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Abstract. We study collections of rotatory motors confined to 2-dimensional manifolds. The rotational
motion induces a repulsive hydrodynamic interaction between motors leading to a non-trivial collective
behavior. For high rotation speed, motors should arrange on a triangular lattice exhibiting crystalline
order. At low speed, they form a disordered phase where diffusion is enhanced by velocity fluctuations. In
confining geometries and under suitable boundary conditions, motor-generated flow might enhance left-
right symmetry-breaking transport. All these effects should be experimentally observable for motors driven
by external fields and for dipolar biological motors embedded into lipid membranes in a viscoelastic solvent.

PACS. 87.16.-b Subcellular structure and processes – 05.40.-a Fluctuation phenomena, random processes,
noise, and Brownian motion – 87.15.Kg Molecular interactions; membrane-protein interactions

1 Introduction

Motor proteins play an essential role in many cellular pro-
cesses such as, e.g., muscle contraction, chemotaxis, vesic-
ular trafficking, chromosome segregation during cell divi-
sion, etc. [1]. There is a variety of different motor proteins
that can have either a translational or a rotational mo-
tion. The most important linear motors include kinesins
or myosins and dyneins which move in a deterministic way
along filaments (actin and microtubules, respectively) and
transcription enzymes such as RNApolymerases which fol-
low nucleotide strands.

A prominent example of a rotating motor is adeno-
sine triphosphate synthase (ATPsynthase). ATPsynthase
is a large multisubunit protein, consisting of a large en-
zymatic protruding portion F1 attached to a membrane-
embedded, proton-conducting portion F0 [2]. When pro-
tons flow through F0, ATP is synthesized in F1. It is
thought [3–5] that the protons passing through the trans-
membrane carrier cause the stalk to spin rapidly within
the head, inducing the head to make ATP. The motor is
reversible and an excess of ATP provokes a rotation in the
opposite direction and a reverse flux of protons.

Another system which can effectively behave as a ro-
tating motor are cilia. Cilia are hair-like structures that
extend from the surface of many kinds of eucaryotic cells.
They are formed from specialized groupings of micro-
tubules called “basal bodies”. Cells are able to generate
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flow by utilizing cilia: their primary function is to move
fluid over the surface of a cell or to propel single cells
through a fluid. The beat cycles of cilia can be quite
complicated [6], but they also can exhibit rotational mo-
tion [7]. In multiciliar arrays hydrodynamic interactions
between neighboring cilia lead to cooperative beating pat-
terns [8].

There are strong experimental indications that defect
cilia might cause certain pathologies, the most prominent
example being the disease called “situs inversus”. It has
been shown [7] that the absence of functional cilia leads to
randomization of the left-right placement of organs. How-
ever, by subjecting the surface of the embryos to an arti-
ficial flow, left-right patterning could be re-established in
mice with only non-motile cilia [9]. Currently, several mod-
els are being discussed to explain the experimentally ob-
served behavior [10–12]. In all these approaches the cilia-
generated flow plays an essential role which triggers the
symmetry-breaking event.

The situation is somewhat different for ATPsynthase.
Its function is to synthesize ATP (or to build up gradi-
ents in proton concentration). Up to now, it is not known
whether the hydrodynamic flow field caused by the ro-
tational motion has a biological function. However, the
hydrodynamic flow generated by these motors can change
the properties of the membranes in which they are em-
bedded and can, e.g., enhance the diffusion of membrane
proteins. Furthermore, these rotating motors are fascinat-
ing objects with a potential for technological applications.
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The integration of arrays of biomolecular motors into
nano-engineered structures could be used, e.g., for the
creation of a novel class of mobile nanodevices, sorting
machines or force transducers [13].

The first realization of a motor-powered nanodevice
was given by the group of Kinosita [5]. They attached
actin filaments to the rotating stalk, observed its rotation
and measured the torque exerted by the surrounding fluid
on the motor. Subsequently, artificial systems were engi-
neered consisting of a substrate-supported array to which
F1-ATPase molecules were linked. Nanopropellers (150 nm
in diameter and 750 to 1400 nm long) where attached to
the rotating portion of F1 [14]. It is envisioned that in
such setups F1-ATPase motors can be used to create in
a controlled fashion a hydrodynamic flow field which will
provide mechanical drives for a new class of nanomechan-
ical devices.

Both cilia and ATPsynthase are embedded into mem-
branes. Thus, from a theoretical point of view, these sys-
tems are special realizations of active membranes, i.e.
membranes containing active components. Recently, theo-
retical models have been introduced to describe the prop-
erties of these systems in situations where active processes
driven by ATP hydrolysis, chemical gradients or light ex-
ert forces on the membrane [15]. Whereas the shapes and
fluctuations of model fluid membranes at thermal equi-
librium are by now well understood [16], the experimental
and theoretical investigation of active membranes has just
started. Up to now, studies have concentrated on mem-
branes containing active pumps and channels [17,18]. It
has been shown that non-equilibrium noise enhances the
shape fluctuations of the membranes. Triggered by these
investigations, a series of experiments has been carried out
which has confirmed the theoretical predictions [19,20].
There are also indications that these theoretical ideas ap-
ply directly to simple biological systems such as red blood
cells where non-equilibrium processes seem to influence
the flickering [21–23].

The study of rotatory motors is not restricted to
membrane-embedded molecules. As has been demon-
strated by the group of Whitesides, magnetic disks can be
confined to a liquid surface and then brought to rotation
by an external magnetic field [24,25]. The observed
pattern formation should also occur for rotors stirred by
Laser tweezers [26]. It should be emphasized that these
artificial motors are rotational monopoles driven by an
external field while the biological macromolecules are
driven by internally generated forces and correspond to
rotational dipoles.

In a recent paper [27], we have studied rotational
monopoles confined to a 2-dimensional manifold and dipo-
lar motors embedded into membranes. We have shown
that these systems exhibit, in contrast to membranes
containing pumps and channels, a non-trivial collective
behavior since the rotational motion may induce repul-
sive hydrodynamic interactions between motors. Conse-
quently, at high rotation speed, the motors might form a
crystalline phase. Upon decreasing speed (by, e.g., chang-
ing the ATP concentration), the lattice melts to form a

disordered (“high-temperature”) phase. In this paper, we
describe this order phenomenon in detail and present some
novel results characterizing the high-temperature phase.
Finally, inspired by recent studies of the disease situs in-
versus, we discuss how an appropriate spatial arrangement
of rotatory motors confined to a finite geometry can en-
hance left-right symmetry-breaking transport.

