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We study the energetics of isothermal ratchets which are driven by a chemical reaction between two states,
and operate in contact with a single heat bath of constant temperature. We discuss generic aspects of energy
transduction such as Onsager relations in the linear response regime as well as the efficiency and dissipation
close to and far from equilibrium. In the linear response regime where the system operates reversibly, the
efficiency is in general nonzero. Studying the properties for specific examples of energy landscapes and
transitions, we observe in the linear response regime that the efficiency can have a maximum as a function of
temperature. Far from equilibrium in the fully irreversible regime, we find a maximum of the efficiency with
values larger than in the linear regime for an optimal choice of the chemical driving force. We show that the
corresponding efficiencies can be of the order of 50%. A simple analytic argument allows us to estimate the
efficiency in this irreversible regime for small external fordes1063-651X%99)01708-0

PACS numbegps): 87.10+e, 05.40-a

[. INTRODUCTION tial difference can be defined even under out of equilibrium
conditions, since in this limit the reaction driving the micro-
Biological systems provide an important motivation to Scopic motor affects the reservoir only weakly. Usihg as

study the physics of active processes which on a moleculdhe relevant control parameter, the consumed chemical free
scale are able to transduce chemical energy into mechanic@nergy by the active process is well defined. This leads to a
work and motion. Important examples are linear or rotarySimple definition of efficiency as the ratio of the mechani-
motor enzymes and enzymes which move actively alon al work performed and the consumed chemical free energy.
DNA [1]. The properties of such systems differ in several'Ve find three important results.
respects from macroscopic machines and heat engiijes: ) The efficiency calculated for these models can be
active phenomena occur on a molecular scale in a very Visr_na>_<_|m|zed far from eqU|I|br|_u_m._ . :
cous environment with overdamped dynamics, and motion is (ii) Close to thermal equilibrium there exists a linear re-

thus stochastic and obeys only on average the first and Se{ssponse regime which is important because of its universal

o : . hat th f the effi-
ond laws of thermodynamicgii) these systems are isother- eatures. We demonstrate that the dependence of the e

| and trictly at fant t ¢ h ciency in this regime on temperature is strongly model de-
mal and operate strictly at constant temperature as they are Héndent and can be nonmonotonous, in which case thermal

intimate contact with a thermal bath. In recent years, a numg,,.+,ations are essential for an efficient energy transduction.

ber of theoretical approaches to describe this class of systems (ji) The efficiencies vanish at stalling conditiofzero

has been developd@-8]. _ average velocity except in a singular limit where they reach
In order to discuss the energy transduction of such sysge ideal valuep=1.

tems, the concepts which have been developed for macro- The outline of our paper is as follows. In Sec. II, we

scopic motors have to be applied with some care. Recentlyiscuss generic aspects which are completely independent of
there has been a growing interest in the energetics of Browrthe model chosen. We define the efficiency and identify the
ian motors[9-21]. It is the aim of this paper to discuss generalized currents and forces, which allow us to write a
generic aspects of energy transduction of Brownian motorfinear response theory. We discuss the generic features of
driven by a chemical reaction, and to provide several specifiefficiency in this regime, in particular the maximal efficiency
examples which reveal interesting properties. under reversible conditions and the efficiency at stalling con-
The two-state models which we U8 represent a useful ditions. In Sec. lll we define the transport equations, the
paradigm for the description of energy transduction of iso-motor is described as a two-state model which is coupled to
thermal motors in the overdamped regime. They are motia chemical reaction, and we identify the energy fluxes in the
vated by cytoskeletal motor proteins which move along polasystem. Section IV discusses the energy transduction proper-
and periodic filaments. Coupling a two-state model to aies for specifically chosen examples. We show that effi-
chemical reaction, which induces transitions between the twaiency is typically optimized in the irreversible regime, and
states of the motor, leads to motion and force generation ifjive examples for the temperature dependence when the
the chemical potential differencéu between the fuel and system operates in the linear response regime. In our con-
its reaction products is nonzero and if the system has a polailuding remarks, we relate our results to biological motors,
symmetry. Assuming that the chemical reservoirs coupled tand discuss alternative definitions of efficiency which have
a single motor are macroscopic in size, this chemical potenseen used in the literature.
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[l ISOTHERMAL RATCHETS: GENERIC ASPECTS The matrix\;; of linear response coefficients has the follow-
ing physical meaningk (; is a mobility giving the response
of the velocity to the applied force.,, plays a similar role

Motivated by linear biological motor proteins which for fuel consumption. It describes the “chemical admit-
move along a linear filament, we will consider chemically tance” or the response of the chemical reaction rate the
driven systems which can induce motion along a onechemical forceA . The coefficients\;, and\,; are mecha-
dimensional track. The energy source is the difference of theochemical coupling coefficients which are responsible for
chemical potentials\ . of fuel and products. Being moti- energy transduction.

vated by biological motors, we use the hydrolysis [ooking at the symmetry of the problem, we find that

A. Force, velocity, and efficiency

ATP=ADP+P as exampl¢1]. We define and f ., transform like vectors fok— —x, while r and A u
A pn— 1 are scalars which do not change under inversions. As a con-
M= KA HKP sequence, the coefficienks; and \,, transform as scalars

where u, and up are the chemical potentials of adenosine-While X1, and?\21 are vector coefficients. The latter can be
triphosphate(ATP) and the hydrolysis products adenosine-"0nzero only if the system has a polar symmetry. Thus the
diphosphate and phospha&DP-+P), respectively. In order polanty of the systemipolar filaments is essential for mo-

to perform useful mechanical work, the system has to mov&©n t0 exist. L _ _ _

against an external forde,, applied parallel to the track. In _ €alculating the dissipation raié in the linear regime, we
addition to the two generalized forcag: andf,, acting on fmd_t_hatH is positive exactly if the dla_lgonal_ (_alements are
the system, we can define two generalized velocitigghe ~ POSitive,\;;>0, and if the determinant is positive:

average velocity of motiow of the motor along the track,
and (i) the chemical reaction rate defining the average

number of ATP molecules consumed per unit time. The MOye expect a symmetry relation between the Onsager coeffi-
tor can thus be characterized by the equations of state cients if microscopic reversibility is obeyed:

N11h 2= NN >0, 9

V=V(fext,A,u), (2) )\12:)\21. (10)

r=r(fenAu), (3 This is a general result of nonequilibrium thermodynamics.

which describe the velocities of the system as a function of

the generalized forcd22]. The mechanical work performed C. Modes of operation

per unit time against the external force is given by Different modes of operation of the motor can be distin-
) guished by looking at the input and output of energy of the
W=fexv. (4 system. The dissipation rafé corresponds to the total flux

of energy to the thermal bath at temperatiirePassive re-
gimes of the motor are those cases where bath andf .,V

. are positive: Work performed on the system is dissipated and
Q=rlAp. ®)  ost.

