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L I F E  S C I E N C E S

Active shape programming drives Drosophila wing 
disc eversion
Jana F. Fuhrmann1,2†, Abhijeet Krishna1,2,3†, Joris Paijmans4, Charlie Duclut4,5, Greta Cwikla2, 
Suzanne Eaton1,2,3,6, Marko Popović2,3,4, Frank Jülicher2,3,4, Carl D. Modes1,2,3*, Natalie A. Dye1,2,7*

How complex 3D tissue shape emerges during animal development remains an important open question in 
biology and biophysics. Here, we discover a mechanism for 3D epithelial shape change based on active, in-
plane cellular events that is analogous to inanimate “shape programmable” materials, which undergo blue-
printed 3D shape transformations from in-plane gradients of spontaneous strains. We study eversion of the 
Drosophila wing disc pouch, when the epithelium transforms from a dome into a curved fold, quantifying 3D 
tissue shape changes and mapping spatial patterns of cellular behaviors on the evolving geometry using cel-
lular topology. Using a physical model inspired by shape programming, we find that active cell rearrangements 
are the major contributor to pouch eversion and validate this conclusion using a knockdown of MyoVI, which 
reduces rearrangements and disrupts morphogenesis. This work shows that shape programming is a mecha-
nism for animal tissue morphogenesis and suggests that patterns in nature could present design strategies for 
shape-programmable materials.

INTRODUCTION
Epithelial tissues are sheets of tightly connected cells with apical-basal 
polarity that form the basic architecture of many animal organs. De-
formations of animal epithelia in 3D can be mediated by external 
forces, either from neighboring tissue that induces buckling instabili-
ties [e.g., (1–3)] or extracellular matrix that confines [e.g., (4)] or ex-
pands [e.g., (5)]. Alternatively, local differences in mechanics at the 
apical and basal sides of the deforming epithelia itself can drive out-
of-plane tissue shape changes {e.g., ventral furrow invagination in the 
Drosophila embryo [reviewed in (6)] and fold formation in Drosophila 
imaginal discs (7)}.

Here, we describe a mechanism for generating complex three-
dimensional (3D) tissue shape involving tissue-scale patterning of in-
plane deformations, analogous to the shape transformations of certain 
inanimate shape-programmable materials. These shape-programmable 
materials, like hydrogels and nematic elastomers, experience sponta-
neous strains, where the natural internal lengths change in response to 
stimuli in a desired way (8, 9). Globally patterned spontaneous strains 
can create a geometric incompatibility with the original shape, trigger-
ing specific, desired 3D deformations, such as the formation of a cone 
from a flat sheet (8, 10, 11). Ideas from shape programmability have 
already proved insightful to the understanding of differential growth-
mediated plant morphogenesis (12, 13). However, animal epithelia 
are more dynamic, changing cell shape and size, as well as rearranging 

tissue topology. Each of these behaviors could actively create in-
plane spontaneous strain or be a passive response to stress.

To test whether shape programming could be a mechanism for 
animal morphogenesis, we quantify tissue shape changes and cell be-
haviors in the Drosophila wing disc during a 3D morphogenetic pro-
cess called eversion (Fig. 1A). Through eversion, the wing disc proper, 
an epithelial monolayer, undergoes a shape deformation in which the 
future dorsal and ventral surfaces of the wing blade appose to form a 
bilayer and escape the overlying squamous epithelium called the peri-
podial membrane. After eversion, the wing disc begins to resemble 
the final shape of the adult wing. This process is triggered by a peak in 
circulating levels of the hormone 20-hydroxyecdysone, analogous to 
an activator in shape programming. This complex tissue shape change 
is independent of forces external to the wing disc, as demonstrated by 
its ability to occur in explant culture (14). The shape changes of the 
disc proper also cannot be fully explained by removal of the peripo-
dial membrane or extracellular matrix and appear to be self-sufficient, 
involving active cellular processes (15–19).

It has long been postulated that the eversion of wing (and leg) discs is 
achieved by in-plane cell behaviors that are organized by previously es-
tablished cell morphology patterns (20–23). Here, we test this hypothesis 
by systematic quantification and genetic perturbation of cell behaviors 
during eversion and demonstrate how cell behaviors contribute to tissue 
shaping using a physical model analogous to shape programming.

RESULTS
The wing pouch undergoes anisotropic curvature changes 
during eversion
We first sought to quantify the tissue shape changes happening during 
wing disc eversion. To this end, we explanted wing discs at fixed time 
intervals, from late larval stage [wandering third larval instar (wL3)] to 
6 hours after puparium formation (hAPF). We imaged the wing discs 
using multiangle light sheet microscopy and then reconstructed and 
analyzed the 3D image stack (the “Image acquisition and processing” 
section). In this way, we capture the complex 3D shape changes happen-
ing throughout the wing disc during eversion (Fig. 1B and movie S1).
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The most marked tissue shape changes can be seen in a central 
cross section along the axis perpendicular to the dorsal ventral 
boundary (DVB), referred to as “across-DVB” (Fig. 1C and fig. S1, D, 
F, and G). We observe three main morphogenetic changes: The 
peripodial membrane is removed around 4hAPF, the deeply folded 
regions unfold, and the pouch undergoes a transition from a mono-
layer dome to a flat bilayer with a sharply folded interface. In the 
perpendicular plane, taken through DVB in the pouch (referred to as 
“along-DVB”), the tissue does not change as considerably, preserving 
curvature in this direction (Fig. 1D and fig. S1, E to G).

We focus hereafter on the pouch region, as it undergoes the most 
complex shape change: starting as an almost radially symmetric 

dome and ending up in a curved fold shape, with curvature increas-
ing strongly in one axis (across-DVB) but not as much in the other 
(along-DVB) (fig. S1, F and G). To test the hypothesis that in-plane 
cellular behaviors lead to 3D tissue shape change, we first build a 
shape programmability model that relates cellular behaviors to spon-
taneous strain. We then measure patterns of cellular behaviors in the 
wing pouch during eversion and use our model to test how they af-
fect tissue shape change.

Programmable spring network as a model for 
epithelial morphogenesis
We developed a coarse-grained model of tissue shape changes, le-
veraging an analogy between tissue remodeling by internal processes 
and spontaneous strain-driven shape programming of nematic elas-
tomers (24–26). We use a double layer of interconnected program-
mable springs representing the apical surface geometry and the 
material properties of an epithelial sheet, including a bending rigidity 
introduced by the thickness of the double layer (Fig. 2A and the 
“Mechanics of the programmable spring lattice” and the “Tuning 
thickness” sections). As an initial configuration, we use a stress-free 
spherical cap and then assign new rest lengths to the springs. In 
a continuum limit, this corresponds to introducing a spontaneous 
strain field λ (X) , which depends on the spatial coordinates X  (the 
“Spontaneous strain tensor” section). To simplify notation, we write 
λ for λ (X) hereafter. To generate a final output shape, we quasi-
statically relax the spring network (the “Mechanics of the program-
mable spring lattice” and the “Spontaneous strain tensor” sections). 
As with conventional elastic strain tensors, λ can be decomposed 
into isotropic (λ) and anisotropic ( ̃λ ) modes.

We first demonstrate how simple choices of spontaneous strain 
patterns induce a shape change in our model. A simple gradient of λ, 
for example, causes the spherical cap to balloon in the center or gener-
ate wrinkles at the periphery (Fig. 2B, a and b). Changing the direc-
tions and gradients of λ̃ leads to elongation of the cap, increase in the 
curvature at the tip, or even flattening of the curvature in the center, 
eventually leading to a saddle shape (Fig. 2B, c to h).

Next, we propose that cell behaviors can give rise to a spontaneous 
strain field, thereby shape programming the wing disc pouch and driv-
ing 3D shape changes during eversion. The strains measured from ob-
served cell behaviors during eversion (referred to as observed strains, 
λ
∗ ) can be used to infer spontaneous strains. By using coarse-grained 

spontaneous strains, the topology of the spring network remains un-
changed (27). For the isotropic component of observed strain, we focus 
on cell area changes ( λ∗

A
 ) (Fig. 2C). The anisotropic components of 

observed strain capture contributions stemming from both changes in 
cell elongation ( ̃λ∗

Q
 ) as well as from cell rearrangements ( ̃λ∗

R
 ), which 

can include cell divisions, cell extrusions, and T1 transitions (Fig. 2C). 
Our model can therefore relate cell behaviors to spontaneous strains 
to understand resulting tissue deformations. We now investigate these 
quantities in the everting wing disc.

Topological tracking reveals spatial patterns of 
cell dynamics
To examine cell behaviors, we first segmented apical cell junctions 
and plotted average cell area and cell elongation in space (fig. S2 and 
Fig. 3, A and B). From larval stages, we know that cell morphology 
and behaviors in the pouch are organized radially in the region 

Fig. 1. The wing pouch undergoes anisotropic curvature changes during ever-
sion. (A) Schematic cross sections along the long axis of the wing disc before and 
after eversion. DP, disc proper; PM, peripodial membrane; blue, apical surfaces; red, 
basal surfaces. (B) Example of a 3D segmentation of the DP in a head-on and side 
view (from anterior) before eversion (left, wL3) and after bilayer formation (right, 
2hAPF). Blue, pouch; solid line, across-DVB; dashed line, along-DVB. (C and D) Rep-
resentative images of wing discs during eversion. Wing discs are labeled with 
E-cadherin–GFP. The pouch region is highlighted, colored by time. (C) Projection 
view showing the dorsal side for early pupal stages and dorsal (down), ventral (up), 
and DVB (dashed line) for wL3. (D) Across-DVB cross section (white: DVB). Asterisk 
shows the rupture point of the PM, which gets removed around 4hAPF. Minimum 
five wing discs were analyzed for each time point. Scale bars, 100 μm.
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outside of the dorsal ventral boundary (outDVB) and parallel to the 
boundary in the region closest to the DVB (28–31). During eversion, 
we observe that cell shapes and sizes are patterned similarly. In early 
stages, cell area follows a radial gradient that disappears by the end of 
eversion (4hAPF) (Fig. 3A and the “3D cellular network” section). Cell 

elongation exhibits a global nematic order through 4hAPF before dis-
ordering at 6hAPF (Fig. 3B and the “3D cellular network” section).

To compare spatial patterns of cell behaviors over eversion time 
and across experiments, we define a coordinate system on the evolv-
ing 3D geometry. To this end, we use the cellular network topology to 
define a distance measure on the tissue surface. The topological dis-
tance between two cells is defined as the number of cells on the short-
est path through the network from one cell to the other (see fig. S3A). 
We then use topological distance to define a coordinate system in the 
outDVB and DVB regions (Fig. 3C; figs. S3 and S4, A and B; and the 
“Topological distance coordinate system” section). The outDVB re-
gion consists of the dorsal and ventral halves, and we identify a single 
cell that defines the origin in each half (OD and OV). In the DVB, we 
define the origin (ODV) as a line of cells transversing the DVB. The 
topological distance k to the origin defines a radial topological coor-
dinate in each region (Fig. 3, C and D).

During eversion, tissue previously hidden in the folds becomes 
visible. To compare cell behaviors at different time points, we need 
to identify a region of tissue that remains in the field of view 
throughout eversion. To this end, we count NROI, which is the total 
number of cells enclosed by the largest visible topological ring at 
wL3. The corresponding region of interest (ROI) at later time points 
is then defined to be centered at the origin and containing the same 
number of cells. Since there are very few divisions (fig. S5) (14, 32, 
33) and extrusions (34) during early pupal eversion stages (0hAPF 
to 4hAPF), and because cells cannot flow across the DVB (35, 36), 
we expect that our ROIs contain largely the same set of cells, and we 
refer to them as topologically tracked regions (Fig. 3D and fig. S6, 
A and B).

