
VOLUME 78, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 9 JUNE 1997

s

451
Spontaneous Oscillations of Collective Molecular Motors
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We present a physical mechanism which can lead to oscillatory motion of molecular motors
cooperating in large groups when the system is elastically coupled to its environment. Analytical
and numerical calculations reveal a characteristic type of oscillatory behavior with cusplike extrema.
Typical oscillation frequencies are determined by the internal time scales of the motors. The physical
mechanism we describe generates in a natural way many of the characteristic properties of spontaneou
oscillations observed in some muscles and myofibrils. [S0031-9007(97)03323-1]
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Motor proteins are highly specialized macromolecule
which can consume mechanical energy to induce moti
and to generate forces. These molecules are involved
active transport processes, cell locomotion, and mus
contraction [1,2]. A typical motor molecule specifically
attaches to a certain protein filament which serves as
track for its motion. In the presence of fuel, which in
the cell is the molecule adenosine triphosphate (ATP), t
motor starts moving in a direction defined by the polari
of the track. Experimental methods allow one to measu
forces and velocities of individual motors or small group
of motors [3–7].

Normally, at given fuel concentration and temperatur
motor molecules generate a constant average force lead
to a constant average velocity [7]. In some cases, ho
ever, biological motors drive oscillatory motion: Insect
move their wings back and forth with high frequency
While for some insects (e.g., butterflies) the timing o
these oscillations is controlled by a periodic external ner
signal, others (e.g., bees and wasps) generate oscillat
within the muscle [8]. Recently, spontaneous oscillatio
of single myofibrils (the contractile units of muscle cells
have been observed. These oscillations occur for cert
well defined conditions of ADP and calcium concentra
tions, althoughin vivo these myofibrils are not designed to
oscillate [9]. Since no oscillations of calcium concentra
tion are detected, it seems reasonable to exclude a che
cal origin for this behavior [8,9].

The purpose of this article is to describe theoretically
physical mechanism which allows for oscillatory motio
of motor collections. Using both an analytical approac
and a numerical study of a simple model, we sho
that motor collections acting on an elastic element qu
generally have the potential to exhibit a periodic motio
of a characteristic type without the need of a chemic
oscillator. Furthermore, our model explains in a natur
way the frequency range and the shape of the oscillatio
observed for myofibrils.

The microscopic mechanisms which are responsible
the force generation of biological motors are quite in
volved. In order to identify the main features of forc
0 0031-9007y97y78(23)y4510(4)$10.00
s
n
in
le

a

e
y
re
s

,
ing
-

.
f
e
ns
s

)
in
-

-
mi-

a

h

te
n
l
l

ns

or
-

generation and motion of molecular motors, simple phy
cal models have been suggested [10–17]. One idea [11
to simplify the internal degrees of freedom of the motor
two different states of a particle which moves along a on
dimensional coordinatex. The interaction of the particle
with the track is described by potentials which reflect th
periodic structure along the surface of the track. With
such a two-state model, motion is induced if the potentia
are asymmetric with respect tox ! 2x (which reflects the
polarity of the track) and if detailed balance of the trans
tions between states is broken [11]. Although the deta
of the behavior of biological motors are certainly far mo
complex, we think that the essential features of their m
tion are captured.

Additional phenomena occur if the collective motion o
many particles is considered [18–20]. In a simple mod
which mimics the way motors are coupled in muscl
as well as experimental systems called “motility assay
particles are rigidly coupled to a common structure whi
they set in motion collectively [19,21] (see Fig. 1). A

FIG. 1. (a) Periodic potentialsW1 and W2 used to calculate
the behavior of the system. The results presented in this art
do not depend on the particular shape chosen. The func
usxd is chosen to be nonzero in the vicinity of the potenti
minimum. (b) Many particles coupled rigidly to a backbon
which is connected with its environment via a springK. The
particle spacing is denotedq.
© 1997 The American Physical Society
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a result of cooperation, motion can occur even in
symmetric system via spontaneous symmetry breakin
Related instabilities occur also in asymmetric system
revealing the rich behavior of many-motor systems.

