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Energy transduction of isothermal ratchets: Generic aspects and specific examples
close to and far from equilibrium
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We study the energetics of isothermal ratchets which are driven by a chemical reaction between two states,
and operate in contact with a single heat bath of constant temperature. We discuss generic aspects of energy
transduction such as Onsager relations in the linear response regime as well as the efficiency and dissipation
close to and far from equilibrium. In the linear response regime where the system operates reversibly, the
efficiency is in general nonzero. Studying the properties for specific examples of energy landscapes and
transitions, we observe in the linear response regime that the efficiency can have a maximum as a function of
temperature. Far from equilibrium in the fully irreversible regime, we find a maximum of the efficiency with
values larger than in the linear regime for an optimal choice of the chemical driving force. We show that the
corresponding efficiencies can be of the order of 50%. A simple analytic argument allows us to estimate the
efficiency in this irreversible regime for small external forces.@S1063-651X~99!01708-0#

PACS number~s!: 87.10.1e, 05.40.2a
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I. INTRODUCTION

Biological systems provide an important motivation
study the physics of active processes which on a molec
scale are able to transduce chemical energy into mecha
work and motion. Important examples are linear or rota
motor enzymes and enzymes which move actively alo
DNA @1#. The properties of such systems differ in seve
respects from macroscopic machines and heat engines~i!
active phenomena occur on a molecular scale in a very
cous environment with overdamped dynamics, and motio
thus stochastic and obeys only on average the first and
ond laws of thermodynamics;~ii ! these systems are isothe
mal and operate strictly at constant temperature as they a
intimate contact with a thermal bath. In recent years, a nu
ber of theoretical approaches to describe this class of sys
has been developed@2–8#.

In order to discuss the energy transduction of such s
tems, the concepts which have been developed for ma
scopic motors have to be applied with some care. Rece
there has been a growing interest in the energetics of Bro
ian motors@9–21#. It is the aim of this paper to discus
generic aspects of energy transduction of Brownian mo
driven by a chemical reaction, and to provide several spec
examples which reveal interesting properties.

The two-state models which we use@8# represent a usefu
paradigm for the description of energy transduction of i
thermal motors in the overdamped regime. They are m
vated by cytoskeletal motor proteins which move along po
and periodic filaments. Coupling a two-state model to
chemical reaction, which induces transitions between the
states of the motor, leads to motion and force generatio
the chemical potential differenceDm between the fuel and
its reaction products is nonzero and if the system has a p
symmetry. Assuming that the chemical reservoirs couple
a single motor are macroscopic in size, this chemical po
PRE 601063-651X/99/60~2!/2127~14!/$15.00
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tial difference can be defined even under out of equilibriu
conditions, since in this limit the reaction driving the micr
scopic motor affects the reservoir only weakly. UsingDm as
the relevant control parameter, the consumed chemical
energy by the active process is well defined. This leads
simple definition of efficiencyh as the ratio of the mechani
cal work performed and the consumed chemical free ene
We find three important results.

~i! The efficiency calculated for these models can
maximized far from equilibrium.

~ii ! Close to thermal equilibrium there exists a linear r
sponse regime which is important because of its unive
features. We demonstrate that the dependence of the
ciency in this regime on temperature is strongly model
pendent and can be nonmonotonous, in which case the
fluctuations are essential for an efficient energy transduct

~iii ! The efficiencies vanish at stalling conditions~zero
average velocity!, except in a singular limit where they reac
the ideal valueh51.

The outline of our paper is as follows. In Sec. II, w
discuss generic aspects which are completely independe
the model chosen. We define the efficiency and identify
generalized currents and forces, which allow us to write
linear response theory. We discuss the generic feature
efficiency in this regime, in particular the maximal efficienc
under reversible conditions and the efficiency at stalling c
ditions. In Sec. III we define the transport equations,
motor is described as a two-state model which is coupled
a chemical reaction, and we identify the energy fluxes in
system. Section IV discusses the energy transduction pro
ties for specifically chosen examples. We show that e
ciency is typically optimized in the irreversible regime, an
give examples for the temperature dependence ofh when the
system operates in the linear response regime. In our c
cluding remarks, we relate our results to biological moto
and discuss alternative definitions of efficiency which ha
been used in the literature.
2127 © 1999 The American Physical Society
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II. ISOTHERMAL RATCHETS: GENERIC ASPECTS

A. Force, velocity, and efficiency

Motivated by linear biological motor proteins whic
move along a linear filament, we will consider chemica
driven systems which can induce motion along a o
dimensional track. The energy source is the difference of
chemical potentialsDm of fuel and products. Being moti
vated by biological motors, we use the hydrolys
ATP
ADP1P as example@1#. We define

Dm5mA2mP ~1!

wheremA andmP are the chemical potentials of adenosin
triphosphate~ATP! and the hydrolysis products adenosin
diphosphate and phosphate~ADP1P!, respectively. In order
to perform useful mechanical work, the system has to m
against an external forcef ext applied parallel to the track. In
addition to the two generalized forcesDm and f ext acting on
the system, we can define two generalized velocities:~i! the
average velocity of motionv of the motor along the track
and ~ii ! the chemical reaction rater defining the average
number of ATP molecules consumed per unit time. The m
tor can thus be characterized by the equations of state

v5v~ f ext,Dm!, ~2!

r 5r ~ f ext,Dm!, ~3!

which describe the velocities of the system as a function
the generalized forces@22#. The mechanical work performe
per unit time against the external force is given by

Ẇ5 f extv. ~4!

The amount of chemical energy consumed per unit time

Q̇5rDm. ~5!

For a system which performs mechanical work, i.e.,f extv
,0, we can define the~mechanical! energy transduction ef
ficiency as@23#

h52
f extv
rDm

. ~6!

Because of energy conservation, the amount of energy d
pated per unit time reads

P[ f extv1rDm. ~7!

From the second law of thermodynamics, it follows thatP
must always be positive.

B. Linear response theory

Close to thermal equilibrium, i.e., for small forcesf ext
!T/ l and Dm!T, where l is a typical length scale of the
motor andT is the temperature measured in units ofkB , we
can expand Eq.~3! to linear order:

v5l11f ext1l12Dm,
~8!

r 5l21f ext1l22Dm.
-
e

-
-

e

-

f

si-

The matrixl i j of linear response coefficients has the follow
ing physical meaning:l11 is a mobility giving the response
of the velocity to the applied force.l22 plays a similar role
for fuel consumption. It describes the ‘‘chemical adm
tance’’ or the response of the chemical reaction rater to the
chemical forceDm. The coefficientsl12 andl21 are mecha-
nochemical coupling coefficients which are responsible
energy transduction.

