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Abstract. It has been observed experimentally that the actin gel grown from spherical beads coated with
polymerization enzymes spontaneously breaks the symmetry of its spherical shape, and yields a “comet”
pushing the bead forward. We propose a mechano-chemical coupling mechanism for the initialization of
this symmetry breaking. Key assumptions are that the dissociation of the gel takes place mostly in the
region of the external surface, and that the rates of the dissociation depend on the tensile stress in the
gel. We analyze a simplified two-dimensional model with a circular substrate. Our analysis shows that the
symmetric steady state is always unstable against the inhomogeneous modulation of the thickness of the gel
layer, for any radius of the circular substrate. We argue that this model represents the essential feature of
three-dimensional systems for a certain range of characteristic lengths of the modulation. The characteristic
time of the symmetry-breaking process in our model depends linearly on the radius of curvature of the
substrate surface, which is consistent with experimental results, using spherical latex beads as substrate.
Our analysis of the symmetry-breaking phenomenon demonstrates aspects of mechano-chemical couplings
that should be working in vivo as well as in vitro.

PACS. 87.17.Jj Cell locomotion; chemotaxis and related directed motion – 87.15.Rn Reactions and kinet-
ics; polymerization – 62.40.+i Anelasticity, internal friction, stress relaxation, and mechanical resonances

1 Introduction

Polymerization of actin is one of the main mechanisms
responsible for cellular motility. Filaments of F-actin are
polymerized on the cytoplasmic side of a cellular mem-
brane with the barbed ends oriented towards the surface
of the membrane. The branching of the actin filaments
takes place mainly in the vicinity of the surface. The re-
sulting branched F-actin filaments take the form of a soft
elastic solid [1], which we call an actin gel or a gel, sim-
ply. This actin gel pushes the cellular membrane outwards.
Polymerization of actin gels is also a locomotive mecha-
nism for intracellular bacteria like Listeria monocytogenes,
and perhaps also for the endosomes and lysosomes [2]. In
these cases, the gel is grown in form of a comet. This
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comet pushes the bacterium forward. For the purpose of
understanding this mechanism of motility, various exper-
imental model systems have been developed using both
biochemical and biophysical approaches.

Biochemical approaches have isolated the basic cyto-
plasmic ingredients needed for the motility of Listeria
monocytogenes [3]: 1) actin and ATP for the formation
of F-actin filaments; 2) Arp2/3 as the cross-linker and/or
the nucleator of the F-actin growth (i.e., the precise role
is still under debate); 3) ADF as the depolymerization
factor at the pointed end of F-actin; 4) the capping pro-
tein; 5) a bacterial protein called ActA expressed on the
surface of Listeria which is necessary for inducing poly-
merization from the surface. These ingredients constitute
a model cytoplasm for the motility.

Biophysical approaches have taken the Listeria as a
model system of cellular motility. Furthermore, a bio-
mimetic in vitro system of the bacterial motility has
been introduced. This system consists of a spherical la-
tex bead, coated by the enzymatic protein complexes,
ActA [4,5], or a fragment (called the VCA domain) of
its homologue from human cells, WASP (Wiskott-Aldrich-
Syndrome Protein) [6,7]. The cytoplasm has also been
replaced by the reconstituted cytoplasm [7]. Despite the
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Fig. 1. Experimentally observed time sequence of the actin
gel grown around a spherical latex bead. The diameter of the
bead is 10 µm. The bead is coated with a fragment of WASP,
and it is placed in a reconstituted solvent as described in the
text. The actin monomers in the gel is visible by a fluorescent
marker. The observation started at t = 0 after several tens of
seconds when gel has started to grow.

spherical form of the bead, the gel has grown in shape of a
comet, like the bacteria Listeria (see for example Fig. 2 of
[6]). Figure 1 shows the initial stage of the creation of the
comet, observed using fluorescent probe attached to actin
monomers. This process bares the signature of a spon-
taneous symmetry breaking, which is the subject of the
present paper. The phenomenon of the symmetry break-
ing is relevant to some biological systems of sub-cellular
level. For instance, the endosomes, which consist of spheri-
cal soft substrates (liquid vesicles), grow a comet [2]. Also,
the motility of a mutant Listeria, which moves preferen-
tially in lateral directions [8] grows the actin gel by break-
ing its cylindrical symmetry. Our principal aim is to assess,
through the study of the symmetry breaking, the relevance
of the elastic aspects to the biological motilities based on
the polymerization of protein filaments, and to provide for
several basic ingredients related to the mechano-chemical
coupling. The three ingredients essential for explaining the
symmetry breaking are (details will be given in Sects. 2–4):

i) The creation of a tensile stress due to the curvature of
the substrate surface (Sect. 2).
As the gel is continuously created at the bead surface
(at radius, r = r0), the part that has been already
formed is continuously pushed outwards (r > r0).
Since the perimeter (2πr) increases as r, and since the
surface has a closed topology, the gel is stretched by
the ratio, r/r0(> 1).

ii) The concentration of the tensile stress by a geometrical
effect (Sect. 3).
The gel layer around a bead is in mechanical equilib-
rium, so that the integrated tension across the layer
thickness of the gel must be constant along the surface
of the bead. In particular, if the thickness is locally
thinner, such a region must bear a stronger tension in
order to support the same integrated tension.

iii) The acceleration of dissociation of the gel under tensile
stress (Sect. 4).
We suppose that, under tensile stress, the gel dissocia-
tion is accelerated through the mechano-chemical cou-
pling. This dissociation may be either through the un-
binding of the branching points along actin filaments,
or through the depolymerization of actin filaments.

0
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r

σ

h

+h (>0)

0

r

bead

F-actin gel

Fig. 2. The cross-section of the F-actin gel around a bead.
The relevant stress components in the gel are schematically
shown. The gel occupies the space between the radii r = r0

and r = r0 + h. The compressive component of the stress at
the substrate surface (r = r0), σrr|r0

, and the tensile compo-
nent at the outer surface (r = r0+h), σ⊥⊥|r0+h, are indicated
by the pairs of oppositely oriented open arrows. In this sym-
metric state, the tensile component at the substrate surface,
σ⊥⊥|r0

, as well as the normal compressive component at the
outer surface, σrr|r0+h, vanish.

These three ingredients i)-iii) constitute a positive feed-
back loop leading to an instability of the symmetric shape
of the growing gel. This will be described in Section 5.1.
In short, the region of gel with smaller thickness becomes
preferentially dissociated due to the higher tensile stress,
implying further thinning of that region.

All symmetry-breaking models [9,10] take the
mechano-chemical coupling into account. Previous mod-
els have focused their attention on the compressive force
acting on the actin filaments at the polymerization sites,
that is on the substrate surface. Our analysis takes into
account the global stress distribution. Of particular impor-
tance is the tensile stress generated at the outer surface of
the gel. Indeed, on general grounds, the depolymerization
rate must be an increasing function of the tensile stress.
We show in the following that it leads inevitably to sym-
metry breaking. In the discussion section (Sect. 6), after a
brief summary, we compare, in more details our analysis
with the existing ones, and suggest experiments designed
for distinguishing between the different possibilities.

2 Distribution of stress within the gel with
symmetric shapes

Suppose that a gel has been polymerized steadily from a
substrate surface of either spherical or cylindrical shape
with radius r0, until the gel forms a layer of a thickness h,
enclosing the substrate surface and keeping its symmetry
(see, Fig. 2). As already noted, the part of the gel that
has been formed has been continuously pushed outwards.
An element of the gel at radius r is then stretched by r/r0
times relative to the native state of polymerization.