Next, we quantify patterns of cell area (A) and radial cell elonga-
tion tensor ( Q ) as a function of topological coordinate k throughout 
eversion (see the “3D cellular network” section). We find that our 
topological coordinate system recapitulates previously reported gra-
dients in cell area and radial cell elongation at earlier larval stages 
(fig. S4, C and D). In outDVB at wL3, we observe a cell area gradient 
that relaxes gradually until 4hAPF (Fig. 3E). At the same time, cell 
elongation develops a gradient, with cells in the periphery elongat-
ing tangentially (Fig. 3F). Between 4hAPF and 6hAPF, cells mark-
edly expand their area and tangential cell elongation completely 
relaxes. We do not observe gradients in cell area or cell elongation in 
the DVB. Instead, cell area expands globally in the DVB during 
eversion, while cell elongation along the DVB first increases up to 
2hAPF and then decreases at 4hAPF (Fig. 3, E and F).

Using topological distance allows us to extract spatial patterns of 
oriented cell rearrangements from snapshots of eversion. Radially 
oriented rearrangements lead to a decrease in the number of cells per 
k, whereas tangentially oriented rearrangements lead to an increase. 
As a consequence, k(NROI), which describes the required k covering 
a fixed number of cells over time, has to increase if rearrangements 
are radial and decrease if rearrangements are tangential. We find 
that k(NROI) increases with time (Fig. 3G), consistent with radially 
oriented cell rearrangements in the outDVB and rearrangements ori-
ented along the boundary in the DVB. To further validate our meth-
od, we performed live imaging of an everting wing disc in culture 
(see also movie S2). We directly observe cell intercalations and find 
good agreement between topological tracking and live cell tracking 
that is consistent with a radial bias in orientation of intercalations 
(fig. S7).

Fig. 2. The programmable spring network relates cell behaviors to spontaneous 
strain to model epithelial morphogenesis. (A) A thick spherical cap as a model for 
an epithelial tissue; radial coordinate r and basis vectors e

r
, e

ϕ
, and e

h
 . The thickness 

(h) is constant everywhere. The model tissue is an elastic medium implemented as a 
spring network with an initially stress-free state. We change the rest lengths of the 
springs by imposing a spontaneous strain field λ and allow subsequent relaxation 
leading to a new 3D output shape. The spontaneous strain field λ consists of an 
isotropic component λ and an anisotropic component λ̃ . These components cause 
changes in local area (Ai to Af) or local shape (Li to Lf), respectively. (B) Model realiza-
tions with example spontaneous strain patterns. The input pattern is displayed 
above, with the magnitude of spontaneous strain encoded by color and the orienta-
tion of anisotropic extension displayed in the bars. The rest lengths of the springs 
(mesh edges) are changed according to the input spontaneous strain pattern. The 
output shape is displayed below. In (B, a and b), we vary the isotropic contribution λ 
and keep λ̃ = 1 , while in (B, c to h), we vary λ̃ and keep λ = 1. (C) Schematics showing 
the calculation of observed strains from cellular behaviors. Left: For a patch of cells 
going from area of Ai to Af, we extract λ*. Right: A patch of cells undergoing anisotro-
pic deformation due to cell elongation changes or neighbor exchanges causes the 
length scale in one direction to change from Li to Lf. From this change, λ̃∗ is extracted, 
while λ* = 1, as there is no isotropic contribution.
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Together, these measured cell behaviors are a superposition of dif-
ferent radial patterns with the additional complexity of the DVB. Next, 
using our programmable spring model (Fig. 2), we ask how in-plane 
strains caused by these cell behaviors could drive 3D shape changes 
during eversion.

Active cell rearrangements drive tissue shape changes
To be able to compare the output of the model to the 3D shape changes 
happening during eversion, we quantify the curvature and size dy-
namics of the apical surface of the wing pouch. We limit the analysis 
to the topologically tracked region and quantify the change in curva-
ture from the wL3 stage along lines in the along-DVB and across-
DVB directions (Fig. 4A, fig. S6, and the “Quantifying curvature of 
cross sections” section). We focus on the stages between wL3 and 
4hAPF, during which cell shape patterns have radial symmetry (Fig. 3, 

A, B, E, and F). At the wL3 stage, this region is symmetric in the center 
and becomes slightly asymmetric in the periphery. Over eversion 
time, there is an overall curvature increase that is more pronounced in 
the across-DVB direction, peaking at the DVB, while flattening at the 
dorsal and ventral sides. Furthermore, the overall tissue area increases 
(Fig. 4A and fig. S6A).

Next, we measure the strain field ( λ∗ ) resulting from cell behaviors 
as a function of the normalized distance from the origin, r or ρ 
(Fig. 4, B and C; figs. S8 and S9; and the “Extracting the strain 
pattern from segmented images” section). We quantify the isotropic 
component of strain resulting from cell area changes ( λ∗

A
 ) (Fig. 4B 

and fig. S9C). In the outDVB, we observe an area expansion ( λ∗
A
> 1 ) 

up to 2hAPF with a radially decreasing profile. In the DVB, we ob-
serve the buildup of a shallower gradient that is transiently paused 
from 0hAPF to 2hAPF. The contribution to the anisotropic component 

Fig. 3. Topological tracking reveals spatial patterns of change in cell size, cell elongation, and cell rearrangements. (A, B, and D) Cell measurements on the surface 
of example wing discs. At wL3, outDVB and DVB are visible; for 0hAPF to 6hAPF, dorsal is shown. (A) Apical cell area. (B) Cell elongation averaged over patches of 350 μm2. 
Bars, orientation of Q (2D projected); color, magnitude of ( ∣Q ∣ ). (C) Segmentation of a wL3 pouch. Blue, origins (outDVB: OD and OV and DVB: ODV) for topological coordi-
nates k; orange arrows, direction of spatial coordinates emanating from these origins. Inset: Center region colored by k. The topological coordinate system is defined in 
one view for larval stages and in four separate imaging angles for early pupal stages (schematic, right). (D) Cells colored by k (top row) and by k limited to the topologi-
cally tracked region (maximum k is denoted k[NROI]) (bottom row). (E and F) Cell area (E) or elongation (F) averaged over k. Geometric representations (half-circles: outDVB, 
rectangle: DVB, radius: k). (E) Geometry: Cell area normalized per time point and region [A(k)/〈AROI〉]. Bottom: Cell area (A) over k. (F) Radial component of cell elongation 
(Qrr) for outDVB cells and cell elongation along the DVB (Qρρ) for DVB cells. Qrr and Qρρ are calculated as a function of k. In the top, magnitudes are represented by color. 
(G) Schematic shows rearrangement estimate. Circles represent outDVB cells, colored by k at the initial time point. Radial rearrangements lead to a decrease, tangential to 
an increase in the number of cells per k. Plots show the cumulative number of cells N contained within k. Horizontal line, NROI for wL3; vertical lines, corresponding k(NROI) 
for each stage. In (E) to (G), solid lines indicate mean, and ribbons show 95% confidence of the mean.
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Fig. 4. Inputting measured and inferred strains in the programmable spring model shows that active rearrangements and cell area changes drive pouch mor-
phogenesis. (A) Overlay of a wL3 and 4hAPF wing pouch in across-DVB cross section (left) and plots of the average change in tissue curvature in the topologically tracked 
region for across-DVB (middle) and along-DVB (right) directions. (B) Observed strain arising from different cellular behaviors between wL3 and 4hAPF. Half circles, outDVB; 
rectangle, DVB. Color represents the magnitude of strain; bars visualize the orientation for λ̃∗

R
 and λ̃∗

Q
 . (C) Model coordinates match the geometry of the pouch. r and ρ are 

the normalized distances from the origins. (D, G, and J) Observed in-plane strain from rearrangements [(D), ] ̃λ∗

R
 , cell elongation changes [(G), ] ̃λ∗

Q
 , and cell area changes 

[(J),] λ∗
A
 are inserted in the model as spontaneous strains. Springs are colored by new rest lengths normalized by the initial rest lengths (δo/δ*). Model cross sections show 

the shape in the across-DVB direction for initial and final time points. Curvature change of model outcomes are plotted (right) in the across-DVB and along-DVB directions. 
t0 matches wL3 shape; t1, t2, and final stages are the model results from the change in strains at 0hAPF, 2hAPF, and 4hAPF. (E, H, and K) Input spontaneous strain for 
λ̃
∗

R
 (E), λ̃∗

Q
 (H), and λ∗

A
 (K) at the final eversion time point (λ, λ̃ ) and the resulting strain that is achieved after relaxation of the model, both isotropic (F) and anisotropic 

( ̃F  ) components. (F, I, and L) Residual strain that remains at the final time point. Plots are split vertically to show the isotropic component (λ) on the left and the anisotro-
pic component ( ̃λ ) on the right. (M to O) Model output, resulting strains, and residual strains for the inferred spontaneous strains, following (D) to (L).
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of the strain λ∗ from changes in cell elongations λ̃∗

Q
 is small compared 

to the contribution from cell rearrangements λ̃∗

R
 (Fig. 4B; fig. S9, A, 

B, and D; and the “Nematic director pattern on spherical surface” 
section). While λ̃∗

Q
 is tangential, following a shallow gradient, λ̃∗

R
 is 

radial and increasing with the distance from origin in the outDVB 
and decreasing in the DVB.

We next use the programmable spring model to test how the ob-
served in-plane cellular behaviors can cause tissue shape changes. We 
define the DVB and outDVB regions in the model, matching their 
relative sizes in the wing pouch (Fig. 4C and fig. S10). For simplicity, 
we use a symmetric spherical cap as an initial geometry. For each in-
dividual cell behavior and measured time point (wL3, 0hAPF, 2hAPF, 
and 4hAPF), we use the in-plane strain λ∗ that we infer from each 
observed class of cell behaviors as examples of spontaneous strain λ . 
We use these to program the spring lengths in the model. For each 
insertion of spontaneous strain (model time points: initial, t1, t2, and 
final, corresponding to the experimental time points), we relax the 
spring network quasi-statically to a force balanced state (the “Me-
chanics of the programmable spring lattice” and the “Nematic direc-
tor pattern on spherical surface” sections). As the effective bending 
modulus of the wing disc is experimentally inaccessible, we fit the 
thickness of the model in an example scenario where all observed cell 
behaviors are input as spontaneous strains and use the same thickness 
thereafter (fig. S11A and the “Tuning thickness” section).

We first consider cell rearrangements as a possible source of spon-
taneous strain. When we only input the observed pattern of cell rear-
rangements as spontaneous strain in the model, λ R

= {1, λ̃∗
R
} , it alone 

creates a strong curvature increase, resembling many features of the 
data but without increasing tissue size (Fig. 4, A and D). Note that 
using cell rearrangements as spontaneous strain λ R also introduces a 
difference in curvature change between the two directions, across-
DVB and along-DVB, at the final stage.

After relaxing the spring network to a force balanced state, stresses 
due to residual strains remain. The stresses corresponding to these 
residual strains can drive passive responses in cell behaviors. The re-
sidual strains appear as a mismatch of spontaneous strains (input to 
the model, λ ) and strains resulting from changes in spring length 
during relaxation of the network, F (Fig. 4E and the “Spontaneous 
strain tensor” section).

When we calculate the residual strains generated by spontaneous 
strain from rearrangements, we find that the anisotropic component 
of the residual strain ( ̃λres

R
 ) is tangentially oriented (Fig.  4F and 

fig. S12D). This tangentially oriented strain is similar to the pattern of 
cell elongation changes ( ̃λ∗

Q
 ) [compare Fig. 4B (middle) with Fig. 4F 

(right)], suggesting that these cell elongation changes are a passive re-
sponse to spontaneous strain by rearrangements. To test this idea, we 
next consider cell elongation as possible source of spontaneous strain. 
When we only input the observed pattern of cell elongation as spon-
taneous strain in the model, λ

Q
= {1, λ̃∗

Q
} , we observe that the spring 

network shape flattens at the center rather than curve, and cell elonga-
tions themselves do not lead to any further residual strains (Fig. 4, G 
to I, and fig.  S12C). This result is consistent with cell elongation 
changes being a passive response to cell rearrangements and not driv-
ing tissue shape change during eversion.

