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Abstract. Active phenomena which involve force generation and motion play akey role in a number
of phenomena in living cells such as cell motility, muscle contraction and the active
transport of material and organelles. Here we discuss mechanical oscillations generated by
active systems in cells. Examples are oscillatory regimes in muscles, the periodic beating
of axonemal cilia and flagella and spontaneous oscillations of auditory hair cells which
play arole in active amplification of weak sounds in hearing. As a prototype system for
oscillation generation by proteins, we discuss ageneral mechanism by which many coupled
active elements such as motor molecules can generate oscillations. O 2001 Académie des
sciences/Editions scientifiques et médicales Elsevier SAS
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Oscillations mécaniques a I échelle dela cellule

Résumé. Les phénomeénes actifs impliquant la génération de forces et de mouvement, jouent un
rle primordial dans de nombreux phénomeénes de la vie cellulaire tels que la motilité, la
contraction musculaire et le transport actif d'organelles ou de composés. Nous discutons ici
les oscillations mécaniques générées par des systémes actifs dans les cellules. Des exemples
sont les régimes oscillatoires des muscles, le battement périodique des cils et des flagelles
axonemaux et les oscillations spontanées des cellules auditives. Ces oscillations spontanées
ci pourraient jouer un rdle important dans I'audition par 'amplification des faibles sons.
Nous discutons un systeme prototype de génération d'oscillations par des protéines, en
décrivant un mécanisme général impliquant I'intervention de nombreux éléments actifs,
comme des moteurs moléculaires2001 Académie des sciences/Editions scientifiques et
médicales Elsevier SAS
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1. Introduction

The generation of forces and the ability to move represent some of the most striking abilities of living
cells. Prominent examplesare cell motility, the contraction of muscles but also active transport of materials
and of organelles, for example during cell division and mitosis. Such movements are generated on the
molecular level by protein moleculesthat convert chemical energy to mechanical work. Prominent examples
are linear motor proteins of eucariotic cells. These motors are specialized to work by interacting with
filaments of the cytoskeleton [1]. They consume Adenosintriphosphate (ATP) as a fuel and convert its
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F. Jiilicher PHYSICS AT THE SCALE OF THE CELL

chemical energy to mechanical work. Myosin motors, for example, generate motion along actin filaments.
They are the active components in muscles, while kinesin and dynein motors move along microtubules[2].

In certain situations, cells can generate oscillatory motion and operate as mechanical oscillators.
Oscillatory behaviors of muscles have been known for along time in the case of some flight muscleswhich
move the wings of insects [3]. Many insects such as wasps and bees have muscles called ‘ asynchronous
which generate oscillatory contractions by amechanism located in the muscleitself which drivesthe beating
of thewings. Thistype of muscle differsfrom ‘ synchronous’ flight muscles of some other insectsfor which
contractions are triggered by a periodic nerve signal and are not generated in the muscle. More recently,
oscillatory behaviors have been observed under certain conditions in fibrils of ordinary skeletal muscles
which under normal conditions do not oscillate [4,5].

An important example for mechanical oscillations on the cellular scale is the periodic motion of cilia
and flagella[6,7]. These hair-like appendages of many cells are used for swimming and self-propulsion by
sperm and some small organisms or to stir fluids surrounding a cell or cell layer. The common structural
feature of these cilia and flagella is the axoneme, a well conserved arrangement of microtubule doublets
organized in a cylindrical fashion. Dynein molecular motors are attached to these microtubules and can
exert forces on neighboring microtubules. This structure is very well conserved and appears in a large
number of different cells of different organisms[8]. The activity of the dynein molecular motors coupled to
the microtubules leads to periodic bending deformations and waves along the cilium. In the case of sperm,
the flagellum propagates bending waves from the head towards the tail [9]. These waves are very regular
and essentially planar [10,11] and break the necessary symmetriesto allow the sperm to swim in a viscous
solution [12,13].

