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Abstract. We develop a general theory for active viscoelastic materials made of polar filaments. This
theory is motivated by the dynamics of the cytoskeleton. The continuous consumption of a fuel leads to a
non equilibrium state characterized by the generation of flows and stresses. Our theory can be applied to
experiments in which cytoskeletal patterns are set in motion by active processes such as those which are

at work in cells.

PACS. 87.17.Jj Cell locomotion; chemotaxis and related directed motion — 82.70.Gg Gels and sols —

82.35.Gh Polymers on surfaces; adhesion

1 Introduction

Molecular biology has scored an impressive number of suc-
cess stories over the last forty years. It has provided us
with a vast knowledge about molecules at work in liv-
ing systems, about their involvement in specific biological
functionalities and about the structure of their chemical
networks [1-3]. Yet one is still unable to take advantage
of this knowledge for constructing a comprehensive de-
scription of cell behavior. Assuming that we had all de-
sired molecular informations, the computer time required
to describe meaningful cell behavior would be totally pro-
hibitive. Meanwhile there is a clear need for a generic de-
scription of cells.

An alternative approach consists in identifying a re-
duced number of key characteristics and construct a phe-
nomenological description of a “simplified” but relevant
cell. Again this task is currently too complex at the scale
of a whole cell, but it can be envisioned for some of its
constituents. A good example is provided by the descrip-
tion of membranes: for length scales of the order of a few
tens of nanometers up, it can be considered as a fluctuat-
ing surface on which a few densities are distributed and
through which a few other densities permeate passively
or actively [4,5]. The construction of the theory has been
going on for more than thirty years. It sheds light on the
physics of membrane shape, topology changes such as bud-
ding, equilibrium and non equilibrium fluctuations, mem-
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brane adhesion, long range interactions on membranes etc.
It is still under development to include out of equilibrium
features such as lipid and protein exchange with the bulk,
but much has been learned already.

Efforts towards understanding the cytoskeleton are
more recent. They have been focused on the description
of its passive visco-elastic properties which are now fairly
well understood in terms of gels made of cross-linked semi-
flexible polymers [6,7]. Such materials which can be pre-
pared in vitro, are equilibrium systems which obey conven-
tional thermodynamics. In eukaryotic cells, the problem is
however qualitatively new: the cross-links can be made of
motor proteins which have their own dynamics driven by
chemical energy. Experiments, simulations and analytical
descriptions, have shown that such systems have a rich
and complex behavior [8-21]. One can grasp the degree
of complexity with the remark that cross-links define dis-
tances, in other words they define a metric. The cross-
linking agents being motor proteins they move and the
metric evolves with time.

In fact the problem is even more complex since cy-
toskeletal filaments are polar and out of equilibrium: they
polymerize at one end while depolymerizing at the other
end. Such a process called treadmilling is well known to
biologists. The description of eukaryotic cytoskeletal gels
should include all these features. We call these gels and
more generally all gels working in the presence of a per-
manent energy consumption “active” gels. On large length
scales and long time scales, the properties of complex ma-
terials can be captured by a generalized hydrodynamic
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theory based on conservation laws and symmetry consid-
erations. Such theories have been very successful in de-
scribing complex fluids such as liquid crystals, polymers,
conventional gels, superfluids etc. [22-24]. For instance all
liquid crystal display devices can be described by such
theories. More recently active liquid crystals have been
considered within this same logic [25,26]. Here, we de-
velop a hydrodynamic theory of active gels. An example
of such gel is the network of actin cytoskeletal filaments
in the presence of chemical processes which locally induce
filament sliding and generate motion. These active pro-
cesses are mediated by motor proteins which hydrolyze
a fuel, Adenosinetriphosphate (ATP). Since cytoskeletal
filaments are structurally polar, each filament defines a
vector. This filamental structure can on large scales give
rise to a polarity of the material if filaments are aligned
on average.

We develop the hydrodynamic theory of active po-
lar gels systematically in several steps, following standard
procedures. First, we identify the relevant fields and write
conservation laws for conserved quantities. We identify
the generalized fluxes and conjugate forces in the sys-
tem. These fluxes and forces define the rates of entropy
production and dissipation. Using the signature of forces
and fluxes with respect to time reversal, we define dissi-
pative and reactive fluxes. These fluxes can be expressed
by a general expansion in terms of forces, by writing all
terms allowed by symmetry and by respecting the signa-
tures with respect to time reversal. By keeping the rele-
vant terms to lowest order, this finally results in generic
dynamic equations which are valid in the vicinity of ther-
mal equilibrium. We then provide examples by analyzing
the active gel mode structure and by discussing the spon-
taneous dynamical behavior of topological singularities
such as disclinations (asters and vortices) in two dimen-
sions. Eventually we discuss the merits of our approach,
its current limitations and ways to extend its domain of
validity to the more relevant far from equilibrium regime.
Some of the results discussed here have been presented in
reference [27].