Looking at the symmetry of the problem, we find thatv
and f ext transform like vectors forx˜2x, while r andDm
are scalars which do not change under inversions. As a c
sequence, the coefficientsl11 and l22 transform as scalars
while l12 and l21 are vector coefficients. The latter can b
nonzero only if the system has a polar symmetry. Thus
polarity of the system~polar filaments! is essential for mo-
tion to exist.

Calculating the dissipation rateP in the linear regime, we
find that P is positive exactly if the diagonal elements a
positive,l i i .0, and if the determinant is positive:

l11l222l12l21.0. ~9!

We expect a symmetry relation between the Onsager co
cients if microscopic reversibility is obeyed:

l125l21. ~10!

This is a general result of nonequilibrium thermodynamic

C. Modes of operation

Different modes of operation of the motor can be dist
guished by looking at the input and output of energy of t
system. The dissipation rateP corresponds to the total flux
of energy to the thermal bath at temperatureT. Passive re-
gimes of the motor are those cases where bothrDm and f extv
are positive: Work performed on the system is dissipated
lost.

More interesting are the active regimes where the mo
transforms chemical energy into mechanical work, or v
versa, while dissipating only a part of the energy input. Fo
such active regimes exist@see Fig. 1~a!#. ~A! rDm.0,
f extv,0, The motor uses the chemical energy of the ATP
excess as input, and performs mechanical work moving w
v.0 against a negative forcef ext,0. ~B! rDm,0, f extv
.0, The motor produces ATP, although already in exce
from mechanical input due to a negative forcef ext,0 induc-
ing a negative velocityv,0. ~C! rDm.0, f extv,0, The
motor uses ADP in excess to perform mechanical work.~D!
rDm,0, f extv.0, The motor produces ADP already in e
cess from mechanical work.

The different regimes are separated by the linesf ext50,
Dm50, v50, andr 50. For regimes A and C, where th
motor performs mechanical work, the mechanical efficien
is the one defined in Eq.~6!: h52 f extv/rDm. Similarly, in
regimes B and D, where the system performs chemical w
the chemical efficiencyhc[2rDm/ f extv is more useful.

Within the linear response regime, the efficiency can
calculated using the Onsager coefficients

h52
l11a

21l12a

l21a1l22
, ~11!
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PRE 60 2129ENERGY TRANSDUCTION OF ISOTHERMAL . . .
wherea5 f ext/Dm. If we choose a constantDm.0, the ef-
ficiency vanishes forf ext50 ~no work is performed!. h be-
comes positive forf ext,0 ~note the minus sign which indi
cates that the force is applied in the direction oppos
movement!, reaches a maximum for a certain value of t
force and becomes zero again at the stall force for whicv
50. According to Eq.~11!, the efficiency is constant alon
straight lines f ext5aDm which correspond to constanta.
Thus, at the origin of the (f ext,Dm) plane which correspond
to thermal equilibrium and reversible, quasistatic operati
the efficiencyh has a singularity and is multivalued.

Maximal efficiency occurs for the valuea for which
]h/]a50. It is given by@24,8#

hmax5~12A12L!2/L. ~12!

Here L[l12
2 /(l11l22). It varies betweenhmax50 for l12

50 andhmax51 if l12
2 5l11l22. Larger valuesL.1 violate

thermodynamics according to Eq.~9! and the Onsager rela
tion @see Eq.~10!#.

These arguments demonstrate that the efficiency vani
under stalling conditionsv50. This is an important differ-
ence from Carnot engine for which the efficiency is op
mized under quasistatic conditions without net motion. It
sults from the fact that the energy transduction driven b
chemical reaction considered here will in general still hav
nonzero consumption rater even when motion stops, or, i
other words,v50 andr 50 do not occur for the same con
ditions.

There is, however, one limiting case where this is
longer true: If L˜1, the two linesr 50 and v50 in the
( f ext,Dm) plane tend toward each other. In this limit th
chemical reaction and motion are strictly coupled~i.e., one
cannot occur without the other!, and the efficiency reache
the maximumh51. This situation is an idealized case whic
applies to good approximation to polymerization forces a
motion generated by polymerization processes as in the
of RNA polymerase@25,15#.

FIG. 1. Operation diagram for an isothermal motor in the line
response regime as a function of external forcef ext and chemical
potential differenceDm. General case with four different regime
A–D, separated by linesv50 andr 50 where the velocity and the
fuel consumption vanish, respectively. The maximal mechanica
ficiency occurs along a linehmax.
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III. TWO STATE MODELS

A. Transport equations

We study energy transduction and efficiencies of isoth
mal motors using simple two-state models. The motor
characterized by its positionx along a one-dimensional co
ordinate describing the polar and periodic track. We assu
that the motor can exist in two different conformations
statess51 and 2. The interaction between motor and tra
depends ons and is described by potentialsWs(x) with
polar symmetry which are periodic with periodl.

The role of the chemical reaction is to trigger transitio
between the two states. We introduce the position depen
rate constantsv1(x) andv2(x) which characterize the prob
ability per unit time for the transitions 1̃ 2 and 2̃ 1 at
position x, respectively. The probability densitiesP1(x,t)
andP2(x,t) for the system to be at timet at positionx in one
of the two states obey the Fokker-Planck equations@6#

] tP11]xJ152v1~x!P11v2~x!P2 ,
~13!

] tP21]xJ25v1~x!P12v2~x!P2 .

The particle currents are given by

Js[j21@2T]xPs2Ps]xWs1Ps f ext#, ~14!

wherej21 is an effective mobility, the temperatureT is mea-
sured in units ofkB , and f ext is the external force introduce
above.

For given ratesvs the system relaxes to a steady sta
with ] tPs50. The normalized distributions which satisf
periodic boundary conditions@*0

l dx(P11P2)51, Ps(0)
5Ps( l ) and]xPs(0)5]xPs( l )] in the steady state allow u
to calculate the average velocity

v5E
0

l

dx~J11J2!. ~15!

B. Coupling to a chemical reaction

We now consider the situation where the transitions
tween states 1 and 2 occur as a result of a chemical reac
scheme which we model separately. In order to be gen
and to capture different situations, we consider the follow
scheme:

ATP1M1

a1



a2

M21ADP1P, ~16!

ADP1P1M1

g1



g2

M21ATP, ~17!