In the following sections, we describe some properties of mechanical oscillators and their implications
for biological situations. Close to an oscillating instability called Hopf bifurcation [14], the behavior of
a mechanical oscillator and its response to externally imposed oscillating forces are generic [15,16]. As
a prototype system for the generation of oscillations in cells, we discuss a general mechanism by which
alarge number of active elements such as molecular motors which are coupled to an elastic element and
which undergo a chemical cycle of fuel consumption can generate mechanical oscillations [17,18]. These
oscillations are aresult of collective behavior of many motors[19,20] which can giverise to different types
of dynamic transitions [17,21-23]. The same physical mechanism can also generate oscillatory modes and
bending waves along elastic filaments which interact with many motors as in the case of cilia [24-26].
Finally, oscillating instabilities can play an important role in sensory systems. A lot of evidence points
to an active system involved in the detection of sound by the ear [27,29-31]. The inner ear shows a
frequency selective nonlinear response to sound stimuli and actively amplifies weak sounds [32]. These
properties allow the ear to cover a large dynamic range of 120 dB and to detect weak sounds which
per cycle of oscillation impart an energy that is less than kT [33]. These properties of the ear can be
understood if we assume that the inner ear contains dynamical systems which operate at Hopf bifurcation
with critical frequenciesthat cover the audiblerange. A simple self-tuning mechanism involving afeedback
control can explain how these systems tune reliably to their critical point. The concept of a self-tuned
Hopf bifurcation can explain many apparently distinct phenomena observed in hearing such as otoacoustic
emissions, nonlinearities, adaptation and fatigue as well as the response to complex sounds in a unified
framework [15,34].

2. Mechanical oscillators

A large variety of nonlinear dynamic systems is capable to generate periodic, oscillating motion. In
order to illustrate some of the general properties of mechanical oscillators, we consider adynamical system
related to the Van der Pol oscillator which is standard model for nonlinear oscillators[35,36]. Consider the
dynamic equations:

Vi A rd + AP 4 kr = foxi(t) (1)
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PHYSICS AT THE SCALE OF THE CELL Mechanical oscillations at the cellular scale

which represent a damped oscillator with additional nonlinear friction. Here z is a displacement variable
and f.y; an external force. We assume that +, & and A are positive parameters and that » can become
negative. Note that while the term characterized by ~ could be an inertia term, we will consider in the
following only situations where al inertial terms are neglected. However, ~ is in this case nonzero and
arises from the intrinsic dynamics of the system.

In the absence of external forces, the system is stable for » > 0. It shows damped oscillations or
is overdamped, and relaxes to = = 0. For » = 0, the system becomes unstable and undergoes a Hopf
bifurcation. For r < 0 spontaneous oscillations are generated. In this regime the nonlinearity characterized
by A is essentia to stabilize the system and to determine the oscillation amplitude. In the periodic limit
cyclefor foxy =0, we can write:

x(t) = Z T, e 2

as a Fourier sum with oscillation frequency w. Close to the bifurcation point, i.e. for small but negative r,
the first Fourier mode x; dominates and obeysto lowest order

AI1+B|I1|2I1 =0 (3)

Here, higher modes x,, ~ 7 are neglected and the complex coefficients are given by A = k — yw? + iwr
and B = 3i4w®. Spontaneous oscillations occur with frequency w = w, = (k/~)'/2. Thisisthe only choice
for which equation (3) has a solution for which the oscillation amplitude:

|x1|2:_é __

B~ 34k “)

is real and positive. The bifurcation point » = 0 is characterized by the condition that A = 0 vanishes
at the critical frequency w = w,. If this system is subject to an external force foxt = 21 cos(wextt) With
frequency weyy, there are two frequencies in the system, the spontaneous frequency and the externally
imposed one. For simplicity, we focus on the situation where only one frequency is present, i.e. the system
is either outside the spontaneously oscillating regime (r > 0), or both frequencies are the same w = wext.
In this case, equation (3) becomes simply:

Azy + Blxy |z = fi %)

This equation is generic in the sense that all other terms can be neglected if the system is sufficiently
close to its bifurcation point. We therefore focus on the case where r = 0 and the system is exactly at the