More interesting are the active regimes where the motor
transforms chemical energy into mechanical work, or vice
versa, while dissipating only a part of the energy input. Four
such active regimes exidisee Fig. 1a)]. (A) rAu>0,

fexv fev<O, The motor uses the chemical energy of the _ATP @n
n=- m (6) excess as input, and performs mechanical work moving with
v>0 against a negative forck,<0. (B) rAu<0, oV

Because of energy conservation, the amount of energy dissz 0, The motor produces ATP, although already in excess,

The amount of chemical energy consumed per unit time is

For a system which performs mechanical work, ifg,w
<0, we can define thénechanical energy transduction ef-
ficiency as[23]

pated per unit time reads from mechanical input due to a negative fofeg<0 induc-
ing a negative velocitw<0. (C) rAu>0, fow<0, The
M=fowv+rApu. (7) motor uses ADP in excess to perform mechanical wdbk.

rAu<0, feuv>0, The motor produces ADP already in ex-
From the second law of thermodynamics, it follows thht cess from mechanical work.

must always be positive. The different regimes are separated by the lifigg=0,
Au=0, v=0, andr=0. For regimes A and C, where the
B. Linear response theory motor performs mechanical work, the mechanical efficiency

is the one defined in Ed6): 7= —fov/rAw. Similarly, in
regimes B and D, where the system performs chemical work,
the chemical efficiencyy.=—rA u/f o is more useful.

Within the linear response regime, the efficiency can be
calculated using the Onsager coefficients

Close to thermal equilibrium, i.e., for small forcés,,
<T/l and Au<<T, wherel is a typical length scale of the
motor andT is the temperature measured in unitkgf, we
can expand Eq3) to linear order:

V=N1ifext N2Au, @2+ A A
(8) =—

=== (12)
r=)\21fext+ )\22A,LL. g )\21a+)\22
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IIl. TWO STATE MODELS
A. Transport equations

We study energy transduction and efficiencies of isother-
mal motors using simple two-state models. The motor is
characterized by its positiox along a one-dimensional co-
ordinate describing the polar and periodic track. We assume
that the motor can exist in two different conformations or
statesc=1 and 2. The interaction between motor and track
depends oo and is described by potential®, (x) with
polar symmetry which are periodic with peribd

The role of the chemical reaction is to trigger transitions
between the two states. We introduce the position dependent
rate constants;(x) andw,(Xx) which characterize the prob-

FIG. 1. Operation diagram for an isothermal motor in the linear@bility per unit time for the transitions-+2 and 2-1 at
response regime as a function of external fofgg and chemical ~ Position X, respectively. The probability densitie3, (x,t)
potential differenceA . General case with four different regimes andP,(x,t) for the system to be at tineat positionx in one
A-D, separated by lineg=0 andr =0 where the velocity and the 0of the two states obey the Fokker-Planck equatidis
fuel consumption vanish, respectively. The maximal mechanical ef-
ficiency occurs along a liN€ay. P11+ 0xJ1= — w1(X)P1+ wy(X) Py,

(13

wherea=f /A u. If we choose a constanty>0, the ef- 9tPa+ dxdy= 01(X)P1= 0(X) Py

ficiency vanishes foff¢,;=0 (no work is performef # be- ) _

comes positive foff <0 (note the minus sign which indi- 1he particle currents are given by

cates that the force is applied in the direction opposing ,

movemen}, reaches a maximum for a certain value of the Jo=E& [~ ToPs— P W+ Psfexl, (14
force and becomes zero again at the stall force for wkich

—0. According to Eq(11), the efficiency is constant along Whereé™ ' is an effective mobility, the temperatufeis mea-
Straight |inesfext: aAM which Correspond to constarat sured in units OkB, andfext is the external force introduced
Thus, at the origin of thef(,,,Ax) plane which corresponds above.

to thermal equilibrium and reversible, quasistatic operation, For given ratesw, the system relaxes to a steady state

the efficiency» has a singularity and is multivalued. with 9;P,=0. The normalized Idistributions which satisfy
Maximal efficiency occurs for the valua for which  periodic boundary condition$/dx(P1+P32)=1, P,(0)
dnlda=0. It is given by[24,8] =P,(l) ando,P,(0)=0d,P,(1)] in the steady state allow us
to calculate the average velocity
=(1-V1-A)?A. 12 !
Tmax=( ) 12 vzf dxX(Jy+Jy). (15)
0
Here A=\2,/(\11\»y). It varies betweenym.,=0 for A,
=0 andyma= 1 if NZ=N 11\ 5. Larger values\ >1 violate B. Coupling to a chemical reaction
thermodynamics according to E() and the Onsager rela- e now consider the situation where the transitions be-
tion [see Eq(10)]. tween states 1 and 2 occur as a result of a chemical reaction

under stalling conditiong=0. This is an important differ- and to capture different situations, we consider the following
ence from Carnot engine for which the efficiency is opti- scheme:

mized under quasistatic conditions without net motion. It re-
sults from the fact that the energy transduction driven by a a,
chemical reaction qonS|dered here will in g_eneral still ha\_/e a ATP+M, = M,+ADP+P, (16)
nonzero consumption rateeven when motion stops, or, in
other wordsy=0 andr=0 do not occur for the same con- as
ditions.

There is, however, one limiting case where this is no V1
longer true: IfA—1, the two linesr=0 andv=0 in the N
(fexnAp) plane tend toward each other. In this limit the ADPTP+My = Mo+ATP, (17)
chemical reaction and motion are strictly coupl&é., one Y2
cannot occur without the otherand the efficiency reaches
the maximumy= 1. This situation is an idealized case which B
applies to good approximation to polymerization forces and .