The remainder of this paper is organized as follows:
First, we calculate the flow field of motor proteins em-
bedded in a lipid membrane by discussing rotational
monopoles and dipoles separately. In Section 3 we demon-
strate that the interactions between the flow fields of the
motors lead to an effective repulsion between them and we
discuss the properties of the low-temperature crystalline
phase. In Section 4 we analyze the high-temperature be-
havior of many motor systems. In particular, we discuss
implications for situations which might be relevant for the
pathology situs inversus. We conclude with a summary
and an outlook.

2 Hydrodynamic flow field

We start by calculating the velocity field created by a
single monopolar or dipolar motor. In the following, we
assume the motors to be embedded in a flat manifold at
z = 0 with a shear surface viscosity ηm. The manifold
is surrounded by an incompressible solvent of density ρl
which is either Newtonian or viscoelastic. The manifold
contains N motors at position ri, where r ≡ (x, z) denotes
the position in 3-dimensional space and x ≡ (x1, x2) the
position on the surface.

For the systems mentioned above flow occurs at low
Reynolds number Re. Typical values for ATPase are ω �
100–1000 s−1 for the angular velocity and R � 10 nm
for its size [28,29]. For cilia ω � 10–100 s−1 and R �
5µm [7]. Thus, Re � 10−7 and Re � 10−3, respectively.
For rotors driven by an external field ω � 10–100 s−1 and
R � 100µm should be realizable. Then, Re � 10−1–1.

We first consider the simplest monopolar motor, a
spinning sphere of radius R embedded into a surface with
negligible surface viscosity (ηm = 0) surrounded by a
Newtonian fluid with viscosity η. In the limit of small
Reynolds numbers, the velocity field v induced by a ro-
tation with angular-velocity vector ω = ωez is a solution
of the Stokes equation. Due to rotational symmetry, the
pressure p is constant [30] and the velocity v is in the
direction of eϕ ≡ ez × r/(r sin θ), where in spherical co-
ordinates r = r(sin θ cosϕ, sin θ sinϕ, cos θ). Therefore,

∆v = 0. (1)

Since for an incompressible fluid div v = 0, we write the
velocity field as v = rot A, where A is an axial vector.
The ansatz A = fω and equation (1) lead to ∆f = 0
and ∇f =

(
2ar − b

r2

)
er, where er ≡ r/r. The boundary

conditions are v → 0 as r → ∞ and v(r = R) = ω × r.
Thus, one obtains for the velocity field

v =
R3

r3
ω × r. (2)
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In the simplest description, rotational dipoles on such a
surface can be thought of as being built up by two spheres
separated by a distance d with angular-velocity vectors
−ω and ω. If the two spheres are located at r1 = (0, z = 0)
and r2 = (0, z = d), then the velocity field at r (for r � d)
is at first order in d given by

v(r) =
3R3dz

r5
ω × r. (3)

Again, the direction of the flow field is along the orthora-
dial vector eϕ.

Due to the rotational symmetry, the Stokes equa-
tion (1) and therefore the flow field (2) are independent
of the viscosity η. It should be emphasized that this is
a direct consequence of our assumption that the motors
work at constant angular velocity ω. Since at low Reynolds
numbers the transient oscillations (which occur upon mo-
mentum injection) can be neglected, the fluid behaves ef-
fectively as a non-viscous one.

However, the viscosity η sets the scale for the relevant
forces. To make this point clearer, we calculate the viscous
torque exerted by the fluid on one sphere. The only non-
vanishing component of the corresponding viscous stress
tensor is given by σrϕ = η

(
∂v
∂r − v

r

)∣∣
r=R

= −3ηω sin θ.
Thus, the total torque is given by

τ =
∫ 2π

0

dϕ
∫ π

0

dθR3 sin2 θ σrϕ = −8πηR3ω. (4)

The applied torque has the direction of the rotation vector
ω, τ = τ

ωω. The velocity field can be written as a function
of the torque as

v = −3τdzx
8πηr5

eϕ. (5)

For a more realistic description of biologically relevant
dipolar motors such as ATPase, one must take into ac-
count the membrane viscosity ηm 	= 0 so that the viscosi-
ties seen by the two rotating portions of the motor are dif-
ferent. Cilia are linked to the cytoskeleton. This situation
can be captured by the limit of large membrane viscosity
where the support of the motor becomes solid-like.

For simplicity, we assume that the motor consists of
two circular disks with radii R at z = d and z = 0. This
should yield a realistic description for the flow field far
away from ATPase (d/z 
 1) [28,29]. Here, we concen-
trate on this macroscopic description. In Appendix A
we sketch how the motor ATPase is described by an
Onsager theory.

We describe the flow field of one motor as being created
by a set of localized forces in the fluid. By introducing
a discrete distribution of p force centers at the edge of
the disks, the force density associated with the rotational
motion is given by

f(r) = − τ

R2ωp

p∑
j=1

ω×xδ(x−xj) [δ(z − d) − δ(z)] , (6)

with xj = R(cos θj , sin θj) and θj = 2πj/p.

In-plane Fourier transformation for p � 1 and qR 
 1
yields

f(q, z) = − τ

R2ωp

p∑
j=1

iq · xjω × xj [δ(z − d) − δ(z)] =

−1
2
τ

ω
iω × q[δ(z − d) − δ(z)] ≡

−f0(q)[δ(z − d) − δ(z)]. (7)

A motor that is not subject to an external field cannot in-
ject kinetic momentum into the fluid and the total torque
associated with the force distribution therefore vanishes as
one can check. The two parts of the motor exert opposite
torques and from a mechanical point of view, a dipolar
motor corresponds to a torque dipole.

As shown in Appendix B the velocity field can be cal-
culated by solving the coupled Stokes equation for the
external fluid and for the membrane in the presence of
this force field by using Fourier components in the plane
of the membrane. The velocity is as above parallel to the
plane of the membrane and in the orthoradial direction.
Transforming back to x-space one has in polar coordinates

v(r) = vϕeϕ = −eϕ
τd

8πη

∫ ∞

0

dqq2G(q, l)e−q|z|J1(qx). (8)

Here, Jν denotes the Bessel functions of the first kind [31]
and the propagator is given by

G(q, l) ≡




1
1 + ql

for z < 0 ,

1
1 + ql

− 2 for z > 0 .
(9)

The length l = ηm
2η characterizes the surface viscosity of

the membrane. In principle, the scale of l is set by the
membrane thickness but experimentally it is found to be
at least 100 times larger [32].