Figure 1. Fourier amplitude |x+| of the response
of adynamical system at a Hopf bifurcation to a
stimulus force of amplitude | f1| at different
frequencies. The datais obtained by a numerical
solution of the model described in the subsequent
section, see [15]. The power law of the responseis
indicated.
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bifurcation. Two different regimes of the response to an oscillating force can be distinguished, see figure 1
If the applied frequency is close to the critical frequency, the linear term can be ignored and

NPT AT ®
1 1 3173 A1/3,

If the frequency mismatch is larger, |w — w.| > |f12/3| |B|'/3~|w 4 w.|, the cubic term is unimportant and
the responseislinear:
a—1e Al
21| ~ | Al |f1|—m (7
The response of the system given by (5) together with the oscillation amplitude (4) characterize the main
properties of an oscillator near the bifurcation point. This approach can be generalized to situations where
more than one frequency are present [34].

3. Oscillations generated by molecular motors

How can a system of the type described in the last section be realized using biological materials?
A spontaneously oscillating system must be active, i.e. it has to consume energy from some inpuit.
Furthermore the system must be able to generate motion and active displacements. A prototype system for
motion generation in cells are molecular motors which are enzymes that are driven by a chemical reaction
(usually the hydrolysis of ATP) and which are able to generate motion and mechanical work. An individual
motor behaves stochastically and generates on average motion in a preferred direction along a polar track
filament. Because of the stochastic function of individual molecules, phase coherent oscillations can only
be generated if many motors are involved and their fluctuations become unimportant for the collective
behavior of the entire system.

We consider here a specific situation where a large number of molecular motors which are rigidly
connected and coupled to elastic elements can undergo a Hopf bifurcation [17], see figure 2a This
description is based on ssimple models for the force generation of molecular motors [17,37-39,41,42]
generalized to situations where many motors are coupled [19,20]. In the limit of a very large number of
motors N, fluctuationsin the motor function become irrelevant and the system can be described by simple
mean-field equations [43]. We consider motors moving along a periodic linear structure of period ¢, see
figure 2h In the context of atwo-state model for the motors, we study the probability density P(¢,t) tofind
amotor at position £ in state i = 1,2, which isnormalized, P, + P, = ¢~ !, and satisfies:

0P =—v (95P1 —w1 Py +wo Py, 0Py = —v 85P2 +wi Py —wo Py (8)

Here, w; and w, are the rates of chemical transitions between the two conformations of the motors. The
veloCity v = A~ (fext + fmot — k) is generated by the sum of the externally applied force per motor f.,

W a4
W,
N
o Wi
Figure 2. (a) Schematic representation of many motors collectively working X
against a spring of elastic modulus k. (b) Two state model for many motors.
Each state is characterized by an energy |landscape W; (z). (b)
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the average force

¢
Srmot = —/0 d& (P10 W1 + Py 0: Wa) 9)

generated per motor and an elastic force in presence of an elastic element of modulus & per motor. The
total friction coefficient per motor isdenoted A. The energy landscapes W; characterize the interaction with
the filament and are usually considered to be periodic with period ¢. Using the condition & = v, the system
can undergo a Hopf bifurcation in the vicinity of which equation (5) is satisfied with linear and nonlinear
coefficients:

é —
Aw, ) =iw)\+k:—iw/ ago, g 2eW1 = W2)
0 a+ 1w
B(w,C)=iw®(Fi1, -1+ Fi, 11+ F11,1) 10)
where
Fiim = d "
’ /0 §<8Ea+ik‘w(a§a+ilw)> a+ imw (11)

Here, a(§) = w1(§) + w2(€), R = we/Lla, and we have assumed for simplicity that the potentials and
transitions are symmetric with respect to £ — —¢. The coefficients A and B are functions of frequency
and also depend on other model parameters such at the transition rates w; and w». We introduce a control
parameter C' which summarizes changes in the transition rates which keep « constant and which will
be varied in order to cross the bifurcation point. C' could represent the concentration of any agent that
influences chemical rates, in the case of motor moleculesfor example those of ATPor Cat ™.

