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We present a simple two state model for the force generation and motion of molecular
motors. We discuss the behavior of individual motors and describe how the coupling of
motors in large groups can lead to new collective effects like dynamical phase transitions and
spontaneous oscillations.

§1. Introduction

The progressive recognition of the ubiquitous role of “molecular motors” in cel-
lular biology has drawn a considerable attention over the last ten years. Their
importance in muscular contraction had been recognized early on (see for instance
Ref. 1)), but their fundamental role in eucariotic cellular transport is still under
active scrutinity. The possibility of developing beautiful experimental techniques,
which allows to study the behavior of molecular motors in vitro2»3) has drawn a
considerable attention.

The Japanese contribution in this field is of prime importance (for instance Ref.
4)). This short note does not aim at a review of the field, but rather at introducing
the readers to our theoretical contribution, showing that generic considerations may
be helpful for extracting important characteristics of the motor function and more-
over for predicting unexpected behavior.% % Whether or not, simple theoretical
models could be of any use in describing molecular motors is unclear a priori. Indeed,
the structure of molecular motors is fairly complex and there are several hundreds of
motor proteins classified in three categories (myosins, kinesins and dyneins). They
interact specifically with filaments made of other proteins, which have the important
characteristic of being periodic and polar. In addition, in vivo, these motor proteins
are not the only molecules interacting with the filaments! Under these conditions,
it may look useless to attempt any simplified description. However, in all cases, the
filaments are periodic and polar, and the motor proteins are enzymes which bind
adenosinetriphosphate (ATP) and catalyze its hydrolysis to adenosinediphosphate
(ADP). The chemical energy, which results from this hydrolysis, is partially trans-
formed into mechanical work or directed motion along the filament, hence the word
“motor”.

-A faithful description should keep track of all possible conformations of the
enzyme in interaction with its substrate (i.e. the filament) and the follow up of
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the hydrolysis cycle should explain in detail how a net motion results. This is
currently beyond the reach of any experimental or theoretical attempt. However,
this process extends typically over a ten millisecond time scale. This means that
a large number of fluctuations may be integrated out and that a few degrees of
freedom only are necessary for the desired description. For instance, temperature
may safely be considered to be constant since at such molecular scales (i.e. 1-10
nanometers), any temperature fluctuation is damped out in a few nanoseconds. On
a strict chemical basis up to six states seem to be identifiable. 19 This is still too
large a number to allow for a simple analysis. We chose to jump to the smallest
possible number of states compatible with a “motor” activity: two, in other words
the “Ising model” of molecular motors. 8)-11)

§2. The two state model

The motor proteins are now assumed to exist either in state one or state two.
For instance, they could correspond to “ATP bound” and “ATP unbound”, which
immediately would imply that other stages of the process such as “ADP bound”
would have to be short lived compared to the time scale of motion. The states could
as well represent conformations of the protein, and ATP hydrolysis could trigger one
of the conformational changes. In a given state ¢ (¢ = 1, 2), the protein interacts with
the filament, and for any position z along the filament one can define an interaction
potential W;(z). The distance parallel to the filament of a particular point of the
protein to an arbitrary origin is denoted by z. Again other degrees of freedom are
assumed to reach their local equilibrium (for instance distances orthogonal to the
filament). Note that W;(z) must reflect the period ¢ of the filament and its polarity
(Wi(z + £) = Wi(z)) (see Fig. 1).

In general, the protein is not in mechanical equilibrium at position z and experi-
ences a force —9,W;(x) from the filament. Furthermore, at any given time and loca-
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Fig. 1. Schematic picture of the two ¢-periodic asymmetric potentials. Although the two potentials
are flat on large scale, motion is expected when the ratio of transition rates w;/w> is driven
away from its equilibrium value.
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tion z during a time interval dt, a protein in state 1 has a probability P2; = w;(z)dt
to switch to state 2, a protein in state 2 has a probability Pj3 = we(z)dt to switch
to state 1. (Note that w;(z) and wy(z) are periodic with the filament period £.) The
stochastic description is simplest in the Fokker-Planck representation, where P;(z, t)
is the probability density for the motor to be at location z, time ¢, in state . The
equations read: '

OtP + O, J1 = —wl(a:)Pl +wo(z) Py (2-1)
0Py +0:Jy = wi(z)P1 —wa(z)Ps .