To know the tensile stress in the lateral direction, σ⊥⊥,
let us use the “stacked rubber band model” [5,11,12]: A
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freshly cross-linked gel at the latex surface (r = r0) is
unstretched and has no lateral stresses, σ⊥⊥|r=r0

= 0. As
the layer is pushed outward, its circumference increases
which introduces a lateral stress [11],

σ⊥⊥|r = B
r − r0
r0

, (1)

with B being the Young modulus. In particular, when the
thickness of the gel layer is h, the tangential stress at the
outer surface of the gel is

σ⊥⊥|r0+h = B
h

r0
. (2)

We remark that the present approximation ignores the
radial deformation due to the lateral stretching, in other
words, it assumes a vanishing Poisson ratio. Although
this has no justification for actin gels, the main results
of the present paper do not depend on this property.
More refined calculation confirm the validity of this state-
ment [13].

The shear component of the stress σr⊥ vanishes every-
where, for symmetry reasons:

σr⊥ = 0.

Radial force balance requires that the radial stress, σrr,
at radius r obeys the following equations:

1
r2

∂

∂r

(
r2σrr

) − 2
r
σ⊥⊥ = 0 (3)

for a spherical surface ([5], see App. A), or

∂

∂r
(rσrr) − σ⊥⊥ = 0 (4)

for a cylindrical surface [11]. Since no external force is
applied on the outer surface of the gel layer, the normal
stress must vanish:

σrr|r0+h = 0. (5)

Under this condition, the normal stress at the substrate
surface, σrr|r0

, can be calculated in terms of the lateral
stress, σ⊥⊥. In the case of cylindrical substrate, we inte-
grate equation (4) from r = r0 to r = r0 + h, and have

σrr|r0
= − T

r0
, (6)

where T is the integrated tension across the symmetric gel
slab, defined by

T =
∫ r0+h

r0

σ⊥⊥dr. (7)

Using equation (1) we find T = Bh2/(2r0), and thus
σrr|r0 = −Bh2/(2r2

0). For the spherical substrate, the re-
lation is not as simple as the cylindrical case. Still, σrr is
given as an integration of σ⊥⊥.

3 Concentration of the tensile stress under a
modulated surface profile

In this section, we consider how small perturbations to
the surface profile of the gel layer lead to the redistribu-
tion of the stress components within the gel layer. We
introduce the function representing the thickness of the
gel layer, h(ω̂), with the variable ω̂ representing the orien-
tation from the origin. A spherically symmetric gel layer
corresponds to the constant function, h(ω̂) = h∗, with a
constant thickness h∗.

The analysis of the thickness perturbation is done in
the following two steps: In the first step, we suppose that
this function, h(ω̂), is slightly perturbed from a constant
function, but we still do not allow for the displacement of
the gel. In the second step, we let the gel layer relax un-
til it re-establishes the mechanical balance. We calculate
how the stress in the gel is distributed in this new bal-
anced state. To avoid any confusion, we stress that, the
perturbations (h(ω̂) − h∗ �= 0) at the end of the first step
does not imply the swelling or deswelling of the gel layer.
The perturbation rather implies that there is more or less
material of gel along the direction ω̂ than the average.
(It could be due to the enhanced/depressed polymeriza-
tion, or, to the depressed/enhanced dissociation of the gel
along this direction.) As we discuss a situation such that
there is no external force on the outer surface, we require
stress-free conditions on the outer surface of the gel layer.

σrr|r0+h = σr⊥|r0+h = 0. (8)

What we demonstrate is that, under the above condi-
tions, the tensile stress σ⊥⊥ under the re-established me-
chanical balance is locally enhanced in the thinned region
of the gel layer, that is, in the zone of the orientation ω̂
that satisfies h(ω̂) < h∗. On the one hand, the physical
origin of the stress concentration is quite simple and uni-
versal. In fact the authors have noticed, after completion
of the present work, that essentially the same mechanism
of stress concentration has been discussed long before in
the context of crystal growth under stress (see, for exam-
ple, a concise review on the related history in the litera-
ture [14]). In Appendix B we describe the basic mecha-
nism of this phenomenon by using an illustrating example
in a very simple geometry. On the other hand, the direct
analysis of the present case with the distributed thickness
h(ω̂) is difficult, because of the three spatial dimensional-
ities and the tensorial character of the stress associated to
this space. We can avoid, however, this difficulty by the
following lines of reasoning.

1) We limit our concern to the modulations h(ω̂) − h∗
whose characteristic wavelengths are comparable to
the average thickness, h∗. Experimentally, h∗/r0 is at
most about 0.2 [15]. The radius of curvature of the
outer surface (� r0 +h∗) is, therefore, not appreciable
in view of such short wavelength of modulation. We
may then ignore the effect of a specific curved geome-
try of the substrate surface except for the fact that the
curvature gives rise to the lateral tension σ⊥⊥ in the
gel layer.
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Fig. 3. Schematic representation of the outer gel surface before
(a) and after (b) perturbation. A perturbation of the surface
profile with characteristic length λ affects the stress profile only
within a “skin layer” of thickness λ.

2) We notice the following fact: As far as the stress distri-
bution inside the gel layer is concerned, the influence
of the surface profile perturbation is practically lim-
ited to a region near the outer surface (see, Fig. 3).
More precisely, if the perturbation is characterized by
a wavelength, λ, then the thickness of the disturbed
region is also characterized by λ. (The boundary con-
dition far from this layer is therefore irrelevant to this
disturbance.) For detailed arguments, see Appendix C.

3) With our wavelength choice in 1), and with the fact
just mentioned above 2), we can justify the study of
a) a two-dimensional circular geometry rather than the
real spherical one, with b) a “slip” boundary condition
on the substrate surface, to see how the stress in the
actual three-dimensional case is distributed after the
re-establishment of the mechanical balance. Moreover,
c) the neglect of the shear stress components within the
gel layer is justifiable for the experimentally realized
situation where the mean thickness of the gel layer h∗
is much smaller than the radius r0. We will formulate
these assumptions in more details below.

a) We consider the gel layer grown around a two-
dimensional circle of radius r0.
In two dimension, we represent the thickness of the
gel layer by h(θ0) as a function of the angle θ0 with
0 ≤ θ0 < 2π, instead of h(ω̂) above. (See, Fig. 4: h(θ0)
is defined before the re-establishment of the mechanical
balance.) The lateral components of the stress, which
we have denoted symbolically by ⊥, corresponds now
to the azimuthal direction. We then use the suffix θ
in place of ⊥ hereafter. For example, we write σrθ for

θ

0θ

cylinder 0h(    ,t)
F-actin gel

Fig. 4. Definition of the angler variable θ0 and the height func-
tion h(θ0) of a gel with modulated thickness due to depolymer-
ization before an elastic deformation re-establishes mechanical
equilibrium.

