure 3F for the bulk driven case as a function of the con-
served quantity 𝜓∞ and for two different values ofΔ𝜇act. Increas-
ing Δ𝜇act enables chemically active droplets for smaller values of

the conserved quantity 𝜓∞ and leads to larger stable stationary
droplets. This behaviour is similar to that the boundary driven
case, see Figure 3C. Increasing Δ𝜇act in the bulk driven case has
the same qualitative effect on the stationary radius, as an increase
of nutrient supply via 𝜙∞

N in the boundary driven case, compare
Figure 3C,F.

4.3. Droplet Stability

So far, we have considered stationary droplets of spherical shapes.
Due to nonequilibrium conditions, chemically active droplets can
also undergo a shape instability and take nonspherical shapes
and thereby even divide. An example of a division event is shown
in Figure 2A. We can systematically study the linear stability of
spherical shapes using the sharp interface limit, see Appendix B.
In Figure 4A, we show a stability diagram of chemically active

droplets for the boundary driven case as function of nutrient
and droplet material volume fraction at infinity, 𝜙∞

N and 𝜙∞
D ,

for fixed 𝜙∞
W . Stationary spherical droplets are stable within

the green region of the diagram. Within the yellow region, a
spherical harmonic deformation mode with l = 2 is unstable.
This corresponds to an elongation of the droplet shape. Similarly,
in the red region, a spherical deformation mode with l = 3 is
also unstable. In the white region, no stationary droplets exit.
The figure shows, that starting from a stationary stable droplet,
division can typically be induced by increasing the supply of
either nutrient or droplet material. The binodal line of phase
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Figure 4. Shape stability diagrams for chemically active droplets for A) the
boundary driven case and B) the bulk driven case. In the green area sta-
tionary droplets of spherical shape can exist. All shape perturbations decay.
In the yellow area, the slowest l = 2 perturbation becomes unstable, thus
droplets elongate. In the red area, additionally the slowest l = 3 mode be-
come unstable. For the boundary driven case, we show the stability for a
specific value of waste volume fraction of the reservoir,𝜙∞

W = 0.001. There-
fore, we can draw the chemical equilibrium line of reaction 𝛼 = 1 (purple)
and the binodal line of these systems in the absence of chemical reactions
(blue). Parameter values are given in Table C1 and Appendix C.

coexistence is shown as a solid blue line. In the absence of
chemical reactions, droplets within the binodal region grow,
while outside they shrink. Chemical reactions also permit the
existence of chemically active droplets outside of the binodal
region, where droplet material is constantly lost toward the
reservoir. Under such nonequilibrium conditions, the volume
fractions at the interface (governed by the binodal) differ from
the values at large distances imposed by boundary conditions.
The solid purple line indicates chemical equilibrium of reaction
𝛼 = 1, where the chemical rate r𝛼 changes sign. For nutrient
volume fractions above this line, droplet material is produced by
the nutrient, while below this line, nutrient is produced.
Figure 4B shows the corresponding stability diagram for the

bulk driven case as a function of the conserved density at infin-
ity 𝜓∞ and the active chemical free energy Δ𝜇act. The same re-
gions of stability are indicated: stable spherical droplets green,

unstable mode with l = 2 yellow and unstable mode with l = 3
red. Spherical stable droplets will typically divide when the con-
served quantity is supplied, that is, the conserved density 𝜓∞ is
increased. Moreover, for increasing values of Δ𝜇act, the stability
of active droplets becomes independent of Δ𝜇act. This is because
almost all waste is turned over to nutrient by the chemical reac-
tion 𝛼 = 3.