In order to discuss these somewhat uninstructive expressions, we consider the simpler case where « is
aconstant. In this case, we find:

w3

A 2 . _ _a; (nll)
A=k —y(w)w* +iwr(w), B=—3iK_g; ol et )

(12)

(12) corresponds to (1), however with coefficients that depend on both the frequency and the control
parameter C':

(2) (2)
chf chf o
’7(("‘)) = CY2 + wg? T(W) = A ag + wg (13)
The effective Hookian and nonlinear elagticities of the cross-bridges
@) ‘ 2 ‘
KZ(0) :/ d¢ ROZ(W — W), K3 () :/ d¢ RO (W — Wy) (14)
0 0

are functions of C' and characterize the second and fourth derivative of the effective potential of amotor in
the bound state. Note that the elasticity K gf) together with the chemical transitions generates an effective
‘mass’ v(w) and anegative contribution to friction.

If the control parameter C' is varied, the system undergoes for a critical value C,. a Hopf bifurcation.
This happens as soon as Kgf) takes a value for which A(w.., C..) = 0 vanishes for a critical value of the
frequency w... In order to characterize this point, notefirst that the imaginary part of A vanishesif » =0, or
A\ = ay. Thecritical frequency at the bifurcation satisfies w. = (k/~(w.))/? and is thus given by:

1/2
wo = (i—’“) (15
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The range of frequencies that can be obtained by this mechanism depends on the range of effective
elasticities K C(? which can result from motor—filament interactions. If the motor is detached most of the

time this elasticity is small Kc(ff) ~ 0, while in the other extreme of a motor that rests most of the time
in rigor will generate a Kc(ff) ~ K., where K, isthe cross-bridge elasticity. The highest frequencies the

system can attain at the bifurcation are thus determined by K,

1/2
Wmax &2 (@ — a2) (16)

In thelimit of alarge number of motors discussed here, the generated oscillations are phase coherent and
fluctuations have been neglected. If the number of active elementsisfinite, the stochasticity of the chemical
transitions leads to a stochastic component in the motion. In addition to this noise resulting from active
processes, thermal fluctuations can a so become relevant. The resulting noisy oscillations have afinite time
of phase coherence[15,17]. While asmall number of motors could already generate noisy oscillations with
short coherencetime, areal Hopf bifurcation with phase coherent oscillationsis only possible asacollective
phenomenon of alarge number of active elements as described here.

4. Self-organization of motors and filaments

Cilia and flagella which contain an axoneme are important examples of mechanically oscillating
biological structures. In these hair-like appendages of many cells, microtubule doublets are arranged in
a cylindrical fashion and undergo bending deformations as a result of relative forces exerted by a large
number of dynein molecular motors which are densely attached to the surface of microtubules and act
on a neighboring microtubule [8], see figure 3 At the basal end, microtubules are connected in order to
prevent global relative diding. Internal stresses generated by the motorsare thusdirectly coupled to bending
deformations of the elastic microtubule doubletswhich are all bundled in parallel.

Axonemes are able to generate periodic deformations and to propagate bending waves along the elastic
cilium. These systems fall thus in the class of systems where many motors coupled to elastic filaments
generate oscillations and spatio—temporal deformation patterns. Basic physical propertiesof these structures
can be captured by considering a two-dimensional version of this system [24-26,44,45]. Two elastic
filaments are arranged in parallel at fixed distance a. At one end both filaments are rigidly connected,
everywhere €l se active elements such as molecular motors induce locally relative sliding of filaments. As
motorsin this situation generate an increasing displacement, the filament pair bends and generatesan elastic
force which opposes filament dliding. This situation therefore correspondsto the case discussed in the last
section where motors work against an elastic element. Here, this elasticity is provided by the bending
elagticity of filaments. If this system undergoesa Hopf bifurcation, the whole filament shape oscillates and
exhibits spatio—temporal deformation patterns.

