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I. GENERIC BEHAVIOR AT A HOPF-BIFURCATION

A. Nonlinear relation between periodic stimulus and displacements

We are interested in the response x(t) of a nonlinear system to a periodic stimulus force
f(t). If only one frequency ν = ω/2π is present we use the Fourier expansions

f(t) =
∞
∑

n=−∞

fneinωt (1)

x(t) =
∞
∑

n=−∞

xneinωt , (2)

where the complex coefficients xn and fn obey xn = x∗

−n and fn = f ∗

−n. This representation
implies that we focus on the limit cycle solution and ignore all transient relaxation phe-
nomena. We consider the class of systems for which the force at a given time depends in a
nonlinear way on the history of the displacements x(t) alone; as we will discuss in section
D more complex cases do not change the basic properties. In this situation, the relation
between x and f can be expressed as a systematic expansion of the force amplitudes fn in
the amplitudes xn:

fk = F
(1)
kl xl + F

(2)
klmxlxm + F

(3)
klmnxlxmxn + O(x4) , (3)

where the expansion coefficients F
(n)
k,k1,..,kn

are symmetric with respect to permutations of the
indices k1..kn. The limit cycle solutions are invariant with respect to translations in time
t → t + ∆t. Under these transformations the amplitudes change as xn → xneinω∆t and
fn → fne

inω∆t. Inspection of Eq. (3) shows that the time translation symmetry allows only

for those terms F
(n)
k,k1,..,kn

xk1
..xkn

for which k = k1 + ... + kn. For all other cases F
(n)
k,k1,..,kn

must vanish which significantly restricts the number of terms.

B. Hopf bifurcation

The nonlinear system exhibits spontaneous oscillations and a Hopf-bifurcation if non-
trivial solutions to Eq. (3) with xn 6= 0 exist in the case where all fk = 0, i.e. if no stimulus
force is applied. Without loss of generality, we consider here an instability of the mode x1.
In this case, the dominant terms allowed by symmetry read (fk = 0)
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0 ≃ F
(1)
11 x1 + 2F

(2)
1,2,−1x−1x2 + 6F

(3)
1,1,1,−1x

2
1x−1 + 6F

(3)
1,1,2,−2x2x−2x1 (4)

0 ≃ F
(2)
22 x2 + 2F

(2)
211x

2
1 . (5)

Eq. (5) determines x2 ≃ −2(F
(2)
211/F

(2)
22 )x2

1. Inserting this relation in Eq. (4), we obtain to
lowest order

0 ≃ Ax1 + B|x1|
2x1 , (6)

where A ≡ F
(1)
11 and B ≡ 3F

(3)
1,1,1,−1 − 4F

(2)
211F

(2)
1,2,−1/F

(2)
22 .

The coefficients A(ω, C) and B(ω, C) are complex and in general depend on frequency
ω and a control parameter which we denote by C. A Hopf bifurcation occurs at a critical
point C = Cc at which A vanishes for a frequency ωc, i.e. A(ωc, Cc) = 0. This can be
demonstrated as follows: A spontaneously oscillating solution satisfies

|x1|
2 = −

A

B
(7)

Note, that such a solution can only exist if A/B is real and negative. At the bifurcation
point, A = 0 and A/B is therefore real for ω = ωc, however the corresponding amplitude
|x1|

2 vanishes. In the vicinity of this point we expect to find solutions with finite amplitude.
We use the expansion

A(ω, C) ≃ (ω − ωc)A1 + (C − Cc)A2 (8)

where A1 and A2 are complex coefficients and we neglect higher order terms. Spontaneous
oscillating solutions exist only if A/B is real. This condition is satisfied for a particular
frequency ω = ωs with

ωs = ωc +
Im(A2/B)

Im(A1/B)
(Cc − C) . (9)

The ratio −A/B at this frequency ωs changes sign for C = Cc; here we assume without loss
of generality that it is positive for C < Cc. In this case, the system oscillates spontaneously
with an amplitude which according to Eq. (7) behaves as |x1|

2 = ∆2(Cc − C)/Cc, where

∆2 = Cc

(

Re(A2/B) − Re(A1/B)
Im(A2/B)

Im(A1/B)

)

(10)

is a typical amplitude. We have thus demonstrated that Eq. (6) characterizes a Hopf-
bifurcation if the complex coefficient A vanishes at a critical point Cc for a critical frequency
ωc.

C. Amplified response to sinusoidal stimuli

If a sinusoidal stimulus f(t) = f1e
iωt + f−1e

−iωt, for which all fn with n 6= ±1 vanish,
Eq. (6) becomes
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f1 ≃ Ax1 + B|x1|
2x1 . (11)

We consider a system that is tuned exactly to the bifurcation, C = Cc. In this situation
spontaneous oscillations do not occur and A = (ω − ωc)A1. If the imposed frequency is
equal to the critical frequency ω = ωc, the coefficient A vanishes and we can solve Eq. (11)
for |x1| to find the nonlinear response

|x1| ≃ |B|−1/3|f1|
1/3 , (12)

as a function of the force amplitude |f1|. This behavior represents an amplified response
with a gain

r =
|x1|

|f1|
∼ |f1|

−2/3 (13)

that becomes arbitrarily large for small forces. If the frequency ω is different from ωc, this
nonlinear response still holds as long as the linear term in Eq. (11) is small compared to
the cubic term and can be neglected. This is the case if |x1|

2 ≫ |A/B| = |ω − ωc||A1/B|.
Therefore, the nonlinear regime characterized by Eq. (12) holds for sufficiently large force
amplitudes, |f1| ≫ |(ω − ωc)A1|

3/2/|B|1/2, or if the frequency is sufficiently close to the
critical frequency, |ω − ωc| ≪ |f1|

2/3|B|1/3/|A1|.
If the frequency mismatch |ω−ωc| becomes large, or if forces |f1| are small, a new regime

occurs for which the linear term in (11) dominates. In this regime, the response is linear,

|x1| ≃
|f1|

|(ω − ωc)A1|
, (14)

and the gain is constant. This is a passive response if the stimulus frequency is too far from
the critical frequency.