5. Energy, Mass, and Entropy Balance of Protocells

We now discuss energy and mass balance of stationary active
droplets in the boundary driven case, where conserved quanti-
ties are only supplied at large distance. The fluxes of the con-
served quantity 𝜓 carry material associated with the growth and
shrinkage of droplets. In a stationary case, these fluxes are zero.
Nevertheless, the chemical reactions within the droplet lead to
gradients of the chemical potentials, ∇𝜇i ≠ 0. At the same time,
chemical reactions are alsomaintained out-of-equilibrium, corre-
sponding to a nonvanishing Gibbs reaction free energy Δ𝜇𝛼 ≠ 0.
Both, chemical and diffusive fluxes give rise to a production of
entropy according to Equation (25).
To discuss energy balance, we also consider heat. Heat is re-

leased by chemical reactions if the reaction enthalpy Δh𝛼 > 0
(exothermic), and is absorbed by chemical reactions if Δh𝛼 < 0
(endothermic). In addition heat is absorbed or released at the
droplet interface (latent heat) for

∑
i ji∇hi > 0 and

∑
i ji∇hi < 0,

respectively. Here, the sum is over all solute species.
Figure 5A–P presents four scenarios that differ in the heat re-

lease by reactions and the heat release at the interface. In all of the
four scenarios, the imposed chemical potentials at the large dis-
tance start high for the nutrient, is lower for droplet material and
lowest for waste, 𝜇∞

N > 𝜇∞
D > 𝜇∞

W , see chemical potential profiles
in Figure 5A,E,I,M. This biases reactions 𝛼 = 1 and 𝛼 = 2 in the
forward direction and diffusive transport and chemical reactions
run in the same directions in all four scenarios. Correspondingly,
the radial profiles of local entropy production Θ̇ is very similar
in all four scenarios, see Figure 5B,F,J,N. Note that the entropy
production rate Θ̇ jumps at the interface because the reaction
rates r𝛼 change discontinuously at the interface. The maxima of
entropy production rate occur close to the interface since newly
supplied material first reaches the droplet surface where it starts
to react.
The first scenario of exothermic reaction and latent heat re-

lease at the interface is shown in Figure 5A–D. In addition to
the profiles of chemical potentials and entropy production, it is
characterized by profiles of molecular enthalpies hi and total heat
flux Jq = 4𝜋r2jq, see Figure 5C,D. The nutrient enthalpy inside
the droplet hIN (blue) is larger than the waste enthalpy hIW (red),
indicative of a net exothermic reaction from N toW. In addition,
Figure 5C shows that at the interface hIIN − hIN > hIIW − hIW , corre-
sponding to a net latent heat release. Here, the index I refers to
the droplet phase and II to the phase outside. The release of heat
at distance r corresponds to the slope of total heat flux dJq∕ dr.
Heat release by chemical reactions corresponds to an increase of
Jq inside the droplet, the contribution of latent heat is captured
by a discontinuity of Jq at the interface.
There are three further additional scenarios are shown in Fig-

ure 5: Exothermal reactions with latent heat absorption at the
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Figure 5. Energetics of active droplets. A,E,I,M) The profiles of chemical potentials for four different boundary driven stationary active droplets. B,F,J,N)
Due to the constant driving, these stationary droplets are nonequilibrium steady states characterized by their entropy production. C,G,K,O) Despite
similar profiles of chemical potentials, these four scenarios differ in their profiles of molecular enthalpies hi. D,H,L,P) Thus the total heat flux Jq = 4𝜋r2jq
varies respectively. For simplicity, we have chosen 𝜙∞

D such that the current of droplet material vanishes outside of the droplet in the steady state. Thus
there is no flux of the droplet material over the interface at stationary state, which would contribute to latent heat production or absorption. Parameter
values are given in Table C1 and Appendix C.

interface Figure 5E–H, endothermal reactions with heat release
Figure 5I–L and endothermal reactions with heat absorption Fig-
ure 5M–P. In the case of endothermal reactions, the enthalpy of
the waste is higher than that of the nutrient, see Figure 5K,O In
the case of latent heat absorption, Jq drops at the interface, such
that the heat generated inside the droplet by exothermic reactions
is not fully transported to the outside Figure 5H. Finally, in the
case of endothermic reactions and heat absorption at the inter-
face, the system takes up heat, which enters at large distances
and is absorbed by reactions inside the droplet, Figure 5P. The
droplet, therefore, acts as a cooling device, which in the case of
finite heat conductivity would lead to lower temperatures inside
the droplet compared to the outside.

