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Abstract. We investigate the dynamics of a single component fluid bilayer, which exchanges material with
the surrounding fluid. We derive covariant equations of motion taking into account solvent permeation,
exchange of lipids between solvent and the membrane and discuss the sources of noise in these equations.
Different lipid concentrations on both sides of the membrane lead to a non-equilibrium state. We discuss
steady states as well as shape instabilities which occur at a critical osmotic-pressure difference.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 87.16.Ac Theory
and modelling; computer simulation – 87.16.Dg Membranes, bilayers, and vesicles

1 Introduction

Biological membranes play a crucial role in the compart-
mentalization of cells. They act as highly selective perme-
ability barriers separating the cytosol from the extracel-
lular environment as well as from different cell organelles.
They participate also in a variety of biological processes,
such as passive and active transport, cell locomotion,
phagocytosis and endocytosis, etc. [1]. Biomembranes, de-
spite their different functions, have a common structural
basis: they are composed of lipid molecules that have a po-
lar head group region and two hydrophobic hydrocarbon
chains. Due to their amphiphilic character, when dissolved
in an aqueous solvent these molecules aggregate sponta-
neously into two opposing monomolecular layers [2,3].

Single-component incompressible membranes have
represented the fundamental model of biomembranes over
thirty years. The elastic continuum description has been
the starting point for studies of the thermodynamic and
statistical properties of such membranes [4–6]. It is valid at
length scales large compared to microscopic lengths such
as the bilayer thickness and allows us to understand meso-
scopic shapes and long-wavelength fluctuations [3,7,8].
However, in living cells, membranes contain many compo-
nents such as several different species of lipids, anchored
polymers or membrane proteins which can move within
the two-dimensional liquid state of the membrane and
perform diffusive motion. Many of these complexities have
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been addressed both theoretically and experimentally and
are known to play a role in shape transformation [9–11],
magnification of shape fluctuation [12,13], coalescence and
budding processes [14]. Futhermore, inside an organism,
the membranes are subject to exchanges of small trans-
port vesicles containing different sorts of cargo molecules
(e.g. lipids, enzymes, proteins, small intercalated parti-
cles, etc.). Thus, in order to obtain a more appropriate
description of biological membranes, physicists have to
learn how to deal with membranes exchanging material
with their three-dimensional surrounding. The work we
present here may be considered as a step in this direction.
It follows and generalizes earlier work considering static
properties [3], Rouse dynamics [15], or membrane interac-
tions with a diffusion field as protein density [16].

We extend a covariant, reparametrization invariant
theory for one-component membranes, proposed initially
by Cai and Lubensky [17], by allowing for an exchange of
material with the three-dimensional embedding fluid. The
fluid is assumed to contain a fraction of membrane mate-
rial either in the form of isolated molecules or of small vesi-
cles, controlled by its chemical potential µ. In the case of
vesicles dissolved in the three-dimensional fluid, the length
scales considered in this manuscript must be large com-
pared to the vesicle diameter. We assume the chemical po-
tential difference between the membrane and each of the
3D compartments to be small enough to ensure the valid-
ity of an Onsager theory of the exchanges. This allows us
to systematically construct a theory of membranes with
sources and sinks of material. In order to illustrate our
theory, we define the conditions under which a flat steady
state may be reached, and derive the mode structure of the
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Fig. 1. Schematic representation of a fluid membrane which exchanges material with the solvent. The shape of the membrane in
the three-dimensional embedding space is parameterized in terms of two internal coordinates ua, a = 1, 2. Lipids in the membrane
are characterized by the density φ(ǔ, t) and the chemical potential µ(ǔ, t). The membrane is located in the (x, y)-plane and
exchanges material with the solvent via the currents J±

n . The density and chemical potential of material above and below are
denoted Ψ± and µ±. Reservoirs of membrane material far from the membrane at z → ±∞ are characterized by the density Ψr

and the chemical potential µr.

membrane under these conditions. In particular, we show
the existence of an instability under certain conditions,
and derive a simple criterion which gives us an insight
into the physical basis of this shape instability.

