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Universal Critical Behavior of Noisy Coupled Oscillators
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We study the universal thermodynamic properties of systems consisting of many coupled oscillators
operating in the vicinity of a homogeneous oscillating instability. In the thermodynamic limit, the Hopf
bifurcation is a dynamic critical point far from equilibrium described by a statistical field theory. We
perform a perturbative renormalization group study, and show that at the critical point a generic relation
between correlation and response functions appears. At the same time, the fluctuation-dissipation
relation is strongly violated.
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The collective behavior of many interacting elements
generally leads to transitions and critical points in the
large-scale and long-time properties of complex systems.
This is well understood in the study of systems at ther-
modynamic equilibrium [1–3]. Nonequilibrium critical
behaviors have been studied in a number of systems [4–6]
but remain a serious challenge. An important example for
criticality far from thermodynamic equilibrium is the
behavior of coupled oscillators in the vicinity of a con-
tinuous homogeneous oscillatory instability or supercriti-
cal Hopf bifurcation. Such instabilities are important in
many physical, chemical, and biological systems [7,8].

In this Letter, we apply concepts of the theory of
dynamic critical points to study the generic properties
of systems of coupled oscillators in the thermodynamic
limit. In particular, we discuss linear response and two-
point correlation functions defined for the oscillator en-
semble. Since the system is far from a thermodynamic
equilibrium, the fluctuation-dissipation (FD) relation be-
tween correlation and response functions in equilibrium
systems is broken. We show that a Hopf bifurcation rep-
resents a nonequilibrium critical point and study the
universal behaviors characterizing its approach from the
nonoscillating state. We apply field theoretic renormaliza-
tion group (RG) methods and develop an RG procedure
which is appropriate for the case of a spontaneously
oscillating system. This RG is performed in an oscillating
reference frame with a scale-dependent oscillation fre-
quency. The RG fixed points characterize the universal
critical properties of locally coupled oscillators. We find
that at the critical point of a Hopf bifurcation, an FD
relation is formally satisfied if the system is described
within the oscillating reference frame. In terms of physi-
cal variables, the FD relation is strongly broken but a
relationship between correlation and response functions
appears. Even though our calculations are performed in a
d � 4� � dimensional space, we suggest that the main
features of our results apply to Hopf bifurcations in
general.
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The generic behavior of an oscillator in the vicinity of a
supercritical Hopf bifurcation can be described by a
dynamic equation for a complex variable Z, which char-
acterizes the phase and amplitude of the oscillations [7].
This variable can be chosen such that its real part is, to
linear order, related to a physical observable, e.g., the
displacement X�t� generated by a mechanical oscillator:
X�t� � Re�Z�t�� � nonlinear terms. In the presence of a
periodic stimulus force F�t� � ~Fe�i!t with a frequency!
close to the oscillation frequency at the bifurcation !0,
the generic dynamics obeys [9]

@tZ���r� i!0�Z��u� iua�jZj
2Z���1ei�F�t�: (1)

For F � 0 and r > 0, the static state Z � 0 is stable. The
system undergoes a Hopf bifurcation at r � 0 and exhib-
its spontaneous oscillations for r < 0. The nonlinear term
characterized by the coefficients u and ua stabilizes the
oscillation amplitude for u > 0. The external stimulus
appears linearly in this equation and couples in general
with a phase shift �. In the case of a mechanical oscil-
lator, the coefficient � has units of a friction. From the
point of view of statistical physics, the Hopf bifurcation
is a critical point and Eq. (1) characterizes the corre-
sponding mean field theory. Indeed, at r � 0 and ! �
!0 and in terms of the amplitude ~X of the limit cycle
Z�t� � ~Xe�i!t, the system exhibits a power-law response
j ~Xj ’ j ~Fj1=� where � � 3 is a mean field critical exponent.
For frequency differences j!�!0j
��2=3j ~Fj2=3 �
ju� iuaj1=3, the response becomes linear with j ~Xj ’
��1j ~Fj=j!�!0j.