D. Additional remarks

The above derivation is based on an expansion (3) in the displacements xn. This excludes
some nonlinearities in the force which can lead to additional nonlinear terms in Eq. (11).
The most general form of Eq. (11) is

f1 ≃ Ax1 + B|x1|
2x1 + Cx1|f1|

2 + Dx−1f
2
1 + E|x1|

2f1 + Fx2
1f−1 + G|f1|

2f1 . (15)

However, for small forces f1 and small amplitudes x1, the results derived above are not
affected. The regime of nonlinear reponse |f1| ∼ |x1|

3, as well as the linear response regime
|f1| ∼ |x1| still exist. If |f1| ∼ |x1|, the nonlinear terms in f1 renormalize the third order
term, which in this regime is negligable. If |f1| ∼ |x1|

3, the nonlinear terms in f1 are of even
higher order and can be neglected.
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II. OSCILLATIONS GENERATED BY MOLECULAR MOTORS

A. Two state model

The two state model describes force-generation as a result of transitions between two
states, a bound state and a detached state of a motor and its track filament. The interaction
between a motor at position z along the filament in states 1 and 2 is characterized by two
periodic potentials W1(z) = W1(z + l) and W2(z) = W2(z + l) where l is the period. We
introduce the relative position ξ = z mod l with respect to the potential period. Detachment
and attachment rates are denoted ω1(ξ) and ω2(ξ), respectively. Oscillations can occur in
this model if a large number N of motors move collectively against an external elastic element
of modulus K.

We introduce the probability P1(ξ) and P2(ξ) of finding a motor bound at position ξ in
state 1 or 2, which satisfy the normalization condition

∫ l

0
dξ(P1 + P2) = 1 (16)

For a large number of motors collectively moving with the same velocity v the dynamic
equations read

∂tP1 + v∂ξP1 = −ω1P1 + ω2P2 (17)

∂tP2 + v∂ξP2 = ω1P1 − ω2P2 (18)

The velocity v is determined by the force-balance condition

f = λv + Kz + N
∫ l

0
dξ(P1∂ξW1 + P2∂ξW2) (19)

where λ is a friction coefficient describing the total friction and z is the displacement of the
motors, ∂tz = v. For an incommensurate arrangement of motors with respect to the track
filament and a large number N of motors, P1(ξ) + P2(ξ) = 1/l and the equations of motions
simplify:

∂tP + v∂ξP = −(ω1 + ω2)P + ω2/l , (20)

where we denote for simplicity P (ξ) = P1(ξ).
We discuss a simple choice for the potentials and transition rates for which the Hopf

bifurcation is easy to determine analytically. We consider the potential

W1(ξ) = U cos(2πξ/l) (21)

with amplitude U , and the potential W2 to be constant. The transition rates are chosen to
be periodic functions

ω1(ξ) = β − β cos(2πξ/l) (22)

ω2(ξ) = α − β + β cos(2πξ/l) (23)

parameterized by two coefficients α and β. With this choice,

ω1(ξ) + ω2(ξ) = α (24)

is constant and the fact that ω1 and ω2 are positive restricts β to the interval 0 ≤ β ≤ α/2.
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B. Linear response function

In order to determine the linear coefficient A which determines the stability of the system,
we look for small amplitude oscillations close to the resting state with v = 0. We write

P ≃ p0 + p1e
iωt (25)

f ≃ f1e
iωt (26)

z ≃ z1e
iωt (27)

where p0 = ω2/αl. To linear order in z1, we find from Eq. (20)

p1 = −
iωz1

iω + α
∂xp0 (28)

The corresponding force is given by

f1 ≃ Az1 (29)

with

A = iωλ + K + χ , (30)

where the active response χ of the motors is given by

χ = −N
∫ l

0
dξ

iω

iω + α
∂ξp0∂ξW1 (31)

For the choice of Eq. (21) and (23) the integral can be calculated and we obtain

A(C, ω) = iωλ + K − Nk0C
iω/α + (ω/α)2

1 + (ω/α)2
. (32)

Here, we have introduced the dimensionless control parameter C ≡ 2π2β/α with 0 < C < π2

and the cross-bridge elasticity k0 ≡ U/l2 of the motors.

C. Hopf bifurcation

A Hopf bifurcation occurs if there is a pair of values (C, ω) for which A as given by Eq.
(32) vanishes. Such a point indeed exists. For the critical value

Cc =
λα + K

Nk0

(33)

the bifurcation occurs for the critical frequency

ωc =
(

Kα

λ

)1/2

(34)
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The critical frequency is bounded by the fact that Cc < π2. The maximal frequency occurs
for the maximal possible value of K

Kmax = Nk0π
2 − λα (35)

for which Cc = π2. This frequency is given by

ωmax = α

(

Nπ2 k0

λα
− 1

)1/2

(36)

Note, that the maximal frequency can be significantly higher than the typical rate α of the
chemical cycle.
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