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Continuum Description of the Cytoskeleton: Ring Formation in the Cell Cortex
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Motivated by the formation of ringlike filament structures in the cortex of plant and animal cells, we
study the dynamics of a two-dimensional layer of cytoskeletal filaments and motor proteins near a surface
by a general continuum theory. As a result of active processes, dynamic patterns of filament orientation
and density emerge via instabilities. We show that self-organization phenomena can lead to the formation
of stationary and oscillating rings. We present state diagrams that reveal a rich scenario of asymptotic
behaviors and discuss the role of boundary conditions.
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FIG. 1 (color online). Density and orientation of cortical fila-
ments. (a),(b) Fluorescence microscopy images of microtubule
patterns in Tobacco BY2 suspension cells. (a) Between cell
divisions microtubules form a cortical array and orient prefer-
entially perpendicular to the cell’s long axis. (b) Shortly before
cell division microtubules condense into a ringlike structure, the
preprophase band. (c) Representation of a stationary solution to
the dynamic equations (1)–(5) resembling a PPB. The density of
filaments is represented by the gray level on the cylinder. The
blue bars indicate the nematic order of filaments by their
orientation and length. Panels (a) and (b) are courtesy of Vos
(Wageningen University). Scale bars are 10 �m.
The cytoskeleton, an organized network of filamentous
proteins, is an essential component of all eukaryotic cells.
It plays a major role in morphogenesis, transport, motility,
and cell division [1]. The key components of the cytoske-
leton are actin filaments and microtubules, which are long
elastic protein filaments that reach lengths of several mi-
crons. They have chemically and dynamically distinct ends
and hence are structurally polar. Motor proteins consume
chemical fuel to generate directed motion on these fila-
ments and hence can induce stresses in the cytoskeletal
network.

An important cytoskeletal structure in various cell types
are cortical rings formed by bundles of filaments which
wrap around the cell. Such rings form within the cell
cortex, a thin layer of filament network located close to
the cell membrane. In animal cells a contractile ring con-
taining actin filaments cleaves the dividing cell by gener-
ating a constriction [1]. In higher plant cells, microtubules
form cortical arrays (CAs) between consecutive cell divi-
sions [2], with a preferred orientation in the azimuthal
direction; see Fig. 1(a). Shortly before entering division,
the CA is dynamically reorganized and the preprophase
band (PPB) is formed [2]. It consists of a ringlike bundle of
microtubules that determines the location and orientation
of the future division plane of the cell [3]; see Fig. 1(b). In
addition to single rings, double rings have been observed in
certain cells [4].

It has been experimentally observed in vitro that mix-
tures of microtubules and motor proteins can self-organize
into a number of patterns, such as bundles, asters, and
vortices [5,6]. Similar patterns where found in molecular
dynamics simulations [6,7]. Theoretical descriptions of
cytoskeletal dynamics are either based on microscopic
models for the motor-filament interactions [8–11] or con-
sider the behavior on large length and time scales in terms
of a continuum theory [12–17]. In contrast to microscopic
descriptions, which rely on specific and potentially incom-
plete microscopic pictures of the nonequilibrium driving
forces, a phenomenological description captures generic
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conditions for the formation of patterns through instabil-
ities. In the present work, we develop a general coarse-
grained description of the two-dimensional cell cortex
based on symmetry arguments and extend previous work
to include nematic order.

We focus on the dynamical behavior of a cortical layer
of filaments at scales large compared to the filament
lengths and the layer thickness, where a coarse-grained,
two-dimensional description is suitable. We assume that
the state of the system is essentially specified by the scalar
mass density c�r; t�, the polarization p�r; t�, a vector along
the average direction of the filaments, and q�r; t�, a second
rank traceless symmetric tensor that measures orientational
order. These fields represent slow hydrodynamic modes as
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they are linked to either a conservation law (the density c)
or a spontaneously broken symmetry (the fields p and q).
Other degrees of freedom in the system are assumed to
relax more rapidly and are thus ignored [16].