6. Discussion

By combining the physics of phase separation and the thermo-
dynamics of chemical reactions governing the law of mass ac-
tion, we provide a theoretical framework for chemically active
droplets. Such droplets have been proposed as models for proto-
cells which are prebiotic, cell-like objects that could have emerged
at the origin of life.[9–12] Chemically active droplets rely on phase

separation leading to coexisting phases which organize chemical
reactions that are maintained away from equilibrium. Using our
framework, we discuss two cases how such droplets can bemain-
tained away from equilibrium, see Figure 1: A) Droplets coupled
to external reservoirs at the system boundary supplying nutrient
and removing waste. In this case, detailed balance holds in the
system and non-equilibrium conditions only enter via the reser-
voirs at the boundaries. B) Droplets driven by a chemical fuel in
the bulk. In this case, detailed balance of the chemical reaction
between nutrient and waste is broken in the bulk. Both cases (A)
and (B) can exhibit nonequilibrium steady states with nonvanish-
ing currents of energy and matter.
In our work, we discuss the balance of matter by introducing

conserved densities and the nonconserved reaction extents. In
addition, we consider the balance of energy. We show that the
growth or shrinkage of a chemically active droplet is governed by
fluxes of the conserved quantities at the droplet surface. We fur-
ther show that the maintenance of nonequilibrium steady states
is enabled by fluxes of the nonconserved reaction extents. From
the point of view that active droplets represent simple models for
protocells, the chemical reactions inside the droplets represent a
simple metabolism.
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In biology, metabolic processes are classified as anabolic or
catabolic. Anabolic processes are considered to build complex
components from smaller units by consuming energy, while
catabolism typically describes the break-up of complexmolecules
to smaller units by which energy is released. The reactions in our
models of protocells can capture such anabolic and catabolic pro-
cesses. As an example, we can consider nutrient and waste to be
simple molecules of high and low internal energy, respectively.
Droplet material D would then represent more complex compo-
nents. In such a setting, the reactionN ⇌ D (𝛼 = 1) corresponds
to anabolic processes, while the reaction D ⇌ W (𝛼 = 2) corre-
sponds to catabolic processes.
Our work highlights the different roles of conserved densities

𝜓j and of non-conserved reaction extents 𝜉𝛼 for protocell dynam-
ics. This distinction between conserved and nonconserved densi-
ties is relevant not only for protocells, but also for biological cells.
We can distinguish processes associated with mass and volume
growth from processes that maintain nonequilibrium conditions
even in the absence of growth. Growth processes in cells typically
require the production of complex molecules by anabolic pro-
cesses. Maintaining a cell away from equilibrium requires the
supply of chemical fuels, such as ATP, via catabolic processes.
Therefore, anabolism and catabolism can be related to growth
and maintenance, respectively. In our formalism describing pro-
tocells, growth is related to the accumulation of conserved den-
sities 𝜓j, while maintenance is associated with the dynamics of
nonconserved reaction extents 𝜉𝛼 . Our work shows thatmaintain-
ing reaction extents away from equilibrium is a hallmark feature
of living systems.
A signature of the nonequilibrium state of living systems is