σr⊥, and σθθ instead of σ⊥⊥. For small perturbations
of the thickness, |h(θ0) − h∗|/h∗ � 1, we may use the
linear analysis. Then it suffices to consider the form

h(θ0) = h∗ [1 + εq cos(q θ0)] , (9)

where the integer q indicates the number of nodes of
the spatial undulations, and εq is supposed to be small
(|εq| � 1). The characteristic wavelength for the q-th
mode is about 2πr0/q, and the restriction (1) is repre-
sented as q � 2πr0

h∗ . (Remark: Besides our purpose of
analysis, the two-dimensional geometry applies rather
directly to a Listeria mutant [8] mentioned in Sect. 1.
This mutant moves preferentially in lateral directions,
breaking its cylindrical symmetry.)

b) On the substrate surface (r = r0), the shear stress is
negligible.
The slip boundary condition for the shear stress is writ-
ten as

σrθ|r0
= 0. (10)

(Remark: Note that we do not claim this boundary
condition to be always realistic. We rather use this
condition since it is justifiable for the calculation of the
stress distribution under the modes of perturbations
with q � 2πr0

h∗ : See argument 2) above and App. C for
details.)

c) The shear stress σrθ within the gel layer is negligible.
As mentioned above, the experimental value of h∗/r0
is � 1. In such situation we may, in the lowest-order
approximation, estimate the magnitude of the shear
stress, with a parabolic profile of the shear stress σrθ:
σrθ = µ̃εq(r0 + h − r)(r − r0)/r2

0 for r0 ≤ r ≤ r0 + h,
which satisfies the boundary conditions, equations (8)
and (10). Here, µ̃ is a constant proportional to the
shear modulus µ of the gel. The magnitude of σrθ is,
therefore, at most of the order of µ̃εq(h∗/r0)

2. We com-
pare this with the change of σθθ due to the perturba-
tions of the thickness, which is of order εqBh∗/r0 (see
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Eq. (1)). Then σrθ is smaller than this by a factor of
h∗/r0, and is therefore negligible.

In Appendix D we show how the stress distribu-
tion within the gel is calculated for the model described
by a)-c). Below, we show only the results for the tensile
stresses σθθ|r0+h at the external gel surface and the nor-
mal compression, − σrr|r0

at the substrate surface:

σθθ|r0+h − (
σθθ|r0+h

)
εq=0

= − Bχ2

2 + χ
εq cos(q θ0) +O(εq2),

(11)
−σrr|r0

− (−σrr|r0

)
εq=0

= O(εq2), (12)

with χ ≡ h∗/r0. The bracketed terms with the sub-
script εq = 0 are those terms without perturbation:(
σθθ|r0+h

)
εq=0

= Bχ and
(−σrr|r0

)
εq=0

= B
2 χ

2 (see

Eqs. (2) and (6)). In equation (12), O(εq2) indicates the
terms of at least second order of εq. Since εq cos(q θ0) =
(h(θ0) − h∗)/h∗, the minus sign on the right-hand side
of equation (11) implies that the lateral tension is aug-
mented, σθθ|r0

>
(
σθθ|r0

)
εq=0

, in the thinned portion of
the layer, h(θ0) < h∗.

4 Mechano-chemical coupling: Growth and
dissociation of gel under stress

In this section, we consider the time evolution of the thick-
ness of the gel layer. We denote the profile of the thickness
at the time t as h(θ0, t). We are interested in the chemi-
cal processes which take place on time scales much larger
than the establishment of the mechanical balance within
the gel. We suppose that the relevant microscopic chemi-
cal processes are the polymerization and branching of the
actin filaments to form the gel, and the unbinding of the
branching points and/or through the depolymerization of
actin filaments to dissociate the gel. We adopt a simplified
version of the model proposed previously [15,5]:

∂h(θ0, t)
∂t

= a
[
k̄pe

σrr|r0cp − kde
σθθ|r0+h(θ0,t)cd

]
, (13)

where a, k̄p, kd, cp and cd are positive constants. The pref-
actor a outside the square bracket on the right-hand side
(r.h.s.) is a length of about the size of an actin monomer.
This represents the rate of conversion between the chemi-
cal processes and the change of the thickness, h. The other
parameters are described below.

In the square bracket on the right-hand side (r.h.s.) of
equation (13), the first term represents the polymerization
at the substrate surface (r = r0). Here, we have introduced
the assumption: i) On the substrate surface, the polymer-
ization is the dominant process. The pre-exponential fac-
tor k̄p represents the kinetic constants in the absence of
compressive stress (σrr|r0

= 0). k̄p depends on the con-
centration of actin monomers in the solvent. In our analy-
sis we assume this to be constant. The exponential factor
represents the fact that the polymerization is decelerated

by the compression, σrr|r0
(< 0). The parameter cp has

been introduced so that −cp σrr|r0
accounts for the in-

crease in the polymerization potential barrier due to the
cost in elastic energy (divided by kBT ) to push out the gel
layer outward against the compressive stress. We have ne-
glected the dissociation of the gel at the substrate surface.
Such process could be easily incorporated in the model
[16,13], but has little effect in our context. In the exper-
iment of the polymerization of microtubules, it has been
shown that the negligence of the depolymerization on the
growing end (the plus end) is a good approximation [17].

The second term in the square bracket on the r.h.s.
of equation (13) represents the gel dissociation. We have
introduced the assumption: ii) The dissociation process
is almost localized on the outer surface of the gel at
r = r0 +h(θ0, t). The pre-exponential factor, −akd, there-
fore represents the rate of thickness decrease which occurs
due to the dissociation of the gel under the stress-free con-
dition, σθθ|r0+h(θ0,t) = 0. (Remark: Here we can identify
σθθ|r0+h(θ0,t) as the tensile stress along the tangent of the
outer surface, since the correction is of second order of the
deviation angle, | ∂h

∂θ0
|/(r0 +h), between the tangential di-

rection and the azimuthal direction.) The exponential fac-
tor of this term represents the fact that the dissociation
is accelerated by the lateral tensile stress σθθ|r0+h(θ0,t)

(> 0). The parameter cd has been introduced so that
cd σθθ|r0+h(θ0,t) accounts for decrease in the depolymer-
ization potential barrier due to the release of the elastic
energy (divided by kBT ) when the gel is dissociated un-
der the tensile stress. We have neglected the dissociation
of the gel occurring inside the gel. There are good reasons
to believe that the gel dissociation is strongly accelerated
under tensile stress [16], as compared with spontaneous
dissociation under the stress-free condition. In fact, the
experiments using the full cell extract as the solvent have
shown that the mean thickness of the gel layer around
the latex bead is much smaller than the average length of
the comet produced by Listeria of similar size. It implies
that the Boltzmann factor of the form, ecdσθθ , is crucial to
determine the dissociation rate. As σθθ is largest on the
outer surface of the gel, we suppose that the gel dissocia-
tion occurs mostly in the vicinity of the outer surface.

The kinetic equation, equation (13), also assumes the
following: iii) The diffusion of actin monomer is fast
enough. This limits our analysis to a bead radius range
smaller than a cross-over size, rc, separating a stress-
governed regime from a diffusion-controlled regime. In-
deed, on the substrate surface, the actin gel is formed
from the adjunction of actin monomer molecules. And for
these molecules to reach the substrate surface, they have
to diffuse through the network of the actin gel. Previous
experimental and theoretical analysis [5] indicates that,
as far as the diameter of the latex bead is less than about
5 µm, and under physiological concentrations of the actin
monomers and of the cross-linker molecules, diffusion does
not limit the thickness evolution, h(θ0, t).

