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Membranes with Rotating Motors
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We study collections of rotatory motors confined to two-dimensional manifolds. These systems show
a nontrivial collective behavior since the rotational motion leads to a repulsive hydrodynamic
interaction between motors. While for high rotation speed motors might exhibit crystalline order,
they form at low speed a disordered phase where diffusion is enhanced by velocity fluctuations. These
effects should be experimentally observable for motors driven by external fields and for dipolar
biological motors embedded into lipid membranes in a viscoelastic solvent.
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many kinds of eucaryotic cells. They are formed from
specialized groupings of microtubules called ‘‘basal

[9,10], whereas for cilia ! ’ 10–100 s and R ’ 5 m
[5]. Therefore Re ’ 10�7 and Re ’ 10�3, respectively. For
Membranes are an essential part of a cell. They define
its external boundaries and partition it into various com-
partments. However, the function of biological mem-
branes is much more complex than merely being a
passive barrier. They participate in a number of essential
cell functions, such as transport, cell locomotion, and
intercompartmental transport. These functions are medi-
ated by specific proteins, which consume and convert
energy. Thus, from a statistical physics point of view,
biological membranes are strongly out of equilibrium.

Realistic models of biological membranes have to ac-
count for these nonequilibrium properties. Whereas the
shapes and fluctuations of model fluid membranes at
thermal equilibrium are by now well understood [1], the
investigation of active membranes (i.e., membranes con-
taining active components) has just started. Recently, a
theoretical nonequilibrium statistical physics approach
has been developed to describe the shapes and fluctuations
of membranes containing active pumps [2]. Experiments
have been carried out which have confirmed the theoreti-
cal predictions that under appropriate conditions none-
quilibrium noise enhances the shape fluctuations of the
membrane [3].

So far, the theoretical analysis of active membranes has
concentrated on pumps and channels. However, there is a
class of biologically relevant macromolecules which ex-
hibit rotational motion. Most important are the motor
adenosine triphosphate synthase (ATPsynthase) [4] and
certain cilia [5].

ATPsynthase is a large multisubunit protein, consisting
of an enzymatic protruding portion F1 attached to a
membrane-embedded, proton-conducting portion F0 [4].
It is thought that the protons passing through the trans-
membrane carrier cause the stalk to spin rapidly within
the head, inducing the synthesis of ATP in F1. The motor
is reversible and an excess of ATP provokes a rotation in
the opposite direction and a reverse flux of protons. Cilia
are hairlike structures that extend from the surface of
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bodies.’’ Their primary function is to move fluid over
the surface of a cell or to propel single cells through a
fluid. However, as observed in Ref. [5] nodal cilia can also
exhibit rotational motion.

Other rotatory motors have been experimentally real-
ized in a completely different nonbiological context.
Whitesides et al. have studied pattern formation of rotat-
ing magnetic disks confined to a two-dimensional inter-
face [6,7]. Similar effects should also occur for rotors
stirred by laser tweezers [8]. While these motors are
rotational monopoles driven by an external field, the
biological macromolecules are driven by internally gen-
erated forces and correspond to rotational dipoles.

Here, we study both rotational monopoles confined to a
two-dimensional manifold (which could be a membrane
or any other surface) and dipolar motors embedded into
membranes (which could be biological motors in a lipid
membrane). We show that these systems exhibit, in con-
trast to membranes containing pumps and channels, a
nontrivial collective behavior since the rotational motion
may induce repulsive hydrodynamic interactions between
motors. Consequently, at high rotation speed, the motors
might form a crystalline phase. Upon decreasing speed
(by, e.g., changing the ATP concentration), the lattice
melts to form a disordered phase. For this (‘‘high-
temperature’’) phase we predict an enhancement of dif-
fusion, and we comment on the existence of stable limit
cycles for the movement of the motors.

We assume the motors to be embedded in a flat mani-
fold at z � 0 with a shear surface viscosity �m. The
manifold is surrounded by an incompressible solvent of
density �l which is either Newtonian or viscoelastic. The
manifold contains N motors at position ri, where r �
�x; z� denotes the position in three-dimensional space
and x � �x1; x2� the position on the surface.

For the systems mentioned above flow occurs at low
Reynolds number Re since for ATPase the angular veloc-
ity ! ’ 100–1000 s�1 and its typical size R ’ 10 nm
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rotors driven by an external field ! ’ 10–100 s�1 and R ’
100 m should be realizable. Then, Re ’ 10�1 � 1.