. o . M, = My, (18

motion generated by polymerization processes as in the case
of RNA polymerasg25,15. B2
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where «;, v;, and B; denote the “forward” and “back- Q(X)z(az(x)eApolTk+ yz(x)e—AMO/Tk—l)' (27)
ward” rates, respectively. The reaction pathwaynvolves
ATP hydrolysis with chemical free energy gaw when
changing from state 1 to state 2, while pathwaynvolves
hydrolysis in the opposite direction. The transitighislo not
involve a chemical potential difference. Chemical kinetics

where A u%= ulp— ulpp— b . Here we used the relation
wi=p2+TIn[i], wherel[i] is the concentration of speciés
and ,u.io the so called standard chemical potential.

requires
D. Energy conservation and dissipation
@ = gW1—Wo+Au)/T (19 The first law of thermodynamics requires that the energy
az flow through the system is conserved as described by#q.
This energy conservation can be derived from the transport
Eze(wl—WZ—A,u)/T (20) equations. This leads to expressions for the local density of
b2 ' energy dissipation which gives interesting insights in how
energy transduction occurs.
B1 (Wy— Wy)IT o1 We distinguish two types of dissipation raté€n: the dis-
E —€ ' (22) sipation ratedl ;, with o=1 and 2 corresponding to sliding
within the potential profiles; andii) the dissipation rates
The transition rates can therefore be written as I1,,, with u=a, B, andy corresponding to transitions be-

tween the two states. In addition to the total dissipation rates
IT, andII,,, we introduce local dissipation densitiés,(x)

(22)  and® ,(x) with TI=[dx ©(X).

W= axt yo+ B, For a particle sliding in the potentisV,(x) with a steady

where unknown Ii-periodig functions a,(X), 7y,(x), and state distributiorP,(x) [27,28 ,
B-(x) define the conformation dependence of transitions = —J,d.H (28)
rates[26]. With these expressions, the net steady state ATP 7 7
consumption rate is given by

w,= aze(W1*W2+AM)/T+ ,},Ze(WlfwzfA#)/T_;_ ﬁze(Wlfwz)/T,

and
|
r=| dx X) — y1(X))P1(x) — X) — y2(X))P,(X)]. '
fo [ (a1(X) = y1(X))P1(X) = (a2(X) = ¥2(X))P2(X)] ng_j dx J,(X) 3H (), (29)
(23 0
C. Detailed balance where
If Au=0, the chemical reactions are in equilibrium, and H,(X)=W,(X) = fexX+ T In(P (X)) (30
the transition rates are just thermal fluctuations and obey the
relation of detailed balancan;/w,=exp(W1—W,)/T). s an enthalpy whose gradient induces the Fokker-Planck
Breaking of detailed balance faru. #0 is a requirement for  cyrrentJ, :
spontaneous motion and force generation to be possible. In
order to quantify the departure from thermal equilibrium and Jy=— &P o H, . (32)
the extent to which detailed balance is broken, we define the
guantity

Therefore I, is positive definite as expected for a dissipa-
AW(X) tion rate. Similarly, the dissipation densities corresponding to
Q(X)=wi(X)— wz(X)eXF( — T) (24) chemical transitions are given by

with AW(x) =W,(x) —W;(x). Detailed balance is obeyed 0,=(a1P1—asP2)(Hi—Ha+Au),

only if Q(x)=0 for all x. Using the transition rates as given

by Eq.(22), we find 0,=(y1P1=72P2)(H1—Hy—Ap), (32
Q)= W ay(x)(e**T—1)+ y,(x)(e 4T 1)]. 05=(B1P1—B2P2)(H1—H,)
(25)
If Au#0, we distinguish two interesting limits: for small and
AulT<1, [
H =
7AW/TA/J“ L Jodx®ﬂ(x) (33
Q(x) = (@a(x) = y2(x))e - (26)

for u=a, B, andy. Again,II,, 114, andlIl, are positive
indicating thatQ is proportional toAw. If Au/T is large  definite as required. For a steady state with periodic bound-
compared to 1,Q depends only on the ratiok ary conditions, we can partially integrate E9) and find,
=[ATP]/[ADP][P]: together with Eq(13),
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|
H1+ HZZ f dX(Hl(?XJ1+ H2(7XJ2)+ fextV
0

|
= fodX(Hl_ Ho)(01P1— 0,Po) + fegv. (34)

Using Egs.(14), (22), and(23), we find that the total dissi-
pation rate

satisfies Eq(7), and energy conservation is obeyed.

For smallAx and smallfgy, the two-state model has a
linear response regime which obeys the general properties
required by thermodynamics. In particular, it can be demon- U
strated that the model satisfies the symmetry relation of Eq.
(10), as we describe in Appendix A. v 5

Wi ©)

IV. EFFICIENCIES CLOSE TO 0 — W
AND FAR FROM EQUILIBRIUM 0 a X I

A. Specific examples W/ (c)

We have introduced a general framework which allows us W,
to study a large variety of systems which differ in their po-
tential shapes and in the transition rates y,, andB,. We
now discuss three particular examples which we have chosen 1t W, Uy
as prototypes to illustrate the physics of energy transduction.

System A is a system with two periodic potentials of U
equal amplitudéJ which are piecewise linear, and which are 0 ‘ ‘ ‘ )
shifted with respect to each other by a displacem&ras 0 a X [
shown schematically in Fig.(@). Furthermore, they differ by
a constant valugJ,: W,(x)=W;(x— 8)+U,. The poten- FIG. 2. Three choices of potentidlg, andW, with periodl and
tials are characterized by the asymmetry paramegterhich transition regions indicated in grey. The posit®of the maximum
denotes the position of the potential maximumWf. We of W, characterizes the potential asymmetry, ahdlenotes the
choose a reaction scheme with chemically activated transpetential amplitudesa System A with potentials shifted by a dis-
tions a,, between the low-energy state 1 and the high_tance5 and_ offset_Uo_. Actl\_/e transn_lonSa and thermalntrans_lt_lons
energy state 2, passive transiti@h ,, and y,,=0. The B are Iocallzed_wnhln regions of siz#near the p_otentlal minima.
chemical cycle corresponds to Subéequent trénsit[tonsld (b) System B with symmetric states. The potentials are shifted by a

8 which we choose localized within intervals of side distance ofl/2, and active transitiona and y are chosen such that
the system is symmetric with respect to an exchange of the two

states(c) System C with a flat potentidlV,, localized active tran-
(36) sitions a and non-localized thermal transitiogs

w, |—d=sx=I

()= 0 otherwise,

] o allows us to introduce a new symmetry: the system is invari-
localized near the minimum dlV,, and B5(X) =ax(X—6)  ant under a shifk—x+1/2 if at the same time the states are
localized near the minimum diV,; see Fig. 2a). Here we  exchanged: 4+2. This situation is realized by choosing tran-
have for simplicity introduced a single parameterwhich  sition ratess; ,=0 andy;(x) = a,(x—1/2), where we local-
sets the typical time scale of transition rates. The transitiofize | transitions near the potential minima. For system B we

ratesw, of system A obey can therefore write
w1(X) = arp(x) e Wt AT gy (x — 5)eWa=W2IT, w1(X) = ap(X) €MW1 Wor AT o (x—1/2),
37
@2(X) = a(X) + ap(x=9). w3(X) = ap(X) + ap(x—1/2)eM2 W AWIT - (3g)