The evolution equation, equation (13), has a solu-
tion corresponding to the symmetric stationary state,
h(θ0, t) = h∗ [5]. If we restrict our analysis to the circularly
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symmetric profiles, h(θ0, t) = h(t), this solution is stable.
In fact, substituting the form h(θ0, t) = h∗ into equa-
tion (13), we obtain the equation for χ ≡ h∗/r0 as

cp
cd

χ2 + χ− 2
cdB

log
(
k̄p

kd

)
= 0. (14)

This equation has a positive, therefore, physically mean-
ingful, solution for k̄p/kd > 1, Furthermore, if we substi-
tute the form

h(θ0, t) = h∗ [1 + ε0(t)] , (15)

equation (13) reduces, up to linear order in ε0(t), to the
following equation:

dε0(t)
dt

= −ε0(t)
τ0

, (16)

with τ0 = kd
−1Ω0

−1r0/a,

Ω0 = cdBecdBχ

(
1 +

cp
cd

χ

)
. (17)

Equation (16) shows, as already mentioned, that the
steady-state solution h(θ0, t) = h∗ is stable with respect
to perturbations keeping the overall symmetry. This re-
sult is understandable since a radius with h > h∗ (< h∗)
would lead to an increase (decrease) of both (− σrr|r0

)
and σ⊥⊥|r0+h, and these in turn make the r.h.s of equa-
tion (13) negative (positive), leading to a decrease (in-
crease) of h toward the stationary value h∗. From equa-
tions (14) and (17), χ and τ0 are functions of three pa-
rameters, cdB,

cp
cd
, and k̄p

kd
. Note that τ0 is a few orders

of magnitude larger than the microscopic time kd
−1, with

r0/a being of order 103 and Ω0 of order 10.

5 Result

5.1 Symmetry-breaking instability

We now consider symmetry-breaking perturbations and
we assume the following form for the gel layer profile:

h(θ0, t) = h∗ [1 + εq(t) cos(q θ0)] , (18)

with q �= 0. Substituting the expressions of the stress com-
ponents, equations (11) and (12) into equation (13), where
εq is replaced by εq(t), we have the following equation up
to the linear order of εq(t),

dεq(t)
dt

=
εq(t)
τq

, (19)

with τq = τ0
Ω0
Ωq

,

Ωq = cdB ecdBχ χ

2 + χ
, (20)

where χ ≡ h∗/r0 as before. (Remember that χ can be ex-
pressed in terms of the parameters cdB,

cp
cd
, and k̄p

kd
.) Note

that since Ω0Ωq � 2/χ � 10, τ0 � τq. Equations (19)
and (20) imply the following characteristics of the sym-
metric stationary state h(θ0, t) = h∗.

i) The symmetric stationary state is unstable against per-
turbations which break the symmetry, since all τq are
positive. In fact, the applicability of our model is guar-
anteed only in the range of q satisfying q � 2πr0

h∗
(see, Sect. 3). Nevertheless, the presence of an unstable
mode is sufficient for the proof of instability. Note also
that since τ0 � τq, our analysis predicts that a quasi-
symmetric steady state should be reached significantly
earlier than the onset of symmetry breaking. This is
indeed what is observed.

ii) The characteristic time of the instability is propor-
tional to the radius of the substrate if the other pa-
rameters are fixed. It is reasonable to suppose that τq

represents the characteristic time of the growth of the
perturbation. Then, from (19), τq is written in a scal-
ing form:

τq

kd
−1 = Ωq

−1 r0
a
, (21)

where kd
−1 and a play the role of intrinsic time scale

and length scale, respectively. The dimensionless con-
stant of proportionality, Ωq

−1, depends on the proper-
ties of the gel and of the solvent through the parame-
ters, cdB,

cp
cd
, and k̄p

kd
. Note that, in fact, the quantity

τq thus defined shows no dependence on q(�= 0), as Ωq

does not. This apparently anomalous behavior should
not be taken seriously, because the range of wave num-
ber validity of our analysis is limited to q � 2πr0

h∗ .)

Quantitatively, we can evaluate the characteristic time
τq using the experimentally known data in the literature:
The stationary velocity vgel at which the gel material
moves outward is identified from equation (13) as

vgel/r0 = kd(a/r0)ecd σθθ|r0+h(θ0,t) = kd(a/r0)ecdBχ.

Comparing this with the expression of τq obtained
from equations (20) and (21), τ−1 = kd(a/r0) ecdBχ

cdBχ/(2 + χ), we see that

τ =
r0
vgel

2 + χ

cdBχ
. (22)

As described in [5], cdBχ is the decrease in energy barrier
(in units of kBT ) in the dissociation of an actin filament
under tensile stress, compared to the unstressed case. For
the effects described in this manuscript to be observable,
this decrease must be of order one. Noting that χ � 2,
our analysis requires the combination τqvgel/(2r0) to be
of order one. The experiment gives τsym/r0 � 5 min/µm
and vgel � 1µm/min (note that it is the polymerization
rate under stress) which leads to τqvgel/(2r0) � 2.5. This
is in the expected range.
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5.2 Role of external symmetry-breaking perturbations

In reality, a strictly symmetric substrate, either spherical
or cylindrical, is impossible. Also, the chemical properties
of the substrate surface are never perfectly homogeneous.
A nominally spherical latex bead may contain a weak lo-
cal deviation of the surface curvature and a weak hetero-
geneity of the polymerization constant, k̄p, along the sur-
face. Thus, we should suppose that there are disturbances
which break externally the symmetry of the system, and
modify equation (13) or its linearized form, equation (19).
A legitimate question is, therefore, “if and how the above
symmetry-breaking instability plays a role?” In short, the
answer is that, despite these extrinsic factors, the insta-
bility mechanism of symmetry breaking manifests itself in
the evolution of the gel’s thickness, justifying our compar-
ison with experiments done in the above Section 5.1 We
discuss it first in a formal manner, and then in the context
of the geometrical and chemical heterogeneities.

Within the linear approximation, the evolution equa-
tion, equation (13), is decomposed into the equation for
each mode, like equations (16) or (19). In the latter equa-
tion the system’s intrinsic heterogeneity may be repre-
sented as a small but finite source term, εeq,

dεq(t)
dt

=
1
τq

(εq(t) + εeq). (23)

We can solve this equation with the initial condition
εq(0) = 0:

εq(t) = εeqτ(e
t
τ − 1) �

{
εeq/τqt, for t < τ

εeqe
t
τ , for t > τ

. (24)

This shows that, after a time t ∼ a few τ , the effect of
the non-symmetric disturbance is exponentially amplified
(et/τ � 1) by the instability mechanism, while the direct
effect of the source is small in the sense that εeqt � 1 even
for t � few τq. In this way, the symmetry-breaking mecha-
nism manifests itself as an amplifier of small heterogeneous
disturbance in the system, which can be experimentally
observable.

Another way to think about the external perturbation
is to define the time τSq required for developing an εq of a
specified value εSq : Equation (24) leads to

τSq = τq ln

(
1 +

εSq
εeq

)
. (25)

Changing the prescribed value εSq or the external pertur-
bation εeq by orders of magnitude changes τS only by a
small factor. This tells us that, as already announced, the
scaling of the characteristic observable times is essentially
given by τq. It also tells us that the detailed knowledge of
the early dynamics is not essential in the definition of τSq

provided τq is sufficiently larger than τ0, so that a quasi-
spherical state is obtained before the symmetry-breaking
process is observed. We know this to be true both from
our analysis and from experiment.

