VOLUME 78, NUMBER 23 PHYSICAL REVIEW LETTERS 9 UNE 1997

Spontaneous Oscillations of Collective Molecular Motors
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We present a physical mechanism which can lead to oscillatory motion of molecular motors
cooperating in large groups when the system is elastically coupled to its environment. Analytical
and numerical calculations reveal a characteristic type of oscillatory behavior with cusplike extrema.
Typical oscillation frequencies are determined by the internal time scales of the motors. The physical
mechanism we describe generates in a natural way many of the characteristic properties of spontaneous
oscillations observed in some muscles and myofibrils. [S0031-9007(97)03323-1]

PACS numbers: 87.10.+e, 05.40.+j

Motor proteins are highly specialized macromoleculeggeneration and motion of molecular motors, simple physi-
which can consume mechanical energy to induce motiosal models have been suggested [10—17]. Oneidea[11]is
and to generate forces. These molecules are involved ito simplify the internal degrees of freedom of the motor to
active transport processes, cell locomotion, and musclavo different states of a particle which moves along a one-
contraction [1,2]. A typical motor molecule specifically dimensional coordinate. The interaction of the particle
attaches to a certain protein filament which serves as with the track is described by potentials which reflect the
track for its motion. In the presence of fuel, which in periodic structure along the surface of the track. Within
the cell is the molecule adenosine triphosphate (ATP), theuch a two-state model, motion is induced if the potentials
motor starts moving in a direction defined by the polarityare asymmetric with respectto— —x (which reflects the
of the track. Experimental methods allow one to measurgolarity of the track) and if detailed balance of the transi-
forces and velocities of individual motors or small groupstions between states is broken [11]. Although the details
of motors [3-7]. of the behavior of biological motors are certainly far more

Normally, at given fuel concentration and temperaturecomplex, we think that the essential features of their mo-
motor molecules generate a constant average force leaditign are captured.
to a constant average velocity [7]. In some cases, how- Additional phenomena occur if the collective motion of
ever, biological motors drive oscillatory motion: Insects many particles is considered [18—20]. In a simple model,
move their wings back and forth with high frequency. which mimics the way motors are coupled in muscles
While for some insects (e.g., butterflies) the timing ofas well as experimental systems called “motility assays,”
these oscillations is controlled by a periodic external nerveparticles are rigidly coupled to a common structure which
signal, others (e.g., bees and wasps) generate oscillatiotteey set in motion collectively [19,21] (see Fig. 1). As
within the muscle [8]. Recently, spontaneous oscillations
of single myofibrils (the contractile units of muscle cells)
have been observed. These oscillations occur for certain | W -
well defined conditions of ADP and calcium concentra- =0 o
tions, althoughn vivo these myofibrils are not designed to Ut ] Weo ! d )
oscillate [9]. Since no oscillations of calcium concentra- \/\ l L
tion are detected, it seems reasonable to exclude a chemi- (@) ' a ! x 1 x
cal origin for this behavior [8,9].

The purpose of this article is to describe theoretically a K
physical mechanism which allows for oscillatory motion B = r’mb"—E
of motor collections. Using both an analytical approach l l_
and a numerical study of a simple model, we show We
that motor collections acting on an elastic element quite /\/\/\Wx)

generally have the potential to exhibit a periodic motion
of a characteristic type without the need of a chemical
oscillator. Furthermore, our model explains in a naturaFIG. 1. (a) Periodic potential®/, and W, used to calculate
way the frequency range and the shape of the oscillationige behavior of the system. _The results presented in this arti_cle
observed for myofibrils. do not depend on the particular shape chosen. The function
Th ! . hani hich ible f d(x) is chosen to be nonzero in the vicinity of the potential
€ microscopic mechanisms which are responsible 10h,nimym, (b) Many particles coupled rigidly to a backbone

the force generation of biological motors are quite in-which is connected with its environment via a sprikig The
volved. In order to identify the main features of force particle spacing is denoteg
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a result of cooperation, motion can occur even in a As a consequence of the spring action, a nonmov-
symmetric system via spontaneous symmetry breakingng solution to Egs. (1) and (2) withh = 0 exists for
Related instabilities occur also in asymmetric systemsfe = 0, P{ = R = wy/(al), where a(§) = w(§) +
revealing the rich behavior of many-motor systems. wr(§é) and X = Xy = — ff) déRds (W, — Wp)/K. We