2 Membrane description

For a theoretical description on length scales large com-
pared to microscopic lengths, fluid membranes can be con-
sidered as two-dimensional fluctuating surfaces embed-
ded in a three-dimensional Newtonian fluid. The mem-
brane shape is described by a three-component vector field
R(u1, u2) depending on two internal coordinates u1 and
u2 of the membrane (see Fig. 1). We can locally define
covariant tangent-plane vectors1:

Ra = ∂aR, for a = 1, 2, (1)

from which we obtain the metric tensor gab ≡ Ra · Rb.
Its determinant, g ≡ det(gab), yields the area element
dA = du1du2√g. The inverse metric tensor gab satisfying
gabgbc = δa

c allows us to define contravariant tangent-plane
vectors Ra = gabRb [2]. The tangent plane is completely
defined and oriented by the local unit (outward) normal

n =
R1 ∧ R2

|R1 ∧ R2| .

The curvature tensor is given by Kab = n · ∂a∂bR and
permits us to construct two invariant scalars which are
the mean curvature H ≡ gabKab/2 and the Gaussian cur-
vature K ≡ det(gabKbc), where gab is the contravariant
metric tensor [2].

1 ∂a =
∂

∂ua denotes the partial derivative with respect to
coordinate ua.

In the classical curvature model, a membrane is char-
acterized by the Helfrich-Canham Hamiltonian [4,5]

FHC ≡ 1
2

∫
d2ǔ

√
g

[
κ(2H −H0)2 + κGK

]
, (2)

where κ is the bending rigidity, κG is the Gaussian curva-
ture rigidity and H0 is the spontaneous curvature which
takes into account the possible asymmetry of either chem-
ical or physical origin. If we exclude topological fluctua-
tions, the Gauss-Bonnet theorem [2] allows us to omit the
term controlled by the Gaussian rigidity, since it is merely
a topological invariant.

Following Cai and Lubensky, we use a single continu-
ous scalar variable φ(ǔ, t) to describe the local density of
phospholipids in the membrane. In order to include the
lateral density in our description, let us introduce the lo-
cal free energy density f(φ) −∆µ̃φ corresponding to the
replacement of the embedding fluid in the presence of its
equilibrium solvated lipid density by the bilayer membrane
without curvature terms. ∆µ̃ is the difference between the
membrane chemical potential and the equilibrium lipid
chemical potential µr = µe(T, P, Ψr) at the temperature
T and pressure P of the experiment, and Ψr is the three-
dimensional lipid density in the reservoir (see Fig. 1). The
corresponding Ginzburg-Landau Hamiltonian then can be
written as

FGL =
∫
d2ǔ

√
g [f(φ)−∆µ̃φ] . (3)

The equilibrium value φe in a flat membrane with im-
posed ∆µ̃ is given by ∆µ̃ = f ′(φe). For instance, for a
membrane covering a small hole and when the equilibra-
tion time with the bulk embedding fluid is long enough
the chemical potential is imposed by the Plateau borders
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which forces ∆µ̃ 	= 0 (see App. A). Under such circum-
stances, f(φ) can be expanded in a power series of the
density deviation φ− φe:

f(φ) = f(φe) +∆µ̃(φ− φe) +
χe

2
(φ− φe)2 (4)

with χe = f ′′(φe). Equation (3) defines the equilibrium
surface tension

σ = f(φe)−∆µ̃φe. (5)

In a situation where the bulk embedding fluid and the
membrane are at equilibrium, then ∆µ̃ = 0 and φe = φ0

with f(φ0) = 0. As a consequence of relation (5), the
tension σ also vanishes. For small deviations of φ from
that value φ0, equation (4) becomes

f(φ) 
 χ

2
(φ− φ0)2. (6)

Here, χ = f ′′(φ0) is the compressibility modulus of the
membrane. In general, there will also be stiffness terms de-
pending on covariant derivatives of φ, as for example |D2φ|
and gab(∂aφ)(∂bφ), where D2 = g−1/2∂ag

1/2gab∂b denote
the Laplace-Beltrami operator associated with the metric
gab. They will, however, not concern us here since they in-
troduce subdominant terms in the long length scale limit.

