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We study a simple two-dimensional model for motion of an elastic filament subject to internally g
erated stresses and show that wavelike propagating shapes which can propel the filament can be i
by a self-organized mechanism via a dynamic instability. The resulting patterns of motion do not
pend on the microscopic mechanism of the instability but only of the filament rigidity and hydrodyna
friction. Our results suggest that simplified systems, consisting only of molecular motors and filam
could be able to show beating motion and self-propulsion. [S0031-9007(99)08456-2]
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Cilia and flagella are hairlike appendages of many ce
which generate motion and are used for self-propulsion a
to stir the surrounding fluid. They all share the charac
teristic architecture of their core structure, the axoneme
common structural motive that was developed early in ev
lution. It is characterized by nine parallel pairs of micro
tubules, which are long and rigid protein filaments, that a
arranged in a circular fashion together with a large numb
of dynein molecular motors [1]. In the presence of aden
sine triphosphate (ATP) which is a fuel, the dynein motor
attached to the microtubules generate relative forces wh
acting on neighboring microtubules; the resulting intern
stresses induce relative sliding motion of filaments whic
leads to the propagation of bending waves [1,2].

These biological systems are complex; they consist
a large number of different components and various pa
terns of motion have been observed. Attempts to mod
their behavior are either based on the assumption that so
unknown control system generates oscillatory motor a
tivity [3] or that a self-organized mechanism is at work
[4,5]. Generically, the latter involves a dynamical insta
bility. Theoretical studies of simple models for collective
action of molecular motors have demonstrated the pos
bility of such instabilities [4,6–8]. Several examples o
oscillatory motion of biological many-motor systems ar
known. Recently, it was suggested that spontaneous
cillations observed in muscles could be a property of th
motor-filament system alone [7,9]. This idea is supporte
by the fact that the oscillations continue to exist after a
regulatory systems are removed [9] but also by the obs
vation that anin vitro motor-filament system shows the
signature of a dynamic transition [10]. Furthermore, th
observations that flagellar dyneins are able to generate
cillatory motion on microtubules [11] and that isolated an
demembranated flagella in solution containing ATP abov
a threshold concentration swim with a simple wavelike mo
tion [12] support the idea that basic types of flagellar bea
ing could result from a dynamic instability. Eventually
the beating motion of flagella such as those of sea urch
sperms is planar, which suggests that basic properties c
already be captured in a two-dimensional description [2
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In this article, we introduce a simple two-dimension
model which reveals many physical aspects of the m
tion of an elastic filament driven by internal forces th
should be relevant for flagellar beating. Our approach
inspired by studies of semiflexible filaments subject to e
ternal forces [13–17], however, in our case all motion
induced byinternal stresses. Our model consists of two
incompressible but elastic filaments of lengthL arranged at
constant distancea ø L and rigidly attached only at one
end which we call the head. A large number of molec
lar motors and passive elements holding the filament p
together are assumed to generate a coarse-grained
per unit lengthf which acts in opposite directions on th
two filaments and induces the relative sliding of the fil
ment pair. The dynamic equations of this model define p
terns of beating motion resulting from the internal forc
which are assumed to oscillate. More interestingly, w
show that characteristic wavelike patterns which prop
gate along the filament are generated most naturally
a dynamic instability of the motor-filament system (s
Fig. 1 for examples). As we show below, the qualitativ
shapes of these patterns do not depend on the microsc

B

C

A

FIG. 1. Snapshots of wavelike patterns generated by a mo
induced Hopf bifurcation calculated for different bounda
conditions (solid lines): (A) Clamped head, position and slop
are fixed. (B) Fixed head; position is fixed only. (C) Free
head subject to a viscous load. The broken lines repres
earlier configurations. The arrows indicate the direction
wave propagation.
© 1999 The American Physical Society
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mechanism of force generation but only on the elastic pro
erties of the filaments and on hydrodynamic friction. W
demonstrate that these patterns lead to self-propulsion
the system and calculate the velocity of motion.