The choice of the appropriate dynamic equations for
these fields is governed by the following principles:
(i) all dynamics is overdamped as its origin lies in the
motion of colloidal sized particles in a viscous background
fluid, (ii) all mass transport is due to stresses generated in
the system, and (iii) all driving terms are allowed that
respect the rotational invariance of space. This is consistent
with the fact that they are caused by local interactions
between the microscopic components. For the mass den-
sity, we have the continuity equation

@tc� r � j � s; (1)

where j is the filament current and s represents source and
sink terms describing the polymerization and depolymer-
ization of filaments. The filament current is a consequence
of inhomogeneities in the mechanical stress in the filament
system. For a layer of cortical filaments close to the cell
surface moving against an immobile background fluid and
assuming local isotropic friction, we thus write

j � ��1r � �; (2)

where � is the stress tensor and � an effective friction
coefficient. The dynamic equations for the nonconserved
fields p and q can be expressed as @tp �  and @tq � !,
where  is a vector and ! is a symmetric traceless tensor.

These equations are closed by assuming that the evolu-
tion of the system is completely determined by the present
state of the system. This implies that the stress tensor� and
the ‘‘velocities’’ of the polarization and the nematic order
parameter  and ! can be expressed in terms of the
dynamic fields c, p, and q. We then expand these driving
forces in terms of perturbations of the dynamic fields and
their spatial derivatives around a reference state that we
assume to be homogenous.

We describe the cell cortex as a two-dimensional active
gel, embedded in three-dimensional space along the cell
surface. Motivated by the morphology of plant cells, we
wrap the 2D gel on a cylinder. Experimental evidence
indicates that in the CA filaments orient in a nonpolar
way [18]. It has been suggested that this holds for the
PPB as well [19,20]. Therefore, we neglect the polarization
p and keep only the nematic order q. In situations where
the total mass of polymerized microtubules is conserved
(such as the transition from CAs to the PPB [21]), the
source term s can be neglected. For simplicity, we focus
on states of rotational symmetry around the cylinder axis
and we neglect effects of the surface curvature.

The cylinder axis is the x axis of our coordinate frame,
the second dimension described by the y axis is wrapped
around the cylinder with radius R; see Fig. 1(c). The
dynamics of configurations, which is rotationally invariant,
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obeys a set of equations projected on the cylinder axis,
which can be derived by symmetry arguments [12,15]:

��1�xx � A1c� A2c
2 � A3c@

2
xc� A4�@xc�

2 � A5qxx ;

(3)

!xx � �B1qxx � B2@
2
xqxx � B3@

4
xqxx � B4@

2
xc

� B5�q
2
xx � q

2
xy�qxx ; (4)

!xy � �B1qxy � B2@2
xqxy � B3@4

xqxy

� B5�q2
xx � q2

xy�qxy ; (5)

where we have neglected higher order terms. It has been
shown that the terms in Eqs. (3)–(5) arise from coarse-
grained microscopic models and can be related to filament
sliding induced by motor proteins in an immobile viscous
background [8,11,15,22]. An example is the contractile
tension given by the term A2c

2 which has been discussed
in [15].

Dimensional analysis reveals that these equations con-
tain six independent parameters. The values of only three
of these turn out to influence the dynamics qualitatively;
they can be identified with A2, B2, and F � �A5B4. The
other parameters describe nonlinear terms which are re-
quired to stabilize the dynamics. Stability requires A3 > 0,
A4 < 0, B3 < 0, and B5 < 0. The specific values of these
parameters do not qualitatively influence the asymptotic
dynamics.

In order to get some general insight into this problem,
we first consider the somewhat artificial case of periodic
boundary conditions in the x direction with period L. In
this case, the homogenous isotropic state, i.e., c�x� � c0,
qxx�x� � qxy�x� � 0 for all x, is a stationary solution of the
dynamic equations (3)–(5). We first perform a linear stabil-
ity analysis of this state. The linearized equation for the
perturbation �qxy decouples from the corresponding equa-
tions for the perturbations �c and �qxx. The field qxy
becomes unstable for B1 < 0. This instability corresponds
to the isotropic-nematic transition. Here, we focus on the
instabilities of the isotropic homogenous state with B1 > 0.

