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Hearing relies on active filtering to achieve exquisite sensitivity
and sharp frequency selectivity. In a quiet environment, the ears of
many vertebrates become unstable and emit one to several tones.
These spontaneous otoacoustic emissions, the most striking man-
ifestation of the inner ear’s active process, must result from
self-sustained mechanical oscillations of aural constituents. The
mechanoreceptive hair bundles of hair cells in the bullfrog’s sac-
culus have the ability to amplify mechanical stimuli and oscillate
spontaneously. By comparing a hair bundle’s spontaneous oscilla-
tions with its response to small mechanical stimuli, we demon-
strate a breakdown in a general principle of equilibrium thermo-
dynamics, the fluctuation–dissipation theorem. We thus confirm
that a hair bundle’s spontaneous movements are produced by
energy-consuming elements within the hair cell. To characterize
the dynamical behavior of the active process, we introduce an
effective temperature that, for each frequency component, quan-
tifies a hair bundle’s deviation from thermal equilibrium. The
effective temperature diverges near the bundle’s frequency of
spontaneous oscillation. This behavior, which is not generic for
active oscillators, can be accommodated by a simple model that
characterizes quantitatively the fluctuations of the spontaneous
movements as well as the hair bundle’s linear response function.

The vertebrate ear not only admits but also emits sound. In
amphibians, reptiles, birds, and mammals, microphone re-

cordings in a quiet environment disclose one to several tones
emerging from normal ears (reviewed in refs. 1–3). These
spontaneous otoacoustic emissions (SOAEs) are sometimes so
loud that they may be heard at a distance (4). Because the
emission of sound requires power, SOAEs must be generated by
a work-producing process.

Otoacoustic emissions represent the most striking manifesta-
tion of an active process in the inner ear. Even before SOAEs
were observed, it was recognized that hearing must use an energy
source to overcome the damping effect of the inner ear’s f luid
on movements of the basilar membrane and other aural con-
stituents (5). The ear’s exquisite sensitivity and sharp frequency
selectivity for minute stimuli result from this active process
(reviewed in refs. 6, 7). Theoretical analysis reveals that many of
the characteristic phenomena observed in hearing can be pro-
duced by an active system operating at the onset of an oscillatory
instability, the Hopf bifurcation (8–10). A self-tuning mecha-
nism likely maintains the ear’s active components near the
instability, thereby ensuring that the organ’s sensitivity and
frequency selectivity are optimal (9). In a quiet environment,
unprovoked oscillations by the active process manifest them-
selves as SOAEs.

Two forms of cellular motility have been proposed to underlie
the inner ear’s active process. Extensive research on mammals
argues that electrically driven cell–body movements of special-
ized mechanoreceptors, the outer hair cells, provide the work

required of the active process (reviewed in refs. 11–13). Non-
mammalian tetrapods, however, lack outer hair cells and prob-
ably the associated process of electromotility. In amphibians,
reptiles, and birds, the best candidate for an active process is
active motility of the mechanically sensitive hair bundles (re-
viewed in refs. 14–16).

If hair bundles mediate the active process, they must be
capable of producing the energetic movements that underlie
SOAEs. In the ears of reptiles and amphibians, hair bundles do
have the ability to oscillate spontaneously (17–22). The magni-
tude of this hair-bundle motion can be severalfold as great as
expected for the action of thermal noise on a structure of the
stiffness that the bundle manifests during large displacements
(23). It was initially argued on this basis that the bundle’s motion
violates the equipartition theorem and is therefore active, re-
quiring a cellular energy source (17–19). It is now recognized,
however, that a hair bundle’s stiffness is a nonlinear function of
displacement (22, 24–26). For saturating displacements greater
than a few tens of nanometers, the bundle’s stiffness is ;1
mNzm21. Over the range of displacements in which transduction
channels open and close, the stiffness declines, an effect that can
reduce the bundle’s overall stiffness to zero or even render it
negative (22). This observation raises the question whether a hair
bundle’s spontaneous movements are truly active, or whether
they represent thermal fluctuations of an extraordinarily com-
pliant structure.