System A is chosen in such a way that diffusion within thewith a,(x) given by Eq.(36). Note that system B involves
potentials is not necessary for motion generation, and eadio active chemical steps per potential period. However, be-
chemical cycle generates with high probability a forwardcause of its additional symmetry it I$2 periodic. Further-
step along the coordinate. more, all chemical transitions involve ATP hydrolysis, and
System B has different symmetry and different topologythere are no passive transitions.
of the chemical reaction scheme as compared to system A; System C is shown in Fig.(&). It is a variant of model A
see Fig. &). The two potentials are shifted by exactly half a with a weakly bound stat®/,(x) =U, of constant energy.
potential periods=1/2: W,=W,(x—1/2) andUy=0. This  As for system A we choose a reaction scheme with=0
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and localized active transitions near the minima using again Tmax @
definition (36). Since the potentialV, is structureless, we 0.06 £=200
assume passive transitions to be nonlocalized v@i3ix)
= w. Therefore, in system C, 0.04 x=100
w1(X) = ay(x)eWi= Wt AT 4 () @(W1=Wa) 0.02
(39 x=20
wo(X) = ay(X) + w. 0

) ) L e . 0 02 04 06 08 1.0 12 1.4
In this case motion generation involves a diffusive step in T

state 2 which we expect to reduce the efficiency of energy
transduction.
In order to discuss these models, we identify the relevant

nmm
1 (b)

. . . . — 0.8
dimensionless parameters: the dimensionless positon
=x/1, reduced temperature=T/U, reduced potentialsv, 0.6
=W, /U—f.,{d/U, and reduced transition rates,= w, /. 0.4
Equations(13) and (14) for a steady state can be written as 0.2

0

— (taxP1+ P1dxW;) = x(— 01P1+ w,Py),

0 01 02 03 04 05 06 0.7
_ _ (40) o
— (10, P2+ PdWs) = x(@01P1— w;P5).
A 35 ©
The dimensionless parameter
wél? g8
X= U (41) I{§15
compares two time scale§) the typical chemical time» 2, 5
and (i) the typical sliding time in the potentiald?/U. For ol —
x>1 transitions are fast compared to sliding while fpr 02 04 06 08 10 12
<1 sliding is fast. The model is fully characterized by the ™
dimensionless parameteys T/U, Au/U, a/l, d/l, é/1, and FIG. 3. Maximal efficiencyn. in the linear response regime

UO/Q. The results Qiscussed in the following section areas function of reduced temperatuféU for systems A, B, and C
obtained by numerically solving Eq40) with periodic  with a/l=0.1, as shown in Fig. Za) System A withs/l=0.65 and

boundary conditions for the three different systems. U,/U=0.4, at differenty. (b) Same diagram for system B at dif-
ferenty. (c) Same diagram for system C wity/U=1.2 at differ-
B. Efficiencies close to equilibrium enty.

Numerical examples for the maximal efficiency in the lin-
ear response regime as a function of temperature are dis-
played in Fig. 3 for systems A, B, and C and different values We have shown that the two-state model transduces
of x=wél?/U. They have been obtained by first calculating chemical energy into mechanical work in the linear response
Onsager coefficients from steady state solutions for smallegime, though with varying efficiencies. In linear response
Au and smallf,; and using Eq(12). The orders of magni- the chemical action represents a small bias of the dominant
tude of the efficiency differ for systems A, B, and C. The thermal fluctuations. We now compare these results with the
efficiency » depends ony and increases in general with properties of energy transduction far from equilibrium.
increasingy. System B has the largest efficiency which ap- System AFigure 4a) displays the efficiency; as a func-
proachespy=1 for small T/U, and decreases monotonically tion of the applied force for the system A as defined in Fig.
as a function of temperature. For systems A and C the effi2 for Au/T=8 and different temperatures. The efficiency
ciency has a maximum as a function of temperature and varvanishes forf =0, as well as for the stall force for which
ishes in the limit of smallT/U. This indicates in these cases the velocity vanishes. For an intermediate value of the force,
the importance of thermal fluctuations for energy transducthe efficiency reaches a maximum. This valyg,y is dis-
tion. Note that the limit of small temperatures is subtle sinceplayed in Fig. 4b) as a function ofA u. This diagram reveals
in linear responsé\ u<T must be obeyed. Therefore, this the main characteristics of energy transduction: for sthall
limit corresponds to first sendindu to zero, andT after- we again find the nonvanishing efficiency of the linear re-
wards. Even for small temperatures the system thus remairgime. The efficiency increases as a functio\@f, reaches a
in a regime where thermally activated passage over energypaximal value, and decreases for lafgg to zero. For suf-
barriers rests important. While system A can have significanticiently large values ofA u the efficiency increases for de-
efficiencies of the order ofj=0.06 in the linear response creasing temperatures, and in the example shown reaches a
regime, the efficiency of system C which relies on diffusivevalue of »=0.4 for T/U=0.1. The results obtained for dif-
steps is small f=10"%); see Fig. 3. ferent temperatures intersect for smalj, which corre-