In order to define our model and to derive the dynam
equations, we start from the enthalpy functional

G 
Z L

0

"
k

2
fCssdg2 1 fssdDssd 1 Lssd s≠s $rd2

#
ds ,

(1)

where $rssd is a parametrization of the shape of th
filament pair by the arclengths, k is the bending rigidity,
and C  $n ? ≠2

s $r is the local curvature with the filament
normal $n. The internal force densityf couples to the
relative sliding displacementDssd  a

Rs
0 Css0d ds0 of the

two filaments [13]. In order to impose the constraint o
local incompressibilitys≠s $rd2  1, we have introduced
the Lagrange multiplierLssd [14]. The equation of
motion can be written as

≠t $r  2

√
1

j'

$n $n 1
1
jk

$t $t

!
dG
d $r

, (2)

where $t $t and $n $n are projectors on the filament tangen
and normal, and we assume local anisotropic friction wi
tangent and normal coefficientsjk andj', respectively.

In order to keep the description simple, we consid
small deformations of a filament parallel to thex axis,
$rssd  fs 1 ussd, hssdg, which we describe by an expan
sion in the transverse and longitudinal displacementsh and
u. To quadratic order in≠xhsxd, we can write

G .
Z L

0

(
k

2
s≠2

xhd2 1 afsxd f≠xhsxd 2 ≠xhs0dg

)
dx ,

(3)

where we use the Monge representation with thex coor-
dinate as parameter. We first discuss transverse mo
which for small deformations is independent of long
tudinal forces [18] and satisfies the equationj'≠th 
2k≠4

xh 1 a≠xf together with two boundary conditions
at the head withx  0 and two conditions at the tail for
x  L. We assume a free tail which implies≠2

xhsLd  0
andk≠3

xhsLd  afsLd. At the head, we distinguish three
different cases as shown in Fig. 1: (A) clamped head with
hs0d  0 and ≠xhs0d  0; (B) fixed head withhs0d  0
andk≠2

xhs0d  2a
RL

0 fsxd dx; and (C) a viscous load at
x  0 with friction coefficientz for which the condition
onhs0d in (B) is replaced byz ≠ths0d  afs0d 2 k≠3

xhs0d.
We demonstrate the basic properties of this mod

by first assuming that an oscillating force density wit
constant amplitude is generated by some unspecifi
mechanism:fmstd  Res f̃0eivtd. The total force density
f acting on the filament pair is the sum of the forcefm,
internal dissipative forces, and, in general, the forc
of elastic elements which locally connect the filament
Introducing the complex Fourier amplitudẽh, where
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hsx, td  Refh̃sxdeivtg, we can express the total force den
sity asf̃  xỹ 1 f̃0, whereỹ . ivaf≠xh̃sxd 2 ≠xh̃s0dg
is the complex amplitude of the local sliding velocity
y  ≠tD. The coefficientx  sl 1 Kyivd describes a
viscoelastic response of the material between the filame
with dissipation coefficientl and elastic modulusK. The
oscillating state is characterized by

k≠4
xh̃ 2 a2ivx≠2

xh̃ 1 j'ivh̃  0 . (4)

The homogeneous active forcef̃0 enters only via boundary
conditions. Equation (4) and boundary conditions repr
sent an inhomogeneous linear system which is solved
h̃  AekxyL leading to four complex values ofk. The cor-
responding coefficientsA are adjusted to satisfy the bound
ary conditions which leads to a solution with an amplitud
proportional to the internal forcẽhsxd , f̃0. We can dis-
tinguish two different regimes: (i) Hydrodynamic friction
dominatesjxj2 ø kj'yva4; (ii) internal viscoelasticity
dominatesjxj2 ¿ kj'yva4. We can neglect, in Eq. (4),
x in case (i) andj' in case (ii). Figure 2 shows ex-
amples of the amplitudeH and the gradient of the phase
f of h̃sxd  Hsxde2ifsxd for x  0 and different bound-
ary conditions as dashed lines. The corresponding ti
dependent solutions

hsx, td  Hsxd cosfvt 2 fsxdg (5)

are propagating wavelike shapes qualitatively similar
those shown in Fig. 1. The sign of the local propagatio
velocity yp  vy≠xf of the phase allows us to deter
mine the direction of apparent wave propagation.