Without specific knowledge of the underlying physical mech-
anism, how can one determine whether the spontaneous motions
of any mechanical system are active or passive? When a passive
system is at thermal equilibrium with its environment, its be-
havior must be constrained by the laws of thermodynamics. The
system’s spontaneous fluctuations then bear a specific relation at
all frequencies to its responsiveness to small external stimuli.
Violation of this correspondence constitutes proof that the
system is active. In the present study, we have applied this
reasoning to examine the basis of spontaneous oscillation by hair
bundles.

Materials and Methods
Experimental Procedures. In each experiment, the saccular macula
was dissected from the internal ear of an adult bullfrog (Rana
catesbeiana) and secured in a two-compartment experimental
chamber, as described previously (21). The basolateral surfaces
of the hair cells were exposed to standard saline solution,
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whereas their hair bundles projected into NMDG artificial
endolymph. This arrangement mimicked the ionic circumstances
in vitro, in particular by imposing a low Ca21 concentration
around the hair bundles.

Details of the techniques for mechanical stimulation, imaging,
and optical calibration have been published (20, 21). The tip of
a flexible glass fiber ;100 mm in length and ;0.5 mm in diameter
was attached to the kinociliary bulb of an individual hair bundle.
The fiber served both to report the hair bundle’s position and to
exert forces at its top. The image of the fiber’s tip was projected
at a magnification of 31,000 onto a pair of photodiodes, by
means of which the position of the tip and the attached bundle
was monitored with a resolution of ;1 nm. We used a piezo-
electric actuator to stimulate the hair bundle by displacing the
fiber’s base. To calibrate the stimulus force, we deduced the
fiber’s stiffness, KF 5 250 mNzm21, and its drag coefficient, j 5
120 nNzszm21, from the spectrum of Brownian motion at the
fiber’s tip before attachment to a hair bundle.

Autocorrelation Function of Hair-Bundle Displacement. We denote by
X(t) the displacement of the hair bundle’s top at its point of
contact with the fiber. With its base held fixed, the fiber exerted
no external force. We monitored the bundle’s displacement
relative to its mean position; this imposed the condition that
^X(t)& 5 0. We then computed the autocorrelation function for
spontaneous motion of the combined system of bundle and fiber,
defined as

C~t! 5 ^X~t 1 t0!X~t0!&. [1]

Independent of t0, this function characterizes the stochastic
properties of the displacement fluctuations. The power spectrum
of the spontaneous motion is given by the Fourier transform of
the autocorrelation function,

C̃~v! 5 E
2`

1`

C~t!eivtdt. [2]

Hair-Bundle Response Function. We measured the average hair-
bundle displacement, ^X(t)&, in response to a time-dependent
stimulus that resulted from a sinusoidal displacement, D(t), of
the fiber’s base. For small stimulus amplitudes, the rela-
tion between these parameters was linear (27) and could be
expressed as

^X~t!& 5 E
2`

t

P~t 2 t9!D~t9!dt9, [3]

in which we have introduced the function P(t) to characterize
the bundle’s response to fiber displacements. Note that causality
requires that P(t) 5 0 for t , 0. The Fourier representation of
the frequency-dependent response function could be obtained as
the dimensionless ratio

P̃~v! 5
^X̃~v!&

D̃~v!
. [4]

P̃(v) was estimated at various frequencies by imposing sinusoi-
dal stimuli on the hair bundle.

A second response function, x(t), characterizes the response
of the combined system of a hair bundle attached to a fiber to
an external force, f(t), applied at the bundle’s top with the fiber’s
base held at a fixed position:

^X~t!& 5 E
2`

t

x~t 2 t9!f~t9!dt9. [5]

Although we did not actually apply the force f(t), we can readily
relate x to the experimentally determined response function P.
As derived below, the spectral representation of x(t) can be
expressed as

x̃~v! 5
P̃~v!

KF 1 ivj
[6]

in which KF and j represent respectively the stiffness and a drag
coefficient of the fiber. Note that x̃(v) has the units of a
compliance.