C. Efficiencies far from equilibrium
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“ T =540

90.7 0.6 -05 0.4 -03 02 0.1 0 0 02 04 06 08 1.0
foxt /U x|
Tmax 0 <010 o FIG. 5. Density®,(x)+0,(x) as defined in Eq(28) of the
0.4 - dissipation rate as a function of positionfor system A with
03 Ul/f o= —0.48, =200, andA /U =0.80.
02 relevant energy scal€/U=0.1 are of the order of=0.5,
o1 T/U =0.30 and occur forAu~U comparable t(_)_the energy difference
) between the two states at the transition and thus far from the
0 T/ =040 linear regime.
0 02 04 OX 0.8 1.0 12 14 The dissipation ratél can, according to Eq35), be di-
Hu vided into separate contributions of potential slididg and
Mimax = chemical transitiondI ,, with u=«, B, andy. It is useful
0.4 ) : S
to define relative dissipation rateg, =11, /rAx and »,
03 /U =0.10 =II,/rAu which are analog to the efficiency, and describe
the fraction of dissipated energy relative to the consumed
0.2 T/U 20.20 chemical work. Note thaiy+ Mt ot et Nt 9= 1 fol-.
lows from energy conservation. Figurédtshows the domi-
0.1 T/U =0.30 nant relative dissipation rates together with the efficiepcy
The dominant dissipation i, + 11, resulting from potential
e T’%;O-:‘gs friction, dissipationlI, of chemical transitions plays a minor
Y role. The dissipation;; corresponding to passive transitions
is smaller than 0.01, and can be neglected. It is therefore not
! () shown. The maximum of; corresponds to a minimum of
0.8 71t 72
W The main energy loss results from thermally activated
0.6 backward steps. This idea can be directly tested by calculat-
04 . ing the Iocalldissipat_ion.der?si@l(x) + ®2_(x) as defined in
Eq. (28). This quantity is displayed in Fig. 5. The plot re-
0.2 veals that maximal dissipation occurs fér-a<x<34, i.e.,
0 o along the steep potential slope of the potenfigl A second
0 02 04 06 08 1.0 1.2 14 maximum of local dissipation exists for<Ox<a along the
Apu steep slope ofV;. In contrast, minimal dissipation occurs

FIG. 4. Energy transduction of system A witfl=0.1 and €& the potential minima where transitions between states
Uy/U=0.4.(a) Efficiency » as a function of the external fordg,, take P'ac_e- _Thg st(_aep potgntlal slopes where thg density of
for Au/U=0.8, y=&l%w/U=200, and different reduced tempera- €N€r9Y dissipation is large indeed are accessed via thermally
tures T/U. Broken lines represent the approximation discussed irctivated backward hopping events. The E’mbab'“t}” of such
the text.(b) Maximal efficiency 7,a, as a function ofA /U for events increases in the_p_resence of an “adverse” external
=200 and different temperature&) Maximal efficiency as a force which limits the efficiency of the system.

function of y for Ax/U=0.8 and different temperaturei) Rela- System BFigure 6 displays the same information for sys-
tive dissipation rates as a function afu for the same system: tem B. The diagram reveals that efficiencies are in general

shown are the fraction of energy dissipated by potential slidingarger than for system A, reaching values upste0.7 for
71+ 17, and the fraction dissipated via active transitiops. For ~ T/U=0.05. Furthermore, the maximum of the efficiency as a
details, see text. function of A is less pronounced and shifted to small val-
ues ofAu as compared to system A. One might expect that
sponds to the observation discussed above that the efficientlye dissipation due to passive transitiong in system A
in the linear regime displays a maximum as a function ofwhich does not exist in system B could play a role in im-
temperature. Figure (d) shows the behavior ofp.,. for  proving the efficiency of system B. However, as discussed
fixed Au/U as a function ofy= £1?w/U over a range of six above, 7, can be neglected and is thus not responsible for
decades. The efficiency increases monotonically with inthis effect. The main reason for the improved efficiency of
creasingy from zero to a plateau value. As an important system B is the fact that the effective energy barrier for ther-
result we find that the largest values of the efficiency for themally activated passage over the potential maxima is larger
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@ FIG. 7. Energy transduction of system C witil =0.1. (a)

0.8 Maximal efficiency as a function ofA u/U for y=¢él?w/U=5,

Uy/U=1.2 and different reduced temperatufedJ. (b) Relative
dissipation;+ 7, in the potentials as well as the dissipation of
transitionsz,, and 4 corresponding tda). (c) Maximal efficiency
as a function ofy for Ax/U=1.2 and different temperatures.

0.6

04

0.2
Nt
0

0 02 04 06 08 10 1.2 System CEnergy transduction of system C which in-
Aun volves diffusive steps and nonlocalized deexcitations. Maxi-
mal efficiencies are of the order of 0.02, and thus much
smaller than those for systems A and B; see Fig. 7. As in
system A the largest efficiencies occur top>T, and thus
far from equilibrium. The reason for the reduced efficiency
becomes clear when studying the relative dissipation rates
shown in Fig. Tb): Most energy is in this case dissipated by
the passive and active transitions; potential sliding is less
important. In particular, the nonlocalized and passive deex-
citations dominate dissipation far from equilibrium. Very
striking is the behavior of the efficiency as a functionof

: ¢ B dt tem A. Theref fluct shown in Fig. Tc): The efficiency displays a maximum for
In system b as Eompare 0 Sy?,f?m - [herelore, TUClUazq iqin values of¢, but vanishes both for large and small
tions leading to “backward steps” in the opposite direction

. : o his property reflects the fact that a matching of time scales
of average motion which completely dissipate a consume property g

X . : . crucial for this system: The lifetime in the excited state
ATP molecule are Iegs likely. Eaph athe Chem"?al tr"’Ir_]S't'()rbhould be comparable to the diffusion time over a potential
is thus transduced into work with high probability. Figure period:
6(c) shows qualitatively the same behavior of the efficiency '
as a function ofy for system B as compared to system A.
Also as discussed for system A, the dominant dissipation
process corresponds to sliding in the potentials; see Fity. 6
Note that the efficiency is larger than in system A, whichTherefore, the optimal value of should behave agy
correlates with the increased barrier height reducing the-T/U, which explains the temperature-dependence of the
probability of backward steps. maximum in Fig. Tc).

FIG. 6. Energy transduction of system B wilil =0.1. (a) Ef-
ficiency » as a function of the external forde,, for Au/U=0.4,
x=¢&l20/U=400, and different reduced temperaturédJ. (b)
Maximal efficiency nmay @s a function ofA u/U for y=400 and
different temperature$c) Maximal efficiency as a function of for
Aup/U=0.4 and different temperature¢d) Relative dissipation
rates as a function ofAw: the fraction of energy dissipated by
potential slidingzn,+ 75, and the fraction dissipated via active tran-
sitions 7, + 7,

1°~T/éw. (42)
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work using a simple two-state model under isothermal con-
ditions. We considered three different examples: system A,
with two shifted potentials and both active and thermal tran-
sitions between the two states localized at the potential
minima; system B, with an additional symmetry between the
two states and no passive thermal transitions; and finally
system C, with a flat weakly bound state and nonlocalized
passive transitions. We demonstrated that energy transduc-
tion can be very efficient in systems A and B with localized
transitions and shifted potentials, and is at least two orders of
magnitude smaller in system C which requires diffusive
steps for motion to occur. Interestingly, the largest efficiency
can occur far from equilibrium. This is in particular the case
FIG. 8. Schematic diagram of events after consumption of ondOr Systems A and C, both of which are not very efficient in
fuel molecule. Forward steps occur with probabilipy =p,p,,  the linear response regime.
backward steps with probability_=(1—p,)(1—p,), and neutral
steps withpg=p2(1—p1) +p1(1—p2) - A. Isothermal motors, heat engines, and Brownian ratchets