For l = 0, equation (8) leads to

vϕ = − 3τd
8πη

zx

(z2 + x2)5/2
, (10)

with v(r) = vϕeϕ everywhere (except for the region 0 <
z < d), in agreement with equation (5). In the case of
cilia, for l = ∞ one has

v(r) =
{

0 for z < 0 ,
2vϕeϕ for z > 0 . (11)

Note that, in the case of a solid-like membrane the flow
field does not penetrate through the membrane.

Similarly, one finds (as also shown in App. B) for the
velocity field created by a monopolar motor embedded in
a membrane:

v(r) = −eϕ
τ

8πη

∫ ∞

0

dqqG(m)(q, l)e−q|z|J1(qx), (12)

where
G(m)(q, l) =

1
1 + ql

(13)
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for all values of z.
Equation (12) reduces to equation (2) for l = 0. For

large l one finds

v(r) = eϕ
xR3ω

lr(z + r)
. (14)

Note that membrane-embedded monopolar and dipo-
lar motors can be investigated simultaneously by writing

v(r) = −eϕ
τ

8πη

∫ ∞

0

dqq2hG(q, l)e−q|z|J1(qx). (15)

Here, G(q, l) ≡ (1 + ql)−1 − α2θ(z) with the Heaviside
function θ(z). Then, for h = d and α = 1 the last equation
reduces to equation (8), whereas for h = 1/q and α = 0
one obtains equation (12).

Finally, we give some estimates for the order of mag-
nitude of the flow field. For monopoles (on surfaces with
ηm = 0) with radii in the micrometer range and ω �
100 s−1, one has v � 100µm/s in the vicinity of the mo-
tor. For ATPase, however, one has v ≈ dω � 1µm/s and
for cilia v � 100µm/s.

3 Interaction between motors and behavior at
high rotation speed

We now consider an ensemble of N motors confined to a
flat surface and discuss the effect of the hydrodynamic in-
teractions between them. We first consider the case where
surface viscosity is negligible.

3.1 Monopolar motors on manifolds with ηm = 0

Since Stoke’s equation (1) is linear, the flow field created
by an assembly of N motors at positions xi reads

vt(r) = R3

∫
d2x′ρ(x′)ω × r − r′

|r − r′|3 , (16)

where ρ(x) =
∑N
i=1 δ(x−xi) is the two-dimensional den-

sity of motors.
This expression is formally equivalent to the Biot and

Savart law of classical electrodynamics (see, e.g., [33]).
Here, v plays the role of the magnetic field B which is
induced by a current j(x, z) = ρ(x)ωδ(z). Furthermore,
vortex lines in rotating superfluid helium create the same
velocity field [34]. Monopolar motors can be interpreted as
vortex points in two dimensions of strength κ =

∮
dl ·v =

2πωR2.
We assume that each motor follows the local (planar)

flow in the confining surface. Thus, a motor at position
r0 has velocity vt(r0). For a discrete set of motors in an
external field one finds

dxi
dt

= R3
∑

j
j �=i

ω × (xi − xj)
|xi − xj |3 + O

(
R6ω

|xi − xj |5
)
. (17)

Here, the neglected terms arise from the fact that the flow
field v(xj) of motor j alters the no-slip boundary condi-
tion for motor i at position xi. However, these corrections
are small for low densities, i.e. for |xi − xj | � R.

It is interesting to note that these coupled equa-
tions of motion have the structure of a Hamiltonian
system (cf., e.g., [35]) with Hamilton function H =
H(p1, . . . , pN , q1, . . . , qN ), where for xi = (xi1, xi2) one
has pi ≡ xi1 and qi ≡ xi2 and

H(p1, . . . , pN , q1, . . . , qN ) = −ωR3

×
∑
i,j
i�=j

1
|(pi − pj)2 + (qi − qj)2|1/2 . (18)

Writing the equations of motion with the help of a Hamil-
ton function has the advantage that the symmetries of the
system become evident. For example, since H is a constant
of motion (i.e. dH/dt = 0), motors cannot collide. In par-
ticular, at all times t > 0 the minimal distance between
motors is bound (from below) by the initial motor distri-
bution at t = 0.

To investigate the hydrodynamic interactions between
the motors, it is useful to introduce the pseudo-energy

Ekin = πρlR
6ω2

∑
j �=i

1
|xi − xj | =

πρlR
6ω2

∫
d2x

∫
d2x′

ρ(x)ρ(x′)
|x − x′| , (19)

where ρl is the fluid density. A direct calculation using
expression (16) of the velocity created by the assembly
of motors shows that Ekin = 1

2ρl
∫

d3xv2
t (x) is the total

kinetic energy of the fluid. The equation of motion (17) of
a motor can then be rewritten as

2πρlR3 dxi
dt

× ω = −δEkin

δxi
. (20)

The assembly of motors therefore reaches a steady
state if the effective kinetic energy Ekin is extremal. Note
that in equation (19) ρl has been introduced artificially
and there are no inertial effects in this force balance. The
effective hydrodynamic interactions between motors are
thus long range and repulsive and decay as 1/x [36]. In
the absence of thermal fluctuations we thus predict that
in a steady state, the motors should form a Wigner-like
“crystal” and order on a triangular lattice. We refer to this
ordered state as a crystal even though it is not evident
that it indeed exhibits quasi–long-ranged translational or-
der since dislocation pairs are free to separate to arbitrary
(but finite) distances.

Thus, even though we are considering a viscous system
the kinetic energy provides the relevant functional for the
equations of motion. This is in agreement with the equiv-
alent electrodynamical problem, where the energy density
Eem is given by the electromagnetic field tensor Fij , i.e.