M1

b1



b2

M2 , ~18!

r
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where a i , g i , and b i denote the ‘‘forward’’ and ‘‘back-
ward’’ rates, respectively. The reaction pathwaya involves
ATP hydrolysis with chemical free energy gainDm when
changing from state 1 to state 2, while pathwayg involves
hydrolysis in the opposite direction. The transitionsb do not
involve a chemical potential difference. Chemical kinet
requires

a1

a2
5e(W12W21Dm)/T, ~19!

g1

g2
5e(W12W22Dm)/T, ~20!

b1

b2
5e(W12W2)/T. ~21!

The transition rates can therefore be written as

v15a2e(W12W21Dm)/T1g2e(W12W22Dm)/T1b2e(W12W2)/T,
~22!

v25a21g21b2 ,

where unknown (l -periodic! functions a2(x), g2(x), and
b2(x) define the conformation dependence of transitio
rates@26#. With these expressions, the net steady state A
consumption rate is given by

r 5E
0

l

dx@„a1~x!2g1~x!…P1~x!2„a2~x!2g2~x!…P2~x!#.

~23!

C. Detailed balance

If Dm50, the chemical reactions are in equilibrium, a
the transition rates are just thermal fluctuations and obey
relation of detailed balancev1 /v25exp„(W12W2)/T….
Breaking of detailed balance forDmÞ0 is a requirement for
spontaneous motion and force generation to be possible
order to quantify the departure from thermal equilibrium a
the extent to which detailed balance is broken, we define
quantity

V~x!5v1~x!2v2~x!expS 2
DW~x!

T D , ~24!

with DW(x)5W2(x)2W1(x). Detailed balance is obeye
only if V(x)50 for all x. Using the transition rates as give
by Eq. ~22!, we find

V~x!5e2DW/T@a2~x!~eDm/T21!1g2~x!~e2Dm/T21!#.
~25!

If DmÞ0, we distinguish two interesting limits: for sma
Dm/T!1,

V~x!.„a2~x!2g2~x!…e2DW/T
Dm

T
, ~26!

indicating thatV is proportional toDm. If Dm/T is large
compared to 1, V depends only on the ratiok
5@ATP#/@ADP#@P#:
s
P

e

In

e

V~x!.„a2~x!eDm0/Tk1g2~x!e2Dm0/Tk21
…, ~27!

whereDm05mATP
0 2mADP

0 2mP
0 . Here we used the relation

m i5m i
01T ln@i#, where@i# is the concentration of speciesi,

andm i
0 the so called standard chemical potential.

D. Energy conservation and dissipation

The first law of thermodynamics requires that the ene
flow through the system is conserved as described by Eq.~7!.
This energy conservation can be derived from the trans
equations. This leads to expressions for the local densit
energy dissipation which gives interesting insights in h
energy transduction occurs.

We distinguish two types of dissipation rates:~i! the dis-
sipation ratesPs , with s51 and 2 corresponding to slidin
within the potential profiles; and~ii ! the dissipation rates
Pm , with m5a, b, andg corresponding to transitions be
tween the two states. In addition to the total dissipation ra
Ps andPm , we introduce local dissipation densitiesQs(x)
andQm(x) with P5*0

l dx Q(x).
For a particle sliding in the potentialWs(x) with a steady

state distributionPs(x) @27,28# ,

Qs52Js]xHs ~28!

and

Ps52E
0

l

dx Js~x!]xHs~x!, ~29!

where

Hs~x![Ws~x!2 f extx1T ln„Ps~x!… ~30!

is an enthalpy whose gradient induces the Fokker-Pla
currentJs :

Js52j21Ps]xHs . ~31!

Therefore,Ps is positive definite as expected for a dissip
tion rate. Similarly, the dissipation densities corresponding
chemical transitions are given by

Qa5~a1P12a2P2!~H12H21Dm!,

Qg5~g1P12g2P2!~H12H22Dm!, ~32!

Qb5~b1P12b2P2!~H12H2!

and

Pm5E
0

l

dx Qm~x! ~33!

for m5a, b, andg. Again, Pa , Pb , andPg are positive
definite as required. For a steady state with periodic bou
ary conditions, we can partially integrate Eq.~29! and find,
together with Eq.~13!,
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P11P25E
0

l

dx~H1]xJ11H2]xJ2!1 f extv

5E
0

l

dx~H12H2!~v1P12v2P2!1 f extv. ~34!

Using Eqs.~14!, ~22!, and ~23!, we find that the total dissi-
pation rate

P5P11P21Pa1Pb1Pg ~35!

satisfies Eq.~7!, and energy conservation is obeyed.
For smallDm and smallf ext, the two-state model has

linear response regime which obeys the general prope
required by thermodynamics. In particular, it can be dem
strated that the model satisfies the symmetry relation of
~10!, as we describe in Appendix A.

IV. EFFICIENCIES CLOSE TO
AND FAR FROM EQUILIBRIUM

A. Specific examples

We have introduced a general framework which allows
to study a large variety of systems which differ in their p
tential shapes and in the transition ratesa2 , g2, andb2. We
now discuss three particular examples which we have cho
as prototypes to illustrate the physics of energy transduct

System A is a system with two periodic potentials
equal amplitudeU which are piecewise linear, and which a
shifted with respect to each other by a displacementd as
shown schematically in Fig. 2~a!. Furthermore, they differ by
a constant valueU0 : W2(x)5W1(x2d)1U0. The poten-
tials are characterized by the asymmetry parametera, which
denotes the position of the potential maximum ofW1. We
choose a reaction scheme with chemically activated tra
tions a1,2 between the low-energy state 1 and the hig
energy state 2, passive transitionb1,2, and g1,250. The
chemical cycle corresponds to subsequent transitionsa and
b which we choose localized within intervals of sized:

a2~x!5H v, l 2d<x< l

0 otherwise,
~36!

localized near the minimum ofW1, and b2(x)5a2(x2d)
localized near the minimum ofW2; see Fig. 2~a!. Here we
have for simplicity introduced a single parameterv which
sets the typical time scale of transition rates. The transi
ratesvs of system A obey

v1~x!5a2~x!e(W12W21Dm)/T1a2~x2d!e(W12W2)/T,
~37!

v2~x!5a2~x!1a2~x2d!.

System A is chosen in such a way that diffusion within t
potentials is not necessary for motion generation, and e
chemical cycle generates with high probability a forwa
step along thex coordinate.