The currents J; result either from Brownian motion, or from the force (—8,W;(x)
+ fext) experienced by the protein (fext being imposed by external means):

Ji = pi[~kgT 0 P; — P,0yW; + P fext] - (23)

On general grounds, one can write:

“ ‘ Wi(z)
(@) = (a@eBF +o@) et |

BADPHEP Wa(z) (2‘4)
wo(z) = (a(a:)e kT +w(m)) e k8T :

Here, patp, tapp and pp are the chemical potentials of ATP, ADP and phos-
phate. a(z) and w(z) are unknown functions, which again must reflect the sym-
metry properties of the filaments (i.e. periodic and polar). In equilibrium paTp =

pADP + pp, and detailed balance wy (z) = wa(x) exp[—vv—lgfk)-;gz—(ﬂ] holds. The quantity

Wi(z) — Wa(z)
kgT

2(z) = wi(z) — wa(x) exp (25)
measures the local deviation from detailed balance. For uatp — papp — up > kT,
£2(z) is simply proportional to the ATP concentration.

Using (2-1), (2-2) and (2-3), it is possible to show that in order to get a deter-
ministic motion over large scales, one needs:% (i) the breaking of detailed balance
(2 # 0), i.e., energy consumption, (ii) the polarity of the filament. The absence of
either of these requirements destroys any motion. The dependence of the velocity
on {2 is summarized in Fig. 2. The solid line corresponds to {2 = const, whereas the
dotted one corresponds to £2(z) ~ 3, 8(z — xzo + nf) (i.e., state changes are only
allowed at particular positions z = zg + nf).

The comparison of these curves with experiments confirms the notion of “active
sites” used by biologists: indeed no maximum of the velocity as a function of ATP
concentration has ever been found, which implies that the conformational changes
are allowed only at very localized places of the filament. A more detailed description
of this point, and of the mechanisms involved in the motion generation may be found
in Refs. 6) and 9).
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Fig. 2. Schematic diagram of the spontaneous average velocity v (for zero external force fext = 0)
of the particle as a function of {2 which measures the departure from equilibrium and is related
to the fuel concentration.

§3. Collective behavior

In muscles, but also in “motility assays” and presumably in many other cir-
cumstances, motors do not act as independent units, but as collections. A subtle
difference between “rowers” (i.e., motors designed to operate in groups like myosins)
and “porters” (i.e., motors designed to work individually like kinesins), has been
introduced by Leibler and Huse: 12)-13) “rowers” spend most of their time in a state
unbound to the filament, whereas “porter” spend most of their time in the bound
state. In the spirit of our two state model, we raised a different kind of question: fol-
lowing the simple logic outlined above, can one expect any original feature from the
conjunction of many motors operating together? For instance, a non-interacting spin
will never show any phase transition, whereas spin collections can undergo a large
variety of phase transitions depending on their interactions. Actually, we expect the
same to be true for coupled molecular motors. )

The interaction between motors could be quite complex, but the possibility for
dynamical phase transition is best evidenced in the simple case where the motors
are rigidly connected to each other, and either randomly spaced or with a period
incommensurate with that of the filament. This is the case in “motility assays”
where motors are bound to a substrate and also in muscles where they are connected
together through the entanglements of their stems. A schematic representation is
given in Figs. 3(a) and (b). Under those conditions, the equations for the two-state
model become simply

0P+ Uagpl = —Wwi (f)Pl -+ w2(f)P2 ,
0Py + v0c Py = w1 (§) PL — w2(§) Pa (31)

where (3-1) holds for any motor, provided the coordinate z, of motor n is mapped
on a reference period, via the transformation £ = z, mod ¢, with 0 < £ < £.
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Fig. 3. (a) Schematic representation of a two-state many-motor system. Particles are attached
periodically with spacing ¢ via springs to a backbone at positions y,. Particle positions are
denoted by z,. The potentials W) and W, are £-periodic. (b) Rigid coupling of particles with
Yn = Zn. (c) Rigid system coupled elastically to the environment via an elastic element K.

The velocity v, common to all motors, is determined by a global force balance:

v = N(fext + f) . (32)

For a very large number of motors, (3-2) can be expressed “per motor”, in which case
1 is a passive friction per motor, fex; the external force per motor, and the internal
force f given by

g = [ de (PagW(©) + ProcWa(e)) (33)

The details of the arguments have been given in Ref. 7): this system of equations
involves the existence of a dynamical critical point and a regime of first order tran-
sitions. A typical force/velocity diagram reveals a structure very reminiscent of a
pressure/volume isotherm of a liquid-vapor system (Fig. 4). For excitation parame-
ters £2 < (2., there is a one to one relation between external force and velocity, but
for 2 > 2., three velocities correspond to one external force (two stable, and one
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Fig. 4. External force fex: as a function of velocity v for an asymmetric system, for different values
of the excitation amplitude 2. A critical point exists for 2 = §2.. For 2 > (2, the velocity
shows instabilities and discontinuities as a function of the force fex:.

unstable) just as in a Van der Waals pressure/volume isotherm. The prediction here
is that one could very well find experimental situations in which motor collections
might either go in one direction or its opposite for the same external force and same
filament direction. This putative surprising behavior may be traced down to the
existence in the model of a symmetry breaking transition, when the filament is itself
symmetrical.