(b)

Figure 3. (a) Schematic representation of the axoneme. Nine microtubule doublets
(M) are arranged in acylindrical fashion around a pair of central microtubules.
Dynein motors (D) are attached to the microtubules and exert forces on their
neighbors. Elastic elements such as nexins (N) are also present. (b) Two-dimensional
representation. Two parallel elastic filaments are connected at one end. Active
elements exert internal forces. For small amplitudes, the shape can be characterized
by the deformation i (x) asafunction of length.
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For small deformation amplitudes, the equations of motion of the active filament pair can be discussed
in Monge representation, where the perpendicular displacement h(s) as a function of arclength s with
0 < s < L isconsidered. To linear order in h we find:

€1 0ih=—rk0h —ad,f (17)

where we have assumed for simplicity local viscous friction with coefficient £, and where f(¢, s) is the
internal force per unit length exerted by the motors. If the coupled motor—filament system undergoesa Hopf
bifurcation, the selected modes of periodic filament deformations are generic and can be calculated from
very few assumptions as long as the system is sufficiently close to the bifurcation such that deformation
amplitudes remain small [26].

In this case, we can use (5) to lowest order to expresstherelation f; (s) ~ pAA; (s), between the Fourier
amplitude of local diding displacements A = a(9sh(s) — d;h(0)) and the amplitude f1(s) of the density
of shear forces, where p isthe linear density of motors along the filaments. Therefore;

Wwé h+k8h =—a?pAd?h (18)

together with boundary conditions characterizes the bending patterns selected at a Hopf bifurcation with
critical frequency w. In this equation, the dynamic linear response function of the motors, A, playstherole
of acomplex eigenvalue. At a Hopf bifurcation, .4 must take one of a discrete set of complex values. This
approach leads to bending waves which propagate along the filament in a direction which depends on the
imposed boundary conditions [26]. These patterns only depend on the solvent viscosity and the bending
rigidity of microtubules and for given oscillation frequency are independent of the physical details of the
mechanism that generates the forces.

The frequency selected by the system however is more difficult to obtain. It depends on properties of
the active and passive elements which generate internal shear forces. Two different regimes have to be
distinguished: for long filaments complex bending waves are propagated at rather low frequency. For shorter
filaments, there exists a simpler regime where filaments vibrate without significant wave propagation. In
this latter case, one can ignore to good approximation the detailed shape of the bending patterns, and
characterize the deformationssimply by atypical deformation amplitude /. We can now think of asituation
where an external force of amplitude F; acts on the tip of the vibrating cilium and express the linear
response as h; ~ Aog F. Approximating the gradient termsin (18) by their scaling behavior we can write:

Act 2iwé L+ r/L + a*pA/L (19)
Using (12) to express A(w, C), thisleads to:
Ao = ke — ’chfwg + iwres, where (20)

keﬂ ~ '%/L3 + a2pk/Lv Veft =~ a2p7(w)/L7 Teff = a2pT(w)/L + SJ_L (21)

which allows us to estimate the critical beating frequency of the active filament pair as a function of
parametersin several regimes. For examplein the case where kg ~ k/L® and £, > a?p)/L wefind:

1/2
akK 1
(&) = )
This result represents a regime in which the system generates oscillations at frequencies which increase
significantly for decreasing length if all other parameters are constant. Furthermore, in this simple regime,

the freguency is completely determined by the bending rigidity of microtubules x, the viscosity of the
solvent £, and atypical ATP cycling rate « of the motors.
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5. Oscillations in sensory systems: hearing

The cochlea of the inner ear contains about 16 000 specialized sensory cells, called hair cells, which
are able to detect sounds at a range of frequencies from 20 Hz to 20000 Hz. The auditory system has an
extraordinary dynamic range which covers 120 dB or 12 orders of magnitude in sound intensity. Each hair
cell has a characteristic frequency at which it is most sensitive. Hair cells are characterized by a bundle of
about 50 finger-like structures called stereociliawhich have alength of 1-10 um and a diameter of 300 nm.
The stereocilia consist predominantly of bundles of actin filaments that are surrounded by a membrane
which contains mechano-sensitive ion channels. Upon a tiny shear deformation of the hair bundle of less
than a nm, these channels open and the subsequent influx of potassium and calcium induces changesin the
membrane potential [46] (figure 4.