Now we describe how the parameter εeq reflects the ef-
fect of the heterogeneity of the surface curvature and of
the polymerization rate. Under the linear approximation,
we only need to consider the profile of the substrate sur-
face which can be described in terms of the radius r0(θ0) as
a function of the angle θ0: r0(θ0) = r0 + ∆

(geo)
q cos(qθ0).

Additionally, we consider the spatial distribution of the
polymerization rate constant k̄p represented as a function
of θ0: k̄p(θ0) = k̄p0 +∆

(chem)
q cos(qθ0). ∆

(geo)
q and ∆

(chem)
q

characterize the amplitudes of geometrical and chemical
perturbations, respectively. The geometric profile r0(θ0)
leads to the non-homogeneous curvature κ(θ0), which has
the following form:

κ(θ0) =
1
r0

[
1 +

∆
(geo)
q

r0
(q2 − 1) cos(qθ0)

]
.

Along the line of calculation in Appendix D, this expres-
sion of the curvature should replace the factor r0

−1 in
equation (D.7). The normal stress on the substrate sur-
face is therefore given by

σrr|r0
= −κ(θ)T. (26)

As for the chemical heterogeneity in the polymerization
rate, k̄p(θ0) should replace k̄p in equation (13). In gen-
eral, these effects can be summarized in the form of εeq =

β
(chem)
q (∆(chem)

q /k̄p) + β
(geo)
q (∆(geo)

q /r0), with dimension-
less numbers β

(chem)
q and β

(geo)
q . However, if these source

terms have existed from the start of polymerization, the
expressions of β(chem)

q and β
(geo)
q are complex because in

the early stages of the gel growth none of the linear equa-
tion is valid. However, as we have already pointed out the
exact knowledge of εeq is not essential for understanding
the main feature of the dynamics if τ0 < τq. We, therefore,
only mention about the restricted case where those het-
erogeneities are switched on at a certain moment of time
after the symmetric steady state has been established. The
result then reads

εeq =
ecdBχ

Ωqχ

(
∆

(chem)
q

k̄p
− cpBχ2

2
(q2 − 1)

∆
(geo)
q

r0

)
. (27)

The positive coefficient in front of ∆(chem)
q reflects the ac-

celeration of the turnover of the gel material where k̄p is
increased, while the minus sign in front of the second term
in the bracket reflects the polymerization being slowed
down where the surface extrudes, or, where κ(θ0) > 1

r0
.

6 Discussion

Our analysis based on gel elasticity leads to the essential
prediction that the spherical symmetry is always unsta-
ble. The expected scenario is that in a first step a quasi-
spherical steady state is reached which should obey the
prediction contained in [5] and [18]. Then on a time scale
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significantly larger than the characteristic time for reach-
ing the isotropic quasi-steady state, symmetry is broken.
In the regime we discuss, governed by elasticity, these two
times are predicted to scale like the radius of the bead on
which the experiment is conducted. This scaling should be
very robust in the elastic regime, since r0 is the only length
scale in the problem. In particular, it should hold for wave-
lengths larger than those considered here. All these expec-
tations are well born out by experiment [7]. In a number
of cases symmetry is not observed to be broken: this may
be due to three different causes: 1) the experiment dura-
tion might not be long enough for the symmetry-breaking
event to take place, 2) the gel/bead friction, considered
in Appendix E might further slow down the symmetry-
breaking process, 3) the gel might not behave fully elas-
tically at very long time scales. In this latter case, a new
time scale would come into play, namely that over which
a significant stress may be maintained, and a new calcu-
lation should be developed. We discuss various possible
improvements to our current analysis in Appendix E.

As explained in this manuscript the main ingredi-
ent for the occurrence of symmetry breaking comes from
the tensile-stress concentration where the gel thickness is
smallest. This feature, added to a stress-dependent de-
polymerization in the immediate vicinity of the gel outer
surface, leads to an absolute instability of the system. This
is in contrast with earlier models [9,10] in which symmetry
is broken at the polymerizing gel bead surface. Their inter-
pretation is most transparent in the one-dimensional case;
consider two opposing sides on which parallel filaments are
grown. The force on individual filaments, i.e. the ratio of
the total force (equal on both sides because of force bal-
ance) to the number of supporting filaments, is the key
notion. The smaller the number of filaments participat-
ing, the slower the effective polymerization rate; it is nat-
ural to expect a force dependence and different scenarios
have been discussed [9,10] if an unbalance between the two
sides arises at some point, it grows since the “weak” side
tends to become “weaker”. The two-dimensional version of
this mechanism, simulated by van Oudenaarden et al. [9]
is closely related to simulation and experiments done on
the microtubule/centrosome (or microtubule/bead) sys-
tem. The latter system does not exhibit an instability
whereas the first does. The difference in behavior results
from the difference in boundary conditions. All these cases
do not consider the situation where filaments are cross-
linked. Actin gels are cross-linked and we propose that
in two and three dimensions these cross-links change pro-
foundly the behavior. Indeed, if the thickness of the gel
layer is locally decreased, the compressive stress there,
σrr|r0

, should either stay constant if full-slip boundary
conditions are achieved, or decrease, irrespective of the
thinning cause. The lateral displacement of the gel layer
along the substrate surface might at most relax some of
this local decrease of σrr|r0

, but it will never be able to
increase it. Thus, the mechanism described [9,10] for non-
cross-linked filaments do not apply to gels.

There might be an objection here: admitting that
the compressive stresses at the substrate surface can at

most stay constant, would this not decrease the local fila-
ment density and therefore increase the compressive force
per filament, exactly as proposed by van Oudenaarden
et al. [9]? We could agree on this point if the rate of
branching/cross-linking per filament were to be always
constant, as it was assumed in the previous models by
van Oudenaarden and Theriot [9] and by Mogilner and
Oster [10]. In fact, however, the density of actin filaments
on the substrate surface is likely to be insensitive to the
lateral stretching of gel. The reason is, as is shortly dis-
cussed in Appendix E (item 7), that the growth of the
gel proceeds in the way that the tensile stress is almost
zero on the substrate surface. Therefore, the frequency of
the branching and the resulting density of actin filaments
on the surface should be determined by the compressional
stress from the gel, which is unchanged up to the order of
εq(t) (the amplitude of the perturbation) and by the den-
sity of the enzyme, which is supposed to be uniform on the
surface, except in the discussion in Section 5.2. Of course
the above argument is justifiable so long as the evolution
of the symmetry breaking is not extremely fast compared
with the microscopic characteristic time of branching.

A direct experimental assessment of the symmetry-
breaking mechanism could involve monitoring simultane-
ously the depolymerization and the polymerization pro-
cesses at the outer and inner gel surfaces, respectively.
This is not an easy experiment.

In the present paper, we assumed that the degradation
of gel occurs mainly through the depolymerization. How-
ever, the gel fracture would explain the symmetry break-
ing: In fact both the depolymerizatin scenario in our paper
and the rupture scenario can be viewed as two extremes
of a unified instability model. What is common to both
scenarios is that spontaneous degradation of gel from the
outer surface is supposed to exist even if there are no
stretching stresses. The difference is the spatial patterns
with which the symmetry is broken, either a smooth per-
turbation of the thickness or by a sharp wedge opening in
the gel layer. (In the field of polymer physics, it is reminis-
cent of the two complementary models of microphase sep-
aration in diblock copolymers, called the models of strong
segregation limit and of weak segregation limit, respec-
tively.) In both cases, the degradation of gel should start
from the external surface of the gel where the tensile stress
is the strongest. As there are no direct experimental ev-
idences that distinguishes the depolymerizatin from the
rupture upon symmetry breaking, we have taken the for-
mer hypothesis to do a concrete analysis. It is also possible
that the rupture appears as the late and non-linear stage
of symmetry breaking which is initiated by a weak linear
instability through inhomogeneous depolymerization.