the release of heat.[22] Our framework captures energy balance
and heat exchange. Nutrients supply free energy via a high chem-
ical potential as compared to waste 𝜇N > 𝜇W , which drives the
system out-of-equilibrium. Typically, nutrient N is also a molec-
ular energy carrier and waste W a low energy molecule which
is reflected in molecular enthalpies (hN > hW ). In this case, ac-
tive droplets are exothermic and release heat, see Figure 5A–D.
However, protocells could also be endothermic if the molecu-
lar enthalpy of waste exceeds that of nutrient (hN < hW ). In this
case, the droplet would absorb heat from the environment, see
Figure 5M–P. The latent heat of phase separation at the inter-
face also enters this energy balance. Latent heat can be either re-
leased or absorbed, which leads overall to four different scenar-
ios shown in Figure 5. One of these scenarios shows that even
if the droplet absorbs heat and appears to be endothermic, the
reactions inside could still be exothermic, see Figure 5E–H. This
shows that a measurement of overall heat absorption by an or-
ganism does not necessarily imply endothermic biochemistry,
see[23,24]

Chemically active droplets can also divide. Division of chem-
ically active droplets was suggested in theoretical works for liq-
uid droplets, either by modulating surface tension using chem-
ical gradients,[13] or via a dynamical shape instability studied in
a minimal model.[14] Here, we have discussed shape instabilities
leading to droplet division in multi-component mixtures moti-
vated by protocells. In a binary system, chemical reactions have to
convert droplet material D and solvent S, which phase-separate,
into each other. We have shown that droplet division can occur
in multi-component mixtures, when the solvent S that phase-

separates from the droplet material D is not taking part in chem-
ical reactions.
Our work is relevant for experimental studies of active

droplets. Such experimental systems typically involve multiple
components that undergo chemical reactions.[16–19] As our work
shows, simply providing energy via a fuel is not sufficient to drive
growth, because growth requires the accumulation of a conserved
quantity. Similarly, cycles of droplet growth and division also re-
quires the supply of a conserved quantity. These different roles
of conserved densities for growth and nonconserved reaction ex-
tents for maintenance highlight the importance of energy and
matter supply for chemically active droplets.

Appendix A: Free Energy

The chemical potentials given in Equation (5) are derived from the free
energy

F = ∫ d3x

[
f (𝜙) +

M∑
i=1

𝜅i

2𝜈i
(∇𝜙i)

2

]
(A1)

with the Flory–Huggins type of free energy density

f =
M∑
i=0

kBT
𝜈i

𝜙i log(𝜙i) +
∑
⟨i,j⟩ 𝜒ij𝜙i𝜙j +

M∑
i=0

𝜔0
i 𝜙i (A2)

where 𝜙0 = 1 −
∑M

i=1 𝜙i, and the sum over the pairs ⟨i, j⟩ include all possi-
ble combinations of different i and j, including the solvent. For simplicity,
we have neglected contribution related to gradient in solvent volume frac-
tion. Moreover, 𝜒ij is a matrix describing the molecular interactions with
𝜒ii = 0 and 𝜔0

i are the internal free energies. After replacing the solvent
volume fraction and using the definition 𝜇i = 𝜈i𝛿F∕𝛿𝜙i, we obtain

𝜇i = kBT log
(
𝜙i𝜙

−𝜈i∕𝜈0
0

)
+ 1 −

𝜈i

𝜈0
− 𝜅i∇2𝜙i (A3)

+𝜈i
M∑
j=1

(𝜒ij − 𝜒i0 − 𝜒j0)𝜙j + 𝜈i𝜒i0 + 𝜈i𝜔
0
i − 𝜈i𝜔

0
0 (A4)

We can now identify the composition independent reference chemical po-
tential

𝜔i = 1 −
𝜈i

𝜈0
+ 𝜈i𝜒i0 + 𝜈i𝜔

0
i − 𝜈i𝜔

0
0 (A5)

and the exchange activity coefficient as stated in Equation (6).