Cell rearrangements as spontaneous strains also lead to residual 
isotropic compression ( λres

R
 ; Fig. 4F and fig. S12D). This residual could 

be compensated by spontaneous area change, which is also required 
by the observation that overall tissue size increases during eversion 
(Fig. 4, A and B, and fig. S6, A and B).

When we only input the observed pattern of isotropic strain from 
cell area changes as spontaneous strain in the model, λ A

= {λ
∗

A
, 1} , 

overall size increases with minimal curvature change (Fig. 4J). This re-
sult indicates that although cell area changes are an active behavior and 
lead to overall size increase, they do not substantially contribute to 
changes in tissue shape. However, there is a transient effect of cell area 
changes on tissue curvature at time point t2 (note dip in curve at t2 in 
Fig. 4J). This transient effect of the spontaneous strain from cell area 
change only arises from the experimentally observed pause in cell area 
expansion in the DVB at 2hAPF as compared to the outDVB (fig. S9C, 
compare DVB and outDVB). This curvature difference disappears 
when the cell area in the DVB expands to match the outDVB at the final 
time point, 4hAPF (Fig. 4J). Measuring λ R

res , we find that cell area 
changes themselves create a small residual in the DVB (Fig. 4, K and L, 
and fig. S12B). The anisotropic part of this residual could also contrib-
ute to the observed passive cell elongations.

Using these examples, we next infer the spontaneous strain pat-
terns that drive tissue shape changes and govern cellular behaviors. 
We have found that both cell rearrangements and cell area changes are 
active and contribute to spontaneous strain. We therefore conclude 
that cell elongation is a passive elastic response and does not contrib-
ute to spontaneous strain. The total spontaneous strain, therefore, is 
composed of the anisotropic part of the observed strain due to rear-
rangements ( ̃λ∗

R
 ; Fig. 4B), and the isotropic part of the observed cell 

area changes ( λ∗
A
 ; Fig. 4B) compensated by the isotropic part of the 

residual strain due to cell rearrangements ( λres
R

 ; Fig. 4F). When we in-
put this total inferred spontaneous strain in the model, we find that 
we can account for the curvature and size changes observed in the 
everting wing pouch from wL3 to 4hAPF (compare Fig. 4M to Fig. 4A; 
see also movie S3). The patterns of residual strains generated by the 
model suggest that after eversion (at 4hAPF), cells experience elonga-
tion due to shear stress as well as area constriction due to compressive 
stresses (Fig. 4, N and O, and fig. S12, A, E, and F). We further tested 
our model for different thicknesses and geometry of the initial state 
and did not observe any qualitative differences in the resulting curva-
ture changes (figs. S11B and S13).

In summary, the good qualitative agreement between model out-
put (Fig. 4M) and observed wing pouch curvature changes (Fig. 4A) 
indicates that the in-plane pattern of spontaneous strain by cell be-
haviors during eversion is sufficient to capture morphogenesis and 
that we have identified the most relevant active cellular events respon-
sible for pouch morphogenesis. Specifically, our data predict that 
altering cell rearrangements in the pouch should have a profound 
consequence for tissue shape change. We next test this prediction with 
a genetic perturbation.

Reduction of active cell rearrangements with MyoVI 
knockdown disrupts morphogenesis
Previous work in the wing disc pouch of earlier larval stages showed 
that cell rearrangements drive cell shape patterning (31). This work 
suggested that patterns of active cell rearrangements self-organize via 
mechanosensitive feedback mediated by Myosin VI (MyoVI). We 
therefore next investigate whether MyoVI knockdown in the wing 
pouch (fig. S14A) alters cell rearrangements during eversion and 
leads to a tissue shape phenotype.
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We observe that the MyoVIRNAi wing disc pouch fails to form a 
flat bilayer after eversion, although its initial shape is similar to that 
of wild type (WT) (Fig. 5A). This phenotype is best captured in the 
behavior of curvature in the across-DVB direction (Fig. 5, B and C). 
Here, the curvature decreases in the center, in contrast to WT, where 
it increases. In the along-DVB direction, the curvature remains un-
changed over time in the MyoVIRNAi knockdown (Fig. 5, B and C, 
and fig. S14, B to D).

Notably, other features of eversion, such as the opening of the 
folds and the removal of the peripodial membrane, are unaffected by 
the MyoVIRNAi knockdown (Fig. 5A; see 4hAPF), indicating that 
the cause for the altered shape is pouch-intrinsic. This result further 
supports the idea that tissue shape changes in the wing pouch during 

eversion are largely independent of other morphogenetic events hap-
pening in the wing disc and instead rely on active cell behaviors in 
the pouch.

Next, we quantify cell behaviors in MyoVIRNAi. While initially 
the gradients in cell areas and elongation are similar to WT (fig. S14, 
E and F), the inferred strains from individual types of cell behaviors 
λ
∗ differ (Fig. 5D and fig. S15). From work in earlier larval stages, we 

expect oriented rearrangements to be reduced (31). We find that 
MyoVIRNAi reduces the amount of radial cell rearrangements in the 
outDVB during eversion (Fig. 5D and fig. S14G). However, in the 
DVB, rearrangements are of opposite orientation as compared to WT 
eversion. Notably, we also see a complete lack of cell area expansion 
in the DVB (Fig. 5D and fig. S14E). The pattern of cell elongations in 

Fig. 5. MyoVIRNAi alters active cell behaviors, disrupting morphogenesis. (A) Representative across-DVB cross sections of MyoVIRNAi phenotype during eversion. (B) Com-
parison of apical shape between MyoVIRNAi and control. Scale bars, 100 μm. (C) Overlay of a wL3 and 4hAPF MyoVIRNAi wing pouch in across-DVB cross section (left) and plots 
of the average change in tissue curvature in the topologically tracked region for across-DVB (middle) and along-DVB (right) directions. (D) Observed strain from cellular behav-
iors in MyoVIRNAi from wL3 to 4hAPF. Plots are split vertically with the observed strains for WT on the left and MyoVIRNAi on the right. Quarter circles, outDVB; rectangle, 
DVB. Color represents the strain magnitude; bars indicate orientation of strain for λ̃∗

R
 and λ̃∗

Q
 . (E and H) Observed in-plane behaviors are inserted in the model as spontaneous 

strains. Springs are colored by new rest lengths normalized by the initial rest lengths (δo/δ*). Model cross sections show the shape in the across-DVB direction for initial and final 
time points. t0 matches the shape of WT wL3. t1, t2, and final stages are the model results after a change in spring rest length according to observed strains from 0, 2, and 4hAPF 
for MyoVIRNAi. (F and I) Input spontaneous strain (λ and λ̃ ) at the final eversion time point and comparison with the resulting strain that is achieved after relaxation of the 
model (F and F̃  ). (G and J) Residual strain from the difference between input and resulting spontaneous strain at the final time point, plotted as in Fig. 4 (F, I, L, and O).
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the outDVB is similar to WT, but in the DVB, it is of perpendicular 
orientation (Fig. 5D and fig. S14F).

Using the programmable spring model, we test how the reduc-
tion of spontaneous strain due to cell rearrangements affects tissue 
shape changes. When we input only the observed pattern of cell re-
arrangements in MyoVIRNAi as spontaneous strain in the model, 
λ
R
= {1, λ̃∗

R
} , we see only a slight increase in curvature in the final 

time point in both along- and across-DVB directions (Fig.  5E). 
Thus, we conclude that the reduction of cell rearrangements in 
MyoVIRNAi as compared to WT contributes to the abnormal tissue 
shape changes happening during eversion in MyoVIRNAi. We find that 
the anisotropic component of the residual strain ( ̃λres

R
 ) is small and 

tangentially oriented in the outDVB and radially in the DVB, similar 
to the cell elongation pattern (Fig. 5, D and G, and fig. S16D). If we 
only input observed cell elongation changes as spontaneous strain in 
the model, λ

Q
= {1, λ∗

Q
} , we do not recapitulate the observed tissue 

shape changes (fig. S17). This result suggests that the cell elongation 
changes in MyoVIRNAi are a passive response to spontaneous strain 
by cell rearrangements, as in WT.

While the change in spontaneous strain due to rearrangements 
captures a considerable portion of the difference between the WT and 
MyoVIRNAi (compare Fig. 5C with Fig. 5E), it fails to recapitulate the 
finer progression of shape from wL3 to 4hAPF in MyoVIRNAi. In par-
ticular, the curvature at the final time point of the model calculation is 
not flattened in the center of the across-DVB direction, and the cur-
vature increases slightly in both directions (Fig. 5, C and E).

Thus, we proceed to input the observed cell area changes as sponta-
neous strains in the model, λ

A
= {λ

∗

A
, 1} . We find that they produce 

shape changes over time similar to those observed during MyoVIRNAi 
eversion, recapitulating both the decrease in curvature in the center of 
the across-DVB direction and the lack of curvature change in the along-
DVB direction (Fig. 5H and movie S4). We conclude, therefore, that the 
subtle flattening in the pouch center in MyoVIRNAi during eversion can 
be explained by the combination of cell area expansion in the outDVB 
with no area expansion in the DVB. This result highlights that, while cell 
area changes do not lead to a curvature change in WT, the difference in 
area expansion between the tissue regions results in the MyoVIRNAi 
shape. In addition, although we do not observe cell area expansion in 
the DVB, the area expansion in the outDVB creates residual strains in 
both regions (Fig. 5, I and J, and fig. S16B). These residual strains have 
an anisotropic component that, together with the residual strains from 
cell rearrangements, account for the measured cell elongation patterns 
in MyoVIRNAi (compare Fig. 5, D, G, and J to fig. S16).

In sum, the results from the MyoVIRNAi perturbation validate the 
idea that the wing disc pouch deforms like a shape-programmable 
material. First, by locally perturbing MyoVI, we show that we can alter 
the normal tissue shape change, although the tissue outside behaves 
normally, demonstrating that the shape change is tissue autonomous. 
Second, we show that reducing the active cell rearrangements in the 
pouch substantially alters the tissue shape outcome, consistent with 
our theoretical model.

DISCUSSION
In this work, we show that 3D epithelial tissue morphogenesis in the 
Drosophila wing disc pouch during eversion is based on in-plane 
spontaneous strains generated by active cellular behaviors. We devel-
op a metric-free, topological method to quantify patterns of cell 

dynamics on arbitrarily shaped tissue surfaces, as well as a theoretical 
approach to tissue morphogenesis inspired by shape-programmable 
materials. These advancements together reveal the mechanics of tis-
sue shape changes during wing disc eversion, showing that active re-
arrangements and active area expansion govern the 3D tissue shape 
and size changes.

Using a model with open boundary conditions, we show that 
programmed cell behaviors on their own are sufficient to generate 
the observed shape change of the distal wing disc pouch. There-
fore, it is not required to have external forces from the surrounding 
tissue. Although we do not address the behavior of the more prox-
imal tissue here, we observe that it undergoes its own 3D morpho-
genesis, with the deeply folded regions opening up. How different 
morphogenetic processes in neighboring tissue regions interact is 
an interesting avenue for future research.

We hypothesize that the organization of active behaviors during 
wing pouch eversion arises from patterning during larval growth. 
First, the prepatterned radial cell area gradient resolves during 
eversion, giving rise to a gradient of spontaneous strain in the out-
DVB. Second, the orientation of cell rearrangements follows that of 
earlier stages, indicating that the mechanosensitive feedback that 
was revealed in previous work is still active during eversion. Over-
all, this suggests a developmental mechanism through which me-
chanical cues at early stages organize cell behavior patterns that later 
resolve, resulting in a tissue shape change. Such behavior would re-
semble biochemical prepatterning, in which cell fates are often de-
fined long before differentiation.

Active, patterned rearrangements can robustly give rise to a spe-
cific target shape if the tissue is solid on the timescale of morphogen-
esis. Our work therefore reveals that the everting wing disc behaves 
as an elastic solid undergoing plastic deformation and demonstrates 
that the mere presence of rearrangements should not be taken as a 
sign of a fluid tissue with a vanishing elastic modulus. Many animal 
tissues with dynamic rearrangements could thus be in the solid re-
gime and therefore be prepatterned toward a target shape. Our work, 
inspired by shape programmability of complex materials, reveals 
principles of shape generation that could be quite general. We there-
fore propose that many other morphogenetic events could and 
should be considered—and better understood—through the lens of 
shape programmability.