Efficiencies of energy transduction have been studied and
o o discussed for a long time. Of particular significance is the
The efficiency far from equilibrium foA u/T>1, but for  concept of Carnot, which defines the efficiency of macro-

small forces can be understood by a simple approximatiogcopic heat engines coupled to two thermal baths at tempera-
which we discuss for system A. In the limit of largeu and  tyresT* andTt>T as

U/T, we ignore spontaneous hopping events over the

D. Approximation for small forces

maxima of potentialV;. Every ATP consumption event cor- fexv
responds to a transition to the second state from which the 7Ncamot= — o (46)
particle will eventually decay to the first state. During this

process, it undergoes a forward step with probabpityand

- + . .
a backward step with probability_ or it will return to the whereQ™ is the rate of heat transfer from thet reservoir.

initial position with probabilityp,. Here, we have ignored This definition then leads to an upper limit of the efficiency

+_T- + ;
multiple steps; see Fig. 8. In the presence of an external forcECamots(T T7)/T™, which cannot be surpassed by any
fo., the efficiency can thus be estimated as heat engine. In order to characterize energy transduction in
extr

biological systems, a natural choice[3]

f ext

n=- H<X>! (43 n=— fexv ,
rAu

(47)

where
which we have adopted in this pageee Eq(6)], and which
(xy=I(py—p_)=vir (44 is based on the chemical potential difference between fuel
, , and reaction products. As we have discussed, this efficiency
is the average displacement per consumed ATP. The probypeys,<1 in order to satisfy the first law of thermodynam-
abilities p.. can be written as ics, but there is no nontrivial upper bound. In addition to the
_ oy _ obvious fact thatycame: describes a heat engine amdan
P+=P2(0)Ps(9),  p-=(1=Px(0))A=Pps(d)). (49 isothermal motor, there remains a fundamental difference be-
Here we have introduced the probabilitigs(x) for motion ~ tween the two cases: the definition p.noassumes that all
in the forward direction after a particle appears in statat heat _dlSSlpated in the baf_Fr is lost. This is true in most
position x. Similarly, 1—p,(x) is the probability for back- practical cases; however, if the batr_]TaT was also us_ed as
ward motion; see Fig. 8. Since the two potentials are shiftedhe hot bath of a second heat engine, some of this energy
with respect to each otheu,(x) = p;(x— 8). The probability could in principle be reused. Similarly, the definition gf _
p. requires two subsequent forward movements of this typet,akes into apcount the energy of the Iower—e_nergy reservaoir,
andp_ results from two backward movements. As describedhUs assuming that the energy of the reaction products re-
in appendix B, the probabilities,(x) can be calculated ap- Mains available. One might think th_a'g itis possible to avoid
proximatively for largeU/T. Figure 4a) shows the effi- this difference between the two definitions by choosing
ciency estimated by Eq$44) and (45) together with the
numerically obtained values for comparison. For small n=— '
forces the agreement is good, thus confirming our simplified Fea
picture of energy transduction in this regime.

f extV

(48)

whereu , would be the chemical potential of the fU&TP).
V. CONCLUDING REMARKS This definition shares with C_:arnot’s definition the viewpoint
that the energy of the reaction products are not useful, and,
In the previous sections, we have studied the efficiency ofince ' = pAu/u,, should lead to the upper boungl
energy transduction from chemical energy to mechanica& (ua— up)/a. Such a choice, however, suffers from a
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serious shortcoming: only chemical potential differences are 0.6 0.6
physically meaningful. Depending on the state of reference Y] e 05
used for definingu,, the value ofu, could be positive, 04 o4
negative, or even vanish. ' '
The example given above demonstrates that comparing 031 Mmax 03
efficiencies can be dangerous, as they may be based on dif- 02" 0.2
ferent definitions corresponding to different points of view. 01 0
This is also the case for ratchet models which have been
studied in many variants and under widely varying physical T T 1 102 0
conditions. All definitions described above have been used in X
:2;g;?;?&:;eai;zsegsggzgzgiﬂ‘g’E’r tﬁ)ésée(a?;it%rrl]vfgr:y FIG. 9. Maximal efficienciegbroken ling and normalized ve-

. , . locities (solid line) as a function ofy for system B andAu/U
given by Eq.(6) [23,8,19 as well asn’ [13]. Alternative — 0.6 andT/U=0.05.

definitions have been proposed for situations where the
chemical reaction is not fully specifigd 1,18. Other defi-
nitions of energy transduction efficiencies have been used fgive motors operate not as isolated enzymes but move to-
systems which are driven by stochastic or deterministigether in large groups. In this situation, however, diffusive
forces[12,19-2]. Recently, Sekimoto presented a unified steps become unimportant, and the efficiency becomes large
picture which includes most systems in a common frameand reaches the same orders of magnitude as for models A
work [12]. However, in general, a given definition is adaptedand B described helg9,40,11.
to one particular physical situation. When comparing our simple models with biological mo-
tors, the value of the adimensional parameter wél?/U
introduced in Eq(41) is crucial. The relevant orders of mag-
nitude for most parameters are well known: Energy scales
One important motivation of this work is to clarify the are U=10T [23], typical time scales of conformational
general properties of energy transduction of biological mochanges ares =1 ms, and the relevant length scalel is
tors. The characteristic behaviors of our systems A and B=5-10 nm[37]. However, the friction coefficienf is un-
with localized transitions and shifted potentials are similar toknown and difficult to estimate. Therefore, we do not know
those observed for processive biological motors such as, e.gt which value ofy biological motors operate. The role of
kinesins which move along microtubules and for which thegn the functioning of the system can be discussed by com-
consumption of ATP and the subsequent stepping araring both the maximal efficiency and the dimensionless
strongly correlated for small external forcg29,31,33. Ki-  velocity v/wl as a function ofy; see Fig. 9. The diagram
nesin motors consist of two identical active head groupseveals that for large values gf for which the efficiency is
which both hydrolize ATH33]. There is evidence suggest- |arge, the velocities become small. For smalfelocities are
ing that the motor could “walk” in a head-over-head fashion optimal but efficiency becomes negligible. This observation
along microtubules, detaching a head in the back and reakyggests that optimal conditions are obtained in the interme-
taChing in front of the molecule while keeping the Seconddiate regimexzoll_l where chemical times and S||d|ng