The mechanical response of the basilar membrane, which is the structure inside the cochleathat contains
the hair cells, has been measured as a function of frequency and amplitude of sound stimuli [32]. These and
other observations have let to arevival of an idea of Thomas Gold, proposed about 50 years ago [27], that
the basilar membrane of the inner ear is not just a passively resonating filter as assumed by the classical
theory of hearing developed by Van Bekesy and others [28]. Instead, Gold suggested that active, energy
consuming systems are required by the ear in order to explain some of its extraordinary propertiessuch asa
sharp frequency tuning. The mechanical response of the basilar membrane reveal sadistinct behavior which
has all the characteristic properties of adynamical system placed exactly at a Hopf bifurcation as described
in Section 2 [15,16]. Most remarkable is the nonlinear response to stimuli at the critical frequency w,
see (6) which implies a diverging gain |z, |/| f1| ~ | f1| =3/ for small stimulus amplitudes. This nonlinear
behavior of the gain and a dramatic increase at small amplitudes has been observed in hearing [32]. This
actively enhanced gain together with a power-law nonlinearity providesextraordinary sensitivity and makes
sound detection possible over alarge dynamic range of 6 orders of magnitude in amplitude and 12 orders
of magnitudein intensity.

While the properties of a Hopf bifurcation can explain the main properties of sound detection by the ear,
it raises a number of important questions. In particular, in order to exhibit a nonlinear response for small
amplitudes, the system has to be tuned with high precision to its critical point. This requires a fine-tuning
of parameters which raises the question as to whether aliving cell can profit from the special properties at
acritical pointin areliable way.

A simple and general mechanism to maintain a dynamical system at a point of operation close to the
bifurcation point can be achieved by a feedback regulation of the control parameter [15,47]. This self-
tuning implies that the control parameter is regulated towards the instability as long as the system is not
spontaneoudly oscillating, whileit isautomatically stabilized as soon as oscillations are detected. This self-
tuning works best in the absence of external stimuli, when highest sensitivity is needed, by adapting the
control parameter C' as a function of the detected amplitude of hair-bundle deflections.

KC

IC \ ~
Gfﬁ Figure 4. Schematic representation of the hair bundle of an auditory hair cell.

They are coupled at their tips by fine filaments called tip-links (TL). The
L kinocilium (KC) is present in the hair bundles on non-mammalian vertebrates
and contains an axoneme. Mechano-sensitive ion channels (1C) open upon a

TL A bundle of stereocilia (SC) containing actin filaments form the hair bundle.
SC X .
bundle deflection and let to an influx of K™ and Ca™ ™.
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(a)

Figure 5. Simple self-tuning mechanism (schematic). (a) Regulation of the control parameter C' associated with the
concentration of ions such as Ca™ which enter the hair cell vie transduction channels. A permanent outflux drives
the system towards the oscillating side of the bifurcation, influx of ion via transduction channels provides a stabilizing
feedback. (b) Fourier amplitude |z | of spontaneous oscillations as a function of the control parameter near the
bifurcation point C.. Self-tuning brings the system to an operating point C.,. (c) Opening probability P(z) of ion
channels as a function of the deflection amplitude x. A signal is generated for deflections larger than §.

An illustrative example for self-tuning is achieved in a situation where the Ca™* concentration in the
hair cell plays the role of the control parameter at the bifurcation (figure 5. Since hair-bundle deflections
lead to an influx of Ca™ ™ into the hair cell, this provides for aregulation of the control parameter C' of the
form:

dC C
E——?‘i‘JP(CL') (23)

where 7 is a relaxation time of the control parameter in the absence of hair bundle deflections x. This
relaxation drives the system in the oscillatory regime. As soon as deflections = occur, ion channels open
with probability:

1

P(z) = Tre G (24)

which givesrise to an influx J P of Ca™™ that drives the system towards the non-oscillating regime. Here
we assume 7 > w1, i.e. changes in C' occur on time-scales long compared to the oscillation frequency.
The length scale ¢, which for hair bundles is of the order of 0.3—1 nm, indicates the smallest deflection
amplitudesat which asignal isgenerated by the hair bundle and the parameter ¢ characterizesthe sharpness
of the response.