System B has different symmetry and different topolo
of the chemical reaction scheme as compared to system
see Fig. 2~b!. The two potentials are shifted by exactly half
potential periodd5 l /2: W25W1(x2 l /2) andU050. This
es
-

q.

s

en
n.

i-
-

n

ch

A;

allows us to introduce a new symmetry: the system is inv
ant under a shiftx˜x1 l /2 if at the same time the states a
exchanged: 1̃ 2. This situation is realized by choosing tra
sition ratesb1,250 andg1(x)5a2(x2 l /2), where we local-
ize all transitions near the potential minima. For system B
can therefore write

v1~x!5a2~x!e(W12W21Dm)/T1a2~x2 l /2!,

v2~x!5a2~x!1a2~x2 l /2!e(W22W11Dm)/T, ~38!

with a2(x) given by Eq.~36!. Note that system B involves
two active chemical steps per potential period. However,
cause of its additional symmetry it isl /2 periodic. Further-
more, all chemical transitions involve ATP hydrolysis, a
there are no passive transitions.

System C is shown in Fig. 2~c!. It is a variant of model A
with a weakly bound stateW2(x)5U0 of constant energy.
As for system A we choose a reaction scheme withg1,250

FIG. 2. Three choices of potentialsW1 andW2 with periodl and
transition regions indicated in grey. The positiona of the maximum
of W1 characterizes the potential asymmetry, andU denotes the
potential amplitudes.~a! System A with potentials shifted by a dis
tanced and offsetU0. Active transitionsa and thermal transitions
b are localized within regions of sized near the potential minima
~b! System B with symmetric states. The potentials are shifted b
distance ofl /2, and active transitionsa andg are chosen such tha
the system is symmetric with respect to an exchange of the
states.~c! System C with a flat potentialW2, localized active tran-
sitionsa and non-localized thermal transitionsb.
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and localized active transitions near the minima using ag
definition ~36!. Since the potentialW2 is structureless, we
assume passive transitions to be nonlocalized withb2(x)
5v. Therefore, in system C,

v1~x!5a2~x!e(W12W21Dm)/T1ve(W12W2),
~39!

v2~x!5a2~x!1v.

In this case motion generation involves a diffusive step
state 2 which we expect to reduce the efficiency of ene
transduction.

In order to discuss these models, we identify the relev
dimensionless parameters: the dimensionless positiox̄
5x/ l , reduced temperaturet5T/U, reduced potentialsws

5Ws /U2 f extl /U, and reduced transition ratesv̄s5vs /v.
Equations~13! and ~14! for a steady state can be written a

2] x̄~ t] x̄P11P1] x̄w1!5x~2v̄1P11v̄2P2!,
~40!

2] x̄~ t] x̄P21P2] x̄w2!5x~v̄1P12v̄2P2!.

The dimensionless parameter

x[
vj l 2

U
~41!

compares two time scales:~i! the typical chemical timev21,
and ~ii ! the typical sliding time in the potentialsj l 2/U. For
x@1 transitions are fast compared to sliding while forx
!1 sliding is fast. The model is fully characterized by t
dimensionless parametersx, T/U, Dm/U, a/ l , d/ l , d/ l , and
U0 /U. The results discussed in the following section a
obtained by numerically solving Eq.~40! with periodic
boundary conditions for the three different systems.

B. Efficiencies close to equilibrium

Numerical examples for the maximal efficiency in the li
ear response regime as a function of temperature are
played in Fig. 3 for systems A, B, and C and different valu
of x5vj l 2/U. They have been obtained by first calculati
Onsager coefficients from steady state solutions for sm
Dm and smallf ext and using Eq.~12!. The orders of magni-
tude of the efficiency differ for systems A, B, and C. Th
efficiency h depends onx and increases in general wit
increasingx. System B has the largest efficiency which a
proachesh.1 for smallT/U, and decreases monotonical
as a function of temperature. For systems A and C the e
ciency has a maximum as a function of temperature and v
ishes in the limit of smallT/U. This indicates in these case
the importance of thermal fluctuations for energy transd
tion. Note that the limit of small temperatures is subtle sin
in linear responseDm!T must be obeyed. Therefore, th
limit corresponds to first sendingDm to zero, andT after-
wards. Even for small temperatures the system thus rem
in a regime where thermally activated passage over en
barriers rests important. While system A can have signific
efficiencies of the order ofh.0.06 in the linear respons
regime, the efficiency of system C which relies on diffusi
steps is small (h.1024); see Fig. 3.
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C. Efficiencies far from equilibrium

We have shown that the two-state model transdu
chemical energy into mechanical work in the linear respo
regime, though with varying efficiencies. In linear respon
the chemical action represents a small bias of the domin
thermal fluctuations. We now compare these results with
properties of energy transduction far from equilibrium.

System A: Figure 4~a! displays the efficiencyh as a func-
tion of the applied force for the system A as defined in F
2 for Dm/T58 and different temperatures. The efficien
vanishes forf ext50, as well as for the stall force for which
the velocity vanishes. For an intermediate value of the for
the efficiency reaches a maximum. This valuehmax is dis-
played in Fig. 4~b! as a function ofDm. This diagram reveals
the main characteristics of energy transduction: for smallDm
we again find the nonvanishing efficiency of the linear
gime. The efficiency increases as a function ofDm, reaches a
maximal value, and decreases for largeDm to zero. For suf-
ficiently large values ofDm the efficiency increases for de
creasing temperatures, and in the example shown reach
value ofh.0.4 for T/U.0.1. The results obtained for dif
ferent temperatures intersect for smallDm, which corre-

FIG. 3. Maximal efficiencyhmax in the linear response regim
as function of reduced temperatureT/U for systems A, B, and C
with a/ l 50.1, as shown in Fig. 2.~a! System A withd/ l 50.65 and
U0 /U50.4, at differentx. ~b! Same diagram for system B at dif
ferentx. ~c! Same diagram for system C withU0 /U51.2 at differ-
ent x.
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sponds to the observation discussed above that the effici
in the linear regime displays a maximum as a function
temperature. Figure 4~c! shows the behavior ofhmax for
fixed Dm/U as a function ofx5j l 2v/U over a range of six
decades. The efficiency increases monotonically with
creasingx from zero to a plateau value. As an importa
result we find that the largest values of the efficiency for

FIG. 4. Energy transduction of system A witha/ l 50.1 and
U0 /U50.4. ~a! Efficiencyh as a function of the external forcef ext

for Dm/U50.8, x5j l 2v/U5200, and different reduced temper
turesT/U. Broken lines represent the approximation discussed
the text. ~b! Maximal efficiencyhmax as a function ofDm/U for
x5200 and different temperatures.~c! Maximal efficiency as a
function of x for Dm/U50.8 and different temperatures.~d! Rela-
tive dissipation rates as a function ofDm for the same system
shown are the fraction of energy dissipated by potential slid
h11h2 and the fraction dissipated via active transitionsha . For
details, see text.
cy
f

-
t
e

relevant energy scaleT/U.0.1 are of the order ofh.0.5,
and occur forDm;U comparable to the energy differenc
between the two states at the transition and thus far from
linear regime.

