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Morphogenetic oscillations during symmetry breaking
of regenerating Hydra vulgaris cells
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PACS. 87.18.Hf – Spatiotemporal pattern formation in cellular populations.
PACS. 87.18.La – Morphogenesis.

Abstract. – During the process of regeneration, the fresh-water polyp Hydra vulgaris first
builds a hollow sphere consisting of a cell bilayer. This cell ball undergoes subsequent shape
transformations, at a later stage it creates tentacles and a foot to form an animal. We describe
and analyze the transformation of the hollow sphere to the first non-spherical shape by means
of contour analysis. We observe that the cell ball shows characteristic oscillations in size and
shape which accompany symmetry breaking. Quantitative analysis of these oscillations pro-
vides information on the cell bilayer mechanics and hydrodynamic flows involved. In order to
explain the origin of the observed oscillations, we propose three different physical scenarios of
oscillation generation.

Introduction. – During development, clusters of initially undifferentiated cells undergo
transformations that lead to patterns [1] and complex morphologies of differentiated cells.
Initial steps of development are similar in different species, pointing to similar mechanisms as
an underlying building principle. The strategies which govern this process and the regulation
mechanisms which are involved in cell differentiation are subject of intense studies [1–7]. Here
we describe certain macroscopic observations during development and we highlight possible
mechanisms generating the observed behaviour.

Turing suggested that a set of morphogens which determine the fate of undifferentiated
cells is transported via diffusion and undergoes biochemical reactions [7]. These ideas were
further developed by Gierer and Meinhard [8, 9] and were very fruitful for the understanding
of the observed stability and the regeneration capabilities of hydra, although the messenger
molecules which were postulated have not been identified so far.

Hydra vulgaris is a fresh-water polyp, one of the oldest still existing multicellular organ-
isms. An adult Hydra vulgaris is up to 15mm long and can be found in tap water in remote
unpolluted regions (fig. 1). It mainly consists of a hollow tube, the “gastric column”, made
of an inner and an outer cell layer. The head is equipped with a mouth opening surrounded
c© EDP Sciences
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Fig. 1 – Hydra vulgaris is a fresh-water polyp consisting of three main parts: a mouth with tentacles,
a gastric column and a foot. The cell wall is composed of two cell layers separated by a membrane.
Reproduction by budding is the most common, however, creation of eggs could also be observed.

by typically 3–6 tentacles. A foot [10] enables hydra to attach to a substrate. The ability
of Hydra vulgaris to regenerate is spectacular, e.g., a few thousand gastric hydra cells, even
as a disorganized cluster, may regenerate into an adult animal without relation to their for-
mer function and position [11]. In contrast, the mouth, the tentacle and the foot cells are
irreversibly specialized [12].

At the beginning of the regeneration process, cells arrange to form a hollow ball. This ball
slowly elongates, then starts to grow tentacles at one end and finally transforms to a fully devel-
oped animal. We study the dynamics of the initial steps of morphology changes of hydra when
the hollow sphere loses its spherical symmetry. It elongates and subsequently the mirror sym-
metry with respect to the midplane perpendicular to the remaining rotational axis is broken.
This symmetry breaking is accompanied by relaxation oscillations of the ball radius [13, 14].
In the following, we provide a systematic and quantitative analysis of the shape of the cell ball
as a function of time. We characterize three different types of oscillations which anticipate
and accompany the symmetry breaking of the initially undifferentiated sphere. Furthermore,
we propose three different physical scenarios which can lead to these types of oscillations.

Materials and methods. – The preparation of hydra tissue follows mainly the description
in [15]. Hydras are raised in Volvic mineral water [16]. Non-budding animals with a length of
approximately 7mm are used for experiments after they are starved for 24 h.

Using a surgical knife, a small ring of tissue is cut out of the middle part of the gastric
column under a stereoscope (Zeiss Stemi 2000). This ring is then opened with two axial
cuts and the so-formed small squared tissue sheets of about 300µm are immersed in culture
solution. After 3–4 hours, regular hollow spheres form. The hydras are embedded into a very
soft agarose gel (0.02 g/10m�), providing stability without generating relevant counter-forces.
These spherical cell balls are observed under a self-assembled microscope equipped with 5×
objective (ZEISS Plan-Neofluar 5X/0.15NA), a CCD camera (Cohu 4900) and a timelapse
VCR (Sanyo). The pictures on the videotape are digitized with 320 × 240 resolution on a
Silicon Graphics O2 workstation. Analog and digital noise is suppressed by smoothing (3× 3
pixel averaging).