We first consider the simplest monopolar motor given
by a spinning sphere of radius R embedded into a surface
with negligible surface viscosity (�m � 0) surrounded by
a Newtonian fluid with viscosity �. The velocity field v
induced by a rotation with angular velocity vector ! �
!ez is in the direction of e’ � ez � r=r in spherical
coordinates. In the limit of small Reynolds number, v is
a solution of the Stokes equation and is given by [11]

v �
R3

r3
!� r: (1)

In the simplest description, rotational dipoles on such a
surface can be thought of as being built up by two spheres
separated by a distance d with angular velocity vectors
�! and !. If the two spheres are located at r1 � �0;
z � 0� and r2 � �0; z � d�, then the velocity field at r (for
r� d) is at first order in d given by

v �r� � v’e’ �
3R3zd

r5
!� r: (2)

Because of rotational symmetry the flow field (1) is
independent of �. However, � sets the scale for the
relevant forces. The viscous torque exerted by the fluid
on the rotating sphere is given by � � �8��R3!, with
� � �ez.

For a more realistic description of the biological (di-
polar) motors one must take into account the membrane
viscosity �m � 0 so that the viscosities seen by the two
rotating portions of the motor are different. For simplic-
ity, we assume that the motor consists of two circular
disks with radii R at z � d and z � 0. We restrict the
analysis to the limit d=z 	 1 and describe the flow field
of one motor as being created by a set of localized forces
in the fluid. Since a motor that is not subject to an external
field cannot inject momentum into the fluid, the total
torque associated with the force distribution vanishes.
By introducing a discrete distribution of force centers at
the edge of the disks the velocity field can be calculated.
The coupled Stokes equation in the external fluid and in
the membrane in the presence of this force field gives the
velocity field in polar coordinates

v �r� � �e’
�

8��

Z 1

0
dqq2hG�q; l�e�qjzjJ1�qx�; (3)

where h � d [12]. The velocity is as above parallel to the
plane of the membrane and in the orthoradial direction.
Here, J� denotes the Bessel functions of the first kind [13]
and the propagator is given by G�q; l� � �1� ql��1 �
�2��z�, where ��x� is the Heaviside function, l � �m

2� and
� � 1. In principle, the scale of l is set by the membrane
thickness, but experimentally it is found to be at least 100
times larger [14].

For l � 0 Eq. (3) reduces to Eq. (2) and we recover the
case of free spheres. For cilia which are immobile in the
membrane one can set l � 1 and one has v�r� �
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2v’e’��z�, where v’ is given by Eq. (2). In the case of
a solidlike membrane the flow field does not penetrate
through the membrane.

The case of monopolar motors embedded into a mem-
brane with �m � 0 can be treated in a similar way. Here,
v�r� is also given by Eq. (3) provided one sets h � 1=q
and � � 0 [in the definition of G�q; l�]. This equation
reduces to Eq. (1) for l � 0. For large l one finds v�r� �
e’xR3!=lr�z� r��.

We now consider an ensemble ofN motors confined to a
flat surface and discuss the effect of the hydrodynamic
interactions between them.

(I) Monopolar motors.—Since Stoke’s equation is lin-
ear, the flow field for an assembly ofN motors at positions
xi reads (for �m � 0)

v t�r� � R3
Z
d2x0��x0�!�

r� r0

jr� r0j3
; (4)

where ��x� �
PN
i�1 ��x� xi� is the two-dimensional den-

sity of motors. This expression is formally equivalent to
the Biot and Savart law of classical electrodynamics (see,
e.g., [15]). Here, v plays the role of the magnetic field B
which is induced by a current j�x; z� � ��x�!��z�. Fur-
thermore, vortex lines in rotating superfluid helium create
the same velocity field [16]. Thus, nondipolar motors can
be interpreted as vortex points in two dimensions of
strength  �

H
dl � v � 2�!R2.

We assume that each motor follows the local flow.
Thus, a motor at position r0 has velocity vt�r0�. For a
discrete set of motors in an external field one finds

dxi
dt

� R3
X
j
j�i

!� �xi � xj�

jxi � xjj3
�O

�
R6!

jxi � xjj5

�
: (5)

The neglected terms arise from the fact that the flow field
v�xj� of motor j alters the no-slip boundary condition for
motor i at position xi. However, these corrections are
small for low densities, i.e., for jxi � xjj � R.

To investigate the hydrodynamic interactions between
the motors, it is useful to introduce the pseudoenergy

Ekin � ��lR6!2
X
j�i

1

jxi � xjj
: (6)

A direct calculation shows that Ekin �
1
2�l

R
d3rv2

t �r� is
the total kinetic energy of the fluid. The equation of
motion (5) of a motor can then be rewritten as

2��lR
3 dxi
dt

�! � �
�Ekin

�xi
: (7)

The assembly of motors therefore reaches a steady state if
the effective energy Ekin is extremal. Note, in Eq. (6) �l
has been introduced artificially, and there are no inertial
effects in this force balance. The effective hydrodynamic
interactions between motors are thus long range and
repulsive and decay as 1=x [17]. In the absence of thermal
fluctuations we thus predict that in a steady state, the
108104-2



P H Y S I C A L R E V I E W L E T T E R S week ending
5 SEPTEMBER 2003VOLUME 91, NUMBER 10
motors should form a Wignerlike ‘‘crystal’’ and order on a
triangular lattice [18].