Effect of Viscous Drag on the Fiber. The force fF(t) exerted on the
hair bundle by the fiber had both elastic and viscous components.
For small displacements, a linear approximation of fF(t) yields

fF~t! 5 KF@D~t! 2 X~t!# 2 jXX

dX~t!
dt

2 jDX

dD~t!
dt

, [7]

in which we have introduced the two drag coefficients jXX and
jDX. The coefficient jXX characterizes the viscous force on the
hair bundle when the fiber’s tip moves while its base is stationary.
Similarly, jDX characterizes the viscous force on the bundle
owing to motion of the fiber’s base while its tip is held fixed.

To relate the response function x(t) of the combination of the
bundle and fiber to the experimentally measured function P(t)
(Eq. 6), we first introduce the hair-bundle response function
xHB(t), which characterizes the response to external forces of the
bundle alone. In the presence of a fiber fixed at its base and with
an external force f(t) acting at the bundle’s top, we have

^X̃~v!& 5 x̃~v! f̃ ~v! 5 x̃HB~v!@~2KF 1 ivjXX!^X̃~v!& 1 f̃ ~v!#.
[8]

We thus obtain a relation between x̃HB(v) and x̃(v):

x̃~v! 5
x̃HB~v!

1 1 x̃HB~v!@KF 2 ivjXX#
. [9]

Moreover, for the situation in which we apply a stimulus by
moving the fiber’s base sinusoidally at angular frequency v,

^X̃~v!& 5 P̃~v!D̃~v!

5 x̃HB~v!@~2KF 1 ivjXX!^X̃~v!& 1 ~KF 1 ivjDX!D̃~v!#

[10]

and therefore

P̃~v! 5
x̃HB~v!@KF 1 ivjDX#

1 1 x̃HB~v!@KF 2 ivjXX#
. [11]

Comparison of Eqs. 9 and 11 leads to

x̃~v! 5
P̃~v!

KF 1 ivjDX
[12]

The imaginary part x̃0(v) of the response function x̃(v) can be
deduced from the observed function P̃(v) through the relation

x̃0~v! 5
2vjDXP̃9~v! 1 KFP̃0~v!

KF
2 1 v2jDX

2 . [13]
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The value of the coefficient jXX could be estimated from the
Brownian motion of a free fiber’s tip. The coefficient jDX,
however, was more difficult to determine. We assumed for
simplicity that the two coefficients were equal: jDX ' j [ jXX.
Eq. 12 is then identical to Eq. 6.

Results
Spontaneous Hair-Bundle Oscillations. When bathed in artificial
endolymph, many of the ;2,500 hair bundles in the sensory
epithelium of the bullfrog’s sacculus oscillated spontaneously.
As reported by the motion of a flexible fiber attached to the top
of an oscillating hair bundle, the motion consisted of alternating
slow components followed by fast strokes in the opposite direc-
tion (Fig. 1A). The probability distribution of the bundle’s
position was bimodal, with a local minimum near X 5 0 (Fig.
1B). This distribution resembles that observed for sound pres-
sure at the frequency of an SOAE from the human ear (28).

Hair-bundle movements fluctuated both in amplitude and in
phase. To characterize these fluctuations, we computed the
autocorrelation function C(t) 5 ^X(t)X(0)& and its Fourier
transform, C̃(v), which defines the spectral density of bundle
motion at each frequency n 5 vy(2p). The spectral density
peaked at a nonzero frequency, here n0 5 8 Hz (Fig. 1C). The
width of the function at half its maximal value, Dn0 5 2.8 Hz,
describes the frequency fluctuations around n0, which reflect a
loss in phase coherence of the bundle oscillation. This property
is clearly illustrated by the autocorrelation function (Fig. 1D):

C(t) assumes the form of a damped oscillation that decays
toward zero with a correlation time t 5 1y(pDn0), 115 ms in this
example.

Active vs. Passive Systems: The Fluctuation–Dissipation Theorem. Are
these properties alone sufficient to determine whether sponta-
neous hair-bundle oscillations are generated by an active pro-
cess? Stochastic displacements similar to those observed could in
principle occur at equilibrium in a system buffeted by thermal
forces. A definitive proof that the observed oscillation is active
must invoke the breakdown of a general thermodynamic prin-
ciple (29). The fluctuation–dissipation theorem (FDT) provides
a useful instance of such a principle that assumes no physical
properties of the system under investigation other than thermal
equilibrium. The theorem asserts that the autocorrelation func-
tion of a passive system is directly related to the system’s linear
responsiveness x(t) to small external forces. The relation may be
written for t . 0 as

x~t! 5 2
1

kBT
dC~t!

dt
, [14]

in which kB is the Boltzmann constant and T the temperature
(reviewed in ref. 30).