The self-tuning can now be summarized as follows. In the absence of spontaneous oscillations (and if
no external sound stimulus is present), the control parameter is decreased within a relaxation time 7. As
soon asthe critical point C,. isreached, the system starts to oscillate and the decrease of C' is halted as soon
as the typical oscillation amplitude is of the order of magnitude 6, |z1| ~ 6. Remember that the onset of
spontaneous oscillations in the absence of aforce given by (4) can be expressed as:

(25)

N\
|$1|”A‘JA< o )

where A is a characteristic saturation amplitude. We can therefore estimate how close to the bifurcation
point the system will be tuned via this mechanisms. Introducing the distance AC = C. — C from the
bifurcation, the self tuning brings the system dightly to the oscillating side of the bifurcation with:

AC/C. ~ (5/A)? (26)
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For a typical hair cell we estimate 6 ~ 1 nm and A ~ 100 nm, thus the system can self-tune with
AC/C,~107%.

These estimates for the useful amplitude range of hair bundle deflections can also explain the dynamic
range of hearing. In the regime of nonlinear response, the hair cell can map changesin force amplitude | f1|
that vary by afactor of (A/6)3 ~ 10° onto hair bundle deflections | x| which vary over the usable range of
A/é. Thisrange of detectable force amplitudes corresponds to a dynamic range of 120 dB.

The concept of self-tuning to a Hopf bifurcation can explain seemingly disconnected but well-known
properties of hearing. In addition to providing an explanation for the high sensitivity at one frequency and
alarge dynamic range, it can naturally account for what is called adaptation and fatigue. Fatigue implies
that the sensitivity to weak stimuli is reduced after a subject is exposed to aloud stimuluswhich isanatural
consequence of self-tuning. In the presence of a stimulus, equation (23) tunes the system away from the
bifurcation point where sensitivity is reduced. The recovery of high sensitivity after a strong stimulus only
happens after arelaxation time 7 of the self-tuning feedback to its operation point.

Thistheory of hearing by a generic mechanism could apply to many different animals such as mammals,
birds, reptiles and amphibians. These classes of animalshowever have different cochleas and different types
of hair cells and they might thus use different physical systems to realize a Hopf bifurcation and the self-
tuning. In the case of mammals, there is some evidence that so-called outer-hair cells are able to generate
active motion by contracting the whole cell body [29]. Recently, a protein named prestin which could play
an active role in these contractions has been identified [31]. Non-mammalian vertebrates do not possess
outer hair-cells. Active oscillators are therefore expected to exist within the hair bundle itself. Spontaneous
hair-bundle oscillations of amphibian hair-cells have been observed and studied in detail [48,49].

Whilethe physical mechanism at the origin of hair-bundle oscillations remains mysterious, the preceding
sections show that molecular motors operating in groups could be responsible for oscillations even at
frequencies up to 10 kHz. It is well established that myosins occur within the stereocilia and could thus
be involved in active movements [30]. Finally, the hair bundles of non-mammalian vertebrates contain in
addition to many stereocilia a single cilium which contains an axoneme. Such a structure is ideally suited
to play an active role as an oscillator and because of its well-conserved structure, its oscillation frequency
could be controlled by just varying its length. If a cilium operates in the regime described by (22), using
atypical o~ 10% s71, ¢, = 102 kg/ms being the viscosity of water and choosing k = 4 x 10722 Nm?
which is the bending rigidity of 20 microtubules, the critical frequency isw, ~ 2 x 10* s7! for L =1 pm.
For L = 10 pm, the frequency dropsto w, ~ 102 s~!. The physical mechanisms for oscillations generated
by molecular motors in a cilium therefore could cover the audible frequency range by using a smple
morphological gradient in the cochlea.