The dissipation rateP can, according to Eq.~35!, be di-
vided into separate contributions of potential slidingPs and
chemical transitionsPm , with m5a, b, andg. It is useful
to define relative dissipation rateshs5Ps /rDm and ha
5Pa /rDm which are analog to the efficiency, and descri
the fraction of dissipated energy relative to the consum
chemical work. Note thath1h11h21ha1hb1hg51 fol-
lows from energy conservation. Figure 4~d! shows the domi-
nant relative dissipation rates together with the efficiencyh.
The dominant dissipation isP11P2 resulting from potential
friction, dissipationPa of chemical transitions plays a mino
role. The dissipationhb corresponding to passive transition
is smaller than 0.01, and can be neglected. It is therefore
shown. The maximum ofh corresponds to a minimum o
h11h2.

The main energy loss results from thermally activat
backward steps. This idea can be directly tested by calcu
ing the local dissipation densityQ1(x)1Q2(x) as defined in
Eq. ~28!. This quantity is displayed in Fig. 5. The plot re
veals that maximal dissipation occurs ford2a,x,d, i.e.,
along the steep potential slope of the potentialW2. A second
maximum of local dissipation exists for 0,x,a along the
steep slope ofW1. In contrast, minimal dissipation occur
near the potential minima where transitions between st
take place. The steep potential slopes where the densit
energy dissipation is large indeed are accessed via therm
activated backward hopping events. The probability of su
events increases in the presence of an ‘‘adverse’’ exte
force which limits the efficiency of the system.

System B: Figure 6 displays the same information for sy
tem B. The diagram reveals that efficiencies are in gen
larger than for system A, reaching values up toh.0.7 for
T/U50.05. Furthermore, the maximum of the efficiency a
function of Dm is less pronounced and shifted to small va
ues ofDm as compared to system A. One might expect t
the dissipation due to passive transitionshb in system A
which does not exist in system B could play a role in im
proving the efficiency of system B. However, as discuss
above,hb can be neglected and is thus not responsible
this effect. The main reason for the improved efficiency
system B is the fact that the effective energy barrier for th
mally activated passage over the potential maxima is lar

n

g

FIG. 5. DensityQ1(x)1Q2(x) as defined in Eq.~28! of the
dissipation rate as a function of positionx for system A with
Ul / f ext520.48, x5200, andDm/U50.80.
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in system B as compared to system A. Therefore, fluct
tions leading to ‘‘backward steps’’ in the opposite directi
of average motion which completely dissipate a consum
ATP molecule are less likely. Each active chemical transit
is thus transduced into work with high probability. Figu
6~c! shows qualitatively the same behavior of the efficien
as a function ofx for system B as compared to system
Also as discussed for system A, the dominant dissipa
process corresponds to sliding in the potentials; see Fig. 6~d!.
Note that the efficiency is larger than in system A, whi
correlates with the increased barrier height reducing
probability of backward steps.

FIG. 6. Energy transduction of system B witha/ l 50.1. ~a! Ef-
ficiency h as a function of the external forcef ext for Dm/U50.4,
x5j l 2v/U5400, and different reduced temperaturesT/U. ~b!
Maximal efficiencyhmax as a function ofDm/U for x5400 and
different temperatures.~c! Maximal efficiency as a function ofx for
Dm/U50.4 and different temperatures.~d! Relative dissipation
rates as a function ofDm: the fraction of energy dissipated b
potential slidingh11h2, and the fraction dissipated via active tra
sitionsha1hg .
-

d
n

y

n

e

System C: Energy transduction of system C which in
volves diffusive steps and nonlocalized deexcitations. Ma
mal efficiencies are of the order of 0.02, and thus mu
smaller than those for systems A and B; see Fig. 7. As
system A the largest efficiencies occur forDm@T, and thus
far from equilibrium. The reason for the reduced efficien
becomes clear when studying the relative dissipation ra
shown in Fig. 7~b!: Most energy is in this case dissipated b
the passive and active transitions; potential sliding is l
important. In particular, the nonlocalized and passive de
citations dominate dissipation far from equilibrium. Ve
striking is the behavior of the efficiency as a function ofx
shown in Fig. 7~c!: The efficiency displays a maximum fo
certain values ofx, but vanishes both for large and smallx.
This property reflects the fact that a matching of time sca
is crucial for this system: The lifetime in the excited sta
should be comparable to the diffusion time over a poten
period:

l 2;T/jv. ~42!

Therefore, the optimal value ofx should behave asxopt
;T/U, which explains the temperature-dependence of
maximum in Fig. 7~c!.

FIG. 7. Energy transduction of system C witha/ l 50.1. ~a!
Maximal efficiencyh as a function ofDm/U for x5j l 2v/U55,
U0 /U51.2 and different reduced temperaturesT/U. ~b! Relative
dissipationh11h2 in the potentials as well as the dissipation
transitionsha andhb corresponding to~a!. ~c! Maximal efficiency
as a function ofx for Dm/U51.2 and different temperatures.
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D. Approximation for small forces

The efficiency far from equilibrium forDm/T@1, but for
small forces can be understood by a simple approxima
which we discuss for system A. In the limit of largeDm and
U/T, we ignore spontaneous hopping events over
maxima of potentialW1. Every ATP consumption event cor
responds to a transition to the second state from which
particle will eventually decay to the first state. During th
process, it undergoes a forward step with probabilityp1 and
a backward step with probabilityp2 or it will return to the
initial position with probabilityp0. Here, we have ignored
multiple steps; see Fig. 8. In the presence of an external f
f ext, the efficiency can thus be estimated as

h.2
f ext

Dm
^x&, ~43!

where

^x&. l ~p12p2!.v/r ~44!

is the average displacement per consumed ATP. The p
abilities p6 can be written as

p15p2~0!p1~d!, p25„12p2~0!…„12p1~d!…. ~45!