The Fourier representation of Eq. 14 leads to

C̃~v! 5 2kBT
x̃0~v!

v
. [15]

Fig. 1. Properties of spontaneous oscillations at ;8 Hz by a hair bundle from the sacculus of the bullfrog’s inner ear. (A) Monitoring the position of a glass
fiber attached at the hair bundle’s top measured the bundle’s spontaneous movement. This oscillation had a root–mean–square magnitude of 28 nm. The data
were smoothed by forming the running average of a number of points equal to one-fifth of a cycle, and drift in the baseline was subtracted. (B) The probability
distribution of bundle positions was bimodal, with a local minimum near the bundle’s mean position. This histogram is asymmetrical; the bundle spent more
time during negative than positive deflections. (C) The signal’s spectrum displayed a broad peak and was fitted by Eq. 21 (smooth curve). We found D 5 0.14
pN2zs, l 5 9 mNzszm21, k 5 80 mNzm21, and n0 5 v0y(2p) 5 8 Hz; the ratio lyk 5 115 ms characterized the correlation time of the bundle’s movements. To obtain
the spectrum, we averaged the spectral densities computed from 15 measurements of bundle oscillations, each 2 s in length. The resulting spectrum was further
smoothed by forming the running average of the number of points sampling a 1-Hz frequency band. The error bars specify standard deviations from these mean
values. (D) The autocorrelation function of bundle motion, obtained as the inverse Fourier transform of the spectral density, revealed an average oscillation
frequency of ;8 Hz. The signal’s envelope, which relaxed towards zero with an exponential time constant of 115 ms, reflected the period over which the
oscillation’s phase lost coherence. Analog signals were sampled at a frequency of 2.5 kHz. B, C, and D derive from the data shown in A.
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Here x̃0(v) is the imaginary or dissipative part of the frequency-
dependent response function. In the case of a constant force
f(t) 5 f0, the combination of the FDT with the definition of the
response function (Eq. 5) yields

^X& 5
^X2&

kBT
f0 . [16]

The FDT thus ensures that the equipartition theorem is satisfied:
1
2

K^X2& 5 1
2

kBT, in which K 5 f0y^X& defines the static stiffness.
Moreover, Eq. 15 implies that the dissipation coefficient vx̃0(v)
is always positive, for C̃ . 0. As required by the second law of
thermodynamics, a passive system thus cannot, on average,
extract thermal energy from the environment.

If the system is removed from equilibrium by an energy-
consuming mechanism, the FDT no longer holds. In this case,
active events with unknown correlations add to thermal fluctu-
ations, so no general relation links the autocorrelation of the
system’s spontaneous fluctuations to its responsiveness to small
external stimuli. As a measure of the degree of violation of the
FDT, we introduce the ratio

TEFF~v!

T
5

vC̃~v!

2 kBTx̃0~v!
, [17]

which defines an effective temperature, TEFF(v). TEFF(v), which
can be either positive or negative, is the temperature for which
the FDT would be satisfied at angular frequency v. In a passive
system, TEFF(v) must be identical to the ambient temperature;
the ratio in Eq. 17 is then unity at all frequencies. If TEFF(v)
departs from the ambient temperature at some frequencies,
however, the system cannot be at thermal equilibrium but must
be actively driven.

Hair-Bundle Response to Mechanical Stimulation. By imposing sinu-
soidal movements at the stimulus fiber’s base, we applied
periodic forces at a hair bundle’s tip. We chose displacement
amplitudes small enough to maintain the bundle in a regime of
linear responsiveness (27). For an oscillating bundle, this am-
plitude was typically 15 nm or less. We measured the linear
response function, x̃(v), at various frequencies near the fre-
quency of spontaneous bundle oscillation, n0.

