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Frequency-Dependent Response Functions in the Absence of Noise

The mechanical behavior of a hair bundle can be characterized by its response to sinusoidal

stimuli. The stimulus can be represented by the periodic force
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at frequency 1ω  with amplitude 1F , where the star denotes the complex conjugate.  The

amplitude 1F  can be chosen to be a real number.  External stimulation affects the amplitude

of the frequency components of the hair-bundle displacements X(t).  In the following, we

discuss response functions of stable and oscillating states in the absence of noise.

Response of Stable States.  Consider the case where the hair bundle is stable with

0X)t(X =  in the absence of a stimulus force.  In the presence of the periodic stimulus, the

bundle's deflection follows the stimulus at the same frequency and exhibits higher harmonics.

The deflection can thus be written as
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Here, the coefficients nX  are complex with *
nn XX −= ; they characterize the Fourier

amplitudes of the frequency components of hair-bundle motion.  We consider the component

of hair-bundle motion at the frequency of stimulation; this response is characterized by the

amplitude 1X .  The sensitivity of the system at the stimulus frequency is defined as

( ) 111 FX== ωωχ .  In the limit of small 1F , χ  becomes the linear response function of the

hair bundle: χχ 00 1→
= Flim .  Exactly at a supercritical Hopf bifurcation, the inverse of the

linear response function is zero at the characteristic frequency cω  of the oscillating

instability.  This result can be expressed as
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where a and b are two complex coefficients, Θ  is a control parameter that takes the critical

value cΘ  when the system is exactly at the bifurcation point (1).  This expression can be

rewritten as:
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where ( ) ( )cc abRe ΘΘωω −−= , 2a=Λ , ( ) ( )cabIm ΘΘΛΚ −−= , and aaiei −=α .

Because ( ) ( )ωχωχ −= *
00 , the linear response function takes a simple general form for

frequencies of stimulation close to the characteristic frequency 0ω  (2):
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This response function is characterized by the stiffness Κ  and the friction coefficient Λ .

The phase α  describes the phase lag of the bundle's displacement with respect to the

stimulus at the characteristic frequency.

Response of Oscillating States.  In the case of a spontaneously oscillating state, the response

function can also be defined. In the absence of a stimulus force, the oscillatory state exhibits

spontaneous periodic motion with angular frequency 0ω : ∑ −=
n

tin
neX)t(X 0ω . In the

presence of the stimulus, because nonlinearities couple modes at the frequency of

spontaneous oscillations to modes excited at the stimulus frequency, the displacement X(t)

contains many Fourier components Xnm.  In Fourier representation, the displacement can be

written as
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The response at the frequency of stimulation is characterized by the amplitude X10. For

01 ωω ≠ , the sensitivity is ( ) 1101 FX==ωωχ .  As 1ω  approaches 0ω , the linear response

diverges and
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The linear response function ( ) ( ) ( )ωχωχωχ "
0

'
00 += , where '

0χ  and "
0χ  denote the real and

imaginary part, respectively, exhibits a sharply localized, singular behavior at the oscillation

frequency (Fig. 5).  Such a response function differs qualitatively from those measured

experimentally in the bullfrog's sacculus (2).  There, the linear response remains finite and is

of significant magnitude over a relatively large range of frequencies.  In addition, because the

influence of fluctuations is ignored here, the response function χ  can exhibit discontinuities
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as a function of the forcing amplitude 1F ; these discontinuities result from synchronization

phenomena which are beyond the scope of this work (3).

Effects of an External Load on Noisy Oscillations

Numerical simulations of spontaneous hair-bundle oscillations allow us to study the effects of

fluctuations that result from thermal motion and also from nonthermal stochastic forces that

are generated by motor molecules.  Simulation results can be compared with experimental

measurements of hair bundles' response and autocorrelation functions (2, 4).  We find that

taking fluctuations into account, the simple model discussed in the main manuscript can

quantitatively account for experimental measurements.

In these in vitro experiments, the stiffness of the load to which the hair bundle is coupled

influenced the bundle's spontaneous oscillations (5).  There, this stiffness is that of an

attached glass fiber, whereas in the ear it is given by the stiffness of an ancillary structure like

the otolithic membrane for the sacculus.  When in our simulations the stiffness of the load

was increased, the oscillation got faster and of smaller magnitude (Fig. 6A), in agreement

with previous experimental observations (5).  The spontaneous movements also became

noisier, as revealed by a 70% reduction of the quality factor Q  when the combined stiffness

of the load and the stereociliary pivots was raised from 1600 −⋅ sNµ  to 18001 −⋅ sN, µ .  As a

result, the sensitivity to small stimuli progressively declined as the stiffness of the load was

increased, reaching a low value at high stiffness similar to that obtained in response to intense

stimuli (Fig. 6B).  The load thus impeded the ability of an oscillatory hair bundle to amplify

mechanical stimuli.  Significant amplification by a single hair bundle was achieved only

when the stiffness of the load remained smaller than the maximum negative stiffness that an

oscillatory hair bundle manifests in its force-displacement relation.  As suggested in the main

manuscript, however, a load might in vivo also be beneficial: by mechanically coupling

neighboring hair cells with similar characteristic frequencies, a load could reduce the limiting

effects of fluctuations on mechanical amplification by such an ensemble of noisy oscillators.

There could thus be a tradeoff between the impeding effect of a load on a single hair bundle
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and the enhancement that the load might provide by enforcing the cooperative action of

similar noisy oscillators.

Numerical Simulations

Numerical simulations were performed by discretizing in time the dynamic Eqs. 2-4

presented in the main text.  The functions ( )tX , ( )tX a , and ( )tC  are represented by Xn, Xa,n,

and Cn, where tnt ∆=  and t∆  characterizes the time step.  The discrete dynamics then reads
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where 0DPXXY n,ann −−= , ( )( ) 1

0 1
−−−+= δ/XX n,aneAP , and ( )tnFF extn,ext ∆= .  The random

terms are given by
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where nξ , n,aξ , and n,cξ  are uncorrelated Gaussian random numbers with zero mean and

2222 === n,cn,an ξξξ .  In our simulations, we chose st 5102.1 −=∆ . We verified that the

results were not significantly affected if instead of a Gaussian distribution of random

variables nξ , a rectangular distribution with equal variance was used.
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FIG. 5: (A) Real part  of the linear response function  of an oscillating hair bundle in the
absence of noise as a function of frequency. (B) Imaginary part  of the same response function. The
response function was obtained numerically for the model of spontaneous hair bundle oscillations
defined by Eqns. 2-4 in the main manuscript. Parameters used are those given in Table 1 together with

,  and no noise terms. For this choice of parameters the hair bundle oscillates
spontaneously at . Because here the open probability of transduction channels is 0.5,
singularities are observed only for odd harmonics of .

FIG. 6: Effect of mechanical load on hair-bundle oscillation. (A) The spectral density of spontaneous
movements is displayed as a function of frequency for five values of the combined stiffness  of the
stereociliary pivots and of the load. When  was raised from  to  in

 increments, the peak shifted towards regions of higher frequencies and widened. (B)
Maximal (black symbols) and minimal (purple symbols) sensitivity  to sinusoidal stimuli at the
characteristic frequency as a function of the combined stiffness  of stereociliary pivots and load.
Maximal sensitivities occurred in response to small stimuli whereas intense stimuli resulted in minimal
sensitivities. With parameter values listed in Table 1 of the main manuscript, the hair bundle was
characterized by a maximum negative stiffness of  in its force-displacement relation.