We observe the deformations only in the plane of observation of the microscope, hence, in
the case of coincidence of the organism-axis with the axis of observation, the deformation would
be ignored. However, gravity working in our favour, this case was found to be uncommon. We
determine the contour (algorithm will be published elsewhere) of which we discuss the dynam-
ics of the 0th (averaged radius) R0 and 2nd (elongation) Fourier modes R2 in a semi-discrete
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b) 7h19m56sa) 7h19m40s c) 17h19m36s

Fig. 2 – The hollow cell ball (about 104 cells, diametre: 200µm) before (a) and after (b) a contraction,
(c) the shape becomes oblong at a later stage of regeneration. Time scale refers to figs. 3 and 4.

polar coordinate system with 32 equidistant angles φm: R(φm) = R0+Re[
∑

n=1,2,... R̃neinφm ],
The position of the coordinate system is such that the 1st mode disappears.

Results. – Cell balls prepared as described above fold within 3-4 hours to form a hollow
sphere. It grows and collapses repetitively as shown in figs. 2, 3 and 4. The observed periodic
expansions and contractions can be distinguished (figs. 3 and 4) from active motion of adult
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Fig. 3 – a) shows the sphere radius R0 scaled with its mean value over the observed interval as a
function of time for 4 different hydra balls (curves 1–4). The curves 2, 3, 4 are staggered for clarity.
The transition from large- to small-amplitude sawtooth oscillations is indicated for curve 1, 2 and 4.
Curve 3 will not lead to successful regeneration. b) The corresponding frequencies of the sawtooth
curves have been determined by calculating the positions of the sawteeth using a multi-scale analysis
with a sawtooth test-function. The frequency is the inverse of the position differences of respective
neighbouring sawteeth.

Fig. 4 – The scaled radius R0, elongation R2 and triangular deformation R3 of the contour of sample
1 in fig. 3a) are displayed. The scaling factor is the average 〈R0〉t = R̄0 over the whole time interval.
Three different phases can be distinguished: phase I (t = 0–7.4 h), phase II (t = 7.4–15.5 h) and finally
phase III; the reversal of the peaks of the second mode between phase II and III defines the beginning
of phase III: the intersection of the envelopes (dashed lines) of the second mode. The radius oscillations
of the sphere remain identical to phase II. Mode 3 grows during phase III as an indication of more
complex structures emerging. At the end of the recording, the curves become noisy and ill-defined
due to the development of an emerging 3D morphology which is not well represented by a 2D contour.
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hydras [17, 18], which, in contrast, are very sensitive to mechanical disturbances and even to
ambient illumination [17].

The 14 hydras we analyzed exhibit sawtooth oscillations. Throughout the observation,
the inflation of the hollow cell ball is characterized by a scaled growth rate Ṙ0/R̄0 ≈ 2 ×
10−5 s−1. During the interval of observation three phases of characteristic oscillations can be
distinguished (figs. 3 and 4):

Phase I shows low-frequency relaxation oscillations with a period of 1–3 hours. They are
characterized by a slow constant inflation of the sphere followed by rapid contractions as soon
as some threshold is reached. During these oscillations, the radius changes by up to 20%.
During rapid shrinkage, it can be seen that the cell ball bursts occasionally and releases fluid
from the inside together with detached cells [14] (fig. 2). This indicates that pressure builds
up inside the ball when it inflates, which is also supported by the observation that the second
mode R2, measuring the elongation of the organism, often increases during deflation. This is
consistent with an isotropically elastic ball which when inflated becomes more spherical.

Phase II sets in abruptly after 7 to 13 hours of observation. The system continues to
oscillate, however with four times higher frequency and smaller amplitude (figs. 3 and 4). The
elongation (second mode) fluctuates synchronously to the contractions of the radius. During
this phase, the degree of elongation decreases upon deflation. This behaviour is not clearly ap-
parent at the beginning of phase II but becomes gradually more pronounced. The observation
that the shape becomes more elongated as it inflates indicates that the symmetry is broken
since the elastic properties of the ball are non-homogeneous on the sphere. We therefore con-
clude that the symmetry of the cell ball is being broken at the beginning of or during phase II.

