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Spontaneous flow instabilities of active polar fluids in three dimensions
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Active polar fluids exhibit spontaneous flow when sufficient active stress is generated by internal molecular
mechanisms. This is also referred to as an active Fréedericksz transition. Experiments have revealed the existence
of competing in-plane and out-of-plane instabilities in three-dimensional active matter. So far, however, a
theoretical model reconciling all observations is missing. In particular, the role of boundary conditions in
these instabilities still needs to be explained. Here, we characterize the spontaneous flow transition in a
symmetry-preserving three-dimensional active Ericksen-Leslie model, showing that the boundary conditions
select the emergent behavior. Using nonlinear numerical solutions and linear perturbation analysis, we explain
the mechanism for both in-plane and out-of-plane instabilities under extensile active stress for perpendicular
polarity anchoring at the boundary, whereas parallel anchoring only permits in-plane flows under contractile
stress or out-of-plane wrinkling under extensile stress.
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Introduction. Active fluids are out-of-equilibrium materials
driven by energy injection at the microscopic scale [1,2]. Ac-
tive materials can have a polar or nematic alignment symmetry
of the orientation vector field, and the constituents of the ma-
terial allow it to generate contractile or extensile active stress.
Prominent examples of active fluids are found in living matter
across scales, from the cytoskeleton [3,4] and tissues [5–7]
to collective behavior in flocks [8]. The hydrodynamic theory
of incompressible active polar fluids describes the dynamics
of such active liquid crystals at long wavelengths. A key
behavior of active polar fluids is their ability to generate spon-
taneous flow under confinement and sufficient active stress.
It has been shown in two dimensions (2D) that spontaneous
flow can emerge due to a Fréedericksz-type transition first
observed in passive liquid crystals [9]. The passive Fréed-
ericksz transition describes the change of a homogeneous
nematic state to an inhomogeneous state under the influence
of external electric or magnetic fields [10]. In active liquid
crystals, the transition is driven by active molecular processes
causing spontaneous material flow [11–16].

*absingh@mpi-cbg.de
†ivos@mpi-cbg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

In two dimensions, the type of instability depends on the
confining boundary condition for the polarity field [4], as
illustrated in Fig. 1. For polarity anchored perpendicular to
boundaries, one obtains a spontaneous flow transition with
extensile active stress [Figs. 1(a) and 1(b)] [12]. For polarity
parallel to the boundary, the transition occurs for contractile
active stress [Figs. 1(c) and 1(d)] [13,16].

Recent works suggest such instabilities to also exist in
three-dimensional (3D) active polar fluids [17–20]. For exam-
ple, an extensile active fluid was found to exhibit a bending
instability in a minimal model [21], and flow-aligning active
fluids were found to display coherent motion in 3D chan-
nels upon increased activity [22]. Furthermore, it has been
shown that 3D contractile active fluids dampen out-of-plane
perturbations, whereas extensile fluids amplify them in the
absence of boundary effects [23]. 3D active fluids under
confinement behave fundamentally different from their 2D
counterparts. Notably, they exhibit flow due to buckling un-
der extensile active stress, which is not possible in 2D for
rigid boundaries [17]. Experimentally, such instabilities have
been observed in microtubule assays capable of generating
extensile active stresses [17,18]. Some experiments suggested
that in-plane and out-of-plane instabilities compete, depend-
ing on the material properties and the magnitude of the active
stress [19,20]. Other experiments [18] found only an out-of-
plane instability. Currently, a theoretical model explaining and
reconciling all observations is missing, and the dependence of
the instability on the relevant system parameters and boundary
conditions remains unexplained.