In the presence of fluctuations, the critical point of an
individual oscillator is concealed in the same way as
finite-size effects destroy a phase transition in equilib-
rium thermodynamics. However, a true critical point can
exist in a thermodynamic limit where many oscillators,
distributed on a lattice in a d-dimensional space, are
coupled by nearest-neighbor interactions. The combined
system undergoes a dynamic phase transition at which all
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oscillators synchronize and an order parameter, which
characterizes the global phase and amplitude of oscilla-
tors, becomes nonzero. Since at the critical point the
correlation length diverges and oscillators become syn-
chronized over large distances, a discrete model can, on
large scales, be described by a continuum field theory
which characterizes the universal features of the critical
point [1,10]. In the case of locally coupled oscillators, this
field theory is given by the complex Ginzburg-Landau
equation [11] with fluctuations

@tZ � ��r� i!0�Z� �c� ica�
Z� �u� iua�jZj
2Z

���1ei�F� �: (2)

Here, Z�x; t� becomes a complex field defined at positions
x in a d-dimensional space and 
 denotes the Laplace
operator. The coefficients c and ca characterize the local
coupling of oscillators and the effects of fluctuations are
described via a complex random forcing term ��x; t�. For
a vanishing external field F�x; t� and in the absence of
fluctuations, Eq. (2) is invariant with respect to phase
changes of the oscillations Z! Zei�. As far as long-time
and long wavelength properties are concerned, � can be
chosen Gaussian and white with the correlations
h��x; t���x0; t0�i � 0 and h��x; t����x0; t0�i � 4D�d�x�
x0���t� t0�, which respect phase invariance.

The linear response function ��� and the two-point
autocorrelation function C�� of this field theory are de-
fined by h ��x; t�i �

R
ddx0dt0����x � x0; t � t0� �

F��x0; t0� � O�jFj2� and C���x�x0;t� t0�� h ��x;t� �
 ��x0;t0�ic. Here we have expressed Z �  1 � i 2 and
F � F1 � iF2 by their real and imaginary parts, and
h. . .ic denotes a connected correlation function. Because
of phase invariance, these functions obey symmetry re-
lations, e.g.,C11 � C22,C21 � �C12. In the following, we
focus for simplicity on the elements C � C11 and � �
�11, which characterize the correlation and response of
the observable X.

It is convenient to eliminate the frequency !0 from
Eq. (2) by a time-dependent variable transformation Y �
ei!0tZ, H � ei!0t��1ei�F, and " � ei!0t�. This leads to
the amplitude equation

@tY��rY��c� ica�
Y��u� iua�jYj2Y�H�"; (3)

where the noise " has the same correlators as �. For the
particular case ca � 0 and ua � 0, Eq. (3) becomes iden-
tical to the model A dynamics of a real Ginzburg-Landau
field theory with an O�2� symmetry of the order parame-
ter [3]. The critical behavior of this theory at thermody-
namic equilibrium has been extensively studied [12]. This
leads, in this particular case, to a formal analogy between
an equilibrium phase transition and a Hopf bifurcation.
The correlation and response functions C�� and ��� can
here be obtained from those of the equilibrium field
theory by using the time-dependent variable transforma-
tion given above. Since the theory at thermodynamic
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equilibrium obeys an FD relation, a generic relation be-
tween the correlation and response functions C�� and
��� appears. This special case provides a further example
of an equilibrium universality class found in a nonequi-
librium dynamics with nonconserved order parameter
[6]. It is the case, e.g., for the model A dynamics of the
real Ginzburg-Landau theory with a Z2 symmetry [13],
even when the symmetry is broken by the nonequilibrium
perturbations [14], and for some of its generalizations to
the O�n� symmetry [15].

This raises the question of whether the equilibrium
universality class also characterizes the general case
where ua and ca are finite. Dimensional analysis reveals
that for d > 4, mean field theory applies. In this case,

�mf�q; !� �
1

2�

�
ei�

R� i�!��0�
�

e�i�

R� i�!��0�

�

Cmf�q; !� �
D

R2 � �!��0�
2 �

D

R2 � �!��0�
2 ; (4)

where R � r� cq2, �0 � !0 � caq2 and where q and !
are wave vector and angular frequency, respectively.