Phase III sets in several hours after the onset of phase II. It is characterized by a new
behaviour of the second mode R2. While the radius oscillations R0 stay the same as during
phase II, the elongation R2 increases strongly while the ball contracts, and then relaxes slowly
to a more spherical shape upon inflation. These observations suggest active deformation of
hydra, faster than the time resolution of our experiment (i.e. 54 s) possibly due to contractile
elements in the cells. Maximal elongation is maintained only shortly (shorter than a minute),
relaxation towards a spherical shape is slow, on the order of a few tens of minutes. The
sawtooth oscillations of the radius remain unchanged with respect to phase II, they take place
simultaneously with respect to elongation.

Discussion. – The observed oscillations (figs. 3 and 4) of the radius exhibit non-linear
relaxation oscillations [19] characterized by a slow and steady inflation of the ball until a
rapid contraction occurs when a threshold radius is reached. These contractions are about
500 times faster than inflation. The contractions of the radius during phase II and III are
of four times lower amplitude, indicating that the threshold mechanism has changed. The
constant inflation rate throughout the whole observation period and for all hydras we studied
suggests that inflation is always due to a constant influx of fluid into the sphere during all
three phases. Our precision is not sufficient to detect the deviation from a linear slope, which
would be caused with a constant influx of fluid and the cubic ratio between volume and radius.
We assume that this flux of hydra medium is driven osmotically by cellular ion pumps which
actively transport ions into the ball.

The hydrodynamic flows during inflation and the mechanical stresses induced can be es-
timated as follows: The initial diameter of the cell ball is approximately. R̄0 � 200µm, the
internal volume is 4 n�. With an inflation rate of Ṙ0/R̄0 = 2 × 10−5 s−1, the inflation is
accompanied by a volume change of V̇ = 3V Ṙ/R̄0 ≈ 10−7 µ�/s and by an inflow of fluid
through the cell wall of the order of J0 = V̇ /A0 ≈ 10−8 m/s. We assume that this flux of
hydra medium is driven osmotically by pumps which actively transport ions into the ball.
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Fig. 5 – General mechanisms for relaxation oscillations. Inflation is due to a constant influx of
fluid driven by the active pumping of ions. Three different scenarios could describe the instability
leading to relaxation oscillations: (A) rupture of the cell layer, (B) cooperative channel opening,
and (C) active contraction.

The osmotic pressure of the ions balances the pressure difference ∆P � 2Σ/R0 due to elastic
deformation of the cell ball and the resulting mechanical tension Σ � χ(A − A0)/A0. Here,
A − A0 denotes the elastic area increase and χ the area-elastic modulus of the cell ball. The
elastic modulus χ ≈ 10−3 N/m is estimated from observing elastic deformation of the ball
after applying a force using a glass micro-plate of known elasticity [20].

Using the observed radius change of 20%, we estimate (A − A0)/A0 � 0.44 and Σ �
10−2 N/m. With ∆P � 2Σ/R0, the osmotic pressure is of the order of ∆P ≈ 10Pa. The
corresponding concentration C = ∆P/(NAkBT ) of excess ions in the cell ball is estimated to
be C � 4µmol/�, i.e. approximately 1010 ions at room temperature. In order to achieve the
above estimate for the volume flow, pumping rates of 106 ions/s are required. Given that active
ionic pumps could carry up to several hundred ions/s [21], 104 pumps or a few pumps/cell
would be sufficient to account for the observed phenomenon.

The volume inflow due to active pumping is counteracted by passive outflow. We therefore
write the total flow as V̇ = J0A0 −∆PµA0, where µ denotes the passive permeability of the
cell layer to ions which in general is a function of tension Σ. As long as the second term is small
compared to the first one, the ball inflates. In order to generate relaxation oscillations, there
must exist a mechanism that provides for rapid relaxation and, thus, an outflow of ions as
soon as a threshold of the radius is reached. Such a threshold could most naturally be realized
by a sudden increase of the permeability µ(Σ), as soon as a critical tension Σc is reached.

We distinguish three different mechanisms which could lead to relaxation oscillations
(fig. 5(A-C)): (A) Rupture: when the osmotic pressure induces a mechanical tension reaching
a critical value Σc for which the cell bilayer ruptures, the opening of a small hole leads to
a sudden increase in permeability µ and thus a rapid deflation driven by osmotic pressure.
(B) Mechano-sensitive ion channels could have non-linear opening-vs.-tension characteristics
and open collectively at a critical tension, releasing the inner pressure. This would lead to
rapid deflation as in (A), however typically at a different tension threshold. (C) Active con-
tractions: Active tension could be generated by cells in the ball due to cellular contraction
mechanisms. This could also lead to an increase in pressure, expelling the inside fluid. Such a
contraction could be triggered as soon as a critical amount of cellular deformation proportional
to A − A0 is reached.