2 Fields, densities and conservation laws

We develop the hydrodynamic description of active gels
starting with conservation laws. The number density of
monomers in the gel is denoted by p. The gel is cre-
ated by polymerization of filaments from monomers. The
monomers have a density p(® in solution. The treadmilling
process and the active stresses in the gel create a flow of
the actin gel monomers with a local velocity v. The gel
current is then convective and mass conservation implies
that

P
a_f FV(vp) = —kap + kyds. (1)

Here kg4 is the depolymerization rate; we assume, as seems
to be the case for actin, that the depolymerization which
occurs mostly at the branching points of the gel, has a rate
proportional to the local density. In some cases treated be-
low, we will consider for simplicity that depolymerization

does not occur in the bulk but at the surface of the gel.
In many situations, filament polymerization is highly con-
trolled and localized for example at the surface of the gel.
This is taken into account in equation (1) by introduc-
ing the surface polymerization rate k, and ég denotes a
Dirac-like distribution which is non-vanishing only at the
gel surface S. Similarly, we write a conservation law for
free diffusing monomers,

(a)
90" 4 95 = kap — kybs (2)
ot
here, we have introduced the diffusive current j(*) of free
monomers.

Active processes are mediated by molecular motors.
The concentration of motors bound to the gel ¢(®) is an
important quantity to characterize the effects of active
processes in the gel. Assuming for simplicity that the total
number of motors is conserved, we write conservation laws
for ¢(® and the concentration of freely diffusing motors in
the solvent ¢(™ which read

He(m)

o + vj(m) = koge® — konp(c(m))”

b

62—;) + Vv + Vi® = —kogc® + konp(c™)™. (3)
The attachment and detachment rates of motors to and
from the gel are characterized by the chemical rates ko,
and kog. Here, we have taken into account that bound mo-
tors are convected with the gel. The current of free motors
is j™) and we denote j® the current of bound motors rel-
ative to gel motion. In general, binding of motors to the
gel is cooperative, and cannot be described as a second
order reaction: groups of motors could bind together. We
use here an nth order chemical kinetics where the rates is
proportional to (c™).

A final important conservation law is momentum con-
servation. In biological gels on scales of micrometers, in-
ertial forces are negligible and momentum conservation is
replaced by the force balance condition which reads

(05 — Hdap) + f5 =0 (4)

where fEXt is an external force density. Locally, there are

two forces acting on the gel, the total stress tensor ag’g

and the pressure I1.

The dynamics of the system is specified if the flow
velocity v and the currents j(®, j™ and j® are known.
The physical description of the currents is discussed in
the following sections. Furthermore, we have to take into
account the polar nature of the gel. Individual filaments
are rod-like objects with two different ends which therefore
have a vectorial symmetry. If the filaments in the gel are
on average aligned, the material is oriented. We introduce
a polarization field p to describe this orientation. The field
p is defined by associating with each filament a unit vector
pointing to one end. The vector p is given by the local
average of a large number of these unit vectors.

Note eventually, that equations (2) and (3) are written
in a reference frame in which the embedded solvent is at
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rest. This is in general not possible but appropriate for the
examples that we discuss in this paper. A more general
description involving a two-fluid model will be discussed
elsewhere.

3 Constitutive equations

The fluxes of monomers and motor molecules are gener-
ated by forces which act on the active gel and induce mo-
tion. In this section, we identify the relevant forces and
derive general flux-force relations. These relations define
the material properties, and characterize how the system
reacts to different types of generalized forces. Of particular
significance for our theory is the existence of active pro-
cesses mediated by molecular motors. In general, a chemi-
cal fuel, such as Adenosine-triphosphate (AT P), is used as
an energy source. Motor molecules consume AT P by cat-
alyzing the hydrolysis to Adenosinediphosphate (ADP)
and an inorganic phosphate and transduce the free energy
of this reaction to generate forces and motion along the
filaments. The energy of AT P is also used for polymeriza-
tion and depolymerization of the filaments. The presence
of the fuel is equivalent to a chemical “force” acting on
the system. We characterize this generalized force by the
chemical potential difference Ay of AT P and its hydroly-
sis products, AD P and phosphate. When Ap vanishes the
chemical reaction is at equilibrium and there is no energy
production. When Au > 0, a free energy Ay is consumed
per hydrolyzed AT P molecule.