For d < 4, mean field theory breaks down.We apply RG
methods using an � expansion near the upper critical
dimension (d � 4� �) [16]. Defining two real fields ��
by Y � �1 � i�2, Eq. (3) reads

@t�� � �R���� �U�����&�& �H� � "�; (5)

where H � H1 � iH2, R�� � �r� c
���� � ca
"��,
and U�� � u��� � ua"��, with �21 � ��12 � 1 and
�ij � 0 for i � j. We introduce the Martin-Siggia-Rose
response field ~�� [17] and apply the Janssen–De
Dominicis formalism [18] to write a generating func-
tional with action

S� ~��;��� �
Z
ddxdtfD ~��

~�� � ~���@t�� � R�����

�U��
~�����&�&g: (6)

Using a Callan-Symanzik RG scheme [1,2], we define
the renormalized theory such that its effective action is of
the form (6). This requires to introduce a phase shift ��
and a frequency shift �!0 between the bare fields
��0

�; ~�
0
�� and the renormalized fields ���; ~���:

�0
��x; t0� � ������!0t�Z

1=2
� Z!���x; t�

~�0
��x; t0� � �������� �!0t�Z

1=2
~�
Z! ~���x; t�: (7)

Here we have introduced Z factors for the renormalization
of the fields and the time (t0 � Z�1

! t), and ������ denotes
the rotation matrix by an angle � in two dimensions. We
furthermore introduce dimensionless coupling constants
g and ga and a scale factor * by u � *��4+���=2g and
ua � *��4+���=2ga. The bare and renormalized quanti-
ties are now related depending on * [19]. We define the
correlation and response functions G�� � h����ic and
175702-2
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&�� � h��
~��ic. They are related to the physical observ-

ables C�� and ��� via [20]

����x; t0� � ��1��-���!0t��Z�Z ~��
1=2Z2

!&-��x; t�

C���x; t0� � ��-��!0t�Z�Z2
!G-��x; t�: (8)

The dependence of the renormalized parameters g, ga,
and ca on * defines three � functions. Writing ~g �

�g; ga; ca�, we have ~�� ~g; �� � *�@* ~g�0, where ~� �

��;�a; �c� and �@*�0 denotes differentiation with fixed
u0, u0a, and c0a.

To one-loop order in perturbation theory (see Fig. 1 for
examples of Feynman diagrams of the theory), only !0,
r, g, and ga are renormalized. The two nontrivial �
functions are given by:

�a ’ ��ga �D

�
ca

1� c2a
�g2 � g2a � 2ggaca� � 6gga

�

� ’ ��g�D

�
g2a � g2 � 2ggaca

1� c2a
� 4g2

�
; (9)

where D � 4D=�4+�2. The RG fixed point corresponds to
the values ~g� of the parameters ~g for which the three �
functions are simultaneously zero. Since �c � 0 to one-
loop order, one condition is lacking to fully determine ~g�.
Choosing ca as a parameter, we obtain g� ’ �=5D and
g�a ’ ca�=5D. In order to determine completely the fixed
point ~g�, we need to go to two-loop order in perturbation
theory. To this order, all parameters (apart from c and D),
the fields and the time are renormalized and explicit
expressions for all the Wilson’s functions and Z factors
of the theory can be obtained.

Only one fixed point exists that describes the universal-
ity class of Hopf bifurcations. It obeys c�a � 0, g�a � 0 and
is infrared-stable. This fixed point is formally equivalent
to the one of the real Ginzburg-Landau theory with O�2�
symmetry. As a consequence, we find / ’ 1=2� �=10,
� ’ �2=50, and z ’ 2� �2�6 ln�4=3� � 1�=50, which are
the corresponding equilibrium critical exponents. Here, /
denotes the exponent characterizing the divergence of the
correlation length 1, z is the dynamic exponent, and �
(a)

(b)

α

α

α

β

β γ

β

δ
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= αβ
γ = U

αβ γδδ-

FIG. 1. (a) Graphic representation of the propagators G�� and
&�� and of the vertex U���&�. (b) Examples of Feynman
diagrams of the theory to one and two-loop order.

175702-3
denotes the exponent characterizing the field renormal-
ization [1,3].

The RG flow in the vicinity of the fixed point, however,
is defined here in a larger parameter space as the one
corresponding to the O�2� dynamic model. Furthermore,
the effective theory discussed here is expressed in an
oscillating reference frame with scale-dependent fre-
quency and phase. Therefore the correlation and response
functions C�� and ��� differ from those of the equilib-
rium model and additional universal exponents appear.
We can derive generic expressions for these functions
using the RG flow of all parameters in the vicinity of
the critical point and employing a matching procedure
[21]. For example, we find for q1
 1 and for stimulation
at the effective oscillation frequency !eff

0 :

��q;! � !eff
0 � ’