Thus, even though we are considering a viscous system
the kinetic energy provides the relevant functional for the
equations of motion. This is in agreement with the equiva-
lent electrodynamical problem, where the energy density
Eem � B2=�16�c�. Since B corresponds to vt�r�, Eem

corresponds to the kinetic energy Ekin of the system.
To discuss the stability of the lattice of motors, we

consider a slightly disturbed lattice where motor i has
been displaced from its equilibrium position Ri � R�0�

i �
�R�t�. By analyzing the equation of motion for �R�t� it is
easy to see that the displaced motor performs a rotation
around its initial position with constant frequency ~!! ’
36!R3

a3
, where a is the lattice constant.

Thus, at the level of linear hydrodynamics, the trian-
gular lattice of motors is only marginally stable. A full
stability analysis requires nonlinear hydrodynamics. This
goes beyond the scope of this work, and we give only a
qualitative argument. It is shown in Refs. [6,7] that the
first order inertial correction to the Stokes equation gen-
erates a force acting on the displaced motor. This force is
the Magnus force FM � �2��lR

4 ~!!e’ �!. The Magnus
force on the displaced motor points towards the equilib-
rium position and thus stabilizes the lattice.

In order to estimate the relaxation towards the equilib-
rium position, we assume that the motor is at position
�R�t� � r�t��cos ~!!t;� sin ~!!t� and we calculate r�t� by
balancing FM with a viscous drag force with a Stokes
friction of order 6��R. Then, r�t� decays exponentially
with a relaxation time 1=tR � �l! ~!!R2=�3��. The critical
frequency !c at which the crystal melts can be obtained
by comparing the relaxation time tR with a characteristic
time of thermal fluctuations given by the diffusion
time over a lattice constant tD � a2=D � 6��Ra2=kT.
Melting occurs for tR ’ tD or at frequencies !<!c with

!2
c ’

akT

72�tvR
4�

; (8)

where tv � �lR2=� is the time scale of diffusion of
vorticity. Equation (8) is equivalent to the Lindeman
criterion, where kT � a2@2U�! � !c�=@x

2 with
@U=@x � FM.

If inertial effects are negligible, crystallization does
not occur in ideal Newtonian fluids where no viscous
analog of the Magnus force exists [19]: a viscous
Magnus force Fv

M would have to break time-reversal
symmetry, and in the absence of additional time scales
any combination of v�! is symmetric under time re-
versal. In real (viscoelastic) fluids such an additional time
scale is present given by the viscoelastic relaxation time
tm. Then, Fv

M � 6��Rtmv�! [20]. For the biological
materials considered here, viscoelastic effects dominate
over inertia and one can replace tv by tm in Eq. (8). For a
crystal of rotating objects with the size of a few nano-
meters one has !c ’ t�1

m (at room temperature).
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(II) Dipolar motors.—To describe the motion of dipolar
motors in a Newtonian solvent, we introduce the bulk
friction - � 6��R for the fluid part of the motor and the
membrane friction for the membrane-embedded part
-m � 6��l. The actual velocity v of the motor is given
by the balance of the friction forces on the motor, i.e.,
-�v� vt�d��� -m�v� vt�0�� � 0, where the velocities
above the membrane vt�d� and in the membrane vt�0�
for one motor are given by Eq. (3) in the limits where z!
0� and z! 0�, respectively. Summing over the velocity
fields created by all motors, we find

v t�x� �
�d
4�!

Z
d2x0G�x� x0�!�r��x0�: (9)

The kernel G is obtained by inverse Fourier transforma-
tion of G�q� of Eq. (3) (for z < 0)

G�x� �
1

2�lx

�
1�

�x
2l

H0�x=l� � N0�x=l��
	
; (10)

where H0 is the Struve function and N0 the Neumann
function [13]. If x	 l, G�x� � 1=�2�lx�, and if x� l,
G�x� � l=�2�x3�. The velocity of a motor vanishes both
for l � 0 because of symmetry and for l! 1 since then
no motion is possible.