Both models may explain the apparent absence of the
breaking of symmetry around the beads with large diam-
eter: The establishment of an appreciable tensile stress
requires long time and thick gel layer for large diameter,
as described in the text. Therefore, the diffusion of the
monomer components of the gel (actin, Arp2/3 etc.)
might become the limiting process of the gel growth [18].
As a result, the gel thickness attain a stationary value



K. Sekimoto et al.: Role of tensile stress in growing actin gels 255

independent of the diameter of the bead, as a balance
between the the “evaporation” (spontaneous degradation
of gel independent of the tensile stress) from the outer sur-
face and the growth from the inner surface. In the rupture
scenario, the symmetry breaking is suppressed by the in-
adequacy of the stretching stress to make fracture, while in
the depolymerization sceanario the suppression is ascribed
to the smallness of the tension-dependent degradation.

Finally, we would like to discuss about the plastic char-
acter of the actin gel. The actin gel under tension may
show the plasticity in a particular sense: It is largely be-
lieved that Arp2/3, the cross-linker of the actin network,
is incorporated to the network only on the sufrace where
the enzymes (fragments of WASP or ActA) for this reac-
tion can be activated. In the bulk of the gel the loss of
the cross-linking, therefore, takes place in an irreversible
manner with no recovery process of cross-linking. Thus,
this process of plasticity in actin gel is mostly equivalent
to the hypothesis of depolymerization of our model, and it
should therefore be distinguished from the viscoelasticity
of Maxwell or Voigt models in which the elastic aspect is
not lost irreversibly. Though we have not looked at the
plasticity aspect of actin gel entirely in detail, since the
plasticity is not an absolutely necessary approach or view-
point for the purpose of the symmetry breaking. Still, we
think that the plasticity could be an interesting subject
to be studied more in future. To the authors’ knowledge,
there have been no studies about the plasticity of actin
gel up to the present time.

We thank M.-F. Carlier for the gift of the medium of motility.
We also thank C. Sykes for fruitful discussions and for critical
reading of the manuscript. We have profited very much from
the insightful questions of the referees, which we incorporated
in the discussion section upon revision.

Appendix A. Heuristic derivation of the
equations of mechanical balance

Equations (3) and (4) in Section 2 are the equation of
mechanical balance of stress components in the spheri-
cally and circularly symmetric geometries, expressed in
respective relevant coordinate systems. Instead of deriving
these from the familiar form in the Cartesian coordinates
(symbolically written as ∇ · σ = 0) through coordinate
transformations, we will present an elementary physical
interpretation of the equations of mechanical balance. It
might help to understand how the lateral tensile stress
and the normal compressive stress are related. See, Fig-
ure 5. Consider, within a layer of actin gel occupying the
radii r0 and r0 + h, a slice of gel between the radii r and
r + ∆r spanning a solid angle ∆Ω (3D) or an angle θ
(2D). The lateral tension σ⊥⊥ gives an effective surface
tension ∆Γ = σ⊥⊥∆r to this slice. Because of the curva-
ture radius, r, of this slice, a sort of the Laplace pressure,
2∆Γ/r (3D) or ∆Γ/r (2D) is generated towards the cen-
ter (r = 0) of curvature. This pressure integrated over
the surface, r2∆Ω (3D) or r∆θ (2D), gives the total force

∆θr ∆rσ

∆θ(r+   r)∆ σrr r

∆θ

+ ∆ r

σ ∆r σrr r

Fig. 5. Forces acting on a curved slice of gel of thickness ∆r
and length r∆θ. The slice is under lateral tension because of
forces σ⊥⊥∆r. It is radially compressed because of the forces
(r + ∆r)∆θ σrr|r+∆r and r∆θ σrr|r.

(b)

(a)

T
T cylinder

gel h 0

elastic rodF F

z

(θ  )

d(z)

Fig. 6. Stress distribution in elastic structures of varying
thickness: (a) Elastic rod of thickness d(z) under tension due
to forces F acting at the ends. The tension at coordinate z:
σzz � F/A(d), where A(d) = π

4
d(z)2. (b) Analogous situation

in a gel layer of thickness h(θ0) under integrated tension T .
The tensile stress can be approximated as σ⊥⊥ � T

h(θ)
.

exerted by this thin layer. These force in the respective
dimensionality are shown on the right-hand side of the
equations below. Now, these forces must be the origin of
the difference between the integrated normal stress acting
at r and that at r + ∆r. The differences in the respec-
tive dimensionality are shown on the left-hand side of the
equations below:

(r+∆r)2∆Ωσrr|r+∆r−r2∆Ωσrr|r =r2∆Ω
2σ⊥⊥∆r

r
, (3D)

(r+∆r)∆θσrr|r+∆r−r∆θσrr|r =r∆θ
σ⊥⊥∆r

r
, (2D)

Dividing both hand sides of the above equations by ∆r,
and letting ∆r → 0, we arrive at equations (3) and (4).
Note that σrr < 0 for compressive stresses.

Appendix B. Elementary physical mechanism
of the stress concentration

We describe the basic mechanism of the stress concentra-
tion by an illustrating example with a very simple geom-
etry (see, Fig. 6(a)).
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Suppose that there is a long elastic rod whose diame-
ter d(z) is inhomogeneous along its long axis, z. We now
apply a tensile force to this rod by pulling its ends apart.
Once the balance of force is re-established within the rod,
the total tensile force integrated over a sectional plane per-
pendicular to the z-axis is constant along the z-coordinate.
Thus, the tensile stress σzz averaged over this section is
inversely proportional to its area, π(d(z)/2)2. By such ge-
ometrical effect, the tensile stress is concentrated at the
thinnest part of the rod.

We could mention an analogous situation in an electric
wire transporting a steady electric current. If the thick-
ness of the wire is inhomogeneous, the electronic-current
density is high in the region where the wire is thin, by the
same geometrical effect. The electric-current density plays
the role of the tensile stress σzz in the former case. In fact,
the stress is the current density of the momentum [12].

We may compare these quasi–one-dimensional ex-
amples with the geometry studied in Section 3 (see
Fig. 6(b)). In the latter situation, the gel is under lat-
eral tensile force T . By the same reasoning as above, the
lateral tensile stress is large where the thickness is small.
Although the shear force between the gel and the cylinder
would weaken this effect, the basic mechanism still works.

The geometrical effect discussed here is quite universal:
We only need a current density of some physical quantity
(e.g., the momentum, the charge, etc.) which is confined
along some direction(s).

Appendix C.