MATERIALS AND METHODS
Experimental model
We performed all experiments with publicly available Drosophila 
melanogaster lines. Flies were maintained at 25°C under 12-hour light/
dark cycle and fed with standard food containing cornmeal, yeast ex-
tract, soy flour, malt, agar, methyl 4-hydroxybenzoate, sugar beet 
syrup, and propionic acid. Adult flies were transferred to fresh food 
two to three times per week. Only males were studied for consistency 
and due to their smaller size. As WT, we used the F1 offspring of a 
cross between w-;ecad::GFP;; and w;nub-Gal4,ecad::GFP;;.

D. melanogaster lines

Genotype Construct Origin

w-;ecad::GFP;; E-cadherin::GFP Bloomington Drosophila Stock 
Center #60584
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w;nub-Gal4, ecad::GFP;; nub-Gal4 Bloomington Drosophila Stock 
Center #86108

w-;ecad::GFP, 
UAS-myoVIRNAi;;

MyoVIRNAi Vienna Drosophila Resource 
Center #37534

Image acquisition and processing
Sample preparation
Wing discs of larval stages were dissected in culture medium as previ-
ously described (37), without surface sterilization or antibiotics. Pre-
pupal stages from 0 to 6hAPF required a slightly different dissection 
strategy. Prepupae were marked by the time of white pupa formation 
and collected with a wet brush after the required time interval. Next, 
pupae were placed on a wet tissue, cleaned with a wet brush to remove 
residual food, and transferred into glass staining blocks [see (37)] 
filled with dissection medium. To dissect the wing disc, a small cut 
was performed with fine surgical scissors (2.5 mm, FST 15000-08, 
Fine Science Tools GmbH) at the posterior end, which created a small 
hole to release pressure. This allowed for the next cut to be performed 
at half the anterior-posterior length, separating the anterior and pos-
terior halves. Next, the anterior part of the puparium was first opened 
at the anterior end by administering a cut just posterior to the spira-
cles, and then a second cut was performed on the ventral side along 
the PD axis. The pupal case was then held open with one set of for-
ceps, and a second set of forceps in the other hand was used to remove 
the wing disc. To dissect wing discs from 0hAPF, the pupa is still soft 
enough to be turned inside-out after the cut that separates anterior 
and posterior halves, similar to larval stages.
Imaging
Selective Plane Illumination Microscopy (SPIM) imaging was per-
formed with a Zeiss Lightsheet 1 system {488 laser illumination, PCO 
edge 4.2M Monochrome sCMOS cameras, and a Plan Apo 20× [1.0 
numerical aperture (NA)] water immersion objective for detection}. 
Wing discs were mounted in capillaries (Zeiss, capillary size, 1; inner 
diameter, ~0.68 mm) with 1% low melting point agarose (LMA; Serva, 
CAS 9012-36-6). LMA was prepared by mixing 1:1 of Grace’s insect 
medium and a 2% LMA stock solution made in water. Wing discs 
were transferred into mounting medium in U-glass dishes, aspirated 
into the capillary at room temperature, and imaged immediately after 
the LMA solidified. The imaging chamber was filled with Grace’s in-
sect medium (measured refractive index = 1.3424). For pupal stages, 
four imaging angles (dorsal, ventral, and two lateral) with 90° rotation 
were acquired; for larval stages, three imaging angles (dorsal and ven-
tral in one and two lateral) were acquired. Data from dual illumina-
tion were fused on the microscope using a mean fusion.
Multiview reconstruction
Multiview reconstruction was based on the BigStitcher plugin in Fiji 
(38, 39). Images were acquired without fluorescent beads, and multi-
view reconstruction was done using a semiautomated approach. Indi-
vidual views were manually prealigned. Thereafter, precise multiview 
alignment was computed on the basis of bright spots in the data with 
an affine transformation model using the Iterative Closest Point algo-
rithm. Next, images were oriented to show the apical side in xy and 
lateral in zy. Last, images were deconvolved using point spread func-
tions extracted from the bright spots and saved as “.tif ” files with a 
manually specified bounding box.
Surface extraction of 3D images for visualization
Surfaces shown in Fig. 1B and movie S1 were extracted from 2hAPF 
and wL3 images. To do so, we first trained a pixel classifier on the 

strong apical signal of E-cadherin–green fluorescent protein (GFP) of 
a different image of the same stage with napari-accelerated-pixel-and-
object-classification (40, 41). Feature sizes of 1 to 5 pixels were used to 
predict the foreground on the target image. Next, we used the pycles-
peranto library (42) to select the largest labels and close gaps in the 
segmentation with the closing sphere algorithm. For additional gap 
filling in the 2hAPF time point, we used vedo (43) to generate a point 
cloud and extract the point cloud density. When necessary, we applied 
some manual pruning of the segmentation in napari (40). We repeat-
ed this processing on the weak E-cadherin–GFP signal from the lat-
eral membrane and subtracted the apical segmentation from the 
output. As a result, we achieved a full tissue segmentation that stops 
just below the apical junction layer. We then extracted the surface us-
ing the napari-process-points-and-surfaces (44) library and applied 
smoothing and filling holes. The visualizations were generated using 
Paraview (45). Regions and directions of the cross sections were 
annotated in Illustrator. Movie S1 was created using Paraview and 
Fiji (39).

Quantifying curvature of cross sections
Tissue shape analysis was performed on multiangle fused SPIM im-
ages. We used Fiji reslicing tools to generate two orthogonal cross 
sections along the apical-basal direction. Across-DVB is a cross sec-
tion along the center of the long axis of the wing disc. To find the 
center, we used the position of the sensory organ precursors and gen-
eral morphology. The along-DVB cross section follows the DVB and 
was identified by E-cadherin–GFP signal intensity (fig. S1, A and B). 
The apical pouch shape was outlined manually along both directions 
over the pouch region up to the hinge-pouch fold using custom Fiji 
macros. Subsequent pouch shape analysis was performed in Python. 
The tissue shape information was extracted from Fiji into Python us-
ing the Python “read-roi” package.

The extracted apical shapes were aligned and rotated for each wing 
disc as follows: First, starting from the left-most point in the curve, we 
measure the arc length of the curve in the clockwise direction. The arc 
length of the ith point on the curve is given by

where n is the number of points in the discrete curve and x
i
= (xi , yi) 

is the position vector of the ith point. We keep s(i = 1) = 0.
Next, we defined the center of the curve at the middle and offset 

the arc lengths to have s = 0 at the center. This leads to negative arc 
lengths on the left side of the center and positive arc lengths on the 
right side of the center (figs. S1, C and G, and S6, B and C).

To compute a mean curve from different wing discs of the same 
developmental stage, we translated and rotated the curves (fig. S1B). 
We translated each curve by setting their midpoints as the origin 
(0,0). To rotate the curve, we computed the center of mass of the 
curve. Then, we defined the new y axis as the line that joins the center 
of mass to the origin. Last, for each curve, we smoothed and inter-
polated between the discrete points using spline interpolation. We 
used the scipy.interpolate.UnivariateSpline function of scipy (46). To 
smoothen the spline, we defined five knot points, one being the mid-
point of the curve, and two others being at three-fourths and half of 
the length from the mid-point to either side.

Next, we computed the curvature of each curve using the follow-
ing expression

s(i) =

n�
i=2

‖x
i
− x

i−1
‖ (1)
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where ′ refers to the derivative with respect to the parameter of the 
curve, which is arc length in our case.

Last, to compute an average curve, we got the average position vec-
tors at arc lengths starting from a minimum arc length until a maxi-
mum arc length in intervals of 5 μm. We did similar averaging for 
curvature values to get average curvature profiles.

To calculate the change in curvature, we normalized each curve 
from 0 to 1 and used a linear interpolation with 40 positions to sub-
tract the initial from subsequent curvatures. We then reintroduced 
the average arc length for each developmental stage for each of the 
normalized positions.

Segmentation of the apical junction network
To analyze cell shapes, we used four angles separated by 90° for the 
segmentation of early pupal stages and a single angle for larval wing 
discs (fig. S2, A and B). Z-stacks from each imaging angle were de-
noised if necessary using the N2V algorithm (47), and the signal to 
background ratio was further improved by background subtraction 
tools in Fiji (39). We made 2D projections of the E-cadherin–GFP 
signal in the disc proper layer as previously described (48). This algo-
rithm also outputs a height map image, which encodes the 3D infor-
mation in the intensity of each pixel. The cells in the wing pouch were 
segmented using the Fiji plugin Tissue Analyzer and manually cor-
rected (49). We chose a bond length cutoff of 2 pixels (∼0.46 μm). The 
ventral side for 0hAPF was excluded from the analysis, as at this stage, 
the ventral region is never fully in view from any imaging angle. The 
number of wing discs per time point and the images for each region 
are indicated in Table 1. Images were rotated to orient distal down.

Height map images were rotated accordingly using ImageMagick-
TM software (ImageMagick Development Team, 2021). We used Fiji 
macros included with TissueMiner (50) to manually specify ROIs. 
The DVB was identified on the basis of E-cadherin–GFP signal inten-
sity (51) and the dorsal versus ventral pouch by their positions relative 
to global tissue morphology. For larval stages, the DVB, dorsal, and 
ventral regions were identified in one image. For images showing lat-
eral views of pupal stages, the DVB was identified, whereas for images 
showing the outDVB region, the dorsal or ventral region and the cells 
next to the DVB were labeled. The cells next to the DVB were required 
as a landmark for topological analysis but were otherwise not ana-
lyzed separately. We then ran the TissueMiner workflow to create a 
relational database.

Live imaging of wing disc eversion
Mounting and imaging for timelapse recording were performed on a 
wL3 wing disc as described in (37). To image wing eversion, a concen-
tration of 400 nM 20-hydroxyecdysone (stock: 2 mM in ethanol 
source: Sigma-Aldrich, H5142) in Grace’s insect medium with 5% 
fetal calf serum was used. Explanted upcrawling (116hAEL) wing discs 
were mounted in uncoated 35-mm glass-bottom dishes (MatTek 
No. 1.0) and immobilized using porous filters with spacers made from 
an acid-free double-sided tape. Imaging was performed at 25°C with 
a spinning disc confocal microscope: Andor IX 83 inverted stand, 
motorized xyz stage with a Prior ProScan III NanoScanZ z-focus 
device, a Yokogawa CSU-W1 scanhead with Borealis, and a Pecon 
cage incubator for temperature control. A 60× silicone objective 

(60×/1.3 NA U Plan SApo, Silicone immersion, Olympus) was used 
with 488 laser illumination. A 2 by 2 tile of Z-stacks with 0.5-μm 
spacing were acquired at 5-min intervals with an Andor iXon Ultra 
888 Monochrome EMCCD camera. Apical surface projection and 
segmentation were performed as in (48). To facilitate tracking, the 
movie was split into 10 frame intervals, cell tracks were manually 
corrected using the Fiji plugin Tissue Analyzer (49), and overlap-
ping frames were used to reassign cell tracks for all time points.

Comparison of live imaging tracks to topological tracking
For the first time point, k was specified as in the static data; there-
after, k was inherited on the basis of tracked cell IDs throughout 
all time points. The tracked origin (k = 0) was then used to recal-
culate the topological distance from the origin (ki) at every 
time point.