In the following, we demonstrate that many couple
motors can induce instabilities towards a state wi
periodically varying velocity. Such instabilities occu
if the system is elastically coupled to its environmen
Note that such a situation occurs naturally in mo
realistic cases. For example, in muscles, the spring
Fig. 1 represents the elastic properties of structures wh
connect the active elements [1,22].

In order to model many-motor systems, it is essent
to start with a simple description of individual motors
We therefore consider the two-state models mention
above where motors are represented by particles wh
move in two periodic potentialsWssxd with period l.
Transitions between statess ­ 1, 2 occur withl-periodic
rates v1sxd and v2sxd. The excitation amplitude can
be written as [11]v1sxd ­ v2sxd fexpfsW1 2 W2dyT g 1

Vusxdg, whereT denotes temperature measured in un
of the Boltzmann constant. We assume that the perio
function usxd is given. In principle it can be calculated
from a specific model for the reaction kinetics of the fue
coupled to the particle [23]. The amplitudeV describes
the activity of the chemical fuel and measures the distan
from thermal equilibrium.

We assume that the particles are rigidly connected
a common backbone with a fixed spacingq incommen-
surate with the potential periodl [24]. This corresponds
to the arrangement of motors along their track in muscl
[2], but also to the disorder of motors in motility assay
In the limit of a large system one can introduce densiti
Pssjd with s ­ 1, 2 which give the probability to find
a particle at positionj ­ x mod l relative to the begin-
ning of the potential period in states. These densities
are not independent but obeyP1sjd 1 P2sjd ­ 1yl andRl

0 djsP1 1 P2d ­ 1. The equations of motion for this
system read [19]

≠tP1 1 y≠jP1 ­ 2v1P1 1 v2P2 ,

≠tP2 1 y≠jP2 ­ v1P1 2 v2P2 ,
(1)

fext ­ ly 1 KX 1
Z l

0
djP1≠jsW1 2 W2d . (2)

Equation (1) describes the dynamics of the densityP1sjd
resulting from motion of the backbone with velocityy ­
≠tX and the transitions between the states. Equation (2
a force balance: The externally applied force per partic
fextstd is balanced by friction with damping coefficien
l, by the average force due to the potentials and t
additional elastic forceKX of a spring of lengthX with
elastic modulusKN whereN is the number of particles.
Note that Eqs. (1) and (2) depend only on the differen
W1 2 W2 of the two potentials, and we can chooseW2 to
be constant without loss of generality.
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As a consequence of the spring action, a nonmo
ing solution to Eqs. (1) and (2) withy ­ 0 exists for
fext ­ 0, P1 ­ R ; v2ysald, where asjd ; v1sjd 1

v2sjd and X ­ X0 ; 2
Rl

0 djR≠jsW1 2 W2dyK. We
study the linear stability of this solution and deter
mine the instability threshold with respect to oscillations
With the ansatzP1sj, td ­ Rsjd 1 psjd expsstd, ystd ­
u expsstd, andXstd ­ X0 1 u expsstdys, one finds using
Eqs. (1) and (2) to linear order inp and the velocity
amplitudeu: psjd ­ 2u≠jRyfs 1 asjdg. The possible
values of the complex eigenvalues ­ 2t 1 iv are
determined by

l 1
K
s

­
Z l

0
dj

≠jR ≠jsW1 2 W2d
s 1 asjd

. (3)

The nonmoving state is unstable ift , 0. The instability
occurs for t ­ 0, where the real part ofs vanishes.
This happens at a threshold valueV ­ VcsKd for which
asjd ­ acsjd. In the limit K ­ 0 where no elastic
element is present, it follows from the imaginary par
of Eq. (3) thatvc ­ 0. The real part then determines
Vcs0d, which is the condition for the instability of the
nonmoving state as previously described in Ref. [19]. F
nonzeroK the instability occurs forVcsKd ­ Vcs0d 1

dVc with dVc , K for smallK, and the system starts to
oscillate with finite angular frequencyvc , K1y2. Note
that beyond a maximal valueK . Kmax, the resting state
is stable for any value ofV.