head bound34,35. In such a picture each ATP-hydrolysis times along the potential slopes become comparable.
cycle leads to a new situation where both heads have ex- |f linear molecular motors operate in this regime, the mi-

changed their roles and the center of mass of the moIecuI@roscopiC friction coefficient ¢ is of the order of
has advanced one filament period. This type of motion isjg-7_1g6 kg/s. If we estimatef from simple hydrody-
capturgd in a smplg way in the variant B of our model, hamic argumentséy,~6 7y ), wheres,;s is some measure
which is symmetric with respect to the two states. Because qff 5 “|ocal” viscosity, we find 7,s~10-100 P, 18-10*

this symmetry, both states are indistinguishable, but the cojmes the viscosity of water, values compatible with dense
responding potentials are shifted Hy2: Wo(x)=Wi(X  macromolecular solutions. Interestingly, this order of magni-
—1/2). We therefore identify each of the two states with oneyge corresponds to a diffusion coefficient of 4
kinesin head ant/2 with the filament period; see Fig(l8.  x10-14m?s, a value reported recently for single headed
Recently, system C with a structureless excited state hagnesin [36]. This observation, together with our estimate,
been used for single kinesin heads which were observed i§,ggests that linear molecular motors are optimized both
move processively along a microtubyf@s]. Models of this  from the velocity and the efficiency standpoint.

type have typically been considered in the context of non-  Note added in proofRecent experiments on tifé motor
processive motors such as myosins which have a weaklyt ATP synthase have revealed that this enzyme can be con-
bound state during their interaction cycle. Myosins interactidered as a three-state rotatory mdt,42). In particular
with a filament to generate displacements of the order of, efficiency close to 1 has been reporfdd]. A simple

several nm, but they do not continuously move along a filapytensjon of our system B to three states provides a natural
ment as individual motors since they easily lose their trackoxplanation for this high efficiency.

and diffuse away37,3§. The latter phenomenon is not cap-

tured in the one-dimensional two-state model; however, the
flat potential of system C requires diffusive steps for average
motion, and the efficiency is therefore smaller than for sys- We acknowledge stimulating discussions with S. Camalet,
tems A and B. Under physiological conditions, nonprocesR. Everaers, P.G. de Gennes, K. Sekimoto, and T. Shibata.

B. Two-state model and biological motors
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APPENDIX A: ONSAGER COEFFICIENTS with a=a,e”"2'T and w(x)=(a,+ B,)e W2/T. Using Eq.

In linear response theory, the behavior of the system iéls)’ we find, to linear order,

completely defined by the Onsager coefficiexts The On- T
sager symmetry relatiofil0) follows from general thermo- - E&X( e M109Tg,p1 ) + @ (X) (p1—P2) =hy(X),
dynamic arguments and the microscopic reversibility. The

calculation of Onsager coefficients is difficult; however, the

symmetry relation can be verified by general arguments as — —8x(e_W2(X)’Tﬂxpz) —w(X)(P1—P2)=hy(X).
shown in Sec. A l. In Sec. A2 we obtain explicit expressions 3

for the coefficients\;; for a many-motor system, as intro- '
duced in Refs[8,11]. The fieldsh

(A5)

~(X) are nonzero in the presence of mechanical
or chemical forces:

1. Symmetry relation for a single motor hi(X)=—a(X)Au/T— é’xefwl(x)”fext/é,
In order to demonstrate the symmetry relation of Onsager _ W, (x)IT (A6)
coefficients for the two-state model, we start from the prob- ho(X) = a()Au/T=dxe T2 e /€.

ability distributions at equilibrium fle,;=0, Au=0) as Equation(A5) represents a linear relation betwegpandh,,
et N g~ Wo O/, (A1) which can be inverted, and which thus defines a response
7 kernel
with a normalization factor |
| P ()=2 f X' X (XX VP, (X). (A7)
N~1=) f dx e Wo!T, (A2) poo0
7 0 This allows us to express the velocity and the fuel consump-
For small fe,/T<1 and Au/T<1, we define deviations tion rate within linear response theory:
p,(x) from equilibrium which obey |
P, (x)=Ne"We/T(1+p,(x)). (A3) v f X fex=Top)

Without loss of generality, we consider the case where +& e W T(f o Taypo)], (A8)
only the transitionsx,, and 3, occur buty,=0. To linear

order inA u, the transition rates can be written as !
a r= fodxa<x>[<p1—p2>+AmT]. (A9)
a()Ap| oy
01(})=| o)+ —7 )e s The Onsager coefficients;; can be written in terms of the
(A4) response functiong,,(x,x"). In particular, for the coeffi-
wy(X)=w(x)eV2'T, cients of mechanochemical coupling we find
v I I
)\125_:J dXJ dx'[& e M1 T (G, x14(X,X") = dex 12X, X))
dAAw  Jo " Jo
+ & e W2l (g,x051(X,X") = dex 2o X, X)) ] (X)), (A10)
ar I ,
A= v J dXJ dx’ (X[ (x11(X.X") = x21(%, X' ))&~ toye WalT
ext 0 0
+ (1206 X) = X2 XX )E Lo 2T (A11)
|
Performing a partial integration in EA10), we find that [ h,
the Onsager symmetry relati¢hO) is satisfied exactly if the E( pz) = ( hz)’ (AL13)
response functions obey the symmetry relation
where
Xop(X,X") = X po( X', X). (A12)
Litw —w
. . - = , (Al4)
This symmetry relation follows from the hermiticity of -0 Lytow

the linear operatof defined in Eq.(A5) which can be ex-
pressed as with
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Li=—§&Toe Wiy | (A15) which depend oM\ . We can now calculate the Onsager
coefficients. The effective friction
The operatorZ is Hermitian, since matrixA14) is symmet-

ric and £; itself is Hermitian. The latter is easily verified by v
partial integration: A= f oxt (A25)
Au=0
|
f dx g(x) (dge~ V21T p(x)) can be determined from E¢A23):
0
| N | e AWT(g,AW)? 26
_ Wy (X)/T = = e —
—fodx p(x) (9, W1'Tg q(x)). (A16) 1 IT)o™ wy(1+e AWT)3
Similarly,
2. Onsager coefficients for many rigidly coupled motors
Onsager coefficients can be calculated explicitly for a = N 115fext (A27)
model of rigidly coupled motors. In this model, the two AApl|, _ IAp|,_,