Constitutive equations are obtained by first identify-
ing the fluxes and the corresponding conjugate generalized
forces and then writing a general expansion for the fluxes
in terms of the forces. We study in this paper an active
gel close to thermodynamic equilibrium and limit the ex-
pansion of fluxes in terms of forces to linear order as in
a standard Onsager theory. We thus describe the linear
response of the gel to generalized forces. We do this in the
most general way and write in the flux-force expansion
all terms which are consistent with the symmetries of the
system.

3.1 Fluxes and forces
We first discuss the rate of entropy production in the ac-

tive gel. The rate of change in the free energy F = U —T'S
per unit time can be written as

. . de® .

F=— / d®r {a:;;gaavg + hapa + Apr — — M} (5)
where the “dot” denotes a time derivative. The total de-
viatory stress tensor fo"g is in general not symmetric; it
is conjugate to the velocity gradient d,vg. The field con-
jugate to the order parameter p,, is the functional deriva-
tive of the free energy F of the gel at thermal equilibrium,
ha = 7(;51711’ where the functional derivative is taken for
constant deformation, temperature and number of parti-
cles. The current conjugate to the field h,, is the convected

time derivative of the polarization p, = ag;t‘* + v308Paq.-
The chemical force Ay is conjugate to the AT P con-
sumption rate r which determines the number of AT P
molecules hydrolyzed per unit time and per unit volume.
Finally, g, (@, 0™ and p(®) are the chemical potentials
of monomers in the gel, free monomers, free motors and
of motors bound to the gel, respectively. The ¢(*) denote
the corresponding concentrations and densities.

Equation (5) does not take into account the trans-
lational and rotational invariance of the active gel, and
the variables used are therefore not the proper conjugate
fluxes and forces. Indeed, as shown in reference [28], since
the free energy does not change under pure translations
and rotations of the gel, ignoring surface terms, we can
rewrite equation (5) as

F= —/d3r{aaguag + haPa
+ Apr — D9, — s(i)u(i)}. (6)

Here, s(*) denote the source terms on the right hand side
of equations (1-3) 1. The total stress o*°* has been rede-
fined to absorb concentration terms and decomposed into
a symmetric part o,3 (with o3 = 03,) and and anti-
symmetric part which is due to the torque exerted by the
field h, on the order parameter p,:

1
USE =0ap + a(pahﬁ — pgha). (7)
Here, uas = 3(davp + Opv,) is the symmetric part of
the velocity gradient tensor. The current conjugate to hy
includes a rotational contribution coming from the anti-
symmetric part of the stress tensor, it reads

D Opa

Pa*—paiﬁ

Y + (vy05)Pa + WapPps (8)

where we have used the corotational time derivative of
the vector po, wag = %(8avﬁ — 0pvy) being the vorticity
tensor of the flow.

We can read off equation (6) the following pairs of

conjugate fluxes and forces, where we omit the sources s(*)
for the sake of simplicity:

flux < force
Oap < UaB
P, < hy
r— Ap
3 o Bap. (9)

The rate of change of the free energy can be divided
into reversible and irreversible parts F' = Fye, + Fi;r where
Fiev = U and Fi,; = —T'S. We therefore decompose the
fluxes into a reactive part and a dissipative part. They are
characterized by their different signatures with respect to

! Note, that this expression only depends on chemical poten-
tial differences.
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time-reversal. Note, that the generalized forces have well-
defined signatures with respect to time reversal: the rate
of strain u,g is odd under time reversal, while h, and Ap
are even. We write

Oap = Opg + 025
P,=P’ + P!

r=r"+r (10)
The dissipative fluxes have the same signature under time
reversal as their conjugate forces, while reactive fluxes
have the opposite signature under time reversal. There-
fore, azﬁ is odd under time reversal, while r¢ and PZ are
even. The reactive parts have correspondingly the oppo-
site signatures. As we show below, the currents j(()f) do not
have reactive parts. With thls decomposition, the rate of
entropy production TS = —F}, is given by

TS = /d3r{rdAu + Phy + ogﬁuaﬁ
7jg%buu>fsuhﬁw}_ (11)

For a changing state of the system which is periodic in
time with period T, the internal energy is the same after
one period. Therefore, in this case

T
/0 dt(r" Ap + Plha + 0p5uap) = 0. (12)

These relations follow from the signatures of dissipative
and reactive currents under time reversal.