We have thus developed the framework to calculate a
analyze wave-propagating solutions of our model and c
now study motion generated by the properties of the mot
filament system via a Hopf bifurcation. We assume th
the material between the two filaments which contai
both molecular motors and passive elements has prop
ties which can be characterized on a coarse-grained le
by a nonlinear history-dependent response function. W
will study the instability of a nonmoving solutionhsxd  0
towards wavelike patterns. For this case it is sufficient
consider only small amplitudes,j≠xhj ø 1 as described
above. Furthermore, in this regime the local sliding v
locity y is small, and we can ignore nonlinearities iny

and restrict ourselves to the frequency dependent lin
responsẽf  xỹ. Here, we have set the artificially in-
troduced forcef̃0  0 and characterize both passive an
active material properties by the complex response fun
tion xsv, Vd which can, e.g., be calculated explicitly fo
a simple model [7] or measured experimentally [19]. Th
out-of-equilibrium nature of the system is characterized
the control-parameterV which measures the distance o
this system from thermal equilibrium and can, for exampl
be varied by changing the ATP concentration. Note th
for an active system,x can have unusual behaviors whic
formally correspond to a negative frictionfResxd , 0g or
a negative elastic responsefImsxd . 0g.
1591
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FIG. 2. (a) AmplitudeHsxd (in arbitrary units) of the wave-
like motion characterized by Eq. (5) as a function of the pos
tion x along the filament axis for boundary conditions (A) as
defined in Fig. 1 andj'vL4yk  2500. (b) Same plot for
boundary conditions (B). (c) Gradient≠xf of the phase along
the filament axis for the same systems. The solid lines corr
spond to motion induced by a Hopf bifurcation for the smalles
response coefficientx1, the broken lines to motion induced by
a homogeneous internal force andx  0.

In the casẽf0  0, Eq. (4) and boundary conditions be-
comes a homogeneous linear system which always has
solution h̃sxd  0 and which can now be reinterpreted a
an eigenvalue problem forx. Spontaneous motion corre-
sponds to nontrivial solutions to this problem. A discret
set of such solutions̃hi exists; each̃hi corresponds to a
complex eigenvaluex  x̄isvd, i  1, 2 . . . , ` which we
order according tojx̄isvdj # jx̄i11svdj.

Consider now a system initially at equilibrium withV 
0. If V is increased, an instability occurs as soon as a cri
cal valueVc is reached for whichxsvc, Vcd  x̄isvcd
for a frequencyvc. In the vicinity of this point, the sys-
tem develops forV . Vc motion with this frequency
and a shape characterized by the nontrivial solutionh̃isxd.
This scenario applies to a supercritical bifurcation. Non
linear terms of the response function and nonlinear co
rections to the simple Monge representation can becom
important for largerV, or they could change the nature
1592
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of the bifurcation to subcritical—in this case, the motio
would appear via a discontinuous transition. Typical
the instability occurs for the smallest valuex  x̄1svd
since largerjxj require larger values ofV which cor-
respond to more system activity. Note that the resu
ing pattern of motion is independent of the microscop
mechanism which leads to the instability. It is sufficie
that the active material is capable to generate the respo
x  x̄i [20].

Figure 2 displays examples of the amplitude and the g
dient of the phase of̃h1sxd for boundary conditions (A) and
(B); snapshots of the corresponding motion are shown
Fig. 1. The boundary conditions play an essential role
selecting different types of motion. Observing the sign
≠xf which determines the direction of the phase velo
ity, we find that for clamped head (A) the wave propagates
from the tail towards the head while for case (B) it propa-
gates in the opposite direction. The amplitudeHsxd also
differs significantly between cases (A) and (B) (see Fig. 2).
The case (C) of a free head with viscous loadz is similar
to case (B) and therefore is not shown in Fig. 2. For th
example, the qualitative properties of motion induced
the dynamic instability are the same as those of the s
tem driven by a homogeneous forcef̃0 (see Fig. 2). In
fact, for the parameters chosen,jx1j

2 ø kj'ysva4d and
the corresponding solution is not far from the solution f
x  0. The case of homogeneous forcef̃0 is simple and
allows us to explain the effect of boundary conditions.
homogeneous internal forcẽf0 can be rewritten as bound
ary terms in the expression of the energy:G . af0hsLd 2

af0hs0d 2 aLf0≠xhs0d 1
RL

0 dx s≠2
xhd2ky2. Its action is

equivalent to two opposite transverse forcesaf0 acting
at both ends together with a torqueaLf0 applied at the
head. In the case of a clamped head, this apparent fo
and torque are suppressed, and the system is driven
virtual force at the tail, propagating the wave towards t
head [17]. If the head is not clamped, the virtual oscilla
ing torque at the head can propagate a wave in the oppo
direction.