Number and distribution of cell divisions
Immunostaining was performed on partially dissected wing discs ex-
pressing E-cadherin–GFP as previously described (fig. S5A) (48). For 
6hAPF, wing discs were fully dissected and mounted as described 
for the timelapse imaging, and immunofluorescence was performed 
through the porous filter. We used an antibody specific for phosphory-
lated histone H3 (PH3; Ser10) (6G3) (mouse, Cell Signalling catalog 
no. 9706) and anti-GFP (rabbit, Thermo Fisher Scientific, catalog no. 
A-11122) in a 1:1000 dilution. Secondary antibodies were goat anti-
mouse Alexa Fluor 647 (Thermo Fisher Scientific, catalog no. A-28181) 
and goat anti-rabbit Alexa Fluor 488 (Thermo Fisher Scientific, catalog 
no. A-11008) in a 1:1000 dilution. Imaging was performed with a spin-
ning disc confocal microscope (Nikon Eclipse Ti2+ inverted stand, 
Yokogawa CSU-W scanhead, 488- and 638-nm laser illumination, 
Hamamatsu Orca Fusion BT camera, run by NIS-Elements ver. 5.42 
software). Images were acquired in 0.5-μm spaced Z-stacks using a 
Nikon 40× objective (Apo LWD 40×/1.15WI lambdaS 0.15-0.19 DIC 
N2). Data were processed using background subtraction tools from 
Fiji (39). 2D projections were performed on the GFP channel and ap-
plied to the PH3 channel with a custom algorithm that identifies the 
peripodial membrane (PM) and disc proper [see (48)].

We additionally used the live imaging data (see the “Live imag-
ing of wing disc eversion” section) and the TissueMiner database 
(50) to computationally identify dividing cells. We plot mother cells 
that will divide within the following hour of the movie in fig. S5B. For 
the spatial analysis of cell divisions (fig. S5C), kDV was introduced, 
which is the shortest topological distance to the DVB. kDV was cal-
culated for each time point, based on the tracked DVB cells that 
were assigned on the first time point. The number of dividing cells 
was thereafter normalized to the number of cells in the topological 
bin (kDV or k). For the orientation of division (fig. S5D), Δki, the 
difference in ki between the daughter cells in the first frame (5 min) 
after the cell division was calculated.

3D cellular network
We represent the configuration of the cellular network by positions 
of the cell vertices, where three or more cell bonds meet, and their 
topological relations as in TissueMiner (50). We extended TissueMiner 
to the third dimension using the information extracted from height 
maps, as described in the “Segmentation of the apical junction net-
work” section. The code used to generate the curved surface descrip-
tion from TissueMiner is available at https://gitlab.pks.mpg.de/
paijmans/CurvedTM.

κ =
x�y�� −y�x��

(x�2+y�2)
3

2

(2)
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Measurement of cell area and cell elongation tensor
Each cell α in the 3D network contains Nα vertices vα

i
 , defining the 

network geometry. For every cell, we define a centroid Rα , an area 
Aα, and a unit normal vector Nα as

where nα
i
= (vα

i+1
− vα

i
) × (Rα

− vα
i
) is the normal vector on the tri-

angle formed by one edge of the cell and the vector pointing from 
the cell vertex to the cell centroid. It has a norm equal to twice the 
area of the triangle.

We then create a subcelluar triangulation by connecting the two 
consecutive vertices in every cell with its centroid {v

i
, v

i+1
,Rα

} . This 

creates a complete triangulation that depends both on the vertex po-
sitions and the centroids of the cellular network.

Each triangle is defined by its three vertices {R
0
,R

1
,R

2
} , which 

define two triangle vectors E
1
and E

2
 and its unit normal vector N̂

These vectors also define the local basis on the triangle. Using the 
triangle vectors, we can define the area of the triangle and the rotation 
angles θx and θy that rotate a vector parallel to the z axis of the lab 
reference frame to the vector normal to the plane of the triangle

Rα
=

1

Nα

Nα�
i=1

υ
i
,Aα

=
1

2

Nα�
i=1

‖nα
i
‖, N̂α

=
1

����
�Nα

i=1
nα
i

����

Nα�
i=1

nα
i (3)

E
1
= R

1
− R

0
, E

2
= R

2
− R

0
, N̂ =

E
1
× E

2

‖E
1
× E

2
‖ (4)

A=
1

2
‖E

1
×E

2
‖, θx =−arctan(Ny ,Nz), θy

= arctan(Nx , 1−N2

x
)

(5)

Table 1. Number of biological replicates for all samples. 

Genotype Stage Number of wing discs ROI Replicates

nub-Gal4, E-cad::GFP (WT) 96hAEL 7 DVB 7

Dorsal 7

Ventral 7

120hAEL 5 DVB 5

Dorsal 5

Ventral 5

wL3 5 DVB 5

Dorsal 5

Ventral 5

0hAPF 7 DVB 7

Dorsal 7

2hAPF 5 DVB 5

Dorsal 5

Ventral 5

4hAPF 7 DVB 7

Dorsal 7

Ventral 7

6hAPF 6 DVB 6

Dorsal 4

Ventral 4

nub-Gal4, E-cad::GFP, 
UAS-MyoVIRNAi

wL3 5 DVB 5

Dorsal 5

Ventral 5

0hAPF 6 DVB 6

Dorsal 6

2hAPF 6 DVB 6

Dorsal 5

Ventral 6

4hAPF 5 DVB 5

Dorsal 5

Ventral 5

6hAPF 7 DVB 7

Dorsal 6

Ventral 6
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Here, arctan(x, y) is the element-wise arc tangent of x/y, and Ni is a 
component of the unit vector normal to the triangle plane.

For each triangle, we define the triangle shape tensor S3d as a ten-
sor that maps a reference equilateral triangle with area A0 lying in the 
xy plane, defined by the vectors C

i
 to the current triangle

The vectors of the reference equilateral triangle are

where the side length l =
�

4A0 ∕

√
3 with A0 = 1.

The triangle shape tensor S3d can be written in terms of a planar 
state tensor Splanar in the reference frame of the triangle as

where R
x
(θx) and R y

(θy) are rotations around the x and y axis, respec

tively. The angles θx and θy are defined in Eq. 5. The planar triangle 
state tensor, represented by a 3 × 3 matrix with the z components set 
to 0, can be decomposed as

as in TissueMiner. Here, γ is a diagonal matrix with diagonal elements 
{1, − 1,0}, and R

z
 is the rotation matrix around the z axis. A is the area 

of the triangle, ∥Q∥ is the magnitude of the elongation tensor, ϕ is the 
direction of elongation in the xy plane, and θz is the rotation angle 
around the z axis relative to the reference unilateral triangle. The 3D 
elongation tensor Q̃ in the lab reference frame and the elongation ten-
sor in the xy plane of the triangle Q̃

planar are related by

The magnitude of elongation is calculated as in (52).

where ∥Sta∥ and ∥Sts∥ are the norms of the trace antisymmetric and 
traceless symmetric part of the planar triangle state tensor Splanar , re-
spectively. The angle of the elongation tensor is given by

where Bij are the components of the nematic part of the triangle state 
tensor S , and arctan2(x1, x2) is the inverse tangent of x1/x2, where 
the sign of x1 and x2 is taken into account. In this way, one can select 
the branch of the multivalued inverse tangent function that corre-
sponds to the angle defined by the point (x1, x2) in a plane.

We now define the cell elongation tensor as the area-weighted av-
erage of the corresponding triangle elongations

where Aα is the area of the cell, at is the area of a triangle that overlaps 
with the cell, and Qt is the elongation tensor of that triangle.

To calculate the radial component of the cell elongation tensor 
relative to the origin in cell α, we first define the radial direction. To 
this end, we use a 3D vector r connecting the origin to the cell cen-
troid, and we project its direction r = r ∕ ∥ r∥ into the tangent plane 
of the cell, which defines the in-plane radial direction r

tangent
 . The tan-

gent plane of the cell is defined by its normal vector N defined in Eq. 3 .We 
calculate the radial components of the cell elongation tensor as

relative to the origin.
In the DVB, multiple cells form the origin. To calculate Qρρ, the 

vector ρ connects the cell centroid to the averaged position of the topo-
logically nearest cells of k = 0. We project its direction ρ = ρ ∕ ∥ ρ∥ 
into the tangent plane of the cell α, which defines the in-plane direc-
tion ρ

tangent
 from DVB origin. We calculate the components of the cell 

elongation tensor as

Topological distance coordinate system
To calculate topological distances between any two cells, we deter-
mine the topological network using the python-igraph library (53).

In each of the tissue regions, we define separate origins:
1) outDVB region: To define the origin of the outDVB regions, we 

first determine the pouch margin cells as cells that live on the outer-
most row of the segmentation mask and do not overlap with the 
DVB ROI. Then, for each cell in the region, we calculate the shortest 
topological distance to the margin cells. This identifies the set of 
maximally distant cells that have the maximal shortest topological 
distance to the margin [fig. S3, A (a) and B (a)]. The origin is then 
defined as the cell that is neighboring the DVB and is at the shortest 
metric distance to the averaged position of maximally distant cells. 
At larval stages, both dorsal and ventral sides of the outDVB region 
are visible, and an origin cell is defined on both sides [fig. S3, A (c) 
and B (b)].

2) DVB region: We define the origin to consist of a line of cells 
transversing the DVB. At larval stages, the origin cells are defined as 
those cells within 

√
Acell∕π ∗ 1.2 distance to a straight line connecting 

the dorsal and ventral center cells (fig. S3A, b and c). For pupal stages, 

E
i
= S3dC

i (6)
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⎛
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0

0

⎞
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3∕2l
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⎞
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, C

3
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⎛
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0

1

⎞
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(7)

S3d = R x(θx)R y(θy)S
planar (8)

Splanar=

�
A

A0

R z(ϕ)exp

�
‖Q ‖γ

�
R z(−ϕ)R z

�
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�
(9)

Q̃ =R x

(
θx

)
R y

(
θy

)
Q̃

planar
R x

(
−θy

)
R y

(
−θx

)
(10)

Q̃
planar

=R z(ϕ)exp

�
‖Q̃‖γ

�
R x(−ϕ) (11)

‖Q̃‖ = arcsinh

⎛
⎜⎜⎜⎝

‖Sts ‖
�

‖Sta‖2 − ‖Sts‖2

⎞
⎟⎟⎟⎠

(12)

ϕ =
1

2
arctan2(Bxy,Bxx) (13)

Qα
=

1

Aα

∑
t ∈ cell

atQt (14)

Qrr ≡ r̂
tangent

⋅ Q ⋅ r̂
tangent (15)

Q
ρρ
≡ ρ̂

tangent
⋅ Q ⋅ ρ̂

tangent (16)
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the origin cells for the DVB are defined as the first row of cells next to 
the margin of the segmentation mask on the distal side (fig. S3C).

The so-identified origin cells serve as the origin for the topological 
distance (k) for each cell in the tissue. In this way, k follows the radial 
direction along the surface for the outDVB and the path along the the 
DVB for the DVB.

3D visualization of cell properties
We visualize cellular properties and cell elongation tensors on the 3D 
segmentation mask using Paraview (45). To plot a rank 2 tensor, like 
the cell elongation tensor, we take the largest eigenvalue of Qα as the 
norm of elongation and the corresponding eigenvector as the direc-
tion of elongation that we can plot to the surface. Note that for cells/
patches that are reasonably flat, the eigenvector with the eigenvalue 
closest to zero is (almost) parallel to the normal vector on the patch.

Spatial analysis of cell properties
We acquired data for five to seven wing discs of each developmental 
stage (see Table 1). Images that were not of segment-able quality were 
excluded from the analysis. We average cell properties by k between 
dorsal and ventral for the outDVB and between images from both 
sides of the DVB. We used a cell area–weighted average for elonga-
tion. The 95% confidence interval and the statistic mean for each 
developmental stage are calculated via bootstrap resampling with 
10,000 repeats.