Here we have introduced the probabilitiesps(x) for motion
in the forward direction after a particle appears in states at
position x. Similarly, 12ps(x) is the probability for back-
ward motion; see Fig. 8. Since the two potentials are shi
with respect to each other,p2(x)5p1(x2d). The probability
p1 requires two subsequent forward movements of this ty
andp2 results from two backward movements. As describ
in appendix B, the probabilitiesps(x) can be calculated ap
proximatively for largeU/T. Figure 4~a! shows the effi-
ciency estimated by Eqs.~44! and ~45! together with the
numerically obtained values for comparison. For sm
forces the agreement is good, thus confirming our simplifi
picture of energy transduction in this regime.

V. CONCLUDING REMARKS

In the previous sections, we have studied the efficiency
energy transduction from chemical energy to mechan

FIG. 8. Schematic diagram of events after consumption of
fuel molecule. Forward steps occur with probabilityp15p1p2,
backward steps with probabilityp25(12p2)(12p1), and neutral
steps withp05p2(12p1)1p1(12p2) .
n
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work using a simple two-state model under isothermal c
ditions. We considered three different examples: system
with two shifted potentials and both active and thermal tra
sitions between the two states localized at the poten
minima; system B, with an additional symmetry between
two states and no passive thermal transitions; and fin
system C, with a flat weakly bound state and nonlocaliz
passive transitions. We demonstrated that energy trans
tion can be very efficient in systems A and B with localiz
transitions and shifted potentials, and is at least two order
magnitude smaller in system C which requires diffusi
steps for motion to occur. Interestingly, the largest efficien
can occur far from equilibrium. This is in particular the ca
for systems A and C, both of which are not very efficient
the linear response regime.

A. Isothermal motors, heat engines, and Brownian ratchets

Efficiencies of energy transduction have been studied
discussed for a long time. Of particular significance is t
concept of Carnot, which defines the efficiency of mac
scopic heat engines coupled to two thermal baths at temp
turesT6 andT1.T2 as

hCarnot52
f extv

Q̇1
, ~46!

whereQ̇1 is the rate of heat transfer from thehot reservoir.
This definition then leads to an upper limit of the efficien
hCarnot<(T12T2)/T1, which cannot be surpassed by an
heat engine. In order to characterize energy transductio
biological systems, a natural choice is@23#

h52
f extv
rDm

, ~47!

which we have adopted in this paper@see Eq.~6!#, and which
is based on the chemical potential difference between
and reaction products. As we have discussed, this efficie
obeysh<1 in order to satisfy the first law of thermodynam
ics, but there is no nontrivial upper bound. In addition to t
obvious fact thathCarnot describes a heat engine andh an
isothermal motor, there remains a fundamental difference
tween the two cases: the definition ofhCarnotassumes that al
heat dissipated in the bathT2 is lost. This is true in most
practical cases; however, if the bath atT2 was also used as
the hot bath of a second heat engine, some of this ene
could in principle be reused. Similarly, the definition ofh
takes into account the energy of the lower-energy reserv
thus assuming that the energy of the reaction products
mains available. One might think that it is possible to avo
this difference between the two definitions by choosing

h852
f extv
rmA

, ~48!

wheremA would be the chemical potential of the fuel~ATP!.
This definition shares with Carnot’s definition the viewpoi
that the energy of the reaction products are not useful, a
since h85hDm/mA , should lead to the upper boundh8
<(mA2mP)/mA . Such a choice, however, suffers from

e
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serious shortcoming: only chemical potential differences
physically meaningful. Depending on the state of refere
used for definingmA , the value ofmA could be positive,
negative, or even vanish.

The example given above demonstrates that compa
efficiencies can be dangerous, as they may be based on
ferent definitions corresponding to different points of vie
This is also the case for ratchet models which have b
studied in many variants and under widely varying physi
conditions. All definitions described above have been use
the literature: The definitionhCarnot for systems driven by
temperature differences@9,12,14,16,17#, the definition forh
given by Eq.~6! @23,8,15# as well ash8 @13#. Alternative
definitions have been proposed for situations where
chemical reaction is not fully specified@11,18#. Other defi-
nitions of energy transduction efficiencies have been used
systems which are driven by stochastic or determini
forces @12,19–21#. Recently, Sekimoto presented a unifi
picture which includes most systems in a common fram
work @12#. However, in general, a given definition is adapt
to one particular physical situation.

B. Two-state model and biological motors

One important motivation of this work is to clarify th
general properties of energy transduction of biological m
tors. The characteristic behaviors of our systems A and
with localized transitions and shifted potentials are similar
those observed for processive biological motors such as,
kinesins which move along microtubules and for which t
consumption of ATP and the subsequent stepping
strongly correlated for small external forces@29,31,32#. Ki-
nesin motors consist of two identical active head grou
which both hydrolize ATP@33#. There is evidence sugges
ing that the motor could ‘‘walk’’ in a head-over-head fashio
along microtubules, detaching a head in the back and r
taching in front of the molecule while keeping the seco
head bound@34,35#. In such a picture each ATP-hydrolys
cycle leads to a new situation where both heads have
changed their roles and the center of mass of the mole
has advanced one filament period. This type of motion
captured in a simple way in the variant B of our mod
which is symmetric with respect to the two states. Becaus
this symmetry, both states are indistinguishable, but the
responding potentials are shifted byl /2: W2(x)5W1(x
2 l /2). We therefore identify each of the two states with o
kinesin head andl /2 with the filament period; see Fig. 2~b!.
Recently, system C with a structureless excited state
been used for single kinesin heads which were observe
move processively along a microtubule@36#. Models of this
type have typically been considered in the context of n
processive motors such as myosins which have a we
bound state during their interaction cycle. Myosins inter
with a filament to generate displacements of the order
several nm, but they do not continuously move along a fi
ment as individual motors since they easily lose their tra
and diffuse away@37,38#. The latter phenomenon is not ca
tured in the one-dimensional two-state model; however,
flat potential of system C requires diffusive steps for aver
motion, and the efficiency is therefore smaller than for s
tems A and B. Under physiological conditions, nonproc
e
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sive motors operate not as isolated enzymes but move
gether in large groups. In this situation, however, diffusi
steps become unimportant, and the efficiency becomes l
and reaches the same orders of magnitude as for mode
and B described here@39,40,11#.

When comparing our simple models with biological m
tors, the value of the adimensional parameterx5vj l 2/U
introduced in Eq.~41! is crucial. The relevant orders of mag
nitude for most parameters are well known: Energy sca
are U.10T @23#, typical time scales of conformationa
changes arev21.1 ms, and the relevant length scale isl
.5 –10 nm@37#. However, the friction coefficientj is un-
known and difficult to estimate. Therefore, we do not kno
at which value ofx biological motors operate. The role ofx
on the functioning of the system can be discussed by c
paring both the maximal efficiency and the dimensionle
velocity v/v l as a function ofx; see Fig. 9. The diagram
reveals that for large values ofx for which the efficiency is
large, the velocities become small. For smallx velocities are
optimal but efficiency becomes negligible. This observat
suggests that optimal conditions are obtained in the inter
diate regimex.0.121 where chemical times and slidin
times along the potential slopes become comparable.