3.2 Maxwell model

In the absence of a net gel polarization p and for a passive
system with Ay = 0, we describe the viscoelastic gel by
a Maxwell model. In order to keep our expressions simple
and to focus on the essential physics, we assume that the
ratio of the bulk and shear viscosities is 2/d where d is
the space dimension. The Maxwell model relates the stress
tensor to the strain rate according to

1+ D =2
TDt Oap = 2NUag-

Here, 1 denotes the shear viscosity, 7 the viscoelastic re-
laxation time and F = n/7 is the elastic modulus of the
gel at short times. In equation (13), the time derivative of
the stress tensor taken in a reference frame moving with
the material flow must be used. For a tensor, this im-
plies that in the laboratory frame convective terms due
to the fluid flow as well as the rotation of the reference
system due to the vorticity of the flow need to be taken
into account. D/Dt denotes the corotational derivative of
a tensor given by

(13)

Doag _ 0043
Dt — ot

+ (1307)0ap + [WarOyp + WpyTya] - (14)

Note that we include the geometrical non-linearities and
that we use the most general versions of what is called
a “Convected Maxwell Model” [29,30]. For the Maxwell
model given by equation (13), we can specify the reactive
and the dissipative contributions to the stress tensor.

D2
D
Onp = f'rﬁtaiﬁ. (16)
With these relations, we have 0,5 = 0%, + 07 ; and the

dissipative and reactive parts of the stress dlffer in their
signature with respect to time reversal.

3.3 Dissipative fluxes

We now generalize the relations (15) and (16) express-
ing dissipative and reactive fluxes in terms of generalized
forces for an active polar gel. First, we write expressions
for the dissipative fluxes. To linear order we find

2 D2
D 141
7Tﬁt (? (pahﬁ erﬁh ) + levh J [3)
(17)
D? D?
2 d __
(1t ) 2= (175 (5 + dese)
D
+ TD—t(z/lpﬁuag + lea'LLg[j) (18)
AA,U‘ + )\lpah’ + )\pa a,u' (19)

Note that the first expression is a generalization for equa-
tion (15) of the Maxwell model. For a sake of simplicity, we
ignore the anisotropy of the viscosity and consider that all
translational viscosities are equal. This anisotropy could
be introduced as in the classical description of the hy-
drodynamics of liquid crystals. Couplings to Au cannot
appear in the equation of the dissipative stress because
it transforms differently under time reversal than uqg. A
term coupling aiﬁ to the time derivative of h, can ap-
pear. It is required by Onsager symmetry relations since
a corresponding coupling term with coefficient v does
occur in the equation for P4 as shown in Appendix B.
The dissipative coefficients v; and A characterize the cou-
pling of P4 and 7 to h,, and Ay, respectively. Here, 7; is
the rotational viscosity which appears in classical nemato-
hydrodynamics. Because of its signature with respect to
time reversal, cross-coupling terms involving uag do not
appear in the expression of 7¢. The expression for P con-
tains a term coupling P¢ to the time derivative of Uag as
derived in Appendix B. Cross-coupling terms occur also
in the expressions for P4 and 7. Since P, is a vector and
r a scalar, we need a vector in the system to couple these
equations. If the system is polar, this vector is provided
by p. Therefore, the cross-coupling term characterized by
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A1 involves p,. Note that because of the symmetry of the
Onsager coefficients, the coefficients A1 v1 and 7, are the
same in different equations. The last term in the expres-
sion of r? is a crossed term with the current of bound
motors discussed below. This term is also imposed by the
Onsager symmetry relations.

We still have to specify the currents jéa), jém) and
jéb) of monomers and motor molecules which do not have
reactive components:

§m = —pmg ) 4 \m)y Ay (21)
jéb) _ 7D(b)aac(b) + )\(b)paAu. (22)

Each current contains a simple diffusive term with diffu-
sion coefficients D). We have assumed for simplicity that
couplings to h, can be neglected. The expression (22) de-
scribes bound motors which are convected with the gel. In
addition to being convected with velocity v, motors move
in a direction given by the filament orientation if Ay is
nonzero. This directed motion is characterized by the coef-
ficient A(?); the motor velocity v on the filaments is such
that c(b)vgn = ApoAp. Velocity fluctuations of motor mo-
tion are captured by the diffusion constant D(®. Finally,
symmetry allows for the existence of coupling terms char-
acterized by the coefficients A(*) and A(™). They will be
discussed in future work. In the following we use A(* = 0,
A =0 and denote A = A(®),

3.4 Reactive fluxes

Reactive fluxes are expressed in terms of the forces fol-
lowing their signature under time translation invariance.
Generalizing equation (16) for the reactive stresses of the
Maxwell model, we note that here cross-coupling terms
with the forces h, and Ap are possible. Taking into ac-
count the tensorial structure of the stress tensor, we write