Eem =
1

16πc
FijF

ij ≡
1

16πc
(∂iAj−∂jAi)(∂iAj−∂jAi) =

1
16πc

B2, (21)
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where Ai are the components of the vector potential and
where for the static problem i, j = 1, 2, 3. Since the mag-
netic field B corresponds to vt(r), the electromagnetic
energy corresponds to the effective kinetic energy Ekin of
the system. Thus, even for systems with small (but finite)
Reynolds number the kinetic energy is the only candidate
for a functional for the equations of motion. However, one
should note that the kinetic energy is only a well-defined
quantity because the motors are assumed to be rotating
at constant ω. Finally, there is a subtle difference between
our problem and magnetostatic problems, since the cur-
rent j = ρω is not necessarily divergence-free, i.e. in gen-
eral ∂ρ(x)

∂t + div(ρ(x)ω) 	= 0.
This “energetic” argument does not prove that a

steady state exists and that a triangular lattice of motors
is stable even in the absence of fluctuations. To discuss the
stability of the triangular lattice, we consider a slightly
disturbed lattice where motor i has been displaced from
its equilibrium position Ri = R

(0)
i + δR(t). The equation

of motion of the displaced motor is

d
dt
δR(t) = R3

∑
j

j �=i

ω × R
(0)
i + δR − R

(0)
j

|R(0)
i + δR − R

(0)
j |3

=

−3R3
∞∑
m=1

ω × 1
m3a3

δR + O(δR)2, (22)

where a is the lattice constant. For the last equation we
have used that for a triangular lattice

6∑
k=1

ak
a2
k

δR · ak = 3δR. (23)

Here,

a1 = aey, a2 = a

√
3

2
ex +

a

2
ey, a3 = a

√
3

2
ex − a

2
ey,

(24)
and

a1 = −a4, a2 = −a5, a3 = −a6. (25)

The equation of motion (22) describes a rotation of the
motor around its initial position with rotational vector
ω̃ = −ω̃ez and constant frequency ω̃. Thus,

δR = r(t)


 cos ω̃t

− sin ω̃t
0


 , (26)

and equation (22) yields

ω̃ = 3ω
∞∑
m=1

R3

m3a3
= 3ζ(3)ω

R3

a3
, (27)

where ζ(x) is Riemann’s zeta-function [31].
At the level of linear hydrodynamics that we have used

so far (we used the Stokes equation of motion and not the

full Navier-Stokes equation), the triangular lattice of mo-
tors is thus only marginally stable. A full stability analysis
requires non-linear hydrodynamics. This goes beyond the
scope of this work and we give only a qualitative argu-
ment. It is shown in references [24,25] that the first-order
inertial correction to the Stokes equation generates a force
acting on the displaced motor. This force is the Magnus
force FM = −2πρlR3rω̃eϕ × ω, where the velocity is the
rotation velocity at an angular velocity ω̃ around the equi-
librium lattice site. The Magnus force on the displaced
motor points towards the equilibrium position and thus
stabilizes the lattice.

In order to estimate the relaxation towards the equi-
librium position, we parameterize the motor position by
equation (26) and we calculate the radius r(t) by balanc-
ing the Magnus force FM with a viscous drag force with a
Stokes friction of order 6πηR:

6πηR
dr
dt

= −2πρlωr(t)ω̃R3. (28)

Thus, r(t) decays exponentially with a relaxation time
1/tR ∼ ρlωω̃R

2/(3η) ∼ ζ(3)ρlω2R5/(ηa3).
The critical frequency ωc at which the crystal melts

can be obtained by comparing the relaxation time tR
with a characteristic time of thermal fluctuations given
by the diffusion time over a lattice constant tD = a2/D =
6πηRa2/kT . Melting occurs for tR � tD or at frequencies
ω < ωc with

ω2
c � akT

6ζ(3)πρlR6
. (29)

The Lindeman criterion (where kT = a2∂2U(ω =
ωc)/∂x2, with ∂U/∂x = FM) yields the same critical fre-
quency ωc. However, for the dynamical situation here, the
phenomenological melting criterion based on the compar-
ison of the two time scales is more appropriate. More sys-
tematic approaches will have to consider collective exci-
tations, i.e. the unbinding of topological defects, which
will yield a melting criterion similar to the one of Koster-
litz and Thouless for lattices in thermodynamic equilib-
rium [37]. We leave the investigation of this point for fu-
ture work.

Equation (29) also shows that for Newtonian fluids
crystallization is only experimentally observable if inertial
effects are sufficiently strong. Since the relevant time scale
tv is set by diffusion of vorticity, where tv = ρR2/η, the
above melting criterion can be written as

ω2
c � akT

6ζ(3)πtvR4η
. (30)

If inertial effects are negligible, crystallization does not
occur in ideal Newtonian fluids where no viscous analog of
the Magnus force exists [38]: a viscous Magnus force F v

M
would have to break time-reversal symmetry and in the
absence of additional time scales any combination of v ×
ω is symmetric under time-reversal. In real (viscoelastic)
fluids, such an additional time scale is present given by
the microscopic relaxation time tm. Then [39],

F v
M = 6πηRtmv × ω. (31)
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For the biological materials considered here, viscoelastic
effects dominate over inertia and one can replace tv by
tm in equation (30). For a crystal of rotating objects with
the size of a few nanometers one has ωc � t−1

m (at room
temperature).

3.2 Monopolar and dipolar motors on membranes

We now discuss dipolar motors and then show how these
results can be generalized to monopolar motors embedded
in a membrane with ηm 	= 0.

To describe the motion of dipolar motors in a Newto-
nian solvent, we introduce the bulk friction ζ ∼ 6πηR for
the fluid part of the motor and the membrane friction for
the membrane-embedded part ζm ∼ 6πηl. The actual ve-
locity v of the motor is given by the balance of the friction
forces on the motor, i.e.

ζ (v − vt(d)) + ζm (v − vt(0)) = 0, (32)

where the velocities above the membrane vt(d) and in the
membrane vt(0) for one motor are given by equation (8)
in the limits where z → 0+ and z → 0−, respectively.
Summing over the velocity fields created by all motors,
we find

vt(x) =
τd

4ηω

∫
d2x′G(x − x′)ω ×∇ρ(x′). (33)

The kernel G is obtained by inverse Fourier transformation
of G(q) given by equation (9) (for z < 0)

G(x) =
1

2πlx

[
1 − πx

2l
[H0(x/l) −N0(x/l)]

]
, (34)

where H0 is the Struve function and N0 the Neumann
function defined in reference [31]. If x 
 l, G(x) =
1/(2πlx) and if x � l, G(x) = l/(2πx3). The velocity of
a motor vanishes both for l = 0 because of symmetry and
for l → ∞, since then the membrane viscosity is infinite
and no motion is possible.