The effective Hamiltonian of symmetric membranes
has the following structure:

F [R, φ] =
∫
d2ǔ

√
g

[κ
2
(2H)2 +

χ

2
(φ− φ0)

2
]
. (7)

In the case when the chemical potential is imposed by
Plateau borders, and for small deviations from φe, then

F [R, φ] =
∫
d2ǔ

√
g

[
σ +

κ

2
(2H)2 +

χe

2
(φ− φe)

2
]
, (8)

in which σ is defined by equation (5).

3 Membrane dynamics

For the mesoscopic length scales of membrane systems, the
hydrodynamic flow is usually in the low-Reynolds-number
creeping flow regime (Re = ρsVsL/η 
 10−3 for a typical
lateral size L of order micrometers and a solvent velocity
Vs of few millimeters per second). In this case, the embed-
ding incompressible fluid dynamics is governed by the 3D
Stokes equation [18]:

η∆vs(r, t) = ∇P (r, t) +
∫
d2ǔ δ (r − R)

δF
δR

∣∣∣∣√
gφ

+ ζh(r, t),
∇ · vs(r, t) = 0,

(9)

in which vs, P and η are the embedding fluid velocity,
pressure and viscosity. The force density acting on the

solvent δF/√gδR is obtained at constant areal density
projected onto the tangent plane

√
gφ:

1√
g

δF
δR

∣∣∣∣√
gφ

=
[
κ(2D2H + 4H3 − 4HK)

+ 2p(φ)H
]
n+ ∂ap Ra

(10)

with p(φ) the two-dimensional membrane pressure: p(φ) 

χφ0(φ−φ0). The last term in equation (9), ζh, represents
the fluctuating force exerted on the solvent due to equi-
librium thermal fluctuations and has the correlation:

〈ζh(r, t)〉 =0,

〈ζhi(r, t)ζh
∗
j (r

′, t′)〉 =2kTη(−δij∇2 + ∂i∂j)

× δ(r − r′)δ(t− t′),

(11)

where the star symbol denotes complex conjugate. A spe-
cial solution of the noiseless Stokes equation for the veloc-
ity field generated is given by

vs(r, t) =
∫
d2ǔ

√
g O(r,R)

1√
g

δF
δR

∣∣∣√
gφ

, (12)

where the Oseen tensor O(r, r′) has Cartesian matrix el-
ements [19]:

Oij(r, r′) ≡ 1
8πη|r − r′|

[
δij +

(ri − r′i)(rj − r′j)
|r − r′|2

]
. (13)

Thus, as already well known, hydrodynamics mediates a
long-range interaction (∼ 1/|r − r′|) through the velocity
field.

Following standard procedures in irreversible thermo-
dynamics [20], we can postulate linear constitutive rela-
tions between the fluxes (the relative flow of the solvent
through the membrane and the particle currents J±

n be-
tween each half-space and the membrane) and the associ-
ated forces (hydrostatic- minus osmotic-pressure discon-
tinuity across the membrane, chemical potential differ-
ence between positive (respectively, negative) half-space
and membrane. According to Onsager’s reciprocal rela-
tions [21], the constitutive flux-force relations in the linear
regime can be expressed in the form

 (v(ǔ, t)− vs(R, t)) · n
J+

n

J−
n


 =

L


 ∆P (ǔ, t)−∆Π
∆µ(ǔ, t)−∆µ+(R(ǔ), t)
∆µ−(R(ǔ), t)−∆µ(ǔ, t)


 + N (ǔ, t) , (14)

where we define the Onsager matrix by

L =


 λp −ΛΨr −ΛΨr

−ΛΨr λΨ2
r 0

−ΛΨr 0 λΨ2
r


 . (15)