— CAppaps — (Apdag

i Daiﬁ
T = —T JrAag

Tap = Dt

1%
- C/A:up’yp'y(saﬁ + é(pahﬁ + pﬁha) + Dlp'yh'yéam (23)

where we have introduced the phenomenological coeffi-

cients {, ¢, ¢, v1 and ;. The tensor

Aap =12 (uaw% + Ugyuvﬁ) + VBUWUzﬁ + V4t 05500

+ 1/50%1@5 + Vguv(;agvéaﬁ. (24)

contains nonlinear reactive terms to lowest order, resulting
from the geometry of the flow field with corresponding
phenomenological coefficients v;. Similar coefficient have
been introduced in the so-called “eight constant Oldroyd
model” in rheology [29]. The term proportional to 7 on
the right hand side of equation (23) assures compatibility

with the Maxwell model in the absence of polarization and
chemical fuel. For the reactive parts of P, and r we write

D*
2—)Pa =

(1—-7 D

—V1UaBDR — V1UBBPa (25)

r’ = Cpapﬁuaﬁ + Cuaa + Clpapauﬁﬁ- (26)
Here we have written cross-coupling terms of P” with the
rate of strain u,g. The linear response matrix of reactive
terms is antisymmetric, therefore the same coefficients as
in equation (23) appear, however with opposite sign. The
remaining equation (26) is constructed in the same way
with cross-coupling coefficients that have been introduced
in equation (23). No reactive cross-terms between equa-
tions (25) and (26) exist.

3.5 Dynamic equations

Using the expressions for dissipative and reactive fluxed
discussed above, we now write general hydrodynamic
equations for the active viscoelastic and polar gel. Adding
the dissipative and reactive parts, we find

D
2NUag = (1 + TE) {Uaﬁ + CANpapﬁ
+ C/Aﬂp'ypv(saﬁ + C_Aﬂ(saﬁ + TAaﬁ}

v _
- 71 (Pahs + Pha) — V1Dyhedas

D2\ Dp D? 1
2 o 2
<1T —t2) = <].T —t2> <—%ha+)\1paﬂu)

(27)

D _
— 1= 7p; ) (uasps + 1ugppa) (28)
7 = (PaPplag + Euaa + Clpapauﬁﬁ
+ AAU + Mpaha. (29)

In these equations, we have included geometric nonlinear-
ities but have restricted other terms to linear order for
simplicity. Also, we have neglected chiral terms which in
principle exist in cytoskeletal systems. These equations
are complemented by the force balance condition (4).
Equation (27) generalizes the expression of the stress
tensor in the Maxwell model to active systems with po-
larity. Indeed, even in the absence of stresses, the active
terms proportional to Ap generate a finite strain rate.
Similarly, if all flows are suppressed, the active terms gen-
erate a nonzero stress tensor. Thus, the hydrolysis of AT P
can generate forces and material flow in the gel via the ac-
tion of active elements such as motors. These terms are
characterized by the coefficients ¢, ¢’ and (. Similarly,
we find active terms in the polarization dynamics given
by equation (28) described by the coefficient A;. Further-
more, material flow couples to the polarization dynamics
via the coefficients v; and ;. The rate of AT P consump-
tion r is primarily driven by Ap and characterized by A.
However, it is also coupled to the gel flow and to the field
h acting on p. Note, that in addition surface terms can
be important. For example, if filaments polymerize at the
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gel surface with a rate k, (see Eq. (1)), there is an addi-
tional contribution rg to the ATP consumption which is
localized at the surface. In the following, we discuss situa-
tions where surface effects can be captured by introducing
appropriate boundary conditions.

4 Hydrodynamic modes

We now calculate the linear relaxation modes of an active
polar gel. They can be obtained from the linear response of
the change in the gel density to externally applied forces.
We focus on the situation of a fully polarized gel far from
an isotropic polar transition with the polarization vector
lying along the x-direction, i.e., p = e, is constant. We
assume that the gel is treadmilling, which implies that it
moves at constant velocity v = vge,, while the gel mass
is conserved. The treadmilling is due to polymerization
and depolymerization of the filaments at the gel surfaces
located at * = 7 and & = 2, respectively. In the follow-
ing, we consider the case of an infinite system where z*
are located at +0o and = to —oo while the treadmilling
velocity vg remains constant.

We restrict ourselves to modes for which the fields
vary along the z-direction which is the treadmilling di-
rection, while the system is assumed to be homogeneous
in the other directions. In this case the dynamic equa-
tions (1-3) for the densities of polymerized actin, bound
and free myosin become effectively one-dimensional and
read

Orp + 0 (pv) =0
9™ — D™ = kogc® — koup(cm™)"
91 + 8, (v 4+ AAp) = —kogc® + konp(c™)™. (32)