The interactions between the motors are studied in a
similar way as for non-dipolar motors. We introduce the
pseudo-energy

E = 2π2ρlR
6ω2d

∫
d2x

∫
d2x′ρ(x)ρ(x′) G(x−x′). (35)

Then, the equation of motion of a motor is given by equa-
tion (20) with E replacing Ekin (the prefactor has been
chosen in such a way that Eq. (20) remains valid). A
steady-state distribution of the motors therefore corre-
sponds to an extremum of the energy E. The energy E
corresponds to the kinetic energy of the fluid only for
G(x) = 1/x. The hydrodynamic interactions between mo-
tors are again long range and repulsive and the dipolar
motors tend to arrange on a triangular lattice. The stabil-
ity of the lattice can be studied as above. At the level of
the Stokes equation the lattice is marginally stable and it
can only be stabilized by the inertial Magnus force FM or
its viscous analog F v

M.

Since for motors in a membrane the viscous friction
is in general dominated by the membrane friction ζm ∼
ηm ∼ ηl the critical frequency is ωc ∼ [a3kT/(tvR4ηld)]1/2

at low densities (a � l) and ωc ∼ [alkT/(tvR4ηd)]1/2 at
high densities (a 
 l). Again, for viscoelastic fluids ωc

can be obtained by replacing tv by tm in these formulas.
All these results can be easily generalized to monopoles
in membranes (by using the correspondence d = 1/q and
α = 0).

Upon inserting for the lattice constant a � 10R (a
value which could be achieved experimentally) we find an
extremely high ωc (ωc � 1016 s−1) for nanometer scale
motors in a Newtonian solvent. However, for viscoelastic
solvents the hydrodynamic interactions are much stronger
and crystalization occurs at experimentally achievable fre-
quencies. These crystallization effects might even be large
enough to be relevant for real biological systems (such as,
e.g., ATPsynthase in mitochondria) provided tm � ω−1

c .
Ordering phenomena can probably be observed by attach-
ing actin filaments to the F1-portion [29] or by using mo-
tors of the size of cilia. For monopolar macroscopic motors,
ordered structures have been observed [24,25].

4 Disordered assembly of motors on a
membrane

In most instances (at sufficiently low rotation speed ω),
the hydrodynamic interactions between motors are small
and the motors form a disordered gas on the membrane.
We discuss in this section three properties of a disordered
assembly of motors on a membrane: i) active diffusion in-
duced by the rotation of the motors, ii) coupling between
the membrane fluctuations and the motor velocity field,
and iii) the velocity field induced by a non-homogeneous
distribution of motors. The last scenario could be relevant
for cilia-generated flow and the analysis of Hirokawa’s ex-
periments on the disease situs inversus.

4.1 Active diffusion in the membrane

In the membrane, the fluctuations of the local density of
motors induce local fluctuations in the velocity field. The
convection by these velocity fluctuations creates an active
diffusion of the motors. The active contribution to the
diffusion constant is proportional to the time correlation
function of the velocity fluctuations:

δD =
1
2

∫ ∞

0

dt〈v(x, t)v(x, 0)〉. (36)

By using the relationship (33) between density and veloc-
ity of the dipolar motors, one can express this contribution
in terms of the density correlation function

δD =
1

2(2π)4

∫
d2q

∫
d2q′

∫ ∞

0

dt〈ρ(q, t)ρ(q′, 0)〉

×
(
τd

4η

)2

G(q′)G(q)(q′ · q). (37)
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If the active diffusion is treated as a perturbation, the
motors can in a first approximation be described as
an ideal gas and the density correlation function is
〈ρ(q, t)ρ(q′, 0)〉 = 4π2δ(q − q′)ρ exp(−Dmq

2t), where ρ is
the average density in the membrane and Dm ∼ (6πηl)−1

the collective two-dimensional diffusion constant of the
motors in the membrane. This leads to an active contri-
bution to the diffusion constant,

δD

Dm
=

ρ

4πD2
m

(
τd

4ηl

)2

log(1 + qmaxl) + O
(
δD2

D2
m

)
=

9πρd2

16

( τ

kT

)2

+ O
(
δD2

D2
m

)
, (38)

since for small densities ρ one has qmax < 1/l. Equa-
tion (38) holds for arbitrary rotation speeds ω < ωc.

The active contribution to the diffusion constant is
small for bare ATPase (where τ � 0.01kT ) but it can be-
come important for actin-labeled ATPase (τ � 10kT ) and
larger objects of the size of cilia. Note also that in linear
hydrodynamics and if the coupling to membrane fluctua-
tions (cf. the subsequent section) is ignored, the friction
on a motor ζm is not changed by the rotation and that
the active contribution to the diffusion constant could be
characterized by an effective temperature defined via the
fluctuation-dissipation theorem by Dm + δD = Teff/ζm.

In a similar fashion the velocity-velocity correlation
function can be calculated. Here, one finds

〈vα(x, t)vβ(x, 0)〉 = δαβ |εαγ | ρ

4π2

(
τd

4η

)2

×
∫

dq1dq2
q2
γ

(1 + l
√
q2
1 + q2

2)2
exp(−Dmt(q2

1 + q2
2)),

(39)

where δαβ is Kronecker’s delta and εαβ the Levi-Civita
symbol. Thus, 〈vα(x, t)vα(x, 0)〉 ∼ t−2 for large t and
small l and 〈vα(x, t)vα(x, 0)〉 ∼ t−1 for large t and large l.

4.2 Coupling between rotating motors and membrane
fluctuations

So far, we have only considered flat membranes and ig-
nored the coupling between the undulation fluctuations of
the membrane and the rotating motors. The coupling has
two effects: a) the flow created by the motors can perturb
the membrane fluctuations as has been observed, e.g., in
experiments on membranes containing bacteriorhodopsin
pumps [19]; and b) the undulations of the membranes also
perturb the flow created by the motors.

In order to demonstrate this effect, we choose the
Monge representation to parameterize the membrane.
The position of the membrane at time t is given by
(x1, x2, h(x1, x2, t)) and the normal vector to the surface
by n = (−∂1h,−∂2h, 1). We assume that the motors re-
main normal to the membrane and that the flow cre-
ated by a dipolar motor can be characterized as before

by torques exerted by the two parts of the motor with a
direction normal to the membrane. In complete analogy
with the analysis of Section 2, we calculate the density of
localized forces in the fluid induced by the motors with
an orientation that follows that of the membrane. If ψ(r)
denotes the three-dimensional density of motors, then the
total force (per volume) at position r exerted by all motors
can be written as

F (r) =
iτ

2

∫
d3r′

∫
d3kψ(r′)eik·(r−r′)k × n(r′). (40)

By defining the two-dimensional motor density ψ(x, z) =
ρ(x)δ(z− h(x)), one obtains after Fourier transformation
and an integration over z