Appendix B: Effective Description of a Single
Active Droplet

The nonlinear, fourth-order partial differential equations (4) govern the
spatial dynamics of concentration fields. To analyze the shape stability of
active droplets, we derive an effective description for the dynamics of a
single active droplet for the limit of a sharp interface. To this end, we lin-
earize dynamic equations (4) leading for each component to two linear,
second-order partial differential equations coupled via a moving bound-
ary condition at the droplet interface, which we refer to as interface condi-
tions in the following. For each time point, such nonlinear boundary con-
ditions are solved by a set of volume fractions right inside and outside of
the interface. These volume fractions serve as linearization points for the
dynamic equations.

For the boundary driven case, we can solve for the interface dynamics
considering a quasi-stationary limit. In particular, we use the stationary

Ann. Phys. (Berlin) 2022, 2200132 2200132 (10 of 13) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

solutions to the linearized equations and can solve for the slow interface
dynamics. This slow dynamics is driven divergence-free currents of the
conserved quantities. In the bulk driven case, we solve directly for the sta-
tionary positions of the interface. Due to the absence of divergence-free
currents, using stationary solutions for the differential equations for the
volume fractions automatically enforce a resting interface.

B.1. Spherical Symmetric Stationary Droplet

Linearizing Equation (4) around the volume fractions at the interfaceΦI∕II
i ,

where I and II indicate the droplet phase and phase outside of the droplet,
respectively

𝜕t𝜙i =
∑
j

[
DI∕II
ij ∇2𝜙j + kI∕IIij

(
𝜙j − ΦI∕II

j

)]
+ cI∕IIi (B1)

where DI∕II
ij = Dij(ΦI∕II) are the diffusion constants introduced in Equa-

tion (8). Furthermore, linearizing the reaction rates ri given in Equa-
tion (15) give the reaction coefficients

kI∕IIij =
𝜕ri(Φ

I∕II
i )

𝜕𝜙j
(B2)

and constant source or sink terms ci = ri(Φ
I∕II
i ). This constant only van-

ishes if the interface values correspond to a chemical steady state with
ri = 0.

We calculated stationary solutions to Equation (B1) for each phases in
the case of a single droplet of radius R as a function of the volume fractions
at the interface. The solutions for𝜙II

i have to obey the boundary conditions
at r → ∞. For the boundary driven case, concentrations of nutrient, waste
and droplet material are imposed, while for the bulk-driven case, no flux
boundary conditions are used for all components. At the droplet center
r = 0, the flux vanishes for each components and both cases. There are
2M unknown volume fractions at the interface. In addition, the interface
velocity

v = dR
dt

(B3)

for the boundary-driven case, or the interface position R for bulk-driven
case has to be determined via interface conditions, respectively. In total,
this leads to (2M + 1) unknowns.

Locally, at the droplet interface, we assume phase equilibrium. From
this, we obtainM conditions from the balance of chemical potentials

𝜇Ii = 𝜇IIi (B4)

and one condition from the balance of the osmotic pressures right inside
and outside of the droplet[15,25]

f I − f II =
M∑
i=1

𝜇
I∕II
i

𝜈i

(
ΦI
i − ΦII

i

)
−
2𝛾(ΦI∕II)

R
(B5)

where 𝛾 denotes the surface tension 𝛾 . In multi-component mixtures, the
surface tension 𝛾 varies for different phase equilibria along the binodal
line. However, the method developed by de Gennes[26] can be generalized
to multi-component mixtures for the case when (∇𝜙D)

2 is the dominant
gradient contribution to the free energy (A1).

In systems without chemical reactions, global conservation laws of all
M components dictate the selection of phase equilibra. In open systems,
like in the considered boundary-driven case, the local conservation laws

at the moving interface select specific phase equilibria. The remaining M
conditions at the interface are given by

v er =
jIi − jIIi
ΦI
i − ΦII

i

⋅ er (B6)

This equations holds for each component for a moving interface. Thus, in
total, we obtain the (2M + 1) conditions at the interface.

