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Actively Contracting Bundles of Polar Filaments
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We introduce a phenomenological model to study the properties of bundles of polar filaments which
interact via active elements. The stability of the homogeneous state, the attractors of the dynamics in the
unstable regime, and the tensile stress generated in the bundle are discussed. We find that the interaction
of parallel filaments can induce unstable behavior and is responsible for active contraction and tension
in the bundle. The interaction between antiparallel filaments leads to filament sorting. Our model could
apply to simple contractile structures in cells such as stress fibers.
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Living cells have remarkable mechanical properties. In
addition to a passive response to mechanical stresses, eu-
caryotic cells are able to actively change their shapes, to
generate motion and forces [1], and to react to externally
imposed mechanical conditions [2]. The cytoskeleton,
which is a complex network of elastic protein filaments
such as actin filaments and microtubules, plays a key role
in these processes. Filaments are rod-like structures that
interact with a large number of specific proteins [3]. Ex-
amples are cross-linking proteins which induce formation
of a gel-like filament network and bundling proteins which
lead to filaments aligned in parallel. Furthermore, motor
proteins of the cytoskeleton are able to use the chemical
energy of the hydrolysis of adenosinetriphosphate (ATP)
to generate forces and motion along the filaments [1,3–5].
Myosins, for example, interact with actin filaments while
kinesins and dyneins move along microtubules. The di-
rection of motion of motor molecules is determined by the
polar structure of the filaments which have two different
ends, one denoted “plus,” the other “minus”: a given type
of motors always moves towards the same end [1]. Small
aggregates of motors which contain two or more active
domains can bind at the same time to two filaments and
exert relative forces and motion between them. In contrast
to passive filament solutions whose rheological properties
have been studied in recent years [6], filament systems
which interact with molecular motors represent intrinsi-
cally active materials which exhibit rich types of behavior
that have recently attracted much interest. In particular, the
formation of asters and spiral defects as well as the short-
ening of filament bundles have been observed in vitro and
in vivo [7–10]. The self-organization of motor-filament
systems has also been addressed theoretically [11–13].

Bundles of actin filaments interacting with myosin mo-
tors are prominent cytoskeletal structures that are involved
in many active phenomena in the cell [1]. For example,
within the sarcomeres of skeletal muscle fibers, they are
responsible for muscle contraction; as stress fibers they
produce forces in cells; and as contractile rings they are im-
portant during the final step of cell division. The contrac-
tion of sarcomeres follows from a particular arrangement
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of myosin and actin filaments. In contrast, stress fibers
and related structures lack an obvious spatial organization
of their components. The existence of these simple con-
tractile structures raises interesting questions: What are
the minimal requirements for a bundle of filaments and
active elements to contract? Do stable steady states of the
bundle exist which generate tension?

In this Letter, we develop a simple phenomenological
model for bundles of polar filaments containing active
elements that allows us to answer such questions and to
estimate the mechanical tension generated in the bundle.
Furthermore, we perform computer simulations which
demonstrate that the general behaviors described by this
model are indeed obtained for simple realizations of
the motor-filament interactions. Finally, we relate our
findings to biological systems.

Consider a linear bundle of aligned polar filaments of
equal length � distributed along the x axis. The number
densities of filaments with their plus ends pointing to the
right and to the left and with their center located at posi-
tion x are denoted c1�x� and c2�x�, respectively. These
densities satisfy the conservation laws

≠tc
1 � D≠2

xc1 2 ≠xJ11 2 ≠xJ12,

≠tc
2 � D≠2

xc2 2 ≠xJ21 2 ≠xJ22.
(1)

Here, D is an effective coefficient for filament diffusion
along the x axis. The currents J12 and J21 are active
filament currents that result from interactions mediated by
motors between pairs of antiparallel filaments. Currents
resulting from interactions between parallel filaments
are denoted J11 and J22. Here, we have assumed for
simplicity that two-filament interactions dominate, which
corresponds to a sufficently low density of active elements.
Equation (1) thus corresponds to a coarse-grained descrip-
tion where details of the dynamics of the motors have been
eliminated. The direction of filament motion induced by a
motor depends only on the filaments’ relative orientation;
see Fig. 1. Therefore, we can use general symmetry
arguments to write expressions for the active currents
without referring to a specific interaction mechanism.
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FIG. 1. Schematic representation of motor-filament interac-
tions. Motors are assumed to move towards the plus end of
filaments; arrows indicate the direction of filament motion. Ver-
tical lines indicate the centers of gravity of the filament pair.
(a) Antiparallel filaments slide in opposite directions. (b) Rela-
tive motion of parallel filaments occurs if a motor binds to a
plus end. Parallel filaments thus have the tendency to align their
plus ends. (c) Tension profile s along a filament driven by a
point force.