If linear molecular motors operate in this regime, the m
croscopic friction coefficient j is of the order of
1027–1026 kg/s. If we estimatej from simple hydrody-
namic arguments (jh.6phvisl ), wherehvis is some measure
of a ‘‘local’’ viscosity, we find hvis.10–100 P, 103–104

times the viscosity of water, values compatible with den
macromolecular solutions. Interestingly, this order of mag
tude corresponds to a diffusion coefficient of
310214 m2/s, a value reported recently for single head
kinesin @36#. This observation, together with our estimat
suggests that linear molecular motors are optimized b
from the velocity and the efficiency standpoint.

Note added in proof. Recent experiments on theF1 motor
of ATP synthase have revealed that this enzyme can be
sidered as a three-state rotatory motor@41,42#. In particular
an efficiency close to 1 has been reported@41#. A simple
extension of our system B to three states provides a nat
explanation for this high efficiency.
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FIG. 9. Maximal efficiencies~broken line! and normalized ve-
locities ~solid line! as a function ofx for system B andDm/U
50.6 andT/U50.05.
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APPENDIX A: ONSAGER COEFFICIENTS

In linear response theory, the behavior of the system
completely defined by the Onsager coefficientsl i j . The On-
sager symmetry relation~10! follows from general thermo-
dynamic arguments and the microscopic reversibility. T
calculation of Onsager coefficients is difficult; however, t
symmetry relation can be verified by general arguments
shown in Sec. A 1. In Sec. A 2 we obtain explicit expressio
for the coefficientsl i j for a many-motor system, as intro
duced in Refs.@8,11#.

1. Symmetry relation for a single motor

In order to demonstrate the symmetry relation of Onsa
coefficients for the two-state model, we start from the pro
ability distributions at equilibrium (f ext50, Dm50) as

Ps
eq5Ne2Ws(x)/T, ~A1!

with a normalization factor

N21[(
s

E
0

l

dx e2Ws /T. ~A2!

For small f extl /T!1 and Dm/T!1, we define deviations
ps(x) from equilibrium which obey

Ps~x!5Ne2Ws /T
„11ps~x!…. ~A3!

Without loss of generality, we consider the case wh
only the transitionsas and bs occur butgs50. To linear
order inDm, the transition rates can be written as

v1~x!5S v~x!1
a~x!Dm

T DeW1 /T,

~A4!
v2~x!5v~x!eW2 /T,
f

is

e

s
s

r
-

e

with a5a2e2W2 /T andv(x)[(a21b2)e2W2 /T. Using Eq.
~13!, we find, to linear order,

2
T

j
]x~e2W1(x)/T]xp1!1v~x!~p12p2!5h1~x!,

~A5!

2
T

j
]x~e2W2(x)/T]xp2!2v~x!~p12p2!5h2~x!.

The fieldshs(x) are nonzero in the presence of mechani
or chemical forces:

h1~x!52a~x!Dm/T2]xe
2W1(x)/Tf ext/j,

~A6!
h2~x!5a~x!Dm/T2]xe

2W2(x)/Tf ext/j.

Equation~A5! represents a linear relation betweenps andhs

which can be inverted, and which thus defines a respo
kernel

ps~x!5(
r
E

0

l

dx8xsr~x,x8!hr~x8!. ~A7!

This allows us to express the velocity and the fuel consum
tion rate within linear response theory:

v5E
0

l

dx@j21e2W1 /T~ f ext2T]xp1!

1j21e2W2 /T~ f ext2T]xp2!#, ~A8!

r 5E
0

l

dx a~x!@~p12p2!1Dm/T#. ~A9!

The Onsager coefficientsl i j can be written in terms of the
response functionsxsr(x,x8). In particular, for the coeffi-
cients of mechanochemical coupling we find
l12[
]v

]Dm
5E

0

l

dxE
0

l

dx8@j21e2W1(x)/T
„]xx11~x,x8!2]xx12~x,x8!…

1j21e2W2(x)/T
„]xx21~x,x8!2]xx22~x,x8!…#a~x8!, ~A10!

l21[
]r

] f ext
52E

0

l

dxE
0

l

dx8a~x!@„x11~x,x8!2x21~x,x8!…j21]x8e
2W1(x8)/T

1„x12~x,x8!2x22~x,x8!…j21]x8e
2W2(x8)/T#.. ~A11!
Performing a partial integration in Eq.~A10!, we find that
the Onsager symmetry relation~10! is satisfied exactly if the
response functions obey the symmetry relation

xsr~x,x8!5xrs~x8,x!. ~A12!

This symmetry relation follows from the hermiticity o
the linear operatorL defined in Eq.~A5! which can be ex-
pressed as
LS p1

p2
D5S h1

h2
D , ~A13!

where

L5SL11v 2v

2v L21v
D , ~A14!

with
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Li52j21T]xe
2Wi (x)/T]x . ~A15!

The operatorL is Hermitian, since matrix~A14! is symmet-
ric andLi itself is Hermitian. The latter is easily verified b
partial integration:

E
0

l

dx q~x!„]xe
2W1(x)/T]xp~x!…

5E
0

l

dx p~x!„]xe
2W1(x)/T]xq~x!…. ~A16!

2. Onsager coefficients for many rigidly coupled motors

Onsager coefficients can be calculated explicitly for
model of rigidly coupled motors. In this model, the tw
states are defined in the same way as before, but the cu
term in Eq.~13! is replaced by a convective term since
particles move with the same velocity. The transport eq
tions are given by@11,8#

] tP11v]xP152v1~x!P11v2~x!P2 ,
~A17!

] tP21v]xP25v1~x!P12v2~x!P2 ,

and the velocityv is determined by the force balance cond
tion

v5j21F f ext2E
0

l

dx~P1]xW11P2]xW2!G . ~A18!

Steady state distributionsP1 and P251/l 2P1 are solutions
to

v]xP15~v11v2!P11v2 / l . ~A19!

Using a power expansion in the velocity,P1 can be written
to lowest order,

P1~x!5P1
(0)~x!1P1

(1)~x!v1O~v2!, ~A20!

with P1
(0)5v2 /(v11v2) l , and

P1
(1)52

1

v11v2
]xP1

(0). ~A21!