The membrane velocity v(ǔ, t) will be defined below.
∆P (ǔ, t) is the hydrostatic-pressure difference across the
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membrane, ∆Π the osmotic-pressure difference, ∆µ(ǔ, t)
the chemical potential of lipids in the membrane defined
by

∆µ(ǔ, t) =
1√
g

δF
δφ

∣∣∣
R

= χ(φ− φ0), (16)

or more generally ∆µ = χe(φ−φe)+∆µ̃ and∆µ±(r, t) de-
note the chemical potentials in the +/− half-spaces which,
in the dilute solution case, can be written as

∆µ±(r, t) = µ±(r, t)− µr = kT ln(Ψ±(r, t)/Ψr). (17)

The kinetic coefficients λp (the membrane permeability),
λ and Λ are entirely determined by the internal structure
of the membrane, independently of the constraints applied
on the system, and do not depend on Ψr for small Ψr. They
are dependent, however, on the state variables such as
temperature, pressure and the density φ0 or φe. Stability
conditions imply that all diagonal elements (λp and λ) are
positive, whereas the off-diagonal elements must satisfy
the condition λpλ−2Λ2 > 0. In principle all fluxes should
depend linearly on all forces, and the Onsager matrix L
should not have any vanishing element. However, the par-
ticle current between the membrane and the lower half-
plane driven by the chemical potential difference between
the upper half-plane and the membrane is very small, and
reciprocally. Thus, for the sake of simplicity, we set the
corresponding coefficients to zero.

In order to describe long-wavelength fluctuations, we
further introduce thermal noise sources N = (ζn; ς+; ς−)
in the dynamical equations. The first contribution of noise,
ζn, is the Brownian noise corresponding to the dissipation
of energy in the permeation process. The contributions,
ς±, represent the thermal noise due to particle flow per-
pendicular to the membrane. The fluctuation-dissipation
theorem requires

〈Nα(ǔ, t)〉 = 0,

〈Nα(ǔ, t)N ∗
β (ǔ

′, t′)〉 = 2kTLαβ
δ(ǔ− ǔ′)√

g
δ(t− t′).

(18)

We now write down the equation of conservation of the
membrane molecule density. They exhibit a conserved part
which corresponds to molecule motion within the mem-
brane, and a source term which is nothing else than the
flux difference J−

n − J+
n :

Dtφ+Daj
a(φ) = J−

n − J+
n , (19)

where Dt = g−1/2∂tg
1/2 and Da = g−1/2∂ag

1/2 is the co-
variant derivative. A detailed discussion of the current
ja(φ) = gabj

b(φ) can be found in reference [17]:

ja(φ) =
∑

i

du(i)
a

dt
δ(ǔ− ǔi)√

g
, (20)

where the summation i is over all molecules defining the
membrane and du(i)

a /dt is the covariant component of the
molecule velocity, tangential to the membrane. Thus, the
membrane velocity is defined by:

v =
ja(φ)Ra

φ
+ ∂tR. (21)

The source and sink terms, which are not included in ref-
erence [17], generate a new physics which needs to be in-
vestigated. If we denote the friction coefficient γ of the
membrane with the solvent, the in-plane membrane dy-
namics obeys the following equation:

−∂ap− γ
[
v(ǔ, t)− vs(R(ǔ), t)

] · Ra + ζa(ǔ, t) = 0, (22)

where we have ignored other sources of dissipation, for
example, due to intra-membrane viscosity, since that is
subdominant compared to the friction with the surround-
ing fluid [22]. The function ζa(ǔ, t) is a Gaussian white
noise source with correlations:

〈ζa(ǔ, t)〉 = 0,

〈ζa(ǔ, t)ζ∗b (ǔ′, t′)〉 = 2kTγgab
δ(ǔ− ǔ′)√

g
δ(t− t′).