We demonstrate that the perturbations of the surface pro-
file have a limited influence on the stress, practically con-
fined within a “skin depth” near the outer surface of the
gel layer, where the skin depth is of the order of the wave-
length of the perturbation (see Fig. 3 in the text).

i) To the spherically symmetric gel layer, we introduce a
xyz-coordinate system so that its xy-coordinate plane
is tangent to the outer surface of the gel layer at its ori-
gin, x = y = z = 0. We define the sign of z-coordinate
so that the bulk of the gel is on the side of z ≤ 0.
We will consider a small neighborhood of the origin so
that the curvature of the gel surface is negligible. This
apparently flat gel layer is under lateral tension along
the xy-plane.

ii) We introduce a slight sinusoidal perturbation of the
surface profile of the gel layer, without allowing the
displacement of the gel material. The perturbed sur-
face profile is written as z = εQ Re[eiQx+φ], with the
amplitude εQ, the wave number Q and the phase φ
being constant.

iii) We then let the gel relax until the mechanical balance
is re-established within the layer. By this process the
stress components σαβ with α = x, y, or z are also
perturbed. We denote by δσαβ the perturbed part of
the stress components. These δσαβ obey the following

equations:

∂

∂x
δσxα +

∂

∂y
δσyα +

∂

∂z
δσzα = 0,

with α = x, y, or z We assume that the usual lin-
ear elasticity relationship applies to the system. Then
the perturbed stress components is related with the
displacements (ux, uy, uz) from the unperturbed state
through the equation

δσαβ = 2µ

(
uαβ − 1

3

∑
γ

uγγδαβ

)
+ K

∑
γ

uγγδαβ

with

uαβ ≡ 1
2

(
∂uα

∂xβ
+

∂uβ

∂xα

)
,

where µ and K are the shear and bulk moduli, the
suffices α, β and γ take x, y or z, and {xx, xy, xz} ≡
{x, y, z}. The summation index γ runs over x, y and
z, and δαβ is the Kronecker’s delta.

iv) The question is how the quantities δσαβ depend on z
for z < 0. In the lowest order of εQ, δσαβ , and therefore
the displacements uα should depend on x sinusoidally
with the wave number, Q. Therefore, the above equa-
tions can be reduced to the following matrix equation:(

2µ ∂2

∂z2 −(K+ 10
3

µ)Q2 iQ ∂
∂z

(K+ 4
3
µ)iQ ∂

∂z
(K+ 10

3
µ) ∂2

∂z2 −2µQ2

)(
ux

uz

)
=

(
0
0

)
.

This equation can be finally reduced to the following
equation:

(∂z
2 −Q2)2ψ = 0

where ψ is a combination of ux and uz. From this
equation, we find that the displacements should de-
pend exponentially on z. Among mathematically pos-
sible forms e±Qz, we discard the form e−Qz since this
factor grows exponentially towards the negative z-axis.
We are then left with the form eQz for z < 0. This in-
dicates that the influence of the perturbations to the
surface profile with the wavelength ∼ Q−1 is practi-
cally limited within a region with a“skin depth” ∼ Q−1

from the outer surface of the gel layer.

Appendix D. The derivation of
equations (11) and (12)

Here we show how the stress distribution within the gel
layer is calculated for the model described by a)-c) in Sec-
tion 3. In the polar coordinate, the equations of mechani-
cal balance in the gel layer are written as follows:

∂

∂r
(rσrr) +

∂

∂θ
σrθ − σθθ = 0,

∂

∂r
(rσrθ) +

∂

∂θ
σθθ + σrθ = 0. (D.1)
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We integrate the left-hand side of these equations with
respect to r from r0 to r0 + h, noting the boundary con-
ditions, equations (10) and (8). The result reads

T − ∂

∂θ
T̄ = −r0σrr|r0

and
T̄ +

∂

∂θ
T = 0,

where we have introduced the total tension, T ≡∫ r0+h

r0
σθθdr, and its analogue for the shear stress, T̄ ≡∫ r0+h

r0
σrθdr. Based on our estimates of the shear stress,

σrθ ∼ µ̃εq(h∗/r0)2, and the perturbed part of the tensile
stress, δσθθ ∼ εqBh∗/r0 (see Sect. 3), we can evaluate
the terms on the left-hand side of the above equations.
Since ∂

∂θ ∼ 1 under our limitation of the wave number
q, we have, δT ∼ ∂

∂θT ∼ Bεqh
∗2/r0 and T̄ ∼ ∂

∂θ T̄ ∼
µ̃εqh

∗3/r0
2, where δT is the perturbed part of the total

tension T . Assuming µ̃ ∼ B, we find that T̄ and ∂
∂θ T̄

are smaller than T and ∂
∂θT by a factor of h∗/r0. We,

therefore, ignore the terms with T̄ , and have the following
equations:

∂

∂θ
T = 0, T = −r0σrr|r0 . (D.2)

The first equation requires the lateral balance of the inte-
grated tension T , while the second equation requires the
homogeneity of the normal compressive stress on the sub-
strate surface, σrr|r0 .

From (D.2) we can calculate σθθ|r0+h∗ and −σrr|r0
.

We employ the “stacked rubber band model” [5,11,12]
for the lateral tensile stress σθθ, as we did for the sym-
metric case (see Eq. (1) in the text). Here, we take into
account the possible lateral displacement of the gel layer
upon the re-establishment of the mechanical balance. We
introduce an unknown function θ(θ0) such that the mate-
rial of gel layer originally at θ0 is moved to θ(θ0) upon the
re-establishment of the mechanical balance (see Fig. 7).
The elongation ratio, (r− r0)/r0 in equation (1) is, there-
fore, replaced by the form which depends on the parame-
ter θ0: (rdθ(θ0) − r0dθ0)/r0dθ0. Thus, the lateral tension
is written as

σθθ = B

(
r

r0

dθ(θ0)
dθ0

− 1
)
, (D.3)

where, the shear deformation within the layer has been
consistently ignored. (The justification of this approxima-
tion concerning another source of error will be discussed
in the discussion section, see App. E.) With the definition
of T given above, we obtain

T = B

[(
h(θ0) +

h(θ0)2

2r0

)
dθ(θ0)

dθ0
− h(θ0)

]
. (D.4)

The function θ(θ0) can be related to h(θ0) through the
first equation in (D.2), which requires that T is constant.

0θ(θ  )0θ

(b)

bead

F-actin gel

(a)

Fig. 7. (a) θ0 is defined as the angle with respect to a reference
line, when a material point (for example, the black dot) is
located before the gel is deformed. (b) As a result of elastic
deformation, the material point characterized by θ0 is displaced
to a new position at θ. The function θ(θ0) characterizes the
elastic deformation.

To fix the value of the constant, T , we recall an apparent
condition

∫ 2π

0
dθ(θ0)
dθ0

dθ0 = 2π. The result of T is

T = B

[∫ 2π

0

dθ0

h(θ0) + h(θ0)2

2r0

]−1

×
[
2π −

∫ 2π

0

h(θ0)

h(θ0) + h(θ0)2

2r0

dθ0

]
. (D.5)

dθ(θ0)
dθ0

can thus be finally determined in terms of h(θ0)
(which we do not show explicitly). From the second equa-
tion of (D.2) and from equation (D.3), we have

σθθ|r0+h(θ0)
=

[
h(θ0) +

h(θ0)2

2r0

]−1

×
[
T

(
1 +

h(θ0)
r0

)
+ B

h(θ0)2

2r0

]
, (D.6)

− σrr|r0
=

T

r0
. (D.7)

To reach the expressions equations (11) and (12) in
the text, we may simply substitute the form h(θ0) =
h∗ [1 + εq cos(q θ0)] , into equations (D.5-D.6), and develop
them with respect to εq up to the linear order.

Appendix E.

Below we mention briefly aspects which could be improved
in our present analysis.

1) Extend the analysis to modes with q �= 2πr0
h∗ .