Can these beating patterns propel the filament? Tim
reversal symmetry has to be broken,hsx, 2td fi hsx, td,
for propulsion to be possible [21]. According to Eq. (5
this requirement is fulfilled since≠xf fi 0. Because of
the symmetryhsx, td  2hsx, t 1 pyvd, there can be
no net motion in the transverse direction. In order
estimate longitudinal motion, we have to study the d
placementusxd. To second order in≠xh, we can write
usxd . us0d 2

1
2

Rx
0s≠xhd2 dx0, indicating that the dynam-

ics of usxd is governed by the motionhsx, td. Note that
usxd 2 us0d is small, but the filament displacementus0d
can become large. The longitudinal componentfl of
the hydrodynamic force density2sj' $n $n 1 jk$t $t d ? ≠t $r
acting locally on the filament is given byfl . sj' 2

jkd≠xh≠th 2 jk≠tusx, td in our approximation. The ve-
locity of motion V is the time average of≠tus0d and fol-
lows from the condition that the total longitudinal forc
vanishes. If an isotropic viscous load is attached to
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0 fl dx 1 z ≠tus0d  0, and we
find V  V0ys1 1 z yjkLd, where

V0  2

√
j'

jk

2 1

!
v

2L

Z L

0
Hsxd2≠xf dx (6)

is the no-load velocity. If the head is not permitted t
move, the filament generates a forceF  V0jkL at the
head. Note that for isotropic friction bothV andF vanish.
For a semiflexible rodlike filamentj'yjk . 2 [22] and the
direction of motion is opposite to the direction of phas
propagation.

The parameters chosen in Figs. 1 and 2 correspond, e
to L . 40 mm, a . 20 nm, j' . 2 3 1023 N sym2,
which is an estimate for the friction coefficient per un
length of a rod moving in water,k . 4 3 10222 N sym2,
which is the elastic modulus of about 20 microtubule
[23], and a frequencyvys2pd . 30 s21. For this choice,
we find a critical value x1 . s210 1 20id N sym2.
We choose an amplitude of̃h1 with maximal value
HyL . 0.1. In this case, the maximal local sliding
velocity is y . 8 mmys. In axoneme, dynein motors ar
spaced every 24 nm along the microtubules. Assum
that only one microtubule pair is active, we estimate th
for this choice a force per motor of 4 pN corresponds to t
critical valuef . jx1jy. This is a typical force created
by molecular motors. Larger forces could be necess
to generate beating with larger amplitudes. Our res
suggests that in this case several microtubule pairs co
be active at the same time thus allowing for smaller forc
per motor. Using the motioñh1 obtained for boundary
conditions (C) and a viscous loadz  5 3 1028 N sym,
which is an estimate for the friction coefficient of a sper
head, we find a spontaneous velocity of lateral moti
V . 40 mmys, which is significantly larger than loca
sliding velocities and not far from experimentally observe
values for sea urchin sperms in aqueous solution [12].

We have demonstrated that a pair of elastic filame
held together by an active, force-generating material, c
induce wavelike patterns by a dynamic instability of th
system. This study is motivated by biological flagel
such as those of sperms which use such motion
self-propulsion. Our model suggests that the bounda
conditions imposed at the ends select the type of beat
pattern. This could be tested by micromanipulatio
experiments which apply external forces and torques
the ends of beating flagella. We have restricted o
study to a two-dimensional system, local hydrodynam
friction, small deformations, and the linear regime o
the instability. Nonlinearities could play an importan
role in the regime of rapid self-propulsion with larg
amplitudes. Furthermore, the possibility of torsion
motion in three-dimensional systems could allow for ne
types of behavior.

The observation that wavelike motion can be genera
in a self-organized way, i.e., without an explicit coord
nation of the motor function, raises the idea that soph
ticated control mechanisms may have evolved after
o
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development of the basic axonemal structure in order
fine-tune the system and to create more complex types
motion. This concept suggests that artificially construct
systems consisting only of motor molecules and filamen
could already undergo beating motion and self-propulsio
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