Here, we study the symmetry-preserving active Ericksen-
Leslie hydrodynamic model with a Lagrange multiplier
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FIG. 1. Two-dimensional active spontaneous flow transition in a
plane that is infinite along X and of finite width L along Y . (a) An
initially homogeneous polarity field with perpendicular anchoring to
the walls and no flow. (b) Spontaneous flow transition under extensile
active stress with velocity indicated by blue arrows. (c) An initially
homogeneous polarity field with parallel anchoring at the walls and
no flow. (d) Transition to spontaneous flow under contractile active
stress.

enforcing constant polarity magnitude. This allows us to show
that the effect of orientational order is sufficient to account
for all observed instabilities in 3D. We consider a thick active
polar film, which is the 3D extension of a Fréedericksz cell,
with anchoring of the polarity and stress-free boundary condi-
tions on the walls. We explain how steady-state spontaneous
flows can arise for different system sizes, polarity boundary
conditions, and active stress signs/magnitudes. We derive an-
alytical expressions for the critical activity or length scale by
linear perturbation analysis, analogous to the seminal work of
Voituriez et al. in 2D [16]. We confirm the analytical results
in convergence-validated direct 3D numerical solutions of the

full nonlinear model with Lagrange multipliers and complex
boundary conditions.

We find a transition in 3D for perpendicular anchoring un-
der extensile active stress (Fig. 2). This transition is different
from the 2D case [Fig. 1(a)] as the resulting shear flow is
both along the X and Z directions [Fig. 2(c)]. This leads to
out-of-plane bending of the polarity and to a 3D spontaneous
flow transition that is invariantly extended along the X and
Z directions [Fig. 2(b)]. For parallel anchoring at the wall,
we find a transition with contractile active stress that impedes
out-of-plane perturbations and is an invariant extension of the
2D spontaneous flow transition [Figs. 3(b) and 3(c)], and a
purely out-of-plane “wrinkling” under extensile active stress
that does not exist in 2D [Figs. 3(d)–3(f)].

Hydrodynamics of active polar fluids. The incompressible
viscous active polar fluid equations [1] can be described in
Einstein summation notation as

Dpα

Dt
= hα

γ
− νuαβ pβ + λ�μpα, (1a)

∂βσ
(tot)
αβ − ∂α
 = 0, ∂γ vγ = 0, (1b)

2ηuαβ = σ
(s)
αβ + ζ�μ

(
pα pβ − 1

3
pγ pγ δαβ

)

− ν

2

(
pαhβ + pβhα − 2

3
pγ hγ δαβ

)
, (1c)

with α, β, γ ∈ {x, y, z} for the spatial components. Further
details can be found in the Supplemental Material [24]. This
model fulfills the Onsager symmetry relations and accounts
for stresses from elastic distortion of the nematic field, as
well as antisymmetric and Ericksen stresses. The scalar ν is
the standard liquid-crystal flow aligning/tumbling parameter.
The molecular field h = K∇2p + h0

‖p can be decomposed
into parallel h‖ = p · h and perpendicular h⊥ = p × h com-
ponents in a local comoving frame. Note that molecular fields
differing by a factor of h0

‖p are equivalent [25] and hence

h‖ = h0
‖. Using Eq. (1a) and enforcing pγ

Dpγ

Dt = 0, h‖ can be

FIG. 2. Visualization of the 3D spontaneous flow transition for perpendicular polarity anchoring at the wall under extensile active stress.
(a) Coordinate system and the homogeneous steady state: Polarity vectors below the critical active potential (�μ̃ < �μ̃c ). (b) Polarity field
in the spontaneous flow steady state: Polarity streamlines with nonzero polarity in both X and Z directions, and Frank free-energy density as
color. The black arrow indicates the initial polarity vector direction. (c) Velocity field in the spontaneous flow steady state: Velocity streamlines
for the spontaneous flow steady state in (b) with nonzero flow in both X and Z directions, with velocity magnitude as color. The blue arrows
indicate the directions of the flow at the stress-free walls.
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FIG. 3. Visualization of the 3D spontaneous flow transitions with parallel polarity anchoring at the wall. (a) Homogeneous steady state:
Polarity vectors below the critical active potential (�μ̃ < �μ̃c). (b) In-plane spontaneous flow steady state under contractile active stress:
Polarity streamlines showing nonzero polarity in the Y direction and zero in the Z direction, with Frank free-energy density as color. The black
arrow indicates the initial polarity vector direction. (c) Velocity field in the spontaneous flow steady state under contractile active stress: Velocity
streamlines for the in-plane spontaneous flow steady state in (b) with nonzero flow in the X direction and velocity magnitude as color. The
blue arrows indicate the directions of the flow at the stress-free walls. Parameter values for (b) and (c) are γ̃ = 1, L̃ = 10, ν̃ = −0.4, ζ̃ = −1,
�μ̃ = 0.35. (d) Out-of-plane spontaneous flow steady state under extensile active stress: Polarity streamlines showing nonzero polarity field
in the Z direction and zero in the Y direction, with Frank free-energy density as color. The black arrow indicates the initial polarity vector
direction. (e) Z component of the polarity field in the out-of-plane spontaneous flow steady state under extensile active stress. (f) Velocity in
the out-of-plane spontaneous flow steady state under extensile active stress: Velocity streamlines for the spontaneous flow steady state under
extensile active stress in (d) with nonzero flow in the Z direction and velocity magnitude as color. The blue arrows indicate the directions of
the flow at the stress-free walls. Parameter values for (d)–(f) are γ̃ = 1, L̃ = 10, ν̃ = −0.4, ζ̃ = 1 �μ̃ = 2.4.