The actin monomers which are not part of the gel dif-
fuse across the system and control by their concentrations
the treadmilling rate. The mechanical constitutive equa-
tion (27) takes the form
20,0 = [1 + 70 + 100, (0 + (Ap) (33)
whereas the force balance in the presence of an external
stress o is expressed by
0y (0 + 0™ = 0,11 (34)
In these equations, the coefficients A and {, which are the
Onsager coefficients introduced in the previous section,
characterize the directed motion of motors along the fil-
aments and the actively generated stress in the gel (we
have replaced here ¢ 4+ ¢’ + ¢ by ¢). In a situation far
from equilibrium, nonlinearities become important. We
therefore linearize the equations (30-34) around the ho-
mogeneous steady state of the above equations given by

p = po, ¢®) = céb), cm) = cém), v = vy, and ¢ = oy,
(m)

where k/’oﬁ‘Céb) = konpo(cy )™ = povo and o9 = —CAp.
We consider a small perturbation of this state, i.e., p =
po + 6p and analogously for the remaining quantities. To

leading order, the active coefficients can be expanded as
(=Co+Cop+ Coc® and X = \g + Apbp + Ae6c® to im-
plement such nonlinearities which become relevant in all
realistic situations. Here, we have neglected the diffusion
of bound motors and the diffusion constant D(® has been
set to zero.

The linearized dynamical equations can be solved by
Fourier-transformation in space and time. The mode char-
acterizing the variations of the density of unbound motors,
c(m)(q, w) as a function of spatial wave vector ¢ and tem-
poral frequency w, can be obtained from equation (31) and
is given by

kot ¢ (4, w) = kon(c5™)"plg,w)

(m) —
"gw) iw+ Dg? +Tot

;o (35)

where T ! = nk:ompo(cém))"_1 is a chemical relaxation

time. Using this result as well as the linearized conserva-
tion equation

iwp(q,w) + igpov(q, w) +iquop(q,w) =0 (36)
we obtain for the distribution of bound motors
A —ig\
C(b)(q,W) — (Q7w)00 -Z? P p(‘]aw) (37)
Alg,w) +igAc  po
where X\, = A\, Appo, Ae = A\cAp, and
. D 2
A(g,w) = iw + iquo + — 0 (38)

ZW+Dq2+T071 off -
The mechanical equations (33) and (34) then lead to

ex q’ w
o™ (q,w) = 2#((1,@«1)M
Po

(39)

where the modulus p(g,w) characterizes the effective ma-
terial properties in response to density variations. It can
be determined from the equation

(1 +it(w + quo)) [21(q, w) — xpo] = 21 E7(w + quo)

A(g,w)eo — ig),

A(q,w) +ighc (40)

+ (1 + twt + iquoT) [ + ¢
Here, we have used the equation of state and have defined
the inverse compressibility x = %—IZ. Furthermore, we have
introduced (fp = (pAppo as well as Co = CAp.

The relaxation modes of the system can be identified
by the (complex) values of the frequency wy,, for which the
modulus vanishes (g, wy,) = 0. Indeed, the density relaxes
as p(q) ~ et and instabilities in the system occur if the
real part of iw,, becomes positive. For our present system,
we find that three independent relaxation modes exist,
with n = 1 to 3. Up to leading order in ¢, the correspond-
ing dispersion relations are given by

iwy = icq + dg? (41)

iwe = =T ' — kog (42)
1 (eco + ¢,

7;(4.)3 _ - Xpo + C Co + Cﬂ (43)

772E+Xp0+56c0+<_,,'
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The first mode is propagating with velocity ¢ given by
_ 1 v (XPO + C_p_)j\c - Ecj\p
14 Tckoff Xpo + Cp + CCCO

Note, that the propagation velocity c is proportional to the
fraction of bound motors (1 + T.kog) . The value of the
coefficient d can be either positive or negative, depending
on the value of the parameters. If it is positive, the gel is
unstable and self-organizes into propagating density pro-
files. Such solitary waves have been found in theoretical
descriptions of active polar fibers [15,16]. Experimentally,
actin waves have been recently reported in several cell
types [31-33]. In the present context, there is only one
propagating mode, because space inversion symmetry has
been broken due to treadmilling and to the polarization
of the gel. The polarization couples to the filament and
motor densities only through the active current of bound
motors. If instead of motors, we have passive cross-linkers,
i.e., A =0 and in the absence of treadmilling, i.e., vy = 0,
space inversion symmetry is restored. In this case ¢ = 0
and

CcC =

(44)

L
Tci1 + koﬁ ’
so that the mode is no longer propagating, but diffusive
and always stable. Note, that d is proportional to the frac-
tion of unbound motors Tekosr /(1 4+ Tekos). The existence
of propagating waves even in a viscous environment seems
to be a general feature of active media and has already
been reported in an other context by Ramaswamy and
coworkers [25,34].