F (k) =
iτ

2

∫
d2xρ(x)eiqzh(x)e−iq·xq × n(x), (41)

where k = (q, qz). By expanding ρ(x) = ρ0 + δρ(x) +
O(h2), one obtains two contributions to the force distri-
bution: i) a contribution linear in δρ(q) which is the force
due to the motor density fluctuations on a flat membrane,
and ii) a contribution due to the membrane fluctuations
given by

F (k) = i2
τ

ω
ρ0qzh(q)q × ω + O(h2), (42)

where h(q) is the Fourier transform of h(x). Back-
transformation to the spatial variable z then yields for
the force distribution

F (q, z) =
τ

ω
ρ0h(q)δ′(z)q × ω. (43)

Consequently, the flow field consists of two contributions
vtot = vt + vm, where vt is the flow field caused by fluc-
tuations in the density of motors (cf. Eq. (33)) and vm is
the flow field due to membrane fluctuations:

vm(q, z) =
iτd

2ηω
ω × qe−q|z|Gm(q)ρ0qh(q), (44)

where the relevant kernel is Gm(q, l) ≡ −1/(1 + ql). The
essential result is that even in the presence of membrane
fluctuations, the flow remains parallel to the average plane
of the membrane. Thus, in lowest order the fluctuation
spectrum of the membrane is not modified by the flow in-
duced by the motors. However, the membrane fluctuations
do influence the flow field on the membrane. Therefore,
they will influence the distribution of motors and the ac-
tive contribution to the in-plane diffusion constant of the
motors Dm + δD given by equation (38).

However, as detailed in Appendix A, ATPsynthase in-
fluences the hydrodynamics of the system in a twofold
manner. On the one hand, it is a rotating motor that ex-
erts a torque dipole. On the other, it is also a proton pump
which exerts a local force quadrupole [40]. In the linear
theory considered here, the two contributions to the flow
decouple and can be simply added up. Then, only the
proton pump has an effect on the membrane fluctuation
quite similar to that of the bacteriorhodopsin studied in
reference [20]. The coupling between the motor rotation
and the membrane fluctuations only appears at non-linear
order and is neglected here.
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4.3 Non-homogeneous motor distribution

In this section, we discuss two situations where the in-
plane distribution of motors is non-homogeneous. As the
dynamics of the motors becomes chaotic in the high-
temperature phase (i.e. for small ω), their motion might
reach a stable attractor corresponding to arrangements
with stationary but inhomogeneous motor density, i.e. ar-
rangements which fulfill ∂tρ(x) = 0 and therefore

div
(
ρ(x)

∫
d2x′ρ(x′)v(x − x′)

)
=

∇ρ(x) ·
∫

d2x′ρ(x′)v(x − x′) = 0. (45)

An obvious candidate for a stationary configuration is a
circle consisting of N uniformly distributed motors. As we
show now, it is stable in the limit where the influence of
thermal fluctuations on the position of the motors can be
neglected.

We consider N motors homogeneously distributed on
a circle A = {x | |x| ≤ r0} with a density ρ(x) =
N
πr20

for x ∈ A , ρ(x) = 0 otherwise . For monopolar mo-
tors in an external field, one finds by using Stoke’s theorem
for the in-plane velocity

vt(x, z = 0) = R3

∫
A

d2x′ρ(x′)ω ×∇ 1
|x − x′| =

R3

πr2
0

Nω

∫
∂A

ds′ 1
|x − x′| , (46)

where ds′ is a parameterization of the boundary ∂A of
A and x′ ∈ ∂A. By symmetry, vt(x) = vt(x)eϕ and the
in-plane velocity reads

vt(x) =
R3Nω

πr0

2
r0x(r0 + x)

×
[
(r2

0 + x2)F
(π

2
, k

)
− (r0 + x)2E

(π
2
, k

)]
. (47)

The elliptic functions F(ϕ, k) and E(ϕ, k) are defined in
reference [31] and k = 2

√
r0x

r0+x
. Far away from the circle of

motors, equation (47) reduces, for small ε ≡ r0/x 
 1, to

vt(x) = R3Nω
1
x2

+ O(ε2). (48)

The far field of such a distribution is identical to that
created by a single motor localized at the center of the
circle rotating at a frequency Nω. Inside the circle, for
small ε̃ ≡ x/r0 
 1, one finds

vt(x) = R3Nω
x

r3
0

+ O(ε̃2). (49)

Here, the velocity is very small for a large circular aggre-
gate of motors and vanishes for r0/R → ∞. Close to the
boundary of the circular aggregate, i.e. for x = r0(1 − ε)
with ε 
 1, it is necessary to introduce a cutoff α ∼

R/r0 in the angular integration, i.e. to replace
∫ 2π

0
dϕ by∫ 2π−2α

0
, where α ≡ R/r0. Then

vt(x) ∼ −R3Nω

πr2
0

(2 + ε) logα, (50)

where in the last equation, contributions which stay finite
in the limit α → 0 have been neglected. Thus, the circu-
lar arrangement rotates as a whole, with an x-dependent
frequency. The bulk velocity field outside the membrane
plane is simply obtained by replacing x by

√
x2 + z2 in

the equations above.
Similar arguments hold for membrane-embedded mo-

tors. Here, we will just give the corresponding equations
for dipolar motors, where

vt(x, z) =
τd

4ηω
1

(2π)2
N

πr2
0

∫
A

d2x′

×
∫

d2qeiq·(x−x′)iω × qG(q, l)e−q|z|. (51)

For simplicity, we only focus on the limits l → 0 and
l → ∞. Then for z > 0, the last equation reduces to

vt(x, z) = −τd

8η
Nγ

r0π3

1√
r0x

d
dz

Q1/2

(
x2 + z2 + r2

0

2r0x

)
,

(52)
where Qν is the associated Legendre function of order ν
and the number γ is equal to 1 if l = 0 and to 2 if l → ∞.
The asymptotic behavior of equation (52) can be obtained
directly from that given for a non-dipolar motor in an
external field by replacing x by

√
x2 + z2 and by using

that for l = 0,∞ the flow field vd of the dipoles can be
obtained from that of the monopoles vm by vd(x, z) =
−3/2γd ∂∂zvm(x, z).

This circular configuration is only stable in the limit
where thermal fluctuations are negligible: if a motor dif-
fuses away from the boundary of the circular aggregate,
it starts to rotate around the circle since there is no
restoring force. The Magnus force caused by this circular
motion that we discussed in the previous section then
drives the motors even further away. Similar arguments
apply to other stationary configurations such as stripes,
ellipses, etc.