In closed systems, like in our bulk-driven case with no-flux boundary
conditions, local conservation laws at the interface of the reaction extents
and global conservation laws of the conserved densities dictate the specific
phase equilibria. Furthermore, in general, the interface cannot move when
only stationary solutions of Equation (B1) are considered. In the absence
of divergence-free currents, all currents of the conserved densities vanish
in a stationary state. Thus, when the conserved density has different values
in the phases, the droplet cannot grow.

Let us demonstrate the consequence of Equation (B6) in a ternary ex-
ample with components A, B, the solvent S, and the chemical reaction
A ⇌ B. In the stationary state for a closed systems jI∕IIA = −jI∕IIB . Using this
relationship, and Equation (B6), we obtain

jIA − jIIA
ΦI
A − ΦII

A

= −
jIA − jIIA
ΦI
B − ΦII

B

(B7)

which can either be true when jIA = jIIA for a resting interface, orΦ
I
A + ΦI

B =
ΦII
A + ΦII

B corresponding to a constant conserved density between the
phases. Therefore, we can only solve for stationary interface position in
general. Here, the remainingM equations consist out of C global conser-
vation laws equations of the conserved variables

R3𝜓 I
j + (R3sys − R3)𝜓 II

j = R3sys�̄�j (B8)

for finite systemswith total system sizeRsys. In the limit of infinite systems,
this simplifies to 𝜓 II

j = �̄�j. From the local conservation laws of theM − C

reactions extents at the interface, we obtain

j𝜉,I
𝛼

= j𝜉,II
𝛼

(B9)

Therefore, we obtain again 2M + 1 equations, which determine the inter-
face values and the stationary droplet radius R.

B.2. Stability of Spherical Droplets

In this section, we investigate the stability of spherical active droplets upon
shape perturbations and study the relaxation dynamics of such perturba-
tions

𝜙
I∕II
i (r,𝜑, 𝜗, t) = �̂�

I∕II
i (r) + 𝛿𝜙

I∕II
i (r,𝜑, 𝜗, t)

R(𝜑, 𝜗, t) = R̂ + 𝛿R(𝜑, 𝜗, t) (B10)

where �̂�i(r) are the volume fraction profiles of the stable solutions and R̂
is the stable droplet radius. We use the separation ansatz for the pertur-
bations of the volume fraction values 𝛿𝜙I∕II

i , and the interface position 𝛿R
of the form

𝛿𝜙
I∕II
i (r,𝜑,𝜗, t) =

∑
n,l,m

𝜖nlm𝜚
I∕II
inl

(r)Ylm(𝜗,𝜑)e
𝜏nlt

𝛿R(𝜑, 𝜗, t) =
∑
n,l,m

𝜖nlmYlm(𝜗,𝜑)e
𝜏nlt (B11)

Here, the index n = 0,… ,∞, is related to the radial coordinate r, the index
l = 0,… ,∞, is related to the polar angle 𝜑, and the index m = −l,… , l is

Ann. Phys. (Berlin) 2022, 2200132 2200132 (11 of 13) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Table C1. Parameter values used in calculations shown in Figures 2–5.