The second mode is a chemical relaxation mode de-
scribing the binding and unbinding of molecular motors
to the polymerized gel, whereas the third mode describes
the stress relaxation towards its stationary value.

d=— (45)

5 Dynamic point defect in two dimensions

As an example of active behavior in two dimensions de-
scribed by equations (27-29), we consider in this section
the dynamics of point defects in the vector field p. First,
we consider the passive equilibrium state with Ay = 0
where all fluxes vanish. Subsequently, we determine sta-
tionary active solutions for finite Ay and determine their
stability. We obtain a complete diagram of states for
asters, vortices and rotating spirals.

5.1 Asters and vortices at thermodynamic equilibrium

In order to study point defects in two dimension, we con-
sider for simplicity the situation where the orientation of p
varies but the modulus is constant and we impose p? = 1.
In this case, the free energy is given by the standard ex-
pression for a polar liquid crystal [28]:

F= /d% {%(V p)* + @(p -Vp)®

1
+ kV-p— EthQ (46)

a) b)

Fig. 1. Schematic representation of the geometry of point de-
fects of topological charge one in two dimensions. (a) Descrip-
tion of a point defect in polar coordinates. Orientations of po-
larization vectors p for (b) aster, (c) vortex and (d) spiral.

where K1 = K and K3 = K + 0K are the splay and bend
elastic moduli and we have introduced a Lagrange multi-
plier i to impose the constraint p? = 1. The coefficient
k describes the spontaneous splay allowed by symmetry
for vector order. Note that there is no twist term in two
dimensions.

For Ap = 0, the system reaches an equilibrium steady
state where all fluxes and forces vanish: 0,3 = 0, uag = 0,
P, =0, ha = 0 and r = 0. The equilibrium orien-
tation of the polarization p, corresponds to a vanish-
ing orientational field h, = —0F/ép, = 0. In order to
describe point defects, it is convenient to introduce po-
lar coordinates (r,6) and the angle t(r,6) which char-
acterizes the components of the vector p: (p, = cos,
po = sin®)), see Figure la. The components of the orien-
tational field h, in cylindrical coordinates can be written
as h, = hjcosy — hysiny, and hy = hsiny + h cosp,
where we have introduced the components h) and h par-
allel and perpendicular to the direction of p.

Considering for simplicity rotationally symmetric
fields describing point defects with ) = ¢ (r), we obtain

K (1d ?
F=2 ~ (&
ﬂ'/drr{2 (Tdrrcosw)

K+46K (1d . \°
+ T(;%Tsmw) } (47)

where we have ignored the spontaneous splay which leads
to a boundary term.
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The perpendicular field is obtained by taking the func-
tional derivative of the free energy hy = —0F/dv

hy = (K + 6K cos® 1) [wﬂ + —/] ——6K sin 2 [—12 + w/ﬂ
r 2 T
(48)

where the prime indicates derivation with respect to r.
The value of the Lagrange multiplier /) (the longitudinal
field) is chosen in such a way that the condition p? = 1 is
satisfied.

Four types of topological defects of charge one are pos-
sible, see Figure 1b and c. If we assume that boundary
conditions are always chosen to allow for solutions with
constant 1, these solutions corresponds to asters with
(r) = 0 and ¢(r) = 7w and to vortices with ¢(r) = £7/2.
The linear stability of asters and vortices against angular
perturbations d¢(r) is described by

Y 9o 2
T (o =13 o~ KoK cos™y)

d? 1d 1
X <ﬁ + ;%> o — 0K cos(2¢)r—25¢(r) (49)

where the minus sign corresponds to an aster and the plus
sign to a vortex. If all the eigenvalues of the linear operator
on the right hand side are negative, the defect is stable,
and otherwise it is unstable. Asters are stable for posi-
tive 6 K while vortices are stable for 6 K negative. For the
special case 6K = 0, equation (49) becomes

2 102
" (1 1+ [1/1’721 sin”(2¢)]/4n ) 9% _ e Asy,
+ (m/4n)[vi + 1 — 211 cos(2¢)] ) Ot

(50)
where A denotes the Laplace operator, and defects for any
value ¢ (r) = 1bg are stable. These defects are called spirals
since the direction of polarization follows spirals with an
equation in polar coordinates given by

7(0) = 1o expcot(¢o)6],
as shown in Figure 1d.

(51)

5.2 Non-equilibrium steady states

We now discuss the effect of a point defect in two dimen-
sions if motors in the system are active and Ay # 0. In
this situation, spiral defects start to rotate and there are
nontrivial flow and stress profiles. We assume that the
system is incompressible, i.e., u,; + ugy = 0. Using the
expression of the strain rate tensor given in Appendix A,
this imposes that v, = a/r. The absence of a singular-
ity of the radial velocity for small r implies that o = 0,
therefore v, = 0 and u,., = ugg = 0.