1

q2��
1

2�eff

�
ei��q�

1� i&�q�

�
; (10)

where we have introduced the functions ��q� ’
�eff � �effq!1 � �effq!2 and &�q� ’ &effq!2 , and nonun-
iversal effective quantities denoted by the index ‘‘eff.’’
The universal exponents !1 ’ �=5 and !2 ’ �

2=50 here
are characteristic for a Hopf bifurcation. Similarly, we
find expressions for the correlation function:

C�q;! � !eff
0 � ’

1

qz�2��

Deff

1� &�q�2
; (11)

and for the frequency dependence of the homogeneous
mode q � 0 in the regime �!�!eff

0 �1z 
 1 [22].
Because of the formal analogy of the RG fixed point

discussed here with the one of an equilibrium field theory,
an FD relation appears exactly at the critical point and
relates the functions G�� and &��. Since the physical
correlation and response functions C�� and ��� can be
determined from G�� and &�� using the scale-dependent
variable transformations of Eq. (8), a relation between
correlation and response functions appears:

cos�eff�
00
11�sin�eff�

00
12�

1

2�effDeff
�!C11� i!

eff
0 C12�

cos�eff�0
12�sin�eff�0

11�
1

2�effDeff
�!eff

0 C11� i!C12�:

(12)

Here, ��� � �0
�� � i�00

�� has been separated in its real
and imaginary parts. The relation (12) is asymptotically
satisfied in the long-time and wavelength limits at the
critical point.

The physical correlation and response functions C��
and ���, however, do not obey the equilibrium FD rela-
tion. The degree of this violation can be characterized by
a frequency-dependent effective temperature Teff:

Teff�!�
T

�
!

2kBT
C11�!; q � 0�

�00
11�!; q � 0�

: (13)

Here, kB denotes the Boltzmann constant and T is the
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VOLUME 93, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S week ending
22 OCTOBER 2004
temperature of the system. We find that Teff=T � �!�
!eff

0 ��- diverges at the critical point with a universal
exponent -. For the particular case ca � 0 and ua � 0,
- � 1, while otherwise - ’ 1� �=5 to first order in �.
The power-law divergence of Teff as a function of fre-
quency reveals a violent breaking of the FD relation. This
divergence at the oscillation frequency has been experi-
mentally observed on a single active oscillating sys-
tem [23].

We have shown that the critical point in d � 4� �
dimensions of locally coupled oscillators is formally
related to the equilibrium phase transition in the XY
model. From this analogy it follows that on the oscillating
side of the Hopf bifurcation, the system of coupled oscil-
lators exhibits long range phase order and coherent oscil-
lations for d > 2. We can speculate how our results are
modified in lower dimensions d. In analogy with the
equilibrium XY model, we expect the phase order of the
oscillations to vanish for d < 2, and to be quasilong range
exactly at the lower critical dimension d � 2. In the last
case, spectral peaks on the oscillating side of the Hopf
bifurcation are expected to exhibit power-law tails with
nonuniversal exponents. If the formal analogy with the
equilibrium critical point found here in d � 4� � per-
sists in d � 2, we would expect to see features of the
Kosterlitz-Thouless universality class [24] in systems of
coupled oscillators in this dimension.

Critical oscillators are ideally suited for nonlinear
signal detection and amplification. Indeed, close to the
critical frequency, the linear response function exhibits
divergent behaviors, indicative of a high sensitivity of the
system. It has been suggested that the ear of vertebrates
uses critical oscillations of mechanosensitive hair cells
for the detection of weak sounds and that the properties of
the critical point provide the basis to explain the observed
compressive nonlinear response to mechanical stimuli
and to frequency selectivity in the ear [9,25]. The corre-
lation and response functions of single mechanosensory
hair bundles have been determined experimentally [23].
These single cell experiments detected vibrations at the
scale of tens of nanometers. There, the Hopf bifurcation
was concealed by finite-size effects but its signature could
be observed. In the cochlea of mammals, power-law
responses over several orders of magnitude have been
seen [26]. This suggests that in such systems, a large
number of oscillating degrees of freedom operate collec-
tively and bring the system closer to true criticality.

The critical oscillations discussed here can in principle
be realized in artificial systems. Nanotechnology aims to
build functional units on the submicrometer scale. Large
arrays of nanorotators or oscillators on patterned sub-
strates coupled to their neighbors by elastic or viscous
effects would provide a two-dimensional realization of
our field theory. This could permit in the future experi-
mental studies of the critical phenomena discussed here.

We thank Edouard Brézin, Erwin Frey, and Kay Wiese
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