Figure 2 shows examples for these oscillations whic
have been calculated by numerically integrating Eqs. (
and (2) for constant deexcitation ratev2 and piecewise
linear potentials. The functionusjd is chosen as shown
in Fig. 1(a) with dyl ­ 0.1. Figure 2(a) displays the
position X versus timet for an excitation levelV ­
0.1 slightly above threshold. After an initial relaxation
period, motion is almost sinusoidal. An example fo
small elastic modulus is shown in Fig. 2(b). This cas
corresponds to the nonlinear regime far away from th
instability. It results from the existence of a hysteres
loop in the steady state force-velocity curve in the absen
of an elastic element as described in [19]. The progressi
loading of the spring allows one to follow the hysteresi
loop: This is visible through the cusplike extrema o
the filament position versus time [Figs. 2(b) and 2(c)
The oscillations can be obtained both for symmetric an
asymmetric potentials. The asymmetry directly reflec
on the asymmetry of theXstd curve as a comparison of
Figs. 2(b) and 2(c) shows.

In order to give additional insight into the properties
of the system, we present an analytical description
oscillations in the vicinity of the instability. Anticipat-
ing that the motion is periodic with periodtP ; 2pyv,
we can write P1sj, td ­

P`
k­2` P1sj, kdeikvt , ystd ­P`

k­2` ykeikvt , andfextstd ­
P`

k­2` fkeikvt , which de-
fines the Fourier coefficientsP1sj, kd, yk , andfk. Using
this representation, one can derive the nonlinear relati
4511
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FIG. 2. (a) PositionX versus timet for a symmetric sys-
tem with ayl ­ 0.5, dyl ­ 0.1,, V ­ 0.1, lv2l2yU ­ 0.1,
and Kl2yU ­ 0.2. (b) Same system butKl2yU ­ 0.002.
Note that the oscillations have the symmetry propertyXst 1
tPy2d ­ 2Xstd, wheretP is the temporal period. (c) Oscilla-
tions for an asymmetric system withayl ­ 0.1 for Kl2yU ­
0.01 and otherwise the same parameters as in (b). Note
similarity with the oscillation shape shown in Fig. 4 of Ref. [9]

between velocity and external force

fk ­ F
s1d
kl yl 1 F

s2d
klmylym 1 F

s3d
klmnylymyn 1 Osy4d .

(4)

The coefficientsF
snd
k,k1,...,kn

can be calculated by first
rewriting Eq. (1) as

P1sj, kd ­ dk,0Rsjd 2
X
lm

dk,l1m

a 1 ivk
yl≠jP1sj, md .

(5)

Inserting the ansatz

P1sj, kd ­ Rdk,0 1 P
s1d
kl sjdyl 1 P

s2d
klmsjdylym 1 Osy3d

(6)

into Eq. (5), one obtains a recursion relation for th
functionsP

snd
k,k1,...,kn

:

4512
the
.

e

Psndsjdk,k1,...,kn ­ 2
X

l

dk,kn1l

a 1 ivk
≠jP

sn21d
l,k1,...,kn21

. (7)

Using Eq. (2), one finds

F
s1d
kl ; dkl

µ
l 1

K
ivk

2
Z l

0
dj

≠jR≠jfW1 2 W2g
a 1 ivk

∂
.

(8)

The linear response function of the system is given by
inverse ofF

s1d
kl . Therefore the instability condition Eq. (3

corresponds toF
s1d
kl ­ 0. For n . 1,

F
snd
k,k1,...,kn

;
Z l

0
djPsndsjdk,k1,...,kn ≠jsW1 2 W2d . (9)

Note that the coefficientsF
snd
k,k1,...,kn

are nonzero only
if k ­ k1 1 · · · 1 kn. If no elastic coupling to the
environment is present, i.e.,K ­ 0, one recovers for
constant external forcef0 the steady states which hav
been described previously [19]:fext ­ f0sy0d; yk ­ 0 for
k fi 0. As soon asK fi 0, y0 must vanish and a constan
external forcef0 only changes the average positionX0.