Although the instability against the disturbances of
modes q � 2πr0

h∗ is sufficient to destroy the system’s
stability, our analysis can say nothing about what is
the fastest, or the most unstable, mode of the distur-
bance. The fact that the characteristic time of the sym-
metry breaking in our analysis gives reasonable values
suggests that the other modes of perturbations might
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grow, if they do, at a rate not highly exceeding the
one we have analyzed. In fact, some efforts to refine the
present analysis (see below) indicate that, for q < 2πr0

h∗ ,
the instability is weakened or even suppressed, while
for the modes, q > 2πr0

h∗ , there is no sign of appre-
ciable q-dependences. However, the modulation of the
micro-scale comparable to the mesh size of the gel is
not accessible by the continuum approach. (Note that
the quasi–one-dimensional analysis of [10] claims the
instability of the mode q = 2.)

2) Remove the full slip boundary condition.
As discussed in Section 3 we have justified this bound-
ary condition when we analyzed the evolution of the
modes q � 2πr0

h∗ , since, there, the choice of the bound-
ary condition on the substrate surface is expected to be
insensitive to the stability result. For the other modes,
especially for q < 2πr0

h∗ , we should take into account
the friction on this surface due to the temporal link-
age between the actin filament with the substrate [11].
(About the discussion of the relation between the fric-
tion and the temporal linkage, see [19,15].) As a mod-
ification of the present model, we have incorporated
the finite friction force on the substrate surface, which
is proportional to the slipping velocity of the gel along
the surface. Though details will not be shown [13], the
result indicates that, while all the modes remain unsta-
ble, the instability is weakened for long wavelengths,
i.e. for small values of q.

3) Extend the analysis to the non-linear regime.
Our analysis does not infer how the comet of actin gel
is formed and continues to grow after the symmetric
shape of the layer around the bead is lost. This is a
non-linear problem. Van Oudenaarden and Theriot
have demonstrated in their numerical modeling that
the comet formation shows its optimal performances
for a certain parameter value related to the depoly-
merization at the substrate surface. The comparative
study from our point of view is yet to be done. (As for
the steady growth of the comet from Listeria, see [11]).

4) Extend the analysis to soft beads.
Endosomes, lysosomes, vesicles and fluid drops deform
as the comet develops, revealing the importance
of mechanical stresses [2,20,21]. The deformation
of a fluid drop has been fully analyzed within the
framework of the elastic analysis and shown to be
quantitatively in agreement with the experiment [22].
The symmetry-breaking onset remains to be worked
out. As proposed in the discussion, the early stages
would discriminate between the different mechanisms.

5) Removal of the assumption of the isotropic gel.
Generally speaking, the microstructure of the gel
polymerized from a surface must distinguish the
radial direction from the lateral ones. Especially, the
actin gel branched by the help of the protein Arp2/3
is shown to have a topology like a “forest” rather than
like a network [23]. It will be the entanglement among
the branches of the “trees” of semi-flexible filaments
that supports the tensile stress within the gel. Though
we expect no qualitative change of our result upon

θ∆ 0θ

∆ 0θ

∆(b)

gel

bead

(a)

Fig. 8. Generation of a mechanical frustration (internal stress)
caused by simultaneous polymerization and lateral deforma-
tion; a rectangular piece of gel (marked block) is displaced and
deformed while keeping the connectivity with its neighboring
piece (block shown by dotted lines).

the incorporation of the elastic anisotropy of the
gel, there should be quantitative differences. For the
further analysis, we also need the experimental data
on the anisotropic elastic constants [12].

6) Extend the analysis where the gel density is spatially
heterogeneous.
The effect of the spatial heterogeneity of the catalytic
activity of the enzyme may have several aspects. The
one which has been discussed in Section 5.2 is the
modulation of the polymerization rate, k̄p. The other
aspect which is related to the spatial heterogeneity of
elastic moduli of gel may also deserve consideration.
In fact, the heterogeneity of the elastic moduli will
be closely related to the heterogeneity of the factors
kd and cd both concerning the depolymerization pro-
cesses kinematically and energetically, respectively. It
is therefore impossible to predict where does the thin-
ning of the gel layer proceed most rapidly. However,
the rule of thumbs is again that the positive feedback
mechanism mentioned above: once the degradation
is advanced in a portion of gel layer than elsewhere,
the stress concentration is most likely to occur and
the degradation will be further accelerated there. Vis-
coelastic (e.g., of Maxwell or Voigt types) or frictional
effects in the bulk gel or on the substrate surface,
respectively, may limit this positive feedback loop. A
detailed discussion will be the task of future works.

7) Take account of the frustration of stress in gel.
In the analysis of Section 4, the total tension
T ≡ ∫ r0+h

r0
σθθdr has been calculated by substituting

the expression of the stacked rubber band model,
equation (D.3). This operation ignores the fact that
the gel material at two different radii are created at
different points of time. Figure 8 illustrates how the
simultaneous polymerization and lateral deformation
create a mechanical frustration within the gel ma-
terial: (a) Consider a thin slice of actin gel created
at the substrate surface during a short time interval,
say, between t1 and t1 + dt (the dark gray region
occupying the angle ∆θ0). We may expect that this
part of gel which is just grown bears no lateral stress,
to a good approximation. In the context concerning
this slice just above the substrate surface, we would
then set dθ(θ0)/dθ0 = 1 in equation (D.3). (b) After
the consecutive time interval, t1 + dt < t < t1 + 2dt,
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the same spatial region, which is now indicated by the
dotted lines, is occupied by a newly grown gel under
no lateral tension. Thus again dθ(θ0)/dθ0 = 1 for this
region. However, as for the previously grown material
which we have marked in dark gray in Figure 8(a),
it now occupies the region just outside the original
one (shown again in dark gray), and occupies the
angle ∆θ. Generally, ∆θ is different from ∆θ0 as far
as there is a global lateral displacement of gel during
the time interval t1 + dt < t < t1 + 2dt. Thus, in the
context concerning this region in dark gray, we would
set dθ(θ0)/dθ0 �= 1 in equation (D.3). This contra-
diction indicates a natural process through which a
mechanical frustration is created within the gel layer,
and shows that equation (D.3) is only approximative.

Taking account of this fact in the model requires a lot
of complication of the formalism, but the linear analysis
is still feasible. Though the details will not be shown [13],
the result indicates that, while the modes with small q
values now become stable, the instability persists for q >
qc with a finite positive threshold qc. Our simple analysis
with equation (D.3) is still a good approximation if the
characteristic time of the instability τ is short enough as
compared with the turnover time of the gel, r0/vgel. From
equation (22) this criterion reads (2 + χ)/(cdBχ) � 1.
Substituting the same values for cd = ξ3/T , B, and χ
as in Section 5.1, the left-hand side of the above criterion
becomes 0.16 if we take ξ = 30 nm for the mesh size of the
actin gel. We, therefore, suppose that our approximation
is pretty good for the above parameter range.
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13. K. Sekimoto, F. Jülicher, J. Prost, unpublished (2001).
14. K. Kassner, C. Misbah, J. Muller, J. Kappey, P. Kohlert,

Phys. Rev. E 63, 036117 (2001). (The original literatures
on the crystal growth related to the stress concentration,
such as R.J. Asaro, W.A. Tiller, Metall. Trans. 3, 1789
(1972) and M.A. Grinfeld, Dokl. Akad. Nauk USSR 265,
836 (1982) are cited and described therein.)

15. F. Gerbal, V. Noireaux, C. Sykes, F. Jülicher, P. Chaikin,
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