To this end we express the currents in terms of the
filament densities c1 and c2. For example, we write
J12�x� �

R�
2� dj j12�x, j�, where j12�x, j� is the

average current of plus filaments located at x induced by
the interaction with minus filaments located at x 1 j.
The integral arises since all filaments with centers located
in the interval �x 2 �, x 1 �� can interact with a filament
located at x. Then, assuming that the probability for
an active interaction between two filaments depends
only on the probability of their encounter, we write
j12�x, j� � y12�j�c1�x�c2�x 1 j�. Here, y12�j� is
the effective relative velocity between two antiparallel fila-
ments a distance j apart induced by many individual events
of motor activity. For parallel filaments we get analo-
gously, e.g., j11 � y11�j�c1�x�c1�x 1 j�. Now, sym-
metry arguments restrict the possible form of the functions
y66 and y67: In the absence of external forces momen-
tum conservation requires that the center of gravity must
remain fixed when two filaments are displaced. This leads
to y66�j� � 2y66�2j� and y12�j� � 2y21�2j�;
see Fig. 1. Furthermore, invariance of the system with
respect to inversions of space leads to the condition
y11�j� � 2y22�2j�. Respecting these criteria, we
choose for simplicity y21�j� � 2y12�j� � b and
y11�j� � y22�j� � a sign�j�. Here, a and b are con-
stants and sign�j� � 61, depending on the sign of j. We
have checked that other choices do not alter the general
properties of our model. The currents thus read

J66�x� � a
Z �

0
dj �c6�x 1 j� 2 c6�x 2 j��c6�x� ,

J67�x� � 7b
Z �

2�
dj c7�x 1 j�c6�x� .

(2)

Equations (1) and (2) describe the dynamics of our model.
We first analyze the stability of the homogeneous state
with constant c6�x� � c6
0 , which is a fixed point of the

dynamics for all values of the parameters. Using a Fourier
expansion of the densities c6�x� � c6

0 1
P

k c6
k eikx , the

filament dynamics to linear order in the amplitudes c6
k is

given by

d
dt

µ
c1

k
c2

k

∂
�

µ
L11 L12

L21 L22

∂ µ
c1

k
c2

k

∂
, (3)

where the elements of the matrix L�k� are

L66�k� � 2Dk2 2 2a�cos�k�� 2 1�c6
0 6 2ibk�c7

0 ,

L67�k� � 62ib sin�k��c6
0 .

(4)

With l�k� denoting the larger of the real parts of the two
eigenvalues of the matrix L�k�, the homogeneous state is
stable if l�k� # 0 for all k. When an instability occurs, a
band of unstable modes appears, which extends from k �
0 to some positive k. For a system of size L with periodic
boundary conditions (e.g., a contractile ring), the stability
of the homogeneous state is determined by the sign of
l�kmin�, with kmin � 2p�L. We find that the homogeneous
state becomes linearly unstable as soon as a . ac with the
critical value

ac �
D

�2c
f

µ
b�cL

D
,
dc
c

,
L
�

∂
. (5)

Here c � c1
0 1 c2

0 , dc � c1
0 2 c2

0 , and f�u, y, w� is a
dimensionless scaling function. Corresponding stability
diagrams are displayed in Fig. 2. For all values of the pa-
rameters we find ac $ 0. Therefore, unstable behavior is
induced by an interaction of parallel filaments with a . 0.
Consistent with this finding ac decreases with increasing
dc, i.e., with an increasing fraction of filaments pointing
in the same direction the system becomes less stable. The