Spontaneous oscillations are solutions to Eq. (4)
fk ­ 0 sk fi 0d. The dominant terms near the instabilit
of y1 are given by

0 ­ F
s1d
11 y1 1 Gs2dy21y2 1 Gs3dy2

1y21 , (10)

0 ­ F
s1d
22 y2 1 F

s2d
211y2

1 , (11)

where Gs2d ; F
s2d
1,2,21 1 F

s2d
1,21,2 and Gs3d ; F

s3d
1,1,1,21 1

F
s3d
1,1,21,1 1 F

s3d
1,21,1,1. As soon asy1 and y2 are de-

termined, higher ordersyk can be obtained recursively
using Eq. (4). From Eq. (11) one finds thaty2 , y

2
1 . In-

serting this value in Eq. (10), one obtains0 ­ F
s1d
11 y1 1

G̃s3dy
2
1y21, with an effective coefficientG̃s3d ; Gs3d 2

F
s2d
211Gs2dyF

s1d
22 . One solution is alwaysy1 ­ 0. The re-

maining solutions are described byjy1j
2 ­ 2F

s1d
11 yG̃s3d.

Since the amplitudejy1j
2 is a real number, whileF

s1d
11

and G̃s3d are in general complex, solutions exist only fo
a unique oscillation frequencyvs. Typical frequencies
selected near the instability have values of the order
magnitude of the transition ratevs , v2.

The parameters used in Fig. 2 are close to typi
physiological conditions valid for the actinymyosin case:
potential periodl . 10 nm, energy scaleU . 10kBT ,
frequency scalev2 . 103 s21, and damping coefficient
l . 1028 kgys. The value ofl is a guess assuming a
local viscosity102 to 103 times larger than that of water
Oscillation frequencies in this case vary betweenvs ­ 0
for K ­ 0 and vs . 5v2 for K . Kmax . 1023 Nym
per motor. This shows that using typical time scales
biological motors the mechanism described here gener
naturally frequencies up to the kHz range, to be compa
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with the known frequencies of insect flight muscles in th
100 Hz range [8].

Our model assumes an infinite number of particles f
simplicity, and one has to estimate the minimum numb
of motors required for the existence of oscillations
Neglecting all fluctuations, this number is three. Th
effect of fluctuations, both thermal and stochastic,
to destroy the phase coherence of the oscillations b
not the oscillation phenomenon itself. We estimate th
coherence time to be bounded byv

21
2 expsNd, whereN

is the number of motors involved in the process. Fo
a single filament in muscles,N . 300 [1], so that the
coherence time is large. In addition, these structures a
connected three dimensionally, which reduces fluctuatio
even more. Another interesting estimate is the maxim
length of a motor collection for which the approximation
of rigid backbone remains valid. Its compressibility
becomes important as soon as elastic deformations lea
length changes of the order of the potential period. Usin
the stretching elasticity of actin as an example for th
material properties of protein filaments, one can calcula
the Young’s modulus using the persistence length
15 mm, and the diameter of a few nm [25]. This estimat
suggests that for typical lateral forces of several 10 p
our approximation is valid for filaments with a length o
up to severalmm, to be compared with the2 mm length
of muscle filaments.

In summary, we have shown using a simple two
state model that collections of motor molecules ma
spontaneously oscillate. Our results are fairly robust
that they neither depend on the particular choice of th
potential shape, nor on the exact type of connectio
to the common backbone. They simply require th
the transitions from state one to two are localized
“active sites” close to the energy minima. Our mechanis
allows for oscillations in myofibrils and in insect muscle
directly via the force generation. The particular typ
of oscillations which we predict show a shape whic
includes cusplike maxima and minima; see Figs. 2(b) a
2(c). It is striking to note that the observed oscillation
of myofibrils exhibit the characteristic properties which
we predict: The shape of the oscillations with cusplik
extrema and oscillations nonaffected both in frequen
and amplitude by a constant externally applied force [9]
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