𝜒NS 𝜒WS 𝜒DN 𝜒DW 𝜔0
D 𝜔0

N 𝜔0
W K1e

−𝜔0N K2e
−𝜔0D K3e

−Δ𝜇act 𝜙∞
D 𝜙∞

N 𝜙∞
W Δ𝜇act �̄�

Figure 2 1 0 0 1 10 20 0 0.025 0.001 – 0.08 – 0.0001 – –

Figure 3A,B −0.5 0.5 0 0 3 8 0 0.3 0.0088 – 0.08 0.15 0.001 – –

Figure 3C −0.5 0.5 0 0 3 8 0 0.3 0.0088 – – – 0.001 – –

Figure 3D,E −0.5 0.5 0 0 3 8 0 0.3 0.0088 0.008 – – – 9 0.25

Figure 3F −0.5 0.5 0 0 3 8 0 0.3 0.0088 0.008 – – – – –

Figure 4A −0.5 0.5 0 0 3 8 0 0.3 0.0088 – – – 0.001 – –

Figure 4B −0.5 0.5 0 0 3 8 0 0.3 0.0088 0.008 – – – – –

Figure 5A–D 1 0 −1 0 −0.8 4 1 0.3 0.0088 – 0.106 0.079 0.0001 – –

Figure 5E–H −1 0.5 0 0 −0.6 3 2.5 0.3 0.0088 – 0.100 0.107 0.0001 – –

Figure 5I–L 1 0 −1 0 −0.8 1 1 0.3 0.0088 – 0.119 0.164 0.0001 – –

Figure 5M–P −1 0.5 0 0 −0.6 2 2.5 0.3 0.0088 – 0.115 0.182 0.0001 – –

related to the azimuthal angle 𝜗. The amplitude of each mode is given by
𝜖nlm, and its relaxation rate with 𝜏nl. Furthermore, Ylm are the spherical har-
monics. The radial problem reduces to M coupled Bessel equations with
the solution given by

𝜚
I∕II
inl

(r) =
M∑
k=1

AI∕II
k

𝜌
I∕II
ikml

bI∕II
l

(𝜆I∕II
knl

r) (B12)

where the component specific weight 𝜌I∕II
ikml

and the inverse length-scale

𝜆
I∕II
knl

are obtained from theM independent solution of the coupled problem

for fixed n, l, m. The functions bI∕II
l

(x) are either modified spherical Bessel
functions of first or second kind, according to the boundary conditions at
r = 0 or r → ∞. Boundary conditions at the interface fix the 2M unknown
coefficients of AI∕II

k
and the relaxation rate 𝜏nl. From the condition of phase

equilibrium in linear order, we obtain

M∑
j=1

𝜕𝜇Ii

𝜕𝜙j

(
𝜕r �̂�

I
j (R̂) + 𝜚Ijnl(R̂)

)
=

M∑
j=1

𝜕𝜇IIi

𝜕𝜙j

(
𝜕r �̂�

II
j (R̂) + 𝜚IIjnl(R̂)

)
(B13)

𝛾(ΦI∕II)(l2 + l − 2)

R̂2
=

M∑
i=1

𝜙I
i − 𝜙II

i

𝜈i(
M∑
j=1

𝜕𝜇
I∕II
i

𝜕𝜙j

(
𝜕r �̂�

I∕II
j (R̂) + 𝜚

I∕II
jnl

(R̂)
))

(B14)

thus M + 1 conditions. The conservation law of each component at the
interface, requires in linear order:

𝜏nl(𝜙
I
i − 𝜙II

i ) = −
M∑
j=1

[
DI
ij

(
𝜕2r �̂�

I
j (R̂) + 𝜕r𝜚

I
jnl(R̂)

)
−DII

ij

(
𝜕2r �̂�

II
j (R̂) + 𝜕r𝜚

II
jnl(R̂)

)]
(B15)

With this, we can obtain in total 2M + 1 conditions at the interface, fixing
the coefficients AI∕II

k
and the relaxation rate 𝜏nl. When 𝜏nl > 0, any small

perturbation of the correspondingmode exponentially growths in linear or-
der.

Appendix C: Parameter Choices

Here, we give the numerical values of the parameters used for pro-
ducing the figures. For all figures, we have chosen 𝜈 = 1, 𝜔0

S = 0, 𝜅D = 1,
𝜆 = 1, kBT = 1, 𝜒DS = 3 and 𝜒NW = 0. As explained in Appendix B, 𝜅N =
𝜅W = 0 in the cases of the sharp interface limit. For the numerical sim-
ulation of Figure 2, 𝜅N = 𝜅W = 1. The remaining parameter vary for the
different cases. Their values are given in Table C1. For Figure 2, we used a
cubic lattice with N = 128 grid points in each dimension. The time points
are given in terms of K2.
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