FIG. 2. The critical value āc � ac�2c�D as a function of
b̄ � b�cL�D for different values of L̄ � L��. Here, a and b
characterize the interaction strength of parallel and antiparallel
filaments, respectively, L is the system size and � the filament
length. Solid lines correspond to dc � c�10 and dashed lines
to dc � c�2, where c is the filament density and dc�c the rela-
tive difference of the densities of plus and minus filaments. The
homogeneous state is unstable for a . ac.
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critical value ac increases with increasing D, indicating
that filament diffusion has a stabilizing effect. In many
limiting cases simple analytic expressions for ac can be
obtained. In particular, we find in the limit of large L, f �
2��1 1 jdcj�c� if b � 0 or dc � 0 and f � 1 other-
wise. In the homogeneous state, the total filament cur-
rent J � J11 1 J12 1 J21 1 J22 vanishes, while
currents of plus and minus filaments exist in opposite
directions. As soon as the homogeneous state becomes
unstable, a transient current J occurs which redistributes
filaments until an inhomogeneous stationary state is
attained. This final state consists of one or several
shortened filament bundles separated by empty regions.
Figure 3 displays the variance �x2� �

R
dx x2�c1 1 c2�

of stationary filament distributions as a function of a,
where we have assumed without loss of generality thatR

dx x�c1 1 c2� � 0. For small a only the homoge-
neous state exists as the attractor of the system. A second
attractor appears for a � ad , ac, which corresponds
to a shortened filament bundle. A third type of attractor
obtained numerically consists of two shortened filament
bundles. However, we cannot distinguish numerically
whether this state is a real attractor or a long-lived
transient state.

The instability of the homogeneous state thus leads to
bundle shortening. It is triggered by an increase of a

and occurs for all values of b, which suggests that the
interaction of parallel filaments is responsible for bundle
shortening. On the other hand, the interaction of anti-
parallel filaments (b fi 0) induces currents which in the
unstable regime lead to a separation of plus and minus fila-
ments [11]. The role of interactions between parallel fila-
ments for bundle shortening can be demonstrated explicitly
for the simple case D � 0 for which the uniform state is
linearly unstable for all a . 0. In this case, using Eqs. (1)
and (2), we can show that for b � 0 and a . 0 the vari-

FIG. 3. Variance of stable stationary filament distributions as
a function of ā � a�2c�D obtained by numerical solution of
Eqs. (1) and (2) for L � 10� and a system containing plus fila-
ments only (c2 � 0). The homogeneous state is stable for ā ,
āc. For ā . ād a new attractor corresponding to a shortened
bundle appears. A third attractor is also indicated. The insets
show for each attractor typical filament distributions over one
period in arbitrary units.
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ance decreases monotonically, i.e., d�dt�x2� , 0, which
implies bundle shortening.

Can the active filament interactions which lead to bundle
shortening generate tensile stresses that can be used to per-
form mechanical work during shortening? In the bundle,
tension arises due to forces generated by motors and due to
hydrodynamic forces exerted on the filaments by the sur-
rounding fluid. Let us estimate this tension s which has
units of force. For simplicity, we take only local friction
into account and ignore interactions between different fila-
ments by friction forces. Consider a rigid rod-like fila-
ment moving in a viscous environment in the direction
of its axis with a friction coefficient per unit length h.
If this motion is induced by a locally applied force, then
the tension profile along the filament is piecewise linear;
see Fig. 1(c). Tension is positive in the rear part of the
filament being “pulled” and negative in the front. Using
this tension profile, we calculate an average tension pro-
file along a filament at position x by summing over all
contributions due to interactions with filaments lying in
the interval �x 2 �, x 1 ��. We then calculate the ten-
sion in the bundle at position y, by summing the aver-
age tension of all filaments with centers within the interval
� y 2 ��2, y 1 ��2�. Finally, we coarse grain over one
filament length and obtain s� y� � s11� y� 1 s12� y� 1

s21� y� 1 s22� y�, where

s66 � h̄�a
Z y1��2

y2��2
dx

Z �

2�
dj c6�x 1 j�c6�x� ,

s67 � 7h̃�b
Z y1��2

y2��2
dx

Z �

0
dj

3 �c7�x 1 j� 2 c7�x 2 j��c6�x� .