(23)

The dynamics of the lipid density Ψ in the 3D solvent is
described by a convection-diffusion equation in the mem-
brane frame of reference:

∂tΨ + vs(r, t) · ∇Ψ = D∆Ψ + ∇ · ζΨ , (24)

where D is a diffusion coefficient and ζΨ is random source
of diffusion related to dissipation in bulk through the gen-
eralized fluctuation-dissipation theorem:

〈ζΨ (r, t)〉 = 0,

〈ζΨ i(r, t) ζΨ
∗
j (r

′, t′)〉 = 2ΨrDδijδ(r − r′)δ(t− t′).
(25)

Eventually, the lipid currents at the membrane verify the
continuity conditions J±

n = (Ψ±vs − D∇Ψ±) · n∣∣
r=R(ǔ)

,
which express the coupling between the bulk and the mem-
brane. Equations (7) to (25) constitute a complete set,
which can in principle allow us to describe any dynamical
behavior of a membrane submitted to specific initial and
boundary conditions.

As an example, we consider the stationary behavior
of a membrane, driven out of equilibrium by an osmotic-
pressure difference ∆Π0. The pressure and chemical po-
tential are kept identical on both sides of the membrane
(∆P = 0; ∆µ±(z → ±∞, T, P, Ψr) = 0). If ∆Π0 = 0, the
system evolves toward equilibrium with σ = 0 and φ = φ0.
If ∆Π0 = 0 and the chemical potential in the membrane is
determined by the chemical potential of the phospholipids
in the Plateau borders and consequently ∆µ̃ 	= 0, the
membrane density evolves quickly towards φe and σ 	= 0
is determined by equation (5). When ∆Π0 	= 0, there is
no bulk lipid flux, in the fluid reference frame. However,
in the membrane reference frame, both a hydrodynamic
flow and a lipid flow are generated. From the continuity
relations, we obtain a lipid flow

J−
n = J+

n = Ψrvsz(z = 0). (26)

Note that in the fluid reference frame, the membrane
moves with a velocity vm = −vsz(z = 0). The lipid
concentration Ψ(z) is constant on the downstream side
and exhibits an exponential variation over a length scale
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Fig. 2. Schematic 3D density profile of the flat membrane
with a hydrodynamic flow vsz = −vm. The particles density of
section (z > 0) changes on a characteristic length ξ = |D/vm|.

ξ = |D/vm| on the upstream side, as shown in Figure 2.
For instance for vm > 0, the stationary state is given by
Ψ+(z) = Ψr − (2β∆Π/kT) exp (−vmz/D) and Ψ−(z) =
Ψr, with β = (λp − Λ)/(λ − 2Λ). Therefore, the differ-
ence in lipid concentration on each side of the membrane
contributes to the osmotic pressure ∆Π = ∆Π0/(1+2β).
Using the expression (26) of the lipid flow in equation (14)
and adding the two last lines of this equation system, we
obtain a fluid flow through the membrane given by

vsz(z = 0)=λe
p∆Π

0 , with λe
p=

λpλ− 2Λ2

2λp + λ− 4Λ
. (27)

Relation (27) expresses the fact that the lipid flux
modifies the fluid flow through the membrane. The ef-
fective permeation coefficient λe

p is always positive since
λpλ − 2Λ2 > 0 and 2λp + λ − 4Λ > 0, both inequalities
being required by the stability condition of the Onsager
matrix. The difference between λp and λe

p in lipid sys-
tems has not been measured, to our knowledge. The ex-
perimentally measured quantity is λe

p. According to equa-
tion (27), it is always smaller than λp. If the rate of
lipid uptake is large (λ � λp, Λ), the lipid exchange
does not perturb the fluid flow through the membrane
and λe

p 
 λp. If the rate of lipid uptake is very slow
(λp � λ, Λ), the osmotic-pressure difference across the
membrane∆Π is strongly reduced compared to∆Π0, and
λe

p 
 λ/2 � λp. The experimental value of λe
p (10−13–

10−12 m3/N · s in [23]) is extremely small. This could be
due to such an effect but there is currently no proof that
this is the case. For ∆µ̃ = 0, this solution corresponds to
a true steady state. For conditions where chemical poten-
tials are buffered by Plateau borders, ∆µ̃ 	= 0, it correctly
describes the short-time behaviour (t < τ = ηL/σ).