The linearized dynamics for �c �
P
ncke

2�inx=L and
�qxx �

P
nqxx;ke

2�inx=L is given by

d
dt

ck
qxx;k

 !
�
�Dk2 � A3c0k4 �A5k2

�B4k2 �B1 � B2k2 � B3k4

 !

�
ck
qxx;k

 !
; (6)

where D � ��A1 � 2c0A2� is an effective diffusion con-
stant. Figure 2 represents the region of stability of the
homogenous isotropic state as a dark gray area for suffi-
ciently large values of the dimensionless parameters ~D and
~B2. The parameter � ~D is related to the contractile tension
in the system. For sufficiently small ~D, the system tends to
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FIG. 3 (color online). Examples of stationary solutions to the
dynamic equations with periodic boundary conditions.
(a) Chevron pattern with homogenous filament density for ~B2 �
�1:25, ~D � 0:75, and ~F � �1. (b) Multiple ring pattern for
~B2 � �1:5, ~D � 1:5, and ~F � �1.
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FIG. 2. Schematic state diagrams of an active gel layer in
cylindrical geometry with periodic boundary conditions in the
x direction are shown for two values of ~F as a function of two
dimensionless parameters ~B2 and ~D. Regions of linear stability
of homogenous filament distributions are shaded in dark gray.
Outside these regions, the topology of the state diagram as
determined numerically is indicated by dotted lines. Asymp-
totic states include chevron patterns and single or multiple rings
that are either stationary or do oscillate. Regions of oscillating
solutions are shaded in light gray. The long dashed line indicates
a Hopf bifurcation determined by linear stability analysis.
Examples for stationary chevron and ring patterns are displayed
in Fig. 3. Parameters are defined as ~D � �� ~A1 � 2~c0

~A2�,
~B2 � B2=�B1L

2�, ~F � F=�B2
1L

4�, and ~A2 � A2=�B1L
4�. Pa-

rameters values are ~c0 � c0L � 0:5, L��2B1=A1�
1=2 � 5,

~A1 � A1=�B1L
2� � �2, A3=�B1L

6� � 0:1, A4=�B1L
6� � �1,

A5=B1 � 1, B3=�B1L
2� � �0:05, B5=B1 � �10, and ~F � �1

for (a) and ~F � 1 for (b). L is the period of the system.
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undergo density instabilities which lead to ring solutions.
The parameter ~B2 characterizes a length scale related to the
orientational order. For sufficiently small ~B2, orientational
instabilities occur. The corresponding unstable mode con-
sists of periodically alternating regions with nematic order
at an angle of �=4 and ��=4 with the x axis. These
structures are reminiscent of chevrons in nematic liquid
crystals; cf. Fig. 3(a) [23]. For F < 0, the homogenous
state becomes unstable by either stationary instabilities or
Hopf bifurcations, which lead to traveling wave solutions.
Because of symmetry, these waves can propagate along
the x axis in both directions. Hopf bifurcations occur if
�D� B2�

2 � 4F < 0. For F > 0, instabilities towards in-
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homogenous states are always stationary. The instabilities
towards stationary states lead to periodic patterns of fila-
ment accumulation combined with nematic order, parallel
or perpendicular to the x axis, at the maxima of the filament
density; see Fig. 3(b). For decreasing ~B2, the number of
rings increases as the corresponding length scale decreases.
In order to obtain the full phase diagrams displayed in
Fig. 2, we solved the dynamic equations (3)–(5) numeri-
cally with periodic boundary conditions [24].

Periodic boundary conditions are inappropriate to de-
scribe cells. An important boundary condition is the zero
flux condition j0;L � 0, which implies that the cortical
material cannot leave the cell. Additional boundary con-
ditions have to be specified to fully define the asymptotic
solutions. It is observed that the end faces of interphase
plant cells are essentially free of microtubules. This is
consistent with the absence of imposed order at the
boundaries, and we therefor set q0;L � 0. In the following,
we use for simplicity the boundary conditions j � 0, q �
0, and @xc � @xqxx � @xqxy � 0 at both x � 0 and x � L.