During the contractions in phase I, we observe an expulsion of material and cells from
the ball, in agreement with [14]. This observation suggests that the cell wall ruptures during
deflation, indicative of scenario (A). The idea of leakage through a hole in a rupturing cell
ball has many similarities with the dynamics of vesicles with opening and closing of vesicle
pores [22]. The volume flow of the leaking fluid is related to the flow velocity vL via V̇ � vLd2.
We can obtain an estimate for the hole diameter assuming that a single hole of size d opens,
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assuming that vL scales as vL � d∆P/η. During rapid relaxation, V̇ ≈ 10−4 µ�/s. With the
above estimate for the pressure ∆P , we find d � (V̇ η/∆P )1/3 to be of the order of d ≈ 10µm,
which is of the order of the size of hydra cells. In this simple model, the flux through the
membrane is proportional to the pressure difference across it. Therefore, the relaxation is
expected to be exponential in this case.

After the sudden transition to phase II, relaxation oscillations have the same inflation rate
as before, but the threshold at which deflation occurs is reduced. Since deflation in phase II
occurs at lower tension, we suggest that a new mechanism for sudden leakage is now available.
A possibility is the scenario (B) described above, where coordinated opening of mechano-
sensitive ion channels or loosening cell junctions could lead to an instability. Looking at
the symmetry breaking mode R2 during phase II, we find that toward the end of this phase
R2 shows an increasingly pronounced growth during inflation. The fact that with increasing
pressure the shape becomes more elongated indicates that the poles defined by the long axis
of the organism are of reduced elasticity relative to the equator elasticity. This shows that the
elastic properties of the cell ball break the spherical symmetry. Note that the relaxed shape
remains close to spherical. Thus, symmetry breaking of the mechanical properties of the cells
on the sphere occurs at the beginning of or during phase II.

At the onset of phase III, the behaviour of the elongation mode R2 changes. The mode
increases during the relaxation phase and the cell ball slowly becomes more spherical during
inflation. The increase of R2 during relaxation is an indication that at the onset of phase III
the preferred shape of the ball is no longer a sphere but has broken symmetry. Under pressure
increase during inflation, this relaxed shape is deformed in a more spherical shape. Obser-
vation of the video sequences of shape changes during this phase gives the impression that
contractions are active. This is supported by statements of Sato-Maeda et al. [23] and cor-
responding to scenario (C). However, the possibility that the elongations are due to rapid
pressure decrease in a non-spherical cell ball (scenario (B)) cannot be excluded.

Conclusion. – We report a quantitative study of the dynamics of shape changes of a
spherical ball of hydra cells at the first stages of development by regeneration using a newly
developed contour-retrieval algorithm giving access to the corresponding Fourier modes. We
observe sawtooth oscillations (relaxations oscillations) of the radius. The fact that the growing
slope of the sawteeth remains unchanged throughout our observation suggests that a common
transport mechanism is at the origin of inflation of the cell ball.

For the interpretation of the contractions we propose three different mechanisms of non-
linear instabilities. It is plausible that all three mechanisms are implicated in the sequence of
events that is precisely regulated. The oscillations of shape go through three well-identified
phases of motion.

Our observations show that morphological symmetry breaking always occurs after comple-
tion of phase I. It appears as an inhomogeneity in the elastic properties of the spherical cell ball.
This suggests that the described mechanical oscillations are an integral part of the developmen-
tal mechanism. This is corroborated by the fact that all hydras which do not show relaxation
oscillations fail to regenerate. Hydras which do regenerate have in common the intense and
well-regulated mechanical activity during regeneration which evolves in a well-defined way
via the three phases characterized. The periodic shape changes and inflation of oscillations
could provide a synchronization of cell states along the cell ball and a time reference for de-
velopmental changes. Further research needs to place these results into the molecular context
of cell signaling and pattern formation: It will be interesting to see if the emergence of the
hydra WNT signalling cascade, as observed in [24], coincides with the end of phase I, pointing
further to a link of the observed characteristic mechanical motion and axis establishment.
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