The real part of the response function, x̃9(v), describes the
elastic component of the bundle’s response. Everywhere posi-
tive, it peaked at a frequency near n0 before declining to a
plateau at higher frequencies (Fig. 2A). The plateau corre-
sponded to a hair-bundle stiffness of ;1 mNzm21, a value typical
of the static bundle stiffness in the bullfrog’s sacculus (24, 31).
As a control, we also measured the response function of a hair
cell that did not exhibit pronounced spontaneous oscillation.
This cell showed a slowly declining elastic response that coin-
cided at high frequencies with the plateau in the response of the
oscillatory cell.

The imaginary part of the response function, x̃0(v), reflects
the work provided by the external stimulus to the combination
of the bundle and fiber. For a passive system, this work must be
of positive sign at all frequencies to balance viscous dissipation
caused by the system’s movement through the surrounding fluid.
The striking feature of our measurement is that x̃0(v) changed
its sign at a frequency near n0 (Fig. 2B), indicating that energy
was on average withdrawn from the hair bundle at frequencies
below n0. Note that the change in sign of x̃0(v) corresponds to
a change in sign of the phase difference between stimulus and
response (21). In the case of the control cell, x̃0(v) displayed a
positive sign at all frequencies and increased proportionally with
frequency (Fig. 2B).

Effective Temperature of the Hair Bundle. We calculated at each
frequency the effective temperature, TEFF(v), at which the
observed movements would have satisfied the FDT (Eq. 17).
TEFF(v) departed from the actual temperature, T, at all mea-
sured frequencies (Fig. 3 A and B). The degree of violation of
the FDT, as measured by the ratio TEFF(v)yT, depended on
frequency. In keeping with the behavior of the imaginary part of
the hair bundle’s response function (Fig. 2B), TyTEFF(v) crossed
the abscissa and changed its sign near the hair bundle’s frequency
of spontaneous oscillation (Fig. 3A). TEFF(v)yT thus displayed
a divergence before reaching a value of ;4 at the greatest
frequencies measured (Fig. 3B). The hair bundle therefore
violated the FDT at all frequencies explored here.

For a hair bundle without striking spontaneous oscillations,

Fig. 2. Linear response function as a function of stimulus frequency for an
oscillatory hair bundle (F) and a control bundle that did not show marked
oscillations (E). (A) In the case of the oscillating hair bundle, the real part of
the response function, x̃9(v), which measures the bundle’s elastic component
of the response, shows a distinct peak near 8 Hz, the bundle’s frequency of
spontaneous oscillation. (B) The imaginary part of the response function,
x̃0(v), portrays the dissipative component of motion. For the oscillating bundle
of Fig. 1, this crosses the abscissa at a frequency near that of the bundle’s
spontaneous oscillations. From the fits of the measured response function x̃(v)
by Eq. 20, we found for the oscillatory bundle (smooth curve) l 5 6.5 mNzszm21,
k 5 104 mNzm21, and n0 5 v0y(2p) 5 8.1 Hz. These values imply that k# 5 1040
mNzm21 and provide a relaxation time for bundle motion of t 5 65 ms. Applied
to the control cell, the same model yielded (dotted line) l 5 1.7 mNzszm21, k 5

900 mNzm21, and n0 5 v0y(2p) ' 0 Hz; the corresponding relaxation time was
t 5 2 ms. The bundle’s response function was measured by applying a
succession of 50-cycle stimuli of increasing frequency separated by 2-s rests;
the amplitude of stimulation was 15 nm for the oscillatory cell and 300 nm for
the control cell. The periods during which the bundle was not stimulated were
used to compute the characteristics of the bundle’s spontaneous motion
shown in Fig. 1.
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the effective temperature obtained from the autocorrelation and
the response function satisfied TEFF(v)yT > 1 for all observed
frequencies (Fig. 3C). The spontaneous movements of this hair
bundle were therefore thermal fluctuations.