derived as h‖ = −γ [λ�μ − 2ν
pγ pγ

(uαβ pα pβ )], such that ‖p‖
remains constant. In 2D, the perpendicular component of the
molecular field is a scalar with one degree of freedom, which
makes the nonlinear equations analytically tractable. In 3D,
however, h⊥ = (h⊥x, h⊥y, h⊥z ) is a 3-vector, and the coupling
of the Frank free energy with the Lagrange multiplier h|| ren-
ders the force-balance equation intricate. Therefore, it is not
clear from simplified models how the flow instability depends
on system parameters such as λ, ζ , or ν [17,21]. The micro-
scopic origin of λ and ζ , however, can be elucidated in the
full nonlinear model, providing experimentally measurable
predictions.

Results. We analyze the hydrodynamic equations (1) at
steady state and provide a mechanism for the emergence of
symmetry-breaking spontaneous flow. We express the unit
polarity vector as p = [cos(θ ) cos(φ), sin(θ ) cos(φ), sin(φ)]
using the coordinates illustrated in Fig. 2. We eliminate the
velocity from Eq. (1) and obtain the nonlinear force balance
equation as a function of (θ, φ). For anchoring boundary
conditions (θ0, φ0) at the top and bottom walls, the system
is steady with trivial solution [θ (y), φ(y)] = (θ0, φ0).

For the case of perpendicular anchoring of the polarity at
the boundary, i.e., (θ0, φ0) = ( π

2 , 0), assuming small pertur-
bations [ε(y), κ (y)] around the no-flow homogeneous steady
state, we obtain the equations for the perturbations by lineariz-
ing the nonlinear equation

K
∂2

∂y2

[
ε(y)
κ (y)

]
= 2γ�μ(ν − 1)(ζ + γ λν)

γ (ν − 1)2 + 4η

[
ε(y)
κ (y)

]
. (2)

Hence, there are perturbation modes of the form[
ε(y)
κ (y)

]
= sin

(
π

L
y

)[
εm

κm

]
, (3)

where εm, κm are the maximum tilt magnitudes in θ and φ,
respectively. These modes effectively define a critical activity

�μc = Kπ2[4η + γ (ν − 1)2]

2L2γ (ν − 1)(−ζ − γ λν)
. (4)

Assuming −1 < ν < 1, and for perpendicular anchoring of
polarity, we note that for the critical �μc > 0 the effective
active stress is extensile, −ζ − γ λν < 0. Hence for a flow-
tumbling polarity, we expect the spontaneous flow transition
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(a) (b) (c) (d)

FIG. 4. Transition for different flow regimes. The solid lines plot the analytical expressions for the dimensionless critical activity �μ̃c

vs dimensionless flow-tumbling parameter ν̃ for γ̃ = ζ̃ = 1 and L̃ = 10. The color of the � symbols in the background grid indicates the
maximum norm of the spontaneous flow velocity obtained by numerically solving the nonlinear equations at those parameters with a tolerance
of 10−6. (a) Perpendicular polarity anchoring with extensile stress, Eq. (4). See (d) for more simulations along the dashed line. (b) Parallel
anchoring with contractile stress, Eq. (7). (c) Parallel anchoring with extensile stress, Eq. (10). (d) Numerically obtained maximum flow
velocity magnitude vs activity �μ̃ for ν̃ = −0.75 [dashed vertical line in (a)] for spontaneous flow with perpendicular anchoring and extensile
active stress. Note the broken Y axis with different scales to accommodate for the sharp increase around the critical activity �μ̃c.

when �μ > �μc. However, the instability depends on a non-
linear combination of parameters. For example, the critical
activity depends nonlinearly on ν. Further, the effects of ζ

and λ are coupled to both the rotational viscosity γ and
to ν. For |ν| > 1, the behavior depends on |ζ |. We provide
phase diagrams for these three qualitatively different critical
behaviors in Supplemental Material SM3 [24].