Figure 1(c) shows a steady state solution of Eqs. (3)–(5)
with zero flux boundary conditions. This solution corre-
sponds to a stationary filament ring with filaments that are
oriented in the y direction and localized in a ringlike
pattern wound around the cylinder, strongly reminiscent
of the PPB. The corresponding stress is anisotropic, and for
�yy > �xx the ring solution is contractile. Additional
asymptotic solutions are similar to the solutions shown in
Fig. 3 with periodic boundary conditions. Furthermore,
oscillatory solutions appear along a line of Hopf bifurca-
tions. An example of such a state with no-flux boundary
conditions is shown in Fig. 4. The oscillating solutions for
no-flux boundary conditions correspond to traveling waves
in the case of periodic boundary conditions. Additional
states can be generated via the boundaries by imposing
other boundary conditions.

In conclusion we have presented a generic approach to
the dynamics of a cortical layer of an active gel of cytos-
keletal filaments near the cell surface. We have focused on
a situation which can describe the formation of filament
rings such as the PPB in plant cells and the contractile ring
in animal cells. Ringlike cytoskeletal patterns occur also
in prokaryotes. An example is the Z ring formed by the
3-3



FIG. 4 (color online). Snapshots at different times of an oscil-
lating filament ring for no-flux boundary conditions and ~B2 � 1,
~D � 0:25, and ~F � 1. The pattern consists of a filament ring that
forms near the center of the cylinder (a) and moves towards the
right pole (b),(c), where the ring disappears. Simultaneously, a
new ring is formed near the center (d), which subsequently
moves to the opposite pole. The whole process is repeated
periodically. The times correspond to phases � � !t
of the oscillation with (a) � � 0, (b) � � �4=36�2�,
(c) � � �7=36�2�, and (d) � � �15=36�2�.
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tubulin analog FtsZ [25]. We have analyzed the formation
of patterns via dynamic instabilities resulting from active
processes such as the action of motor proteins and the
polymerization and depolymerization of filaments. Of par-
ticular interest is the spontaneous formation of filament
rings, which provides a possible mechanism for the for-
mation of the PPB. Such ring structures can be contractile
and could induce constriction of a deformable cylinder.
Furthermore, we have found solutions corresponding to
filament rings which move periodically toward both ends
of the cylinder. Oscillating actin rings have been observed
in lymphoblasts treated with nocodazole to remove the
microtubules [26] and more recently in fragments of fibro-
blasts [27]. Qualitatively, they exhibit the same type of
oscillatory pattern as described in Fig. 4.

Our description assumes that filaments are short as
compared to the cylinder radius R. In the PPB, micro-
tubules could have a length of several tens of microns. In
this case, the bending elasticity can become important and
could lead to anisotropies in our description since azimu-
thal orientation would be energetically disfavored. In order
to connect our macroscopic approach with molecular prop-
erties of filaments and associated proteins, more micro-
scopic descriptions are valuable. For example, negative
values of the parameter ~D in the phase diagram of Fig. 2
can result from contractile stresses caused by the action of
motor aggregates [11,15]. Similarly, the parameter ~B2

characterizes a length scale associated with orientational
order, which depends, for example, on filament lengths
and packing density. Such relations between microscopic
models and phenomenological descriptions could help to
identify microscopic mechanisms, which underlie the for-
mation of cortical rings in cells.
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[7] F. Nédélec, J. Cell Biol. 158, 1005 (2002).
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[10] K. Kruse and F. Jülicher, Phys. Rev. E 67, 051913 (2003).
[11] T. B. Liverpool and M. C. Marchetti, Phys. Rev. Lett. 90,

138102 (2003); Europhys. Lett. 69, 846 (2005).
[12] H. Y. Lee and M. Kardar, Phys. Rev. E 64, 056113 (2001).
[13] J. Kim, Y. Park, B. Kahng, and H. Y. Lee, J. Korean Phys.

Soc. 42, 162 (2003).
[14] S. Sankararaman, G. I. Menon, and P. B. Sunil Kumar,

Phys. Rev. E 70, 031905 (2004).
[15] K. Kruse, A. Zumdieck, and F. Jülicher, Europhys. Lett.

64, 716 (2003).
[16] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, and K.
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