Here, h̄, h̃ are effective frictions per unit length which
result from the coarse graining and differ from h by di-
mensionless geometric factors. Note, that the final coarse-
grained tension profile is independent of microscopic
details of the interaction mechanism.

As an example, consider a homogeneous ring, i.e.,
periodic boundary conditions. According to the above
equation it generates a tension s � 2ah̄�3�c12

0 1 c22
0 �,

which for a . 0 is positive and could then lead to active
contraction of the ring. This tension persists only if the
homogeneous state is stable. As soon as an instability
occurs, i.e., for a . ac, the ring ruptures and the remain-
ing bundle subsequently shortens. The shortening of the
unstable bundle generates transient inhomogeneous ten-
sion profiles. Figure 4 displays instantaneous density and
tension profiles of a filament bundle during shortening.
The density profile is symmetric, vanishing at the bundle
ends. The tension profile has the same qualitative shape.
The inhomogeneous tension leads to a filament current
J�x� which is antisymmetric corresponding to filament
motion towards the bundle center, consistent with bundle
shortening.
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FIG. 4. Instantaneous filament distributions (full lines, dots),
the tension profile (dashed lines), and the current (dash-dotted
lines) in arbitrary units of contracting filament bundles. (a),
(b) Numerical solutions of Eqs. (1) and (2) with ā � 0.5, b̄ �
0, c � 0.5, dc � 1, and L̄ � 10. (c), (d) Simulation of N �
1000 filaments as described in the text. (a) and (c) are for earlier
times, (b) and (d) for later times.

The effective model discussed above does not specify
the microscopic origin of active filament interactions char-
acterized by a and b. In particular, the interaction be-
tween parallel filaments could seem surprising [14]. In
order to demonstrate that such interactions can emerge
naturally from simple motor-filament interactions we have
performed computer simulations of a more microscopic
model. We consider N rigid filaments aligned along the
x axis. During each time step, a motor complex creates a
mobile cross-link between a randomly chosen pair of fila-
ments. The motors are displaced towards the plus ends of
the filaments with velocity y, possibly leading to a rela-
tive filament displacement. This generates an interaction
between antiparallel filaments. A relative displacement be-
tween parallel filaments occurs if we, furthermore, assume
that the filament ends have different properties than the
bulk of the filaments, namely, a motor which binds to or
arrives at the plus end of a filament stays attached for some
time; see Fig. 1(b). This effect generates an effective in-
teraction with a . 0 between parallel filaments [15]. We
have added diffusion steps in the simulations with D fi

0. Our simulations show the same qualitative behaviors
discussed above for the phenomenological model: an in-
stability of the homogeneous state which occurs below a
characteristic value of D. In the unstable state we ob-
serve bundle shortening due to the interaction of parallel
filaments; interaction of anti-parallel filaments leads to a
separation of plus and minus filaments. Using piecewise
linear tension profiles for moving filaments (correspond-
ing to local friction), we determine s�x� in our simulation
by averaging over many numerical steps. For the homo-
geneous state we find a tension which fluctuates around a
constant positive value. The simulated density profile, ten-
sion profile, and averaged filament current of a shortening
bundle are displayed in Fig. 4.
In conclusion, we have demonstrated that a bundle of
aligned filaments and motors may contract and generate
tension even if it is lacking a spatial organization. Using
symmetry arguments, we have shown under some simpli-
fying assumptions that the interaction of parallel filaments
is important. Whether stress fibers in cells use the physi-
cal mechanism proposed here for contraction remains to be
tested. In particular, experiments which focus on the in-
teraction between parallel filaments should be performed.
Stress fibers are likely to be more complex than the system
studied here and might also use other mechanisms for con-
traction. For example, they could have some yet unknown
spatial organization that allows them to contract more effi-
ciently, or other components in addition to motors and fila-
ments might be involved. Furthermore, they might work
close to the percolation threshold where large filament ag-
gregates occur and which is not captured by our model.
Nevertheless, we think that our model helps clarify the
role of motor-filament interactions and self-organization
phenomena for force generation in biological cells.
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