Our second example of a non-homogeneous distribu-
tion of motors is related to the pathology called situs in-
versus. It was pointed out in [7] that the velocity field cre-
ated by the nodal cilia can lead to a (right-left) symmetry-
breaking transport. It is obvious that a homogeneous ar-
rangement of rotating motors which all have the same fre-
quency cannot lead to the necessary symmetry breaking.
Many cilia generate flow when homogeneously distributed
on a surface by using beating patterns that are more com-
plex than simple rotations. For simplicity, we concentrate
here on inhomogeneous arrangements of rotating motors
on the membrane.

To demonstrate that a gradient in density can pro-
duce a symmetry-breaking transport, we consider a dis-
tribution of dipoles on a stripe A = {(x1, x2)|0 ≤ x1 ≤
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xm1 and − L/2 ≤ x2 ≤ L/2} with a density gradient in
the x1-direction:

ρ(x) = ρ0+δρ(x) ≡ ρ0+c (xm1 −x1)θ(xm1 −x1)θ(x1) , (53)

where ρ0 and c are constant and θ(x) is the Heaviside
function. Then, the change in velocity due to the gradient
is given by

δvt(r) =
∫

d2x′δρ(x′)v(r′), (54)

where v(r) is given by equation (8). For simplicity, we
consider only the limits l = 0 and l → ∞. The flow is in
the x2-direction and for z > 0

vt(x, z) = ex2c
γτd

8πη

∫
A

d2x′
z

(z2 + |x − x′|2)3/2
. (55)

The explicit calculation of the integral gives, for L/xm1 �
1,

vt(x, z) = ex2c
γτd

4πη
arctan

(
zxm1

z2 + x2
1 − x1xm1

)
. (56)

For mobile motors these density gradients are reduced
by diffusion and therefore special boundary conditions are
necessary to stabilize such configurations. Here, we dis-
cuss, as a special case, adsorbing boundary conditions.

We consider a collection of N mobile motors (which all
rotate in the same direction) restricted to a non-symmetric
triangular geometry which is motivated by the shape of
the node in the mouse embryo. The boundary of this re-
gion is assumed to consist of adsorbing sites. Thus, motors
which touch these sites stay there but they continue to
rotate. Under these conditions, it is possible that density
gradients build up if the motors follow the local flow.

To demonstrate this, we have numerically integrated
equation (17) by starting from a homogeneous arrange-
ment of motors. We then find that after some relaxation
time all motors stick to the boundary and that they build
up a flow field which enhances the symmetry-breaking
transport. Note that, for the homogeneous distribution,
left-right symmetry is already broken but the associated
transport is weak since for finite lattices only the motors
close to the boundaries contribute. However, homogeneous
arrangements restricted to a finite geometry are unstable
and the symmetry-breaking transport is enhanced in the
final (stable) configuration.

Figure 1 shows two examples of a final configuration
obtained by this procedure where all N = 36 motors
stick to the boundary. The two triangles shown have lower
angles α = 80 deg and α = 20 deg. In both cases, we
find a flow field which has a non-vanishing component
in the (−x1)-direction, implying thus that the symmetry-
breaking transport goes from right to left.

For nodal cilia similar mechanisms might be relevant.
Although it is hard to imagine that cilia or the cells they
are attached to are mobile, the interactions between the
cilia and the flow field could still build up density gradi-
ents. For example, it can be imagined that the flow bends
cilia or generates stresses on the cells and thus locally in-
fluences the rotatory movement of the cilia and alters the
flow pattern.

5 Summary and outlook

We have studied the properties of rotating motors in flex-
ible liquid membranes. Our study is motivated by biolog-
ical systems where active processes drive rotatory motion
in membranes and generate hydrodynamic flow. The most
prominent examples of systems for which the discussed
physical mechanisms could be relevant are ATPsynthase
molecules and rotating cilia in the nodal region of mam-
malian embryos. ATPsynthase produce ATP molecules
from a proton gradient in mitochondria. During this pro-
cess, they rotate rapidly in the membrane and represent
a rotation dipole. Nodal cilia generate hydrodynamic flow
and are involved in left-right symmetry breaking. In all
cases, the rotating motors act as small microvortices and
induce flow in the water surrounding the membrane. As
an important finding, we show that even when the shape
fluctuations of the membranes are taken into account,
the flow induced by the motor rotation is parallel to the
average plane of the membrane. Therefore, the fluctuation
spectrum of the membrane is, to linear order in the mem-
brane deformations, not affected by the rotation of the
motors. This result is obtained by using a linear hydrody-
namic theory and by assuming that the rotation axis of the
motors is always parallel to the local membrane normal.
Fluctuations in the orientation of the motors around the
normal would couple to the membrane fluctuations. How-
ever, we believe that this effect is small. Non-linear hydro-
dynamic couplings could also lead to a change in the mem-
brane undulation spectrum. In this case, one would have to
identify the relevant non-linear couplings and to introduce
them in the hydrodynamic equations. ATPsynthase mo-
tors act both as rotating motors and as proton pumps. The
proton pump activity is coupled to the membrane undula-
tions as in the case of bacteriorhodopsin pumps that has
been studied both theoretically and experimentally. How-
ever, if non-linear hydrodynamic interactions are impor-
tant, the rotational and the translational motion induced
by ATPsynthase are coupled and cannot be simply added.

The hydrodynamic flow in the average plane of the
membrane can affect the distribution of motors. This flow
is driven by motor density gradients and by membrane
fluctuations. We have discussed both the possible crystal-
lization of the motors due to hydrodynamic interactions
and the active diffusion of the motors in the membrane
plane. For small motors of the size of ATPsynthase in
Newtonian fluids all these effects are small. This is related
to the fact that with the experimentally available numbers
the torque τ exerted by each part of the motor on the fluid
is much smaller than thermal excitations with energy of
order kT . However, larger and observable effects will be
obtained by attaching actin filaments to the rotor of the
motor as done in reference [29] or in viscoelastic solvents
where the hydrodynamic interactions are much stronger.
Then, a Wigner-like crystallization is predicted similar to
that observed with rotating discs driven by magnetic fields
in reference [24]. For ATPsynthase under biological condi-
tions, the surrounding solvent typically contains polymers
with relaxation times in the range tm = 10−1–100 s corre-
sponding to ωc � 0.01–10 s−1. For motors in a Newtonian
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Fig. 1. System of motors confined to a triangular geometry with adsorbing sites on the boundaries. Starting from a homogeneous
arrangement of motors, we have numerically integrated the coupled equations of motions until all motors have been adsorbed.
(a) and (c) show the final configuration for triangles with lower angles α = 80deg and α = 20deg, respectively. (b) and (d)
show the corresponding velocity fields on the triangle. Here, the velocity has units ω

√
A, where A is the area of the triangle.