We can remark that there is no bulk lipid flux although
there is exchange of lipids between the membrane and the
3D embedding fluid. From the relations (14) and (27), the
stationary condition imposes that the 2D density attains

a uniform value given by

φstat = φ0 +
β

χΨr(1 + 2β)
|∆Π0|. (28)

The fact that the change in membrane density is non-
analytic in ∆Π0 may look surprising at first sight. It re-
sults from the fact that irrespective of the sign of ∆Π0,
there is an increase of the three-dimensional concentration
Ψ on one side of the membrane.

For nearly flat surfaces, we can describe the membrane
fluctuations in the Monge representation by the height
h(x) of the surface above a Euclidean base plane2. It is
convenient to perform a Fourier transformation parallel to
the membrane plane defined by fq(t) =

∫
d2xeiq·xf(x, t)

with q =
√
q2x + q2y. After assuming an est time depen-

dence of the height and density variables, we obtain, in
momentum space, the following noiseless linear dynamics:

s

(
hq

δφq

)
= M(s, q)

(
hq

δφq

)
(29)

in which δφ = φ−φstat. The dynamical matrix M(s, q) =
(mij) is defined by its components:




m11 
 (
2Λ̄A+(s, q)− 1

) σeq + κq3

4η
,

m12 = 2χΛΨrA
−(s, q),

m21 = 2ΨrA
−(s, q)

(
Λ+

1
4ηq

)
(σeq2 + κq4)− φ0vmq

2,

m22 = −2χλΨ2
r

(
1−A+(s, q)

) − χφ0
q

4η
,

(30)
where we have taken advantage of the fact that 1/4ηq �
λe

p, Λ, 1/γ in the range of validity of the theory. We have
defined


A±(s, q) = 1
2

(
1

1+B+(s,q) ± 1
1−B−(s,q)

)
,

B±(s, q) = vm(−1± √
1 + 4ξ2(s/D + q2))/2v1,

v1 = kTλΨr,

σe = σ − φ0β|∆Π|/Ψr,

Λ̄ = Λ/λ.

(31)

For the slowest mode at vanishingly small q, we find

s1 
 −σeq/4ηe, with ηe = η/(1− 2Λ̄). (32)

It describes membrane undulations in the tension con-
trolled regime. Similar results are obtained in Langmuir
films [24,25] and conserved membrane dynamics [17]. The
effective viscosity is always larger than the fluid viscosity.
It arises since the couplings described by equation (15)
introduce extra dissipation. This mode becomes unstable

2 In this case, ǔ ≡ x = (x, y) and R(x) = (x, h(x)).
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when σe changes sign that is in the Plateau border case
at a critical osmotic-pressure difference:

|∆Π0
c | = (1 + 2β)σΨr/βφ0 . (33)

The corresponding instability in Langmuir films due to
a direct compression of the film is called “buckling” in-
stability in analogy with the buckling of beams. In the
absence of Plateau borders, the mode is always unstable
since then ∆Π0

c vanishes. Keeping higher order terms in
q, up to third order leads to

s1 
 −(σeq + κq3)/4ηe +O((∆Π0)2). (34)

Terms quadratic in q do exist. Their prefactor is linear in
∆Π0; anticipating q ∼ (∆Π0)1/2 (see below), we find that
this term contribute to s1 as (∆Π0)2, small compared to
the other terms which scale as (∆Π0)3/2.