states are defined in the same way as before, but the current

term in Eqg.(13) is replaced by a convective term since all |eads to

particles move with the same velocity. The transport equa-

tions are given by11,8| of(®

)\ll | azeiAW/T(QXAW
No=— Mlm =

== X————.
Ap=0 IT Jo w2(1+e—AW/T)2

The second cross-coefficient
and the velocityv is determined by the force balance condi-

tP1+VIP1=—01(X)P1+ w(X) Py,

3tP2+ V3 Pr=w1(X)P1— wy(X) Py,

tion ar ar
Nor=—r— =y : (A29)
| ext Au=0 Ap=0
-1
V= f —deP&W+PJW . Al8
€7 fex 0 (P10xWitP2oWo) | (AL8) is determined from the fuel consumption rate,Au). Us-

ing Egs.(23), (A29), and(A21), we obtain
Steady state distributior8; and P,=1/l— P, are solutions

to ar I
Tl =] axtartanap
Vaxplz(a)1+a)2)P1+w2/|. (Alg) Ap=0 0 Ap=0
Using a power expansion in the velocify; can be written L1 aa(AW)e VT A30
to lowest order, T 1T o wy(1+e AWT)2 (A30)
P1(x)= P(10)(X)+ P(ll)(x)v+O(v2), (A20) and thus, as required,;,=\5¢. Finally,
with P{9=w,/(w;+ w,)!, and or o o
Npo=—7— =N t oA
1 JAp |, _ ov|, _ dAm| _
Pg_l): _ axPS_O) (A21) fext 0 AM 0 v=0
(1)l+ (OF) 2
Mo or A3l
As in Sec. V, we use a reaction scheme wjth=0 in order Ny dAp . (A31)
v=

to keep the expressions simple. Also, without loss of gener-
ality, we consider the case wheng depends o\ buta,  which requires calculating
remains constant. For smallu/T<1, we express the tran-

sition rates of Eq(22) as ar fl aP{® © ¢
o FYen = | |z (artax) + Py’ ——(art+ay)|.
01= 0, WT(1+ a), (A22) Apl, o JoldAu IAu s
Where_aEaZA,u/sz. The force-velocity relation for small Using Eqs.(22) and (23), we obtain
v is given by
fo=fO+ (£ 41D 10D,  (A29) I I Y L LAW”( . 2)
. .. aAILL v=0 IT 0 (1+e*AW/T) Wy
with coefficients (A33)
fm— _ fldx P&”)&AW, (A24) N_or:e thgt both\ 1; and X ,, are positive, whilex 1, can have
0 either sign.
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Since we are interested 8=0, we have to solve

P(x,t=0)=8(x-xo) A TP+ (AW—foP]=—E8(Xx—Xo). (B8

All quantities of interest can be easily calculated if we as-
sume a piecewise linear potential

1-p
Ja

' with the potential slope$ =U/a andf =U/(l—a). We
FIG. 10. Schematic representation of diffusion near a potentiatlistinguish three different regions A, B, and C along the
maximum which can be divided in three different regions A, B, andaxis; see Fig. 10. Within each region, the solution to (B&)
C. For a particle which initially appears &t xy, we are interested is
in the probabilityp that it will finally move forward. This probabil-
ity is related to the curreni: which can be calculated in the limit
of long times.

U+f_x, x<0

® | X @\C\ W(x) = (B9)

0 U-f,.x, x=0,

P(x)=Cq+ Cye~ WO~ xTex/T, (B10)

with two constantsC, and C; which have to be determined
for each of the three regions. We denote the corresponding

solutionsP,, Pg, andP.. Since we are looking for solu-
In Sec. IV D, we introduced the probabilitips(x) thata  tions which do not diverge for— *+, we haveszc(f
particle which initially starts at positior close to a potential =0 in regions A and C, and therefoﬁéAZCé and P
maximum will finally escape in the positive direction. We =CS- This boundary condition for large can also be de-

will calculate this probability for a piecewise linear potential rived more carefully by first imposing the condition
as shown in Fig. 10 in the limit where the potential slopes y by P 9

extend to infinity, which corresponds to large potential am- L
plitudesU/T>1. We consider the Fokker-Planck equation lim P(x,s)=0 (B11)

X— oo

APPENDIX B: DIFFUSION CLOSE TO A POTENTIAL
MAXIMUM

9P +9xI=0, (B1) for s>0, and taking the limis—0 afterwards. Additional

boundary conditions are the conditions of continuity of

with -
P(x,0) atx=0 andx=Xg,
J=—& To,P+PaW—Pfe, (B2) ~ ~
PA(0)=Pg(0),
for the initial condition Al0)=Ps(0) (B12
P(x,t=0)=8(x—Xo). (B3) Pg(X0) = Pc(Xo),

In order to determine what fraction of particles move to the@nd the matching conditions
right after a long time, we define the Laplace transform 5 B B
3xPa(0)=3,Pg(0) = PA(0)(f +f_)/T,

. . i (B13)
P(x,5)= | dtP(xt)e st B4 ~ =
(x.5) fo tP(xe (BY 0,Ba(X0) = 9Pc(X0) + E/T,

of the distribution, and J(x,s)=—¢& [To,P+Pa,Ww  which follow from integrating Eq(B8) at the singularities of

—Pfeq of the current. The average number of particlesin® potential slope at=0 and thes-function atx=X,. With
which pass at positior after long times is given by these conditions, all free parameters can be determined and

we obtain

fo dt J(x,t)=J(x,s=0). (B5) CA_ o (11 ool T, (B14)

Noting that

% J Cg:f —ff 1— ];*:_];extef(uﬂexr)xoﬁ . (B15)
f dte > P(x,)=—P(x,0)+sP(xs),  (B) + et -+l
O ~
The corresponding currenf§x,s=0) are constant in re-

we obtain an equation fde: gions A and C:

E L[ TP+ (0 W—fedP]—SP=—P(x,0). (B7) Ja=—& M~ 160 CE, (B16)
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§ o1 c f —f
Jc=¢ (f++fexr)c ) (B17) p(XO):l_f +feXte—(f++fex,)x0/T_ (B18)
which satisfy the normalization conditioh-—J,=1. The T

probability p(x,) for forward motion of a particle which The probabilities introduced in E¢45) are given byp,(0)

initially was atxg is equal toJ¢: =p(l—=6) andp(8)=p(s—a).
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