The governing equations can be nondimensionalized with
respect to λ, η, and K by rescaling L̃ = (ηλ)

1
3 L, ζ̃ = ζ (ηλ)−1,

�μ̃ = �μ(ηλ)
1
3 K−1, γ̃ = γ η−1, and ν̃ = ν. We numerically

solve the dimensionless equations for a thick 3D active film
that is periodic along the X and the Z directions and has thick-
ness L in the Y direction. Details of the simulation method
can be found in SM2 [24]. The simulation computer code
scales to parallel computer architectures, as it is based on
the open-source scientific computing library OpenFPM [26]
and a template expression language for partial differential
equations [27].

We verify the expressions in Eq. (4) by numerically solving
the nonlinear equations for γ̃ = 1, ζ̃ = 1, L̃ = 10. For these
parameters, the dependence of the critical activity (�μ̃c) on
the flow-tumbling parameter ν̃ is shown in Fig. 4(a) as a solid
line. Hence, when �μ̃ > �μ̃c, the mode in Eq. (3) appears
with spontaneous flow governed by

∂

∂y

[
vx(y)
vz(y)

]
= 2�μ(γ λν + ζ )

γ (ν − 1)2 + 4η

[−ε(y)
κ (y)

]
. (5)

We find that the mode may be stabilized by the nonlin-
earities above the critical potentials, resulting in steady-state
flows. In the steady flow state, active stresses are balanced
by elastic nematic stresses, leading to stationary perturbation
modes. The corresponding spontaneous flow transition is ob-
served above the critical activity and is visualized in Fig. 2
and SM Video I [24].

We study the stability of parallel anchoring of the polarity
at the boundary, i.e., (θ0, φ0) = (0, 0). We again linearize
around small angle perturbations (ε, κ ) of the polarity and

obtain

K
∂2

∂y2

[
ε(y)

κ (y)

]
= 2γ�μ(ν + 1)(γ λν + ζ )

γ (ν + 1)2 + 4η

[
ε(y)

0

]
. (6)

This leads to a critical activity

�μc = π2K[4η + γ (ν + 1)2]

2γ L2(ν + 1)(−ζ − γ λν)
. (7)

For the critical �μc > 0, and parallel anchoring of the polar-
ity field, the active stress for the transition is contractile, −ζ −
γ λν > 0, giving rise to a spontaneous flow transition with an
S-like shape of the polarity field [Fig. 3(b)], as observed in
2D, but invariantly extended in the third dimension. This con-
firms that contractile active polar fluids impede out-of-plane
perturbations when polarity is anchored on the boundary.
The spontaneous flow transition occurs when �μ > �μc. We
confirm this in nonlinear simulations for the same parameters
as before and ζ̃ = −1. The dependence of the critical activity
for contractile active stress on the flow-tumbling parameter ν̃

is plotted in Fig. 4(b) as a solid line. The numerical solutions
for �μ̃ > �μ̃c confirm the transition for different values of
ν, and the maximum norm of the flow velocity is shown as
a color code in Fig. 4(b). The initial homogeneous state of
polarity is shown in Fig. 3(a). Figure 3(b) shows the polarity
field for the steady-state spontaneous flow shown in Fig. 3(c).
The onset of this transition is also shown in SM Video II [24].

We note that the symmetry can also be broken in the X di-
rection instead of Y , such that uxz �= 0 and uxy = 0. A similar
analysis then reveals a 2D extensile perturbation mode,

K∇2
{x,y}

[
ε(x, y)

κ (x, y)

]
= −2γ�μ(ν − 1)(γ λν + ζ )

γ (ν − 1)2 + 4η

[
0

κ (x, y)

]
.