6. Discussion

An variety of cells contain structures which are able to spontaneously generate mechanical oscillations.
The principal examplesdiscussed here are muscle myofibrils, axonemal ciliaand flagellaaswell asauditory
hair cells of the inner ear. While the details of how these oscillations are generated still remain largely
unknown, it is expected that motor proteins which undergo a chemical cycle and stochastically generate
displacements and forces are the active elements involved [30,50]. Molecular motors of the cytoskeleton
which interact with actin filaments and microtubul es are omnipresent in eucariotic cellsand are likely to be
involved in such activities. While in the case of myofibrils and axonemes the crucial role of such motorsis
established, in the case of hair cellsthe nature of active proteinsis still quite unknown.

The general principles of how oscillations can be generated using such active proteins can be studied
using simplified descriptions. Such studies reveal that spontaneous oscillations occur naturally in systems
where a large number of motors and €elastic elements interact and form an effective materia with active
properties. Of particular interest isthe Hopf bifurcation where the system becomes unstable with respect to
oscillatory behavior. Inthe vicinity of abifurcation, the system has generic propertiesthat can be understood
and characterized without detailed knowledge of the underlying mechanisms. Furthermore, the bifurcation
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point has extraordinary response properties which are ideal to be used for a frequency sensitive detector.
A lot of evidence points indeed to the fact that the ear has adopted this principal mechanism, aided by a
self-tuning feedback that tunes the oscillators to their critical points.

Phase coherent oscillations and a true Hopf bifurcation only exist in the thermodynamic limit where
an infinite number of active force-generators are present. In a realistic situation with a finite number of
molecules present, oscillations are noisy and phase coherence is lost on long times. Oscillations of very
few, maybe only a single dynein motor have been reported [51], which however are very noisy. Phase
coherent oscillations always result from collective effects in systems with a large number of degrees of
freedom. Noise plays an important role for cellular oscillations, in particular in the case of hearing for the
detection of weak sounds[15]. A hair cell tuned to its operation point in the absence of an external stimulus
will exhibit a spectrum of fluctuations centered around its critical frequency. Because of the active nature
of the oscillator, these fluctuations arise partly due to stochastic activity of active elements in addition
to thermal noise. As a result of these fluctuations, the hair cell generates already in the absence of any
sound hair-bundle motions which have a strong fluctuating component. Consequently, unstimulated hair-
cellsalready generate action potentialsat low rate. Because of their stochastic nature these action potentials
can be distinguished from the excitation dueto a sinusoidal stimulus. Assoon asaweak stimulusis present,
its main effect is to phase lock the spontaneous motion. This phase locking to a stimulus can be detected
before amplitude changes occur. By this mechanism the ear can detect sounds which have an effect on the
amplitude that is smaller than the noise.

Oscillatory behaviors are also observed in very different types of systems. An interesting example are
lymphoblasts which usually do not exhibit oscillatory behaviors. However, if the microtubule network is
depolymerized using nocodazole, the cell attains a state where the actin system forms a contractile ring
which generates a constriction of the cell. Interestingly, thisring slowly oscillates between the two poles of
the cell [52]. The mechanism leading to these oscillations is not understood. However, it islikely that these
oscillations are a result of a self-organization of the actin cytoskeleton with the help of myosin motors and
maybe other components.

The self-organization of motors and filaments can lead to complex phenomena in various situations.
Such phenomena have in particular been studied in filament systems which are driven by molecular
motors that temporarily form active crosslinks between filament pairs. In such active filament systems,
complex behaviors such as contractions and the formation of asters and spirals have been observed [53-57].
A phenomenological description of the dynamics of active filament bundles can be used to describe tension
generation and contractionsin non-organized bundles[58]. This description takesinto account two different
filament interactions: (i) interactions between parallel filaments which point in the same direction and
(i) between filaments that are anti-paralldl. If both interactions are present at the same time, the system
can generate patterns of contracted regions along the bundle which propagate. In periodic systems such as
contractilerings, this can lead to oscillatory behaviors of bundle contractions[59].

Mechanical oscillations in cells thus occur in alarge variety of different situations and with frequencies
which can vary over largeranges. Slow oscillations of contractilerings start from several minutes per period;
the highest frequencies of active oscillationsin hair cells could exceed 100 kHz, e.g. during high-frequency
sound detection in bats and whales.
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