As in Sec. V, we use a reaction scheme withgs50 in order
to keep the expressions simple. Also, without loss of gen
ality, we consider the case wherea1 depends onDm but a2
remains constant. For smallDm/T!1, we express the tran
sition rates of Eq.~22! as

v15v2e2DW/T~11ā !, ~A22!

whereā[a2Dm/v2T. The force-velocity relation for smal
v is given by

f ext5 f (0)1~j211 f (1)!v1O~v2!, ~A23!

with coefficients

f (n)52E
0

l

dx P1
(n)]DW, ~A24!
ent

-

r-

which depend onDm. We can now calculate the Onsag
coefficients. The effective friction

l11[
]v

] f ext
U

Dm50

~A25!

can be determined from Eq.~A23!:

l11
215j211

1

lTE0

l

dx
e2DW/T~]xDW!2

v2~11e2DW/T!3
. ~A26!

Similarly,

l12[
]v

]Dm U
f ext50

52l11

] f ext

]DmU
v50

~A27!

leads to

l1252l11

] f (0)

]Dm U
Dm50

52
l11

lT E
0

l

dx
a2e2DW/T]xDW

v2~11e2DW/T!2
.

~A28!

The second cross-coefficient

l21[
]r

] f ext
U

Dm50

5l11

]r

]vU
Dm50

, ~A29!

is determined from the fuel consumption rater (v,Dm). Us-
ing Eqs.~23!, ~A29!, and~A21!, we obtain

]r

]v U
Dm50

5E
0

l

dx@~a21a1!]vP1#U
Dm50

52
1

lTE0

l

dx
a2]x~DW!e2DW/T

v2~11e2DW/T!2
, ~A30!

and thus, as required,l125l21. Finally,

l225
]r

]Dm U
f ext50

5l12

]r

]vU
Dm50

1
]r

]Dm U
v50

5
l12

2

l11
1

]r

]DmU
v50

, ~A31!

which requires calculating

]r

]Dm U
v50

5E
0

l F]P1
(0)

]Dm
~a11a2!1P1

(0) ]

]Dm
~a11a2!G .

~A32!

Using Eqs.~22! and ~23!, we obtain

]r

]Dm U
v50

5
1

lTE0

l

dxF a2e2DW/T

~11e2DW/T!
S 12

a2

v2
D G .

~A33!

Note that bothl11 andl22 are positive, whilel12 can have
either sign.
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APPENDIX B: DIFFUSION CLOSE TO A POTENTIAL
MAXIMUM

In Sec. IV D, we introduced the probabilitiesps(x) that a
particle which initially starts at positionx close to a potentia
maximum will finally escape in the positive direction. W
will calculate this probability for a piecewise linear potent
as shown in Fig. 10 in the limit where the potential slop
extend to infinity, which corresponds to large potential a
plitudesU/T@1. We consider the Fokker-Planck equatio

] tP1]xJ50, ~B1!

with

J52j21@T]xP1P]xW2P fext#, ~B2!

for the initial condition

P~x,t50!5d~x2x0!. ~B3!

In order to determine what fraction of particles move to t
right after a long time, we define the Laplace transform

P̃~x,s!5E
0

`

dt P~x,t !e2st ~B4!

of the distribution, and J̃(x,s)52j21@T]xP̃1 P̃]xW

2 P̃f ext# of the current. The average number of partic
which pass at positionx after long times is given by

E
0

`

dt J~x,t !5 J̃~x,s50!. ~B5!

Noting that

E
0

`

dt e2st
]

]t
P~x,t !52P~x,0!1sP̃~x,s!, ~B6!

we obtain an equation forP̃:

j21]x@T]xP̃1~]xW2 f ext!P̃#2sP̃52P~x,0!. ~B7!

FIG. 10. Schematic representation of diffusion near a poten
maximum which can be divided in three different regions A, B, a
C. For a particle which initially appears atx5x0, we are interested
in the probabilityp that it will finally move forward. This probabil-
ity is related to the currentJC which can be calculated in the limi
of long times.
s
-

s

Since we are interested ins50, we have to solve

]x@T]xP̃1~]xW2 f ext!P̃#52jd~x2x0!. ~B8!

All quantities of interest can be easily calculated if we a
sume a piecewise linear potential

W~x!5H U1 f 2x, x,0

U2 f 1x, x>0,
~B9!

with the potential slopesf 25U/a and f 15U/( l 2a). We
distinguish three different regions A, B, and C along thex
axis; see Fig. 10. Within each region, the solution to Eq.~B8!
is

P̃~x!5C01C1e2„W(x)2x fext…/T, ~B10!

with two constantsC0 andC1 which have to be determine
for each of the three regions. We denote the correspond
solutionsP̃A , P̃B , and P̃C . Since we are looking for solu
tions which do not diverge forx˜6`, we haveC1

A5C1
C

50 in regions A and C, and thereforeP̃A5C0
A and P̃C

5C0
C . This boundary condition for largex can also be de-

rived more carefully by first imposing the condition

lim
x˜6`

P̃~x,s!50 ~B11!

for s.0, and taking the limits˜0 afterwards. Additional
boundary conditions are the conditions of continuity
P̃(x,0) atx50 andx5x0,

P̃A~0!5 P̃B~0!,
~B12!

P̃B~x0!5 P̃C~x0!,

and the matching conditions

]xP̃A~0!5]xP̃B~0!2 P̃A~0!~ f 11 f 2!/T,
~B13!

]xP̃B~x0!5]xP̃C~x0!1j/T,

which follow from integrating Eq.~B8! at the singularities of
the potential slope atx50 and thed-function atx5x0. With
these conditions, all free parameters can be determined
we obtain

C0
A5

j

f 21 f 1
e2( f 11 f ext)x0 /T, ~B14!

C0
C5

j

f 11 f ext
F12

f 22 f ext

f 21 f 1
e2( f 11 f ext)x0 /TG . ~B15!

The corresponding currentsJ̃(x,s50) are constant in re-
gions A and C:

J̃A52j21~ f 22 f ext!C0
A , ~B16!

al
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J̃C5j21~ f 11 f ext!C0
C , ~B17!

which satisfy the normalization conditionJC2JA51. The
probability p(x0) for forward motion of a particle which
initially was atx0 is equal toJC :
.

s.

v

to

e
rv
p~x0!512
f 22 f ext

f 21 f 1
e2( f 11 f ext)x0 /T. ~B18!

The probabilities introduced in Eq.~45! are given byp2(0)
5p( l 2d) andp1(d)5p(d2a).
.
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