In the unstable case, the fastest growing mode will ap-
pear with wave vector qg =

√−σe/3κ, on a time scale
τ = s−1

1 (qg) = ηeκ1/2/(−σe/3)3/2. At threshold σe = 0,
and the mode is controlled like in the buckling instability
by lateral boundary conditions. However, it is very likely
that (−σe) keeps on growing to significantly non-vanishing
values. We leave a more detailed analysis for further de-
velopments. All modes can be directly calculated from the
equation det(M(s, q) − s12) = 0. After subtracting s1,
power counting allows to infer that there are four addi-
tional modes si(q), i ∈ [2, 5] which have all a non-vanishing
value at q = 0. It is possible to obtain analytical solutions
in the latter case, but they are not very illuminating. They
can be either complex or real depending on parameters,
but in all cases their real part is negative. For non-zero
q and real si(q), it is possible to show analytically that
si(q) is always negative. In the complex case numerical
analysis suggests that the real part of s(q) is always neg-
ative. We thus conclude that these four modes are always
stable. They correspond to exchanges of lipid between the
membrane and the embedding fluid on both sides, and
permeation flow. The assumption of exponential time de-
pendance requires particular z distributions of the Ψ fluc-
tuations on both sides of the membrane. The time de-
pendance could be more complex for general types of Ψ
fluctuations but there is not more physics to be learned
from the general case.

Taking into account the influence of thermal noise in
the dynamic equations, we can calculate the equal-time
height fluctuations about this homogenous steady states.
To that end, we first Fourier transform the variables in
space and time, and integrate the correlator with respect
to frequency ω to obtain

〈hq(t)h∗q(t)〉 

kT

(
1 + Λ2v1

λpλ(v1+vm)

)
λ−Λ
λ−2Λ

(
1− Λ2

λλp

)
σeq2

. (35)

The fluctuation spectrum does not reduce to the usual
1/q4 spectrum of a passive membrane but the exchanges
of particles with the surrounding fluid induces a tension

σind proportional to kinetic parameters and the osmotic-
pressure difference:

σind =
(λ− Λ)

(
1− Λ2/λλp

)
(λ− 2Λ) (1 + Λ2v1/λpλ(v1 + vm))

σe. (36)

The fact that the induced tension is dependent on kinetic
parameter shows that the fluctuation-dissipation theorem
is not verified and that non-equilibrium fluctuations are
produced by exchange phenomena. We can also notice
that if both the osmotic-pressure difference and the link-
age parameter vanish (∆Π0 = 0 and Λ = 0), then the
variance of height fluctuations approaches that of a tense
membrane, i.e. 〈|hq(t)|2〉 
 kT/σq2 at small q.

Following the same steps, we find the following corre-
lation function for the density difference field:

〈δφq(t)δφ∗
q(t)〉 


kT
χ

(
1 +

3v1

2(vm + v1)

)
. (37)

4 Discussion

The equations we have introduced in this work in-
volve only two new parameters as compared to earlier
one-component membrane descriptions, namely the rate
at which phospholipids may be incorporated in the mem-
brane, and the associated fluid flow. It would be highly
interesting to measure these parameters. A conceptually
simple experiment would be to work with a membrane
without Plateau borders, and maintained at constant ten-
sion. Such an experiment is currently being set [26]. The
area increase as a function of time, under conditions in
which the chemical potential difference between the mem-
brane and the bulk are controlled, would provide a direct
measure of λ. The measurement of the off-diagonal coeffi-
cient would be more tricky. The best is certainly to extract
the effective viscosity ηe from the study of the membrane
undulation mode according to equations (32, 34) and com-
pare it to the fluid viscosity η. The values of the perme-
ation coefficients we have to date are effective permeation
coefficients as defined by equation (27): this is enough to
obtain a complete set of measurements for λ, Λ and λp.
We would then be in a position to deal in a fully quan-
titative way with situations in which membranes are ex-
changing material with the bulk. As an example we have
looked at the mode structure of a membrane submitted to
an osmotic-pressure difference only. In practice, this could
be done by maintaining salt concentration differences be-
tween the two sides of the membrane: ions are highly in-
soluble in phospholipid membranes and should not inter-
fere with the membrane state, thus defining∆Π0 only. We
have assumed that the hydrostatic-pressure difference was
kept small over the time scales of the experiment. This is
clearly possible when the fluid reservoirs have a free sur-
face. We show in Appendix A that this timescale is of the
order of t 
 (S/Sm)/ρgλe