(8)
This leads to perturbations of the form

κ (x, y) = κm cos

(
2π

Lx
x + α

)
sin

(
π

Ly
y

)
, (9)

where α is the phase shift, which is fixed by the flow boundary
condition and the integration constant. This mode corresponds
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to a critical activity

�μc =
(
4L2

x + L2
y

)
π2K[γ (ν − 1)2 + 4η]

2γ L2
x L2

y (ν − 1)(−ζ − γ λν)
. (10)

For the critical �μc > 0, and parallel anchoring, the active
stress for the transition is extensile, −ζ − γ λν < 0. The mode
in Eq. (9) describes an out-of-plane transition maintaining
θ (x, y) = 0. For the previously chosen parameters and ζ̃ = 1,
the dependence of �μ̃c on ν̃ is shown in Fig. 4(c).

The above expressions further clarify the effect of the fi-
nite length Lx of the domain in the X direction. In the ideal
physical system, Lx is infinite, and Ly is finite. In Eq. (10),
we see that there is a nonzero limit for the critical activity
as Lx approaches infinity, and the mode of deformation in
Eq. (9) has no modulation in the X direction. This predicts
the wrinkling wavelength close to the transition. For further
increasing activity, however, the perturbations are no longer
small, rendering the linearized equations invalid. Then, the
system transitions to spatiotemporal chaos.

The amplitudes εm, κm depend on �μ̃ and are analyti-
cally intractable. The critical active potential for out-of-plane
wrinkling is significantly larger than for the other cases. This
causes the instability to occur earlier or faster in time in 3D.
The unstable mode shows oscillatory flows in opposite direc-
tions. With �μ̃ > �μ̃c, we find a spontaneous flow transition
of small amplitude near the critical value, as shown by the
maximum norm of the velocity (color of symbols). The asso-
ciated wrinkling in the transition is shown in Figs. 3(d)–3(f)
and SM Video III [24]. This transition has also been observed
experimentally in extensile polar fluids and referred to as
bending or wrinkling instability [17–20]. Here, we qualita-
tively characterized the effect of finite channel length Lx on
the wrinkling wavelength.

Conclusions. We have derived the critical active stress for
the spontaneous flow transition in 3D active liquid crystals
from the full, symmetry-preserving active Ericksen-Leslie
model with Lagrange multipliers. We found that contractile
active stresses impede out-of-plane perturbations at the tran-
sition, whereas extensile active stresses promote them under
parallel anchoring of the polarity at the walls. For perpen-
dicular polarity boundary conditions, we found a 3D active
Fréedericksz-type transition under purely extensile stress. We

analytically derived the critical active potentials for the tran-
sition in each case and confirmed them in direct numerical
solutions of the nonlinear 3D system. For a fixed activity
�μ, the present analysis equivalently yields a corresponding
critical length Lc that defines a system size above which the
transition occurs. The results show how the instabilities arise
from the interplay between the boundary conditions, the active
potential, and the channel width and length.

Our work can be related to previous studies on simi-
lar systems. Similar in-plane and out-of-plane instabilities
as described here were previously reported using hybrid
lattice-Boltzmann simulations with periodic boundary condi-
tions [23]. However, for flow-tumbling active fluids, another
study reported no coherent flow in 3D channels without pref-
erential anchoring on the boundaries [22]. Here, we have
shown that such flows do occur if the polarity field is anchored
at the surfaces. Interestingly, a simplified model generated
pumping behavior without anchoring boundary conditions
when no-slip velocity boundary conditions were used [21].
We verified that for the no-slip boundary conditions, such
behavior also occurs in our model for supercritical activity.
We then observe the same flow modes as previously seen in
2D [16].

Our results accurately predict the type of spontaneous
flow in 3D and provide a comprehensive understanding of
3D active fluids, unifying previously made observations and
explaining their physical origin. We have shown how 3D
active matter differs from its 2D counterpart due to the ad-
ditional degrees of freedom. Indeed, we found a bending
or wrinkling instability mediating spontaneous flow in 3D,
explaining earlier experimental observations [17–20] with
direct implications for understanding biological morphogen-
esis and finding design principles for the control of active
matter.
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