In the following, we demonstrate that many coupledstudy the linear stability of this solution and deter-
motors can induce instabilities towards a state withmine the instability threshold with respect to oscillations.
periodically varying velocity. Such instabilities occur With the ansatzP,(£,1) = R(&) + p(€) exp(st), v(t) =
if the system is elastically coupled to its environment., exp(st), and X (r) = X, + uexp(st)/s, one finds using
Note that such a situation occurs naturally in mostEgs. (1) and (2) to linear order ip and the velocity

realistic cases. For example, in muscles, the spring cdmplitudeu: p(£) = —ud:R/[s + a(£)]. The possible
Fig. 1 represents the elastic properties of structures whictialues of the complex eigenvalue= —7 + iw are
connect the active elements [1,22]. determined by

In order to model many-motor systems, it is essential
to start with a simple description of individual motors. A+ K _ /’l deR 9:(W) — W)
We therefore consider the two-state models mentioned s 0 s + a(é)
above where motors are represented by particles which
move in two periodic potentialdV,(x) with period /.  The nonmoving state is unstablerif< 0. The instability
Transitions between states= 1,2 occur with/-periodic  occurs for 7 = 0, where the real part of vanishes.
rates w(x) and w,(x). The excitation amplitude can This happens at a threshold vale= Q.(K) for which
be written as [11Jw;(x) = ws(x) [exd(W; — W2)/T] +  «a(é) = a.(€). In the limit K = 0 where no elastic
0 6(x)], whereT denotes temperature measured in unitelement is present, it follows from the imaginary part
of the Boltzmann constant. We assume that the periodiof Eq. (3) thatw. = 0. The real part then determines
function 6(x) is given. In principle it can be calculated .(0), which is the condition for the instability of the
from a specific model for the reaction kinetics of the fuelnonmoving state as previously described in Ref. [19]. For
coupled to the particle [23]. The amplitud® describes nonzeroK the instability occurs for).(K) = Q.(0) +
the activity of the chemical fuel and measures the distancé (). with 6. ~ K for small K, and the system starts to
from thermal equilibrium. oscillate with finite angular frequenay. ~ K'/2. Note

We assume that the particles are rigidly connected tthat beyond a maximal valu€ > K.y, the resting state
a common backbone with a fixed spacipgncommen- s stable for any value of).
surate with the potential periad[24]. This corresponds Figure 2 shows examples for these oscillations which
to the arrangement of motors along their track in musclefave been calculated by numerically integrating Egs. (1)
[2], but also to the disorder of motors in motility assays.and (2) for constant deexcitation ra&® and piecewise
In the limit of a large system one can introduce densitiedinear potentials. The functiosi(¢) is chosen as shown
P,(¢) with ¢ = 1, 2 which give the probability to find in Fig. 1(a) with d/I = 0.1. Figure 2(a) displays the
a particle at positiort = x mod! relative to the begin- position X versus timer for an excitation levelQ) =
ning of the potential period in state. These densities 0.1 slightly above threshold. After an initial relaxation
are not independent but obé¥(¢) + P,(¢) = 1/l and  period, motion is almost sinusoidal. An example for
j(l) dé(Py + Py) = 1. The equations of motion for this small elastic modulus is shown in Fig. 2(b). This case

3)

system read [19] corresponds to the nonlinear regime far away from the
instability. It results from the existence of a hysteresis
3P| + V3P = —w\P| + wPy, loop in the steady state force-velocity curve in the absence
(1) of an elastic element as described in [19]. The progressive
0Py + vIgPy = w1 Py — w2, loading of the spring allows one to follow the hysteresis

1 loop: This is visible through the cusplike extrema of

fext = Av + KX + f déPag(Wy — Wa).  (2)  the filament position versus time [Figs. 2(b) and 2(c)].
0 The oscillations can be obtained both for symmetric and

Equation (1) describes the dynamics of the denBit¢)  asymmetric potentials. The asymmetry directly reflects

resulting from motion of the backbone with velocity=  on the asymmetry of th& () curve as a comparison of

d,X and the transitions between the states. Equation (2) iBigs. 2(b) and 2(c) shows.

a force balance: The externally applied force per particle In order to give additional insight into the properties

fext(?) is balanced by friction with damping coefficient of the system, we present an analytical description of

A, by the average force due to the potentials and thescillations in the vicinity of the instability. Anticipat-

additional elastic forc&kX of a spring of lengthX with  ing that the motion is periodic with periogh = 27/ w,

elastic modulukN whereN is the number of particles. we can write Pi(£,1) = > __.. Pi(&,k)e !, v(t) =