p where S and Sm are, respec-
tively, the area of the bulk fluid free surface and of the
membrane, ρ the fluid density and g the gravitational ac-
celeration. Since 1/ρgλe

p 
 108 s under most practical cir-
cumstances the pressure difference is indeed negligeable.
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Fig. 3. Schematic section of a membrane which covers a small
hole and separates two bulk reservoirs in contact with air.

It is useful to check if the critical osmotic-pressure
difference can be reached experimentally when the mem-
brane chemical potential is set by the Plateau borders.
The lamellar structure of the Plateau border with inter-
layer distance d provides an estimate of the tension σimp

imposed on the membrane: σimp 
 kT/d2. Introducing the
average distance 8b between phospholipids in the bulk such
that Ψr = 1/83b , and the average lateral distance between
phospholipids in the membrane 8m such that φ0 = 1/82m,
we get

|∆Π0
c | 


(
kT
83b

) (
8m
d

)2

�
(
kT
83b

)
= Π (38)

since 8m � d. Π is the osmotic pressure due to phospho-
lipids in the fluid. It is thus clear that the critical value for
triggering the instability is easily accessible to experiment.

One may wonder why we do not find in our analysis an
other instability reminiscent of the one described by Rao
et al. [15]. This instability arises from a coupling between
membrane local velocity and curvature. If we express the
first line of equation (14), we find

v(ǔ, t)− vs(R, t) = −λp∆Π + ΛΨr(∆µ+ −∆µ−) (39)

any reference to the curvature state, which is contained
in the membrane chemical potential ∆µ(ǔ, t) disappears
from the equations because of the symmetry of membrane
at rest. However, in steady state the two sides of the mem-
brane are not equivalent since they experience different
phospholipid concentrations. The off-diagonal components
should really read Λ(Ψr +β∆Π/kT) on the plus side, and
ΛΨr on the minus side (keeping the same conventions as
before). Then, relation (39) reads

v(ǔ, t)− vs(R, t) =− λp∆Π + ΛΨr(∆µ+ −∆µ−)

− Λ
β

kT
∆Π(∆µ(ǔ, t)−∆µ+),

(40)

in which ∆µ does depend on curvature. In the logic of
equation (14), the expansion must be linear in the fields
∆Π, ∆µ, etc. . . , and the last term of equation (40) must
be omitted. However, in any extension to higher powers of

∆Π, such a term should be retained and provided Λ has
the appropriate sign it would be an instability source. One
should however point out that many other non-linearities
would have to be retained in order to set up a fully con-
sistent analysis.

At last, conditions under which the chemical poten-
tials ∆µ± are set different far from the membrane could
be worked out as well. They cannot lead to steady-state
situations, and we postpone their study for future work.

We are grateful to Sriram Ramaswamy, Jean-François Joanny,
and especially Denis Bartolo for several illuminating discus-
sions. This work was supported in part by a grant from the
Fondation pour la Recherche Médicale (No. FDT20030627286).

Appendix A. Experimental application

Consider an experimental case in which a membrane sep-
arates two bulk reservoirs in contact with air via a free
surface, each of area S (see Fig. 3). At the free surface the
hydrostatic pressure is continuous and any hydrostatic-
pressure discontinuity at the membrane translates in a
height difference δh of the free surfaces. The hydrostatic-
pressure difference will cancel the osmotic-pressure differ-
ence when ρgδh = ∆Π0. this requires a volume flow δhS
through the membrane. Knowing that the rate of volume
flow is given by vszSm, where Sm is the membrane area,
we get immediately: t 
 (S/Sm)/ρgλe

p.
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