An other qualitatively new behavior is expected whenever the filament is con-
nected to the rigid structure, not only via the motors, but also in series with them
via a passive elastic element or spring (Fig. 3(c)). For small spring constants, it is
easy to understand that the filament will now oscillate, under appropriate circum-
stances. Let us prepare the system under conditions such that the spring is not
stressed (fext = 0) and that 2 = 0. At time ¢ = 0, we stimulate ATP consumption
in such a way that 2 > f2.. The filament, then, starts moving and while extending
the spring develops gradually a force which opposes the motion. The filament veloc-
ity decreases along the right branch of the lower curve of Fig. 4 (£2 > 2.), until it
reaches the minimum velocity. Then, an instability sets in, since any further decrease
of the velocity corresponds to no other solution than that of the left branch. On that
branch, the direction of the velocity is such that the spring extension and with it the
absolute value of the external force decrease. The system now follows the left branch
of the v/ fext, curve. This goes on, as long as the velocity reaches the local maximum
on the left branch. Now, no further increase is possible and the system jumps back
on the right branch of the curve. This is a standard mechanism for oscillations of
relaxation. A more elaborate analysis gives access to transients, phase diagrams,
etc.8) Typical curves representing displacement of the filament as a function of time
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Fig. 5. (a) Spontaneous oscillations of a symmetric collective system coupled via an elastic element
to its environment. The oscillations show characteristic cusps at the maximum and the minimum
where the sliding velocity changes discontinuously corresponding to the instabilities in the force-
velocity curve. (b) For an asymmetric system, the broken symmetry is reflected on the oscillation
curve.

are displayed in Fig. 5. The existence of both the velocity discontinuity, and the
oscillations when a spring is added, is robust in that refinements of the model such
as additional elastic elements as shown in Fig. 3(a), do not destroy collective effects,
provided “reasonable” order of magnitudes are used. One exception to this robust-
ness: if the state changes occur in the vicinity of a maximum of W;(z) (instead of a
minimum), the system is stabilized. In this case, discontinuities and oscillations are
suppressed.

§4. Discussion

The “Ising-like” two state model described here, allows not only to confirm
in a “blind” way the notion of active sites, but also to predict two original types of
behavior: (i) regions of phase space where filaments with the same polarity and under
the action of the same external force, can go in opposite directions; (ii) regions of
phase space where filaments should oscillate provided they are connected to a spring.
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The first proposition can be tested using appropriate motility assays.?) Fila-
ments are forced to follow straight trajectories given by linear grooves imposed on the
substrate, and the external force is induced by a d.c. electric field. The force/velocity
curve observed in such experiments shows a discontinuity and hysteresis compatible
with the above prediction. The direct visual observation of this phenomenon near
“stall” conditions is quite revealing: some filaments may be seen moving both “for-
ward” and “backward” as a function of time keeping the external force constant.
This behavior is expected in the case of a first order transition, with fluctuations
observable in a finite size system. Whether the actual mechanism at work corre-
sponds exactly to the theory or not, is unimportant: the main point of the model is
that generically one may expect discontinuous behavior in motor collections. This
implies the existence of mechanical thresholds which might be taken advantage of
by nature.

The second proposition could be tested in the same type of experimental set-
up by adding a proper spring. This has not been achieved yet. However, elastic
elements are naturally included in muscles, and oscillatory muscles do exist. They
are generically classified as “synchronous muscles”, which follow a periodic signal
sent by nerves, or as “asynchronous muscles”, the oscillations of which bare no con-
nection whatsoever with any nerve signal. 1% The first case clearly involves calcium
release and is not a natural candidate for our prediction, but the second case (which
corresponds to wasps and bees) could well be explained (in a generic sense) by our
analysis. Moreover, beautiful experiments show that in the absence of any external
solicitations, muscular cells not designed by nature for oscillations, do oscillate pro-
vided they are in the right region of phase space. 1) The observed elongation versus
time curve, is very reminiscent of the curve shown in Fig. 5(b) ! Thus, even though
the above described analysis is highly idealized, it contains enough richness to allow
for predictions which seem to be experimentally relevant.
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