Mechanics of the programmable spring lattice
We used a programmable spring lattice in the shape of a symmetric 
spherical cap to model the wing disc pouch, which is an epithelial 
monolayer.
Approximating the wing disc pouch as a spherical cap
We calculated the average radius of curvature of the apical side of 
the wing disc pouch at wL3 stage in the topologically tracked region 
as R = 77.66 μm. The angular size of the spherical cap, denoted by 
θM, is given by

where wDV is the width of the DVB and wODV is the average in-
surface distance from the DVB to the periphery of the outDVB re-
gion (fig. S10A). We calculated wDV = 15 μm and wODV = 59.77 μm. 
Using these calculated dimensions, we determined θM = 49.63∘.
Generating the lattice
We first generated a triangular lattice in the shape of a hollow sphere, 
keeping the radius of curvature R calculated above. This lattice was 
obtained using the function meshzoo. icosa_sphere available in the Py-
thon package Meshzoo (www.github.com/meshpro/meshzoo). In this 
function, we set the argument refine_factor = 30, which leads to edg-
es of length 3.11 ± 0.18 μm. This edge length was found to be small 
enough to prevent computational errors in the simulations of this 
study. We then cropped the spherical lattice to obtain a spherical cap 
of angular size θM (calculated above; fig. S10B). Next, we placed a sec-
ond layer at the bottom of this lattice at a separation of h. This new 
layer is identical to the original lattice in terms of the topology of the 
lattice network but is rescaled to have a radius of curvature of R-h. We 
connected the two layers with programmable springs using the topology 
shown in the inset of fig. S10C. The lattice obtained this way represents 
an elastic surface of thickness h, which can be changed to tune the 

bending rigidity of the model. Vertices typically have 13 neighbors (6 
on their own layer and 7 on the other layer). However, six to eight 
vertices of about 3220 vertices in the whole network form point de-
fects. These vertices have 11 neighbors.

To remove any possible effects coming from the lattice structure 
(angle of edges or degree of connectivity), we performed simulations 
for each condition by taking spherical caps from 50 different regions 
of the sphere and averaging the result. We saw only very small vari-
ability in the final shape, quantified by the SD of the curvature change 
profiles in our model results. Thus, we conclude that the lattice struc-
ture does not affect our results.
Elastic energy of model
The edges of the lattice act as overdamped elastic springs with rest 
lengths equal to their initial lengths. Hence, the model is stress 
free at T = 0

where a denotes a single spring; ΔXa denotes the spring vector given 
by Xβ

− X
α , where α and β are the vertices at the two ends of spring a, 

and Xα denotes the position vector of vertex α. During a consequent 
time step T, the rest length of spring a ( δa

T
 ) can differ from its current 

length δ. The elastic energy of this state for the whole lattice is given by

where the sum is over all springs of the network and k represents the 
spring constant. At each computational time step T, the model tries to 
find a preferred configuration by minimizing W; hence, T acts as a 
“quasi-static time step.” To minimize the energy of the model at a 
given T, we used overdamped dynamics with smaller time steps τ, 
which restart for each new quasi-static time step T.

Here, γ represents the friction coefficient. xa corresponds to the cur-
rent position of the vertex α. δa is the length of the springs connected 
to vertex α. δ̂

a
= (xα − Xβ)∕δa = (Δxa)∕δa represents the unit vec-

tor along the spring a that connects vertices α and β.
We relaxed the model at each quasi-static time step T to achieve 

force balance by updating the positions of the particles using

where dτ k

γ
 was set to 0.01 (ensuring no numerical artifacts).

The particles were moved until the average movement of the par-
ticles ⟨ ∥ xa(τ + dτ) − Xα(τ) ∥ ⟩ ∕R reduced to 10−9, where R is the 
radius of curvature of the outer surface of the spherical cap in the 
initial stress-free state.

Spontaneous strain tensor
Tissue shape change during development is modeled in this work as 
the appearance of spontaneous strains, a change in the ground state of 
local length scales. This notion can be captured with a spontaneous 
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1

2

(
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R

)
(17)

δ
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I
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2

∑
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T
)2 (19)

dxα
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strain tensor field, λ ( X) , a rank 2 tensor. Each component corre-
sponds to the multiplicative factor by which the rest lengths of the 
material changes in a particular direction. In some general coordi-
nate system, we can write λ as

We chose the coordinate system so that it aligns with our desired 
deformation pattern. In this case, λ ( X) is in a diagonal representation

where the basis vectors were chosen such that e1 and e2 are the sur-
face tangents, while e3 is the surface normal. In general, we kept λ33 = 
1, since we do not input any spontaneous strains along the thickness 
of the model.

The surface components of λ can be further broken down into iso-
tropic and anisotropic components. Isotropic deformation changes 
the local area of the surface by changing the local lengths equally in all 
directions. Anisotropic deformation increases the local length in one 
direction while decreasing the local length in the other direction so as 
to preserve the local area. Thus, we decompose the deformation as a 
product of isotropic and anisotropic contributions.

Then, the spontaneous deformation tensor can be written as

Last, as λ is a field, each of the components in the above equation 
generally depends on the location on the surface, X.
Discretizing �
As our spring lattice is discrete in nature, we used the following strat-
egy to discretize λ . For a single spring, λ is an average of the value of 
λ on the two ends of the springs.

where α and β are the two vertices of the spring a.
Assigning new rest lengths to springs
The initial length of spring a connecting vertices α and β is given by

To assign new rest lengths, we used

Note that we assigned a new rest length to any spring a based on 
the positions of its vertices ( Xα and Xβ ), independent of the layer in 
which these vertices lie (top and bottom). Accordingly, top and bot-
tom springs at any position have their rest lengths updated by the 
same amount.

Implementing shape change over time
We increased the spontaneous strain slowly to model the slow build 
up of stresses due to cell behaviors. Hence, we first calculated the tar-
get rest length of springs ( δa

F
 ). At each time step, we assigned a rest 

length δa
T
 and minimized the energy of the model. We increased δa

T
 in 

a simple linear manner from δa
I
 to δa

F

where TF is the number of quasi-static time steps in which the whole 
simulation takes place. Note that within each time step, the lattice was 
brought to a force balance state. The simulations were performed for 
different choices of TF (1, 2, and 5), but we found that the differences 
in output shapes were undetectable. Still, TF = 5 was chosen to simu-
late the slow appearance of spontaneous strains.
Measuring resulting strains in model
In our spring model, displacements were defined by positions of ver-
tices, and we defined the deformation gradient tensor Fα at each ver-
tex α of the network.

For each spring a emerging from the vertex α, the deformation 
gradient tensor should satisfy

However, Fα contains 9 df, while there are 13 springs for each 
vertex and therefore 13 independent equations to be satisfied. Note 
that six to eight vertices of about 3220 vertices in the whole network 
form point defects and thus have 11 springs. Therefore, we defined Fα 
as the tensor that best satisfies conditions in Eq. 30 by minimizing 
the sum of residuals squared

This is an ordinary least squares (OLS) problem split into three 
independent basis vectors. We solved this OLS using the Numpy 
method numpy. linalg. lstsq in Cartesian coordinates (54). We then 
expressed F in the coordinate system corresponding to vertex α in the 
model explained above. From this, we calculated the isotropic (F) and 
anisotropic ( ̃F ) components using

Last, we computed λres as

The isotropic (λres) and anisotropic components ( ̃λres ) of λres are 
calculated in the same way as for F.

Nematic director pattern on spherical surface
In the initial state of the model, we specified a coordinate system on 
the spherical surface in different regions (outDVB and DVB). These 
coordinate systems were chosen such that the observed nematic pat-
terns of spontaneous strains ( ̃λ ) aligned with the major axes of the 
chosen coordinate systems.
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We first defineed the origins in our model similar to the origins 
defined in the data (Fig. 3C and fig. S10C). To do so, we first measured 
θDV. The coordinates of OD and OV are then given by [±R sin (θDV/2),0, 
R cos (θDV/2)] in the Cartesian coordinate system. The center for the 
DVB region is given by the line ODV which joins OD and OV.

In the outDVB region, we had a coordinate system in which the 
basis vectors are given by e

r
, e

ϕ
, e

h
 (fig. S10, C and D). e

r
 is simply the 

normal vector on the spherical surface. To calculate e
r
 at a point, we 

drew a vector from the origin in this region (OD or OV) to the point. 
We then took a projection of this vector onto the tangent plane of 
the surface and normalized it to give us a unit vector. In this way, we 
calculated e

r
 as a surface tangent vector emanating radially outward 

from the origins of the outDVB regions. e
ϕ
 is then the direction per-

pendicular to e
r
 and e

h
 . For each point in the outDVB region, we 

calculated the geodesic distance between the point and the center 
point of its region. We then normalized this distance by the maxi-
mum geodesic distance from the center calculated in this region. 
This gave us a scalar coordinate r which varies from 0 to 1.

In the DVB region, the basis vectors are given by (e
ρ
, e

w
, e

h
) 

(fig. S10, C and D). e
h
 is simply the normal vector on the spherical 

surface. To calculate e
ρ
 at a point, we drew a vector from the nearest 

point on ODV to the point. We then took a projection of this vector 
onto the tangent plane of the surface and normalized it to give us a 
unit vector. In this way, we calculated e

ρ
 as a surface tangent vector 

emanating outward from the center line of the DVB region as well as 
parallel to the DVB. e

w
 is perpendicular to e

ρ
 and e

h
 . For each point in 

the DVB region, we calculated the shortest distance between the point 
and the center line of the DVB region. We then normalized this dis-
tance by the maximum distance from the center line in the DVB re-
gion. This gave us a scalar coordinate ρ.

For the simple examples presented in Fig 2C (except Fig 2C, c), 
θDV was set to be 0 to have a simple radial coordinate system. For Fig 
2C (c), θDV > θM.

Extracting the strain pattern from segmented images
To quantify the strain due to different cell behaviors along the basis 
vectors of the chosen coordinate system, we compared cells within to-
pologically tracked bins between two different developmental stages.
Tracking location between developmental stages
We leveraged the topological distance coordinate system to track 
locations between discs. Each topological ring k is given a value N 
which denotes the cumulative number of cells from the topological 
origin defined in each region (OD, OV, and ODV). We used N to track 
the location in our static images of different discs at different devel-
opmental stages.
Observed strain due to cell area change
Cell area scales with the square of the distance between cell vertices. 
Thus, the factor by which the local lengths change in all directions 
is given by

Here, t corresponds to an initial developmental stage, and t + Δt 
corresponds to a later developmental stage. A refers to the average 
cell area evaluated at N.
Observed strain due to cell elongation change
Each cell is given a cell elongation tensor Q that is the average of fur-
ther subdivisions of the cell polygon into triangles (the “3D cellular 

network” section). Each triangle can be circumscribed by an ellipse, 
the centroid of which coincides with the centroid of the triangle. 
According to (55), the length of the long axis of the ellipse is given 
by l = r

o
exp(∥Q∥) , where ro is the radius of a reference equilateral 

triangle. The length of the short axis of the ellipse is given by 
s = r

o
exp(−∥Q∥) . The axes of the ellipse match with the radial and 

tangential directions if the off-diagonal components Qrϕ or Qρϕ are 
approximately 0. This was the case for our data as well. The length scale 
associated with the radial direction is l if Qrr or Qρρ is positive and s if 
Qrr or Qρρ is negative. Thus, we got a measure of the length scales along 
the radial direction, which we denote by L and is given by

where σ is the sign of Qrr or Qρρ.
We then averaged L within each ring and computed a ratio of the 

length scales along the radial direction between two developmental 
stages by computing

Observed strain due to cell rearrangements
Rearrangements lead to anisotropic deformation of the tissue. In our 
topological coordinate system, radially oriented rearrangements lead 
to an increase in the number of rings needed to accommodate some 
fixed number of cells (fig. S8). Similarly, tangential rearrangements 
would lead to a decrease in the number of topological rings. Thus, by 
measuring the change in the number of rings needed to accommo-
date some fixed number of cells, we can estimate the deformation 
due to the net effect of radial and tangential rearrangements.