Note that Egs. (1) and (2) depend only on the difference ;__.. vie™®@!, andfeu(t) = > _.. fre’*®!, which de-

W, — W, of the two potentials, and we can chod&eto fines the Fourier coefficient® (&, k), vy, andf,. Using

be constant without loss of generality. this representation, one can derive the nonlinear relation
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Okk+l (n—1)
X E@ ' ' ' & P gk, = —Z o+ ik WPyt (7)
0.02F -
o 3 3 Using Eg. (2), one finds
002F E K L 0gRI[W) — W
: 5 N e N A~ 2]).
-0.04 C | | | | E 1w 0 a+iw
0 20 40 o, (8)
il L B B BB AL AL B The linear response function of the system is given by the
:(b) ] inverse oka, Therefore the instability condition Eq. (3)
2r . corresponds taF,(d) =0. Forn > 1,
oF 3 (n) _ : () _
- ] Frky ik, = . déEP™ (Eikyk, 9e(W1 — W2) . (9)
2F -
:'I o ._: Note that the coefﬂmentst k..k, are nonzero only
0 100 w, 200 if k=k +---+k, If no elastic coupling to the
environment is present, i.eK = 0, one recovers for
b/l N DML B BLAL LA NLELAL L B constant external forcg, the steady states which have
L (©) - been described previously [19kx: = fo(vo); vi = 0 for
oL ]l k # 0. As soon aX # 0, vy must vanish and a constant
- 1 external forcefy only changes the average positi&in
i ] Spontaneous oscillations are solutions to Eg. (4) for
4 n fx = 0 (k # 0). The dominant terms near the instability
_ - of v, are given by
-6 Poovov o by v v by v |t| AR | (1) (2) (3) )
0 100 @, 200 0=Fivy + G7vvy + GVvjv—y, (20)
FIG. 2. (a) PositionX versus time: for a symmetric sys- W ®
tem with a/l = 0.5, d/I = 0.1,, Q = 0.1, Awyl*/U = 0.1, 0= Fyuv + Foyv?, (11)

and KI?/U = 0.2. (b) Same system buki?>/U = 0.002.
Note that the oscillations have the symmetry propesty + 2) _ @ 2 3 _ -3
tp/2) = —X(r), wherer, is the temporal period. (c) Oscilla- qure G® =Fiy- + FiZip and G® = Fy, oy +
tions for an asymmetric system withy/! = 0.1 for Ki?/U = F(‘z 11t F} SRR As soon asv; and v, are de-
0.01.|ar.1d ophher\r:wse thl? .samehpararrr\]eters. as in (b)f NfOt% thf’ermmed higher orders; can be obtained recursively
similarity with the oscillation shape shown in Fig. 4 of Ref. [9]. using Eq. (4). From Eq. (11) one finds that ~ v% In-
serting this value in Eq. (10), one obtaifis= F{l v +
G(“)vlv 1,(\§wth an effective coefficienG® = G® —
2 1 .

(1) @ = -

fo=FWy, + Fklmvlvm n Fklmnvlvmvn + 0(Y). F;11G¥/F5,’. One solution is alwaysél 0. (;I)'he ge
@ maining solutions are described by;|> = — G9.

Since the amplituddv,|?> is a real number, Wh|IeF§11)
: ~0) are | - i
The coeff|C|entsF(") 4 can be calculated by first and G*’ are in general complex, solutions exist only for
rewriting Eq. (1) as

between velocity and external force

a unigue oscillation frequency,. Typical frequencies
selected near the instability have values of the order of
Sk itm magnitude of the transition rate, ~ w,.
Pi(&,k) = 810R(£) — mvlafpl(f’m)- The parameters used in Fig. 2 are close to typical
fm (5) physiological conditions valid for the actimyosin case:
potential period! = 10 nm, energy scale/ = 10kpT,
frequency scalaw, = 103 s7!, and damping coefficient
A= 1073 kg/s. 2The v?lue ofA is a guess assuming a
_ o) @ 3 local viscosity10- to 10° times larger than that of water.
Pr(& k) = Roo + Pu (©ve + Pun(§)vivm + 0w 5 iyaion frequencies in this case vary betwe@n= 0
(6) for K =0 and wy; = Sw, for K = Ky = 1073 N/m
per motor. This shows that using typical time scales of
into Eq. (5), one obtains a recursion relation for thepjological motors the mechanism described here generates
funct|onsP,(€,,lek”' naturally frequencies up to the kHz range, to be compared
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