In both cases, left-right symmetry is broken which is more pronounced for the lower geometry (see (d)), in agreement with the
experimental findings [7].

fluid to which actin filaments of length R � 2 µm are
attached, the transition should occur for ωc = 100 s−1,
provided that a � 10µm.

The origin of the pathology situs inversus has been
tracked down in reference [7] to the absence of flow in
the node region of mouse embryos; the flow from right to
left in the normal embryo is generated by a rotating mo-
tion of the cilia. Such a flow cannot exist for cilia with a
rotationally invariant beating pattern when both the ro-
tation speed (or rather the torque exerted by the motors
on the fluid) and the density of motors are uniform in
space. Having no indication concerning the heterogeneity
of the rotation, we have performed calculations showing
how a density gradient can enhance a symmetry-breaking
flow and how it could originate from an initially uniform
distribution of motors. Complementary hydrodynamic ex-
periments would certainly be necessary for a better under-
standing of this problem. However, for the typical density
of cilia in the nodal region of mice, hydrodynamic interac-

tions would be strong enough to yield a critical frequency
ωc � 10 s−1 (for R � 5 µm).

Our approach can be extended in several ways. For
example, one could consider collections of motors which
can rotate in opposite directions. In fact, such mixtures
might be relevant for chiral motors confined to non-viscous
manifolds (where the motors can have two orientations).
The phase diagram of systems with N+ motors with ro-
tational vector ω and N− motors with rotational vector
−ω is more complex than that for homogeneous collec-
tions. For high rotational speeds ω, two motors with op-
posite spin will form a bound pair moving freely in the
system. However, in a first approximation our predictions
presented here will remain valid and for high enough ω a
crystal forms which now melts for ω < ω∗

c ∼ (a∗)1/2 with
a∗ = a/|N+ − N−|1/2. Additionally, a liquid-to-gas tran-
sition takes place at a critical rotation speed ωlg

c � ω∗
c .

Note that the case N+ = N− is special since here no
freezing transition takes place. One rather has a liquid
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(vapor) phase with complicated interactions. Even more
complex situations can occur in experimental realizations
of membrane-embedded dipolar motors where the orien-
tation of motors is difficult to control. Here, one can have
mixtures of motors with rotational vectors ω1 and ω2 	= ω1

(depending on their orientation and the pH gradient across
the membrane).

We thank J. Kurchan, U. Seifert and K. Sekimoto for useful
discussions. P.L. acknowledges support through an Otto-Hahn
fellowship of the Max-Planck-Gesellschaft.

Appendix A. A microscopic description of
ATPase

Here, we define the relevant properties of an ATPsynthase
molecule via an Onsager theory. The fluxes that charac-
terize the motion of ATPsynthase are the water current
j, the proton current jH , the ATP consumption rate r
and the relative rotational velocity ω. If we denote by
ω1 and ω2 the frequencies (measured in the laboratory
reference frame) of the stalk and of the F0-part, respec-
tively, the relative rotation velocity between the two parts
is ω ≡ ω1 − ω2. The conjugate forces to these fluxes are
the chemical-potential difference of the protons between
the two sides of the membrane ∆µH , the difference in
chemical potential between ATP and its hydrolysis prod-
ucts ∆µATP, the pressure difference across the membrane
δP and the torque τ exerted on the stalk. ATPsynthase
can be fully characterized by writing linear relations be-
tween the fluxes and the conjugate forces via an Onsager
matrix

ω = αH∆µH + αATP∆µATP + ντ , (A.1)
jH = µH∆µH + kδP + αHτ , (A.2)
j = k∆µH + λδP , (A.3)
r = αATPτ + Λ∆µATP . (A.4)

The Onsager coefficients are the permeabilities k, λ and
the response functions ν, µH , αH , αATP, and Λ . In writing
these equations we have made the simplifying assumptions
that δP does not induce rotation, that jH does not depend
on ∆µATP and that r does not depend on δP and ∆µH .
The off-diagonal coefficients of the Onsager matrix are
equal in this linear theory.

Appendix B. Hydrodynamics of a motor in a
viscous membrane

In this appendix, we solve the coupled hydrodynamic
equations for the bulk fluid and the membrane contain-
ing a dipolar or a monopolar motor.

For dipolar motors and a force density given by equa-
tion (6), the Stokes equation reads, for z > 0 in q-space,

−ηq2v(q, z) + η
d2

dz2
v(q, z) + f(q, z) = 0 ; (B.1)

for z < 0,

−ηq2v(q, z) + η
d2

dz2
v(q, z) = 0 ; (B.2)

and for z = 0, the two-dimensional Stokes equation is
given by

−ηmq
2v(q, 0) + f0(q) + η

∂v

∂z

∣∣∣∣
z=0+

− η
∂v

∂z

∣∣∣∣
z=0−

= 0.

(B.3)
These equations have to be solved subject to the boundary
condition

η
∂v

∂z

∣∣∣∣
z=d+

− η
∂v

∂z

∣∣∣∣
z=d−

= −f0(q). (B.4)

Equations (B.1) and (B.2) imply the ansatz

v(q, z) = Aeqz for z < 0 ,
v(q, z) = Beqz + Ce−qz for 0 < z < d ,
v(q, z) = De−qz for z > d .

(B.5)

Then, equations (B.3) and (B.4) together with the conti-
nuity of v yield, for d/z 
 1,

A = f0(q)
d

2η(1 + ql)
, (B.6)

B = −f0(q)
1 − qd

2ηq
, (B.7)

C = f0(q)
1 + ql − q2dl

2ηq(1 + ql)
, (B.8)

D = −f0(q)
d(1 + 2ql)
2η(1 + ql)

, (B.9)

with l ≡ ηm/2η.
Similarly, for monopolar motors in a membrane, equa-

tions (B.2) and (B.3) have to be fulfilled for z 	= 0 and
z = 0, respectively. Here, the ansatz

v(q, z) = Ae−q|z| (B.10)

leads to
A = f0(q)

1
2ηq(1 + ql)

. (B.11)
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