In a tissue region at developmental stage t, let us consider a sin-
gle ring with index k and cumulative number of cells N. Ring k 
contains ΔN cells given by N(k, t) − N(k − 1, t). By construction, 
the number of rings needed to contain ΔN cells at location N is 
given by n(N, t) = 1. For a later developmental stage, t + Δt, we es-
timated n(N, t + Δt) which is the number of rings that contain ΔN 
cells at the location N. This is done by taking the difference between 
k values evaluated at t + Δt and at locations N(k − 1, t) and N(k, t) 
(see also fig. S8)

As n(N, t) and n(N, t + Δt) are measures of the number of topo-
logical rings, they represent the radial topological length scales that 
change due to cell rearrangements. Thus, the strain due to cell rear-
rangements is quantified by

λ
∗

R
(N) > 1 represents radial extension of the tissue due to radially 

oriented rearrangements, while λ∗
R
(N) < 1 represents tangential 

extension.
Observed strain due to combination of cell elongation change 
and cell rearrangements
The combined strain due to cell elongation change and cell rear-
rangements is given by

λ
∗

A
(N) =

√
A(N , t + Δt)

A(N , t)
(35)

L = exp(σ‖Q̃ ‖ ) (36)

λ̃
∗

Q
(N) =

L(N , t + Δt)

L(N , t)
(37)

n(N , t+Δt)=k[N(k, t), t+Δt]−k[N(k−1, t), t+Δt] (38)

λ
∗

R
(N) =

n(N , t + Δt)

n(N , t) (39)

λ̃
∗(N) = λ̃

∗

Q
(N)λ̃∗

R
(N) (40)
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Mapping locations between wing disc images and model
In the model, we have a dimensionless scalar coordinate in the out-
DVB and DVB regions varying from 0 to 1. In the data as well, we 
prescribed a scalar coordinate to each topological bin. To do so, we 
calculated the path length in micrometers of the shortest path along 
cell centers from each cell to the origin and averaged this path length 
for each topological bin. For each bin, we normalized this path 
length by the average path length of the outermost topological bin in 
the corresponding region (DVB or outDVB). We called this normal-
ized path length r for the outDVB region and ρ for the DVB region. 
Because of our normalization, r and ρ run from 0 to 1, similar to 
the model.

Thus, we were able to map any topological ring (identified by k 
and N) to a scalar coordinate r in outDVB or ρ in DVB. In the 
“Nematic director pattern on spherical surface” section, we explain 
the mapping between r and ρ to the Cartesian coordinates of the 
vertices in the model given by Xβ

α , where α is a vertex. Using this 
mapping, any strain component, for example λ̃∗

R
(Xα) , on the model 

vertex α can be evaluated from a corresponding λ̃∗
R
(N).

Quantifying curvature of model cross sections
To quantify the curvature of the model output, we first isolate the 
top layer of the lattice. Then, we take the along-DVB cross section 
(xz plane) and the across-DVB cross section (yz plane). To take the 
cross section, we record the points of intersection of the in-surface 
springs with the respective plane of the cross section. From this, we 
get a discrete set of points that are ordered along their horizontal 
position to get a counterclockwise curve. These curve data are now 
similar to the data we obtain from segmented images. Hence, we 
apply the exact same procedure described above to quantify the cur-
vature of the model output.

Tuning thickness
We tuned the thickness of the model to change the bending modu-
lus. We first performed simulations by inputting all cell behaviors 
(cell area changes, cell elongation changes, and cell rearrangements) 
combined as spontaneous strains. We performed this simulation for 
different thicknesses h/R = 0.05, 0.1, and 0.15, where h is the thick-
ness of the model and R is the radius of curvature of the top surface 
of the initial state of the model (fig. S11A). We found that h/R = 0.1 
gives us the best matching of the curvature change profiles with the 
wing disc pouch. Fixing h/R = 0.1, we performed further analysis to 
infer the spontaneous strains in the wing disc pouch. Inputting 
these inferred spontaneous strains, we again performed simulations 
for different thicknesses. We found that h/R = 0.1 still matches the 
wing disc pouch curvature change values best (fig. S11B).

Testing the model with more realistic initial geometry
In our model, we used a spherically symmetric initial geometry, 
whereas the pouch is slightly asymmetric in the along-DVB and 
across-DVB cross sections (fig. S6C). To determine whether the an-
isotropy of the initial shape plays a crucial role in the shape evolu-
tion, we extracted meshes of individual apical surfaces from the cell 
segmentations of five wing disc pouch tissues at wL3 stage. The cell 
segmentation was manually categorized into a DVB region and two 
outDVB regions, and the origins OD, OV, and ODV were previously 
computed (see the “Topological distance coordinate system” sec-
tion). For each cell center, the path length to the origin of their 

respective region and the cell normals were calculated. The scalar 
coordinates ρ and r were calculated by normalizing the path lengths 
of the cell centers by the maximum path length in their respective 
regions. Knowing the origins and the cell normals ( e

h
 ), the basis 

vectors for each cell center were computed in a similar manner as 
explained in the “Nematic director pattern on spherical surface” 
section. Each cell center is a vertex in the mesh that is created this 
way. To add thickness to this mesh, for each vertex, we added a new 
vertex that is displaced by a length of h = 0.1R along − e

h
 . Here, R is 

the average radius of curvature of the pouch. These new vertices 
form the second layer of the mesh and are connected to the first 
layer of the mesh in the same way as for the spherical mesh. Using 
these meshes as the initial state of the model, we observe more noisy 
but qualitatively and quantitatively similar results as in the symmet-
ric case (fig. S13).

Supplementary Materials
This PDF file includes:
Figs. S1 to S17
Legends for movies S1 to S4

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S4

REFERENCES AND NOTES
	 1.	 M. Osterfield, X. Du, T. Schüpbach, E. Wieschaus, S. Y. Shvartsman, Three-dimensional 

epithelial morphogenesis in the developing Drosophila egg. Dev. Cell 24, 400–410 (2013).
	 2.	N . P. Mitchell, D. J. Cislo, S. Shankar, Y. Lin, B. I. Shraiman, S. J. Streichan, Visceral organ 

morphogenesis via calcium-patterned muscle constrictions. eLife 11, e77355 (2022).
	 3.	 A. E. Shyer, T. Tallinen, N. L. Nerurkar, Z. Wei, E. S. Gil, D. L. Kaplan, C. J. Tabin, L. Mahadevan, 

Villification: How the gut gets its villi. Science 342, 212–218 (2013).
	 4.	 S. L. Haigo, D. Bilder, Global tissue revolutions in a morphogenetic movement controlling 

elongation. Science 331, 1071–1074 (2011).
	 5.	 A. Munjal, E. Hannezo, T. Y.-C. Tsai, T. J. Mitchison, S. G. Megason, Extracellular hyaluronate 

pressure shaped by cellular tethers drives tissue morphogenesis. Cell 184, 6313–6325.
e18 (2021).

	 6.	 A. C. Martin, The physical mechanisms of Drosophila gastrulation: Mesoderm and 
endoderm invagination. Genetics 214, 543–560 (2020).

	 7.	L . Sui, S. Alt, M. Weigert, N. Dye, S. Eaton, F. Jug, E. W. Myers, F. Jülicher, G. Salbreux,  
C. Dahmann, Differential lateral and basal tension drive folding of drosophila wing discs 
through two distinct mechanisms. Nat. Commun. 9, 4620 (2018).

	 8.	C . Modes, M. Warner, Shape-programmable materials. Phys. Today 69, 32–38 (2016).
	 9.	 J. Kim, J. A. Hanna, M. Byun, C. D. Santangelo, R. C. Hayward, Designing responsive 

buckled surfaces by halftone gel lithography. Science 335, 1201–1205 (2012).
	 10.	E . Efrati, E. Sharon, R. Kupferman, Elastic theory of unconstrained non-euclidean plates.  

J. Mech. Phys. Solids 57, 762–775 (2009).
	 11.	T . H. Ware, M. E. McConney, J. J. Wie, V. P. Tondiglia, T. J. White, Voxelated liquid crystal 

elastomers. Science 347, 982–984 (2015).
	 12.	 J. Dervaux, M. Ben Amar, Morphogenesis of growing soft tissues. Phys. Rev. Lett. 101, 

068101 (2008).
	 13.	 U. Nath, B. C. W. Crawford, R. Carpenter, E. Coen, Genetic control of surface curvature. 

Science 299, 1404–1407 (2003).
	 14.	 J. W. Fristrom, W. R. Logan, C. Murphy, The synthetic and minimal culture requirements for 

evagination of imaginal discs of Drosophila melanogaster in vitro. Dev. Biol. 33, 441–456 (1973).
	 15.	L . I. Fessler, M. L. Condic, R. E. Nelson, J. H. Fessler, J. W. Fristrom, Site-specific cleavage of 

basement membrane collagen IV during Drosophila metamorphosis. Development 117, 
1061–1069 (1993).

	 16.	 M.-D.-C. Diaz-de-la Loza, R. P. Ray, P. S. Ganguly, S. Alt, J. R. Davis, A. Hoppe, N. Tapon,  
G. Salbreux, B. J. Thompson, Apical and basal matrix remodeling control epithelial 
morphogenesis. Dev. Cell 46, 23–39.e5 (2018).

	 17.	E . Fekete, D. Fristrom, I. Kiss, J. W. Fristrom, The mechanism of evagination of imaginal 
discs of Drosophila melanogaster. II. Studies on trypsin-accelerated evagination. Wilhelm 
Roux. Arch. Dev. Biol. 178, 123–138 (1975).

	 18.	 S. Aldaz, L. M. Escudero, M. Freeman, Dual role of myosin II during Drosophila imaginal 
disc metamorphosis. Nat. Commun. 4, 1761 (2013).

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 16, 2024



Fuhrmann et al., Sci. Adv. 10, eadp0860 (2024)     9 August 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

17 of 17

	 19.	D . Fristrom, C. Chihara, The mechanism of evagination of imaginal discs of Drosophila 
melanogaster. V. Evagination of disc fragments. Dev. Biol. 66, 564–570 (1978).

	 20.	D . Fristrom, The mechanism of evagination of imaginal discs of Drosophila melanogaster,: 
III. Evidence for cell rearrangement. Dev. Biol. 54, 163–171 (1976).

	 21.	 M. L. Condic, D. Fristrom, J. W. Fristrom, Apical cell shape changes during Drosophila 
imaginal leg disc elongation: A novel morphogenetic mechanism. Development 111, 
23–33 (1991).

	 22.	D . K. Fristrom, J. W. Fristrom, The Development of Drosophila Melanogaster (Cold Spring 
Harbor Laboratory Press, 1993), vol. 2, pp. 843–897.

	 23.	 J. Taylor, P. N. Adler, Cell rearrangement and cell division during the tissue level 
morphogenesis of evaginating drosophila imaginal discs. Dev. Biol. 313, 739–751 (2008).

	 24.	C . D. Modes, M. Warner, Blueprinting nematic glass: Systematically constructing and 
combining active points of curvature for emergent morphology. Phys. Rev. E Stat. Nonlin. 
Soft Matter Phys. 84, 021711 (2011).

	 25.	H . Aharoni, E. Sharon, R. Kupferman, Geometry of thin nematic elastmer sheets. Phys. Rev. 
Lett. 113, 257801 (2014).

	 26.	C . D. Modes, K. Bhattacharya, M. Warner, Gaussian curvature from flat elastica sheets. 
Proc. R. Soc. A Math. Phys. Eng. Sci. 467, 1121–1140 (2011).

	 27.	C . M. Duque, C. D. Modes, Shape programming in entropic tissues. arXiv:2307.13506 
[physics.bio-ph] (2023).

	 28.	T . Aegerter-Wilmsen, A. C. Smith, A. J. Christen, C. M. Aegerter, E. Hafen, K. Basler, 
Exploring the effects of mechanical feedback on epithelial topology. Development 137, 
499–506 (2010).

	 29.	L . LeGoff, H. Rouault, T. Lecuit, A global pattern of mechanical stress polarizes cell 
divisions and cell shape in the growing Drosophila wing disc. Development 140, 
4051–4059 (2013).

	 30.	 Y. Mao, A. L. Tournier, A. Hoppe, L. Kester, B. J. Thompson, N. Tapon, Differential 
proliferation rates generate patterns of mechanical tension that orient tissue growth. 
EMBO J. 32, 2790–2803 (2013).