Discussion
Violation of the FDT by an oscillating hair bundle demonstrates
that both the hair bundle’s spontaneous motion and its response
to sinusoidal stimulation are active phenomena, governed by a
process that requires a cellular energy source and that can do
work. The observation that hair-bundle oscillations are not
phase-coherent indicates that fluctuations play an important
role in this process. The observed autocorrelation function does
not reveal specific properties of the active process. The linear
response function, however, provides insight into the underlying
mechanism. The imaginary part of the response function crossed
zero near the spontaneous oscillation frequency, whereas the
real part remained positive at all frequencies. Only a certain class

of active oscillators exhibits this behavior. In particular, the van
der Pol oscillator, a standard model that generates spontaneous
oscillations by introducing negative friction, behaves differently.
In this case, the real part of the corresponding response function
crosses zero, whereas the imaginary part does not change sign.
Our observations thus rule out the hypothesis (5) that the active
process generates a force proportional to velocity, which negates
friction.

Model for Noisy Oscillations. We may describe the linear behavior
of hair-bundle deflections by the equation

l
dX~t!

dt
5 2kX~t! 1 FA~t! 1 f~t! 1 hX~t!, [18]

in which l is an effective drag coefficient, k an effective stiffness,
and f(t) an external force. An active process within the hair
bundle generates the force FA(t). As discussed below, FA(t)
obeys the relation

b
dFA~t!

dt
5 2k#X~t! 2 FA~t! 1 hA~t!. [19]

Here b is the relaxation time of the active process and the
stiffness k# characterizes the coupling of active elements to
hair-bundle displacements. The random forces, hX(t) and hA(t),
account for the effect of fluctuations on the bundle position and
the active process, respectively.

We fitted the response functions calculated from this model to
the experimentally measured linear response functions (Fig. 2).
This fit yielded b ' lyk, a result that suggests that the hair
bundle’s position relaxes with a time constant similar to that of
the bundle’s force-producing elements. If we impose the condi-
tion that b 5 lyk, the linear response function assumes the form

x̃~v! 5
1y2

il~v0 2 v! 1 k
1

1y2
2il~v0 1 v! 1 k

, [20]

in which v0 5 (kk# )1/2yl is the angular frequency of oscillation.
Furthermore, the autocorrelation function of spontaneous dis-
placements in this simple model obeys the relation

C̃~v! 5
D

k2 1 l2~v 2 v0!
2 1

D
k2 1 l2~v 1 v0!

2 , [21]

in which we have assumed symmetrical, d-correlated noise:
^hX(t)hX(0)& 5 ^hA(t)hA(0)& 5 2Dd(t). The correlation time of
the oscillation is thus t 5 b 5 lyk. For v . 0 and v0 .. t21,
we may ignore the final terms of Eqs. 21 and 22 and approximate
the effective temperature as

TEFF~v!

T
>

D
lkBT S v

v 2 v0
D. [22]

This model is in qualitative agreement with the data. In
particular, TEFF(v)yT diverges and changes sign when v ' v0
(Fig. 3). Also as observed, TEFF(v)yT reaches a constant value
at high frequencies. Near the frequency of spontaneous oscil-
lation for the active hair bundle, the fit of the response function
by Eq. 20 yields an effective bundle stiffness of k ' 100 mNzm21.
As a result of the active process, this bundle appears to be almost
one order of magnitude more compliant, and therefore more
responsive, than the passive bundle. Probably because active
elements within the oscillatory bundle create internal friction,
the bundle’s effective drag coefficient is l ' 6.6 mNzszm21, about
thrice that of the passive bundle. These parameter values yield
a relaxation time of t 5 lyk ' 65 ms. The elastic coupling
between force-generating elements and the hair-bundle position

Fig. 3. The effective temperature of spontaneous hair-bundle motion. (A)
For the oscillatory bundle of Figs. 1 and 2, the inverse of the effective
temperature, normalized by the actual temperature, TyTEFF(v), crossed zero
near the bundle’s frequency of spontaneous oscillation. This ratio deviated
strikingly at all frequencies from the value of unity indicative of passive
motion and thus violated the FDT. (B) A plot of the normalized effective
temperature, TEFF(v)yT, exhibits a divergence corresponding to the crossing of
the abscissa in A. The smooth lines correspond to a fit to the data by Eq. 22. (C)
For the control hair bundle whose response function is shown by open symbols
in Fig. 2, the normalized effective temperature TEFF(v)yT remained near unity
throughout the range of frequencies. This behavior, which satisfies the FDT,
demonstrated that the hair bundle was passive and that its fluctuations
resulted from thermal bombardment.
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is characterized by a stiffness of k# ' 1 mNzm21. Finally, the fit
of the oscillatory bundle’s spectrum to Eq. 21 provides estimates
for the noise strength of D ' 0.14 pN2zs and for the correlation
time of 115 ms. A fit to the passive bundle’s spectrum yields a
noise strength only 2% as large (not shown). The discrepancy
between correlation and relaxation times may result from the
simplistic assumption that the hair bundle is subjected to sym-
metrical white noise. The bimodal shape of the displacement
histogram (Fig. 1B) is consistent with the measurement of a bare
negative stiffness in a displacement-clamp configuration (22) but
is not accommodated by a linear description.