The interactions between the motors are studied in a
similar way as for nondipolar motors. We introduce the
pseudoenergy E � 2�2�lR6!2d

R
d2x

R
d2x0��x���x0� �

G�x� x0� and the equation of motion of a motor is given
by Eq. (7) with E replacing Ekin. A steady state distribu-
tion of the motors therefore corresponds to an extremum
of E. The energy E corresponds to the kinetic energy
of the fluid only for G�x� � 1=x. The hydrodynamic
interactions between motors are again long range and
repulsive, and the dipolar motors tend to arrange on a
triangular lattice. Since for motors in a membrane the
viscous friction is in general dominated by the membrane
friction -m � �m � �l, the critical frequency is !c �
a3kT=�tvR4�ld��1=2 at low densities (a � l) and !c �
alkT=�tvR

4�d��1=2 at high densities (a 	 l). Again, for
viscoelastic fluids !c can be obtained by replacing tv by
tm in these formulas. All these results can be easily
generalized to monopoles in membranes (by using the
correspondence d � 1=q and � � 0).

Inserting typical values for the lattice constant a�
10R, we find an extremely high !c for nanometer scale
motors in a Newtonian solvent. However, for viscoelastic
solvents the hydrodynamic interactions are much stronger
and melting occurs at experimentally achievable frequen-
cies. The discussed effects might even be large enough to
be relevant for real biological systems (such as, e.g.,
ATPsynthase in mitochondria). Ordering phenomena
can probably be observed by attaching actin filaments to
the F1 portion [10] or by using motors of the size of cilia.
For monopolar macroscopic motors, ordered structures
have been observed [6,7].
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At sufficiently low !, hydrodynamic interactions are
small and the motors form a disordered gas on the mem-
brane. Local density fluctuations induce then local fluc-
tuations of the velocity field. The convection by these
velocity fluctuations creates an active diffusion of the
motors. The active contribution to the diffusion constant
is given by �D � 1

2

R
1
0 dthv�x; t�v�x; 0�i. By using Eq. (9)

and by describing the motors as an ideal gas with
h��q; t���q0; 0�i � 4�2��q� q0�� exp��Dmq

2t�, where �
is the average density in the membrane and Dm �
�6��l��1 the two-dimensional diffusion constant of the
motors in the membrane, one obtains

�D
Dm

�
9��d2

16

�
�
kT

�
2
log�1� qmaxl� �O

�
�D2

D2
m

�
: (11)

The active contribution to the diffusion constant is
small for bare ATPase (where � ’ 0:01 kT) but it can
become important for actin-labeled ATPase (� ’ 10 kT)
and larger objects of the size of cilia.

So far, we have considered only flat membranes and
ignored the coupling between the undulation fluctuations
of the membrane and the rotating motors. Shape fluctua-
tions influence the flow field on the membrane and thus
alter the distribution of motors and the active contribution
to the in-plane diffusion constant Dm � �D. Further-
more, the flow created by the motors can perturb the
membrane fluctuations [3]. However, here the flow re-
mains parallel to the average plane of the membrane
even in the presence of shape undulations and the fluctua-
tion spectrum is not modified [21].

In the high temperature phase motors might form ag-
gregates which are stationary in shape. A possible con-
figuration is a circle of radius r0 consisting of N
uniformly distributed motors. The far field of such a
distribution is identical to that created by a single motor
localized at the center of the circle rotating at a frequency
N!, i.e., v�x� � R3N!=x2 �O�r20=x

2�. Inside the circle,
one has v�x� � R3N!x=r30 �O�x2=r20�. Thus, the circular
arrangement rotates as a whole, with an x-dependent
frequency, which vanishes as r0=R! 1. However, this
circular configuration is stable only in the limit where
thermal fluctuations are negligible: if a motor diffuses
away from the boundary of the aggregate, it starts to
rotate around it, and the Magnus force caused by this
motion then drives the motor even further away.

Nonhomogeneous motor distributions might also be
related to the pathology situs inversus. Its origin has
been tracked down to the absence of flow in the node
region of mouse embryos, which is normally generated by
rotating cilia [5]. It is assumed that the randomization of
the left-right placement of organs associated with situs
inversus is due to defective ciliary movement in the
embryonal phase. For a collection of motors (which all
rotate in the same direction) restricted to a nonsymmetric
triangular geometry (which seems to be the shape of the
node in mouse embryos) left-right symmetry is broken.
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For a homogeneous arrangement of motors the associated
transport is weak since for finite lattices only the motors
close to the boundaries contribute. However, homogene-
ous arrangements restricted to a finite geometry are
unstable. To demonstrate this we have numerically inte-
grated Eq. (5) for N mobile motors restricted to a trian-
gular geometry. Upon introducing adsorbing boundary
conditions on the sides of the triangle, we found that
density gradients build up which lead to an enhancement
of the symmetry-breaking transport [12].
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