	 31.	N . A. Dye, M. Popović, K. V. Iyer, J. F. Fuhrmann, R. Piscitello-Gómez, S. Eaton, F. Jülicher, 
Self-organized patterning of cell morphology via mechanosensitive feedback. eLife 10, 
e57964 (2021).

	 32.	 M. Schubiger, J. Palka, Changing spatial patterns of DNA replication in the developing 
wing of Drosophila. Dev. Biol. 123, 145–153 (1987).

	 33.	 M. Milán, S. Campuzano, A. Garcìa-Bellido, Cell cycling and patterned cell proliferation in 
the Drosophila wing during metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 93, 11687–11692 
(1996).

	 34.	 M. Milán, S. Campuzano, A. Garcìa-Bellido, Developmental parameters of cell death in the 
wing disc of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 94, 5691–5696 (1997).

	 35.	 P. J. Bryant, Cell lineage relationships in the imaginal wing disc of Drosophila 
melanogaster. Dev. Biol. 22, 389–411 (1970).

	 36.	 A. Garcia-Bellido, P. Ripoll, G. Morata, Developmental compartmentalisation of the wing 
disk of Drosophila. Nat. New Biol. 245, 251–253 (1973).

	 37.	N . A. Dye, Cultivation and live imaging of Drosophila imaginal discs. Methods Mol. Biol. 
2540, 317–334 (2022).

	 38.	D . Hoerl, F. Rojas Rusak, F. Preusser, P. Tillberg, N. Randel, R. K. Chhetri, A. Cardona,  
P. J. Keller, H. Harz, H. Leonhardt, M. Treier, S. Preibisch, BigStitcher: Reconstructing 
high-resolution image datasets of cleared and expanded samples. Nat. Methods 16, 
870–874 (2019).

	 39.	 J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch,  
C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri,  
P. Tomancak, A. Cardona, Fiji: An open-source platform for biological-image analysis. Nat. 
Methods 9, 676–682 (2012).

	 40.	 J. Ahlers, D. Althviz Moré, O. Amsalem, A. Anderson, G. Bokota, P. Boone, J. Bragantini,  
G. Buckley, A. Burt, M. Bussonnier, A. Can Solak, C. Caporal, D. Doncila Pop, K. Evans,  
J. Freeman, L. Gaifas, C. Gohlke, K. Gunalan, H. Har-Gil, M. Harfouche, K. I. S. Harrington,  
V. Hilsenstein, K. Hutchings, T. Lambert, J. Lauer, G. Lichtner, Z. Liu, L. Liu, A. Lowe,  
L. Marconato, S. Martin, A. McGovern, L. Migas, N. Miller, H. Muñoz, J.-H. Müller,  
C. Nauroth-Kreß, J. Nunez-Iglesias, C. Pape, K. Pevey, G. Peña-Castellanos, A. Pierré,  
J. Rodríguez-Guerra, D. Ross, L. Royer, C. T. Russell, G. Selzer, P. Smith, P. Sobolewski,  
K. Sofiiuk, N. Sofroniew, D. Stansby, A. Sweet, W.-M. Vierdag, P. Wadhwa, M. Weber 
Mendonça, J. Windhager, P. Winston, K. Yamauchi, Napari: A multi-dimensional image 
viewer for Python (2023).

	 41.	 R. Haase, D. Lee, D. D. Pop, L. Žigutytė, haesleinhuepf/napari-accelerated-pixel-and-
object-classification: Zenodo 0.14.0 (2023).

	 42.	 R. Haase, P. Rajasekhar, T. Lambert, grahamross123, J. Nunez-Iglesias, Lachie, C. Caporal,  
C. Avenel, ENicolay, E. Sandaltzopoulou, clesperanto/pyclesperantoprototype: Zenodo 
0.24.1 (2023).

	 43.	 M. Musy, G. Jacquenot, G. Dalmasso, J. Lee, R. de Bruin, J. Soltwedel, M. Tulldahl,  
A. Pollack, B. Hacha, F. Claudi, C. Badger, A. Sol, RobinEnjalbert, Z.-Q. Zhou, A. Yershov,  
B. Sullivan, B. Lerner, D. Hrisca, D. Volpatto, Evan, F. Matzkin, mkerrinrapid, N. Schlömer, 
RichardScottOZ, X. Lu, O. Schneider, marcomusy/vedo: Zenodo 2023.4.6 (2023).

	 44.	 R. Haase, J. Soltwedel, K. Yamauchi, haesleinhuepf/napari-process-points-and-surfaces: 
Zenodo 0.5.0 (2023).

	 45.	C . L. James Ahrens, B. Geveci, Visualization Handbook, C. D. Hansen, C. R. Johnson, Eds. 
(Butterworth-Heinemann, 2005), pp. 717–731.

	 46.	 P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,  
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,  
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat,  
Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,  
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt; 
SciPy 1.0 Contributors, SciPy 1.0: Fundamental algorithms for scientific computing in 
Python. Nat. Methods 17, 261–272 (2020).

	 47.	 A. Krull, T.-O. Buchholz, F. Jug, Noise2Void - Learning denoising from single noisy images, 
in Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR) (IEEE, 2019).

	 48.	N . A. Dye, M. Popović, S. Spannl, R. Etournay, D. Kainmüller, S. Ghosh, E. W. Myers,  
F. Jülicher, S. Eaton, Cell dynamics underlying oriented growth of the Drosophila wing 
imaginal disc. Development 144, 4406–4421 (2017).

	 49.	 B. Aigouy, D. Umetsu, S. Eaton, Segmentation and quantitative analysis of epithelial 
tissues. Methods Mol. Biol. 1478, 227–239 (2016).

	 50.	 R. Etournay, M. Merkel, M. Popović, H. Brandl, N. A. Dye, B. Aigouy, G. Salbreux, S. Eaton,  
F. Jülicher, TissueMiner: A multiscale analysis toolkit to quantify how cellular processes 
create tissue dynamics. eLife 5, e14334 (2016).

	 51.	 M. Jaiswal, N. Agrawal, P. Sinha, Fat and Wingless signaling oppositely regulate epithelial 
cell-cell adhesion and distal wing development in Drosophila. Development 133, 
925–935 (2006).

	 52.	 M. Merkel, “From cells to tissues: Remodeling and polarity reorientation in epithelial 
tissues,” thesis, Technische Universität Dresden (2014).

	 53.	 F. Zanini, T. Nepusz, S. Horvát, V. Traag, Igraph/python-igraph (2015).
	 54.	C . R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,  

E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,  
M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,  
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant, Array programming with 
NumPy. Nature 585, 357–362 (2020).

	 55.	 M. Merkel, R. Etournay, M. Popović, G. Salbreux, S. Eaton, F. Jülicher, Triangles bridge the scales: 
Quantifying cellular contributions to tissue deformation. Phys. Rev. E 95, 032401 (2017).

Acknowledgments: We thank C. Dahmann, A. Classen, and past/present members of the 
Eaton, Dye, Jülicher, Modes, and Popović teams for discussions on the project before 
publication. We also thank B. C. Vellutini for sharing his expertise on the multiangle 
reconstruction of light sheet data. M. Ebisuya, S. Grill, P. Tomančák, and M. Barrera 
Velazquez gave thoughtful feedback on the manuscript. We also thank the Light 
Microscopy Facility, the Computer Department, and the Fly Keepers of the MPI-CBG, as well 
as the Bioimage Analysis group at PoL for support and expertise. We dedicate this work to 
our coauthor S. Eaton, who tragically passed away near the beginning of the project. 
Funding: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German 
Research Foundation) under Germany’s Excellence Strategy–EXC 2068–390729961–Cluster 
of Excellence Physics of Life of TU Dresden, as well as grants awarded to S.E. from the 
Deutsche Forschungsgemeinschaft (SPP1782, EA4/10-2) and core funding of the 
Max-Planck Society. N.A.D. additionally acknowledges funding from the Deutsche 
Krebshilfe (MSNZ P2 Dresden). A.K. was funded through the Elbe PhD program. C.D. 
acknowledges the support of a postdoctoral fellowship from the LabEx “Who Am I?” 
(ANR-11-LABX-0071) and the Université Paris Cité IdEx (ANR-18-IDEX-0001) funded by the 
French Government through its “Investments for the Future.” Author contributions: 
Conceptualization: J.F.F., A.K., S.E., F.J., C.D.M., and N.A.D. Methodology: J.F.F., A.K., J.P., C.D., 
M.P., C.D.M., and N.A.D. Software: J.F.F., A.K., and J.P. Investigation: J.F.F., A.K., and N.A.D. 
Validation: J.F.F., A.K., J.P., C.D., and M.P. Formal analysis: J.F.F., A.K., G.C., and N.A.D. Data 
curation: J.F.F., A.K., J.P., and N.A.D. Visualization: J.F.F. and A.K. Resources: S.E., C.D.M., and 
N.A.D. Funding acquisition: S.E., C.D.M., and N.A.D. Supervision: S.E., M.P., F.J., C.D.M., and 
N.A.D. Project administration: S.E., F.J., C.D.M., and N.A.D. Writing—original draft: J.F.F., A.K., 
M.P., F.J., C.D.M., and N.A.D. Writing—review and editing: J.F.F., A.K., J.P., C.D., G.C., M.P., F.J., 
C.D.M., and N.A.D. Competing interests: The authors declare that they have no competing 
interests. Data and materials availability: All data needed to evaluate the conclusions in 
the paper are present in the paper, the Supplementary Materials, or public repositories. 
Measurements of tissue and cell shape during eversion are available on Dryad: (doi: 
10.5061/dryad.vdncjsz2x). Code required to compute the spontaneous strain patterns and 
perform simulations is available as a Github repository https://github.com/abhijeetkrishna/
WDeversion_theory (Zenodo archive: https://zenodo.org/doi/10.5281/zenodo.11316515).

Submitted 6 March 2024 
Accepted 5 July 2024 
Published 9 August 2024 
10.1126/sciadv.adp0860

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 16, 2024

https://arxiv.org/abs/2307.13506
http://dx.doi.org/10.5061/dryad.vdncjsz2x
https://github.com/abhijeetkrishna/WDeversion_theory
https://github.com/abhijeetkrishna/WDeversion_theory
https://zenodo.org/doi/10.5281/zenodo.11316515

	Active shape programming drives Drosophila wing disc eversion
	INTRODUCTION
	RESULTS
	The wing pouch undergoes anisotropic curvature changes during eversion
	Programmable spring network as a model for epithelial morphogenesis
	Topological tracking reveals spatial patterns of cell dynamics
	Active cell rearrangements drive tissue shape changes
	Reduction of active cell rearrangements with MyoVI knockdown disrupts morphogenesis

	DISCUSSION
	MATERIALS AND METHODS
	Experimental model
	D. melanogaster lines
	Image acquisition and processing
	Sample preparation
	Imaging
	Multiview reconstruction
	Surface extraction of 3D images for visualization

	Quantifying curvature of cross sections
	Segmentation of the apical junction network
	Live imaging of wing disc eversion
	Comparison of live imaging tracks to topological tracking
	Number and distribution of cell divisions
	3D cellular network
	Measurement of cell area and cell elongation tensor

	Topological distance coordinate system
	3D visualization of cell properties
	Spatial analysis of cell properties
	Mechanics of the programmable spring lattice
	Approximating the wing disc pouch as a spherical cap
	Generating the lattice
	Elastic energy of model

	Spontaneous strain tensor
	Discretizing 
	Assigning new rest lengths to springs
	Implementing shape change over time
	Measuring resulting strains in model

	Nematic director pattern on spherical surface
	Extracting the strain pattern from segmented images
	Tracking location between developmental stages
	Observed strain due to cell area change
	Observed strain due to cell elongation change
	Observed strain due to cell rearrangements
	Observed strain due to combination of cell elongation change and cell rearrangements
	Mapping locations between wing disc images and model

	Quantifying curvature of model cross sections
	Tuning thickness
	Testing the model with more realistic initial geometry

	Supplementary Materials
	This PDF file includes:
	Other Supplementary Material for this manuscript includes the following:

	REFERENCES AND NOTES
	Acknowledgments