Active Elements in the Hair Bundle. What might be the physical
origin of the active force described by Eqs. 18 and 19? The
myosin-based molecular motor responsible for a bundle’s me-
chanical adaptation to sustained stimuli (reviewed in refs. 32–34)
is an obvious candidate for one force-generating element within
the hair bundle. The interplay between the adaptation motor and
a region of negative stiffness in the force-displacement relation
of a hair bundle could explain the oscillations (22). When acting
against elastic elements, groups of molecular motors are also
known to be able to generate oscillations by collective effects
(35). In response to a step displacement of the hair bundle’s tip,
the speed of adaptation declines exponentially, and its initial
value increases linearly with the deflection amplitude over the
range of stimulation relevant to the present study (36). This
behavior can be summarized by the equation bdXA(t)ydt 5
2XA(t) 1 (k#yK)X(t), in which XA(t) denotes a displacement
that can be related by a geometric factor to the movement of the
adaptation motor. Expressing the force exerted by these motors
on the hair bundle as FA 5 2KXA, in which K represents a
stiffness that couples the adaptation motor to hair-bundle mo-
tion, we obtain Eq. 19.

Rapid transduction-channel reclosure mediated by Ca21 binding
to these channels could contribute to spontaneous hair-bundle
oscillations as well as to the movements evoked by mechanical
stimulation (20, 24, 37; reviewed in refs. 14, 16). Theoretical analysis
shows that this process can both amplify mechanical stimuli and
produce spontaneous bundle oscillations (8).

Proximity to a Hopf Bifurcation. An active oscillator such as a hair
bundle may operate near an oscillatory instability called a Hopf
bifurcation. In the absence of noise, the oscillator would be
quiescent on one side of the bifurcation and display phase-
coherent oscillations on the other. The distance to the Hopf
bifurcation can be characterized by the inverse correlation time
of the system’s spontaneous movements, t21, which vanishes at
the instability and formally becomes negative on the unstable
side of the bifurcation. Note that in our model, this bifurcation
occurs when the effective stiffness k vanishes (see Eq. 21). In our
experiments, a bundle’s spontaneous movements displayed a
finite correlation time, corresponding to a positive effective
stiffness k, and lost their phase coherence within one cycle of
oscillation (Fig. 1D). This loss of coherence implies that the hair
bundle is a noisy system. In the presence of noise, spontaneous
motion exists on the stable side of the bifurcation, and the phase
coherence of oscillations on the oscillating side is lost. As a
result, the strict distinction between the oscillating and nonoscil-
lating states ceases to exist; the Hopf bifurcation is concealed by
the noise, but its signature (27)—frequency selectivity and
compressive nonlinearity—remains.

The noise examined here results from both thermal impulses
and fluctuations in force-producing elements within the hair
bundle, including adaptation motors and transduction channels
whose numbers are relatively small (reviewed in ref. 32). When
operating in the vicinity of a noisy Hopf bifurcation, a hair
bundle may benefit from noise in the detection of weak sinu-
soidal stimuli (9). Minute stimuli at a frequency near that of
spontaneous oscillation partially phase-lock the bundle’s move-
ments, even though they are too weak to augment their magni-
tude. In the present study, we have explored only the linear
response of the system to weak stimuli. For stronger stimulation,
the system exhibits a compressive nonlinearity that allows it to
operate over a large dynamic range (27).
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25. Russell, I. J., Kössl, M. & Richardson, G. P. (1992) Proc. R. Soc. London Ser.

B 250, 217–227.
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