The Onsager equation (28) for the polarization rate
can then be written in cylindrical coordinates. In a steady
state, P, = 0, we obtain at linear order:

V1Upg SIn 29 = % + A Ap (52)
1
hy

(v1c082¢) — Nug =
al

(53)

where we have expressed the orientational field A, in terms
of its parallel and perpendicular coordinates. Similarly,
equation (27) can be rewritten in polar coordinates. Using
U = ugyp = 0 and only taking terms to linear order in the
generalized forces into account we find that the steady
state obeys

0= oy + (Apcos® ¥ + (C+ () Ap

1
-1 [h” cos? i — §hJ_ sin 2@/}]

— by (54)
0 =09 + CApsin® ¢ + (C + (') Ap
- [h” sin? ) + %hl sin 214
—1hy (55)
2NUrg = Org + %AM sin 2
- %I/l [hy sin 29 + b cos 2i] . (56)

In addition to the dynamic equations (27-29), the force
balance equation (4) has to be satisfied. The 6 component
of the force balance equation (Eq. (A.6) of Appendix A) is

solved by 09" = B/r? where B is an integration constant.

Since o' must not diverge, B = 0 and therefore o' =
0 and 0,9 = h, /2. The components o, and ogg of the
stress tensor follow from equations (54) and (55). These
stresses together with the radial component of the force
balance equation (Eq. (A.5) of Appendix A) determine the
pressure profile IT required to ensure the incompressibility
of the material.

5.3 Asters, vortices and spirals

We now determine the stationary solutions for point de-
fects in non-equilibrium states. From equation (52) we find
an expression for the parallel component of the orienta-

tional field
hy = y1(v1urg sin 2¢) — A1 Ap). (57)

Inserting this expression in equation (56), we obtain the
non diagonal strain rate

B fA,usianb + hy (1 — vy cos2y)
B an + v sin? 2¢)

Urg (58)

where 5 = ( + v171 1. This equation together with equa-
tion (53), where h is given by equation (48) determines
1 and u,¢. Eliminating u.9, we find an equation for the
steady state orientation

ho(4n + (V3 +1 —2u1 cos20)) =
1 sin 2¢(1y cos 20 — 1)CAp. (59)

We now discuss special solutions to this equations as well
as the stability of asters and vortices obtained at thermal
equilibrium for Ay = 0.
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5.3.1 Spiral solutions for 6K =0

We first consider the simple case where there is no
anisotropy of the elastic constants: 0K = 0 and h; =
K Ay. Equation (53) requires that spirals with constant
o and h; = 0 satisfy cos2¢y = 1/v7. This selection of
angle, which depends on the parameter v; is a dynamic
phenomenon. The same angle is selected for the orienta-
tion of mematic liquid crystals in shear flows. A steady
state exists only if |v1| > 1. The polarization angle takes
one of the two values
+ 1 L 60
Yo = 5 arceos ” (60)

in the interval [—m, 7). With these values of g, we find

sin 2¢0 ~
Upg = Ap.
" 4n + y1v7 sin? 29 CAn

(61)

The velocity is ortho-radial, along the # direction; it is
obtained from (A.3)

——

where vg is an integration constant. For a finite system
with radius R and with the boundary condition that no
motion occurs at the boundary,

(62)

vg = 2u,gr log % (63)

5.3.2 Stability of asters and vortices

Both asters with ¢y = 0,7 and vortices )9 = £7/2 are
solutions to equation (59). In order to understand under
which conditions these solutions are stable, we perform
a linear stability analysis, writing ¥ (r) = o + 6¢. The
time-dependence of v in the liquid limit 7 — 0 is given by

=hy — 1 (v1cos2tp — 1urg. (64)

715

Linearizing this equation and using equation (58) we find
for asters with g = 0 and JK > 0 that d¢(r) satisfies to
linear order

71 9
—0p = L5 65
[Tl Dejap o’ =0 ()
where the linear operator is given by
2 1d n? 9
L= (K+6K)(d2+;%—r—2+k). (66)

SK/(K + 6K) and k? =

. An aster solution becomes unsta-

Here, we have defined n? =
_ 20 Ap(ri =D
[4n+y1 (1 —1)2[(K+0K)
ble, if the largest eigenvalue of £ vanishes. The condi-
tion L5y = 0 is solved by Bessel functions of order n,
0t ~ Jp(kr). For a finite system with radius R we find

0.5 @w CA
] e /e

Fig. 2. Stability diagram of asters, vortices and spirals which
are topological defects in an active gel of polar filaments. Asters
are stable for K > 0 in the region with actively generated
stresses CAp larger than a critical value Ap2. This critical
value is negative, corresponding to contractile stresses in the
gel. Vortices are stable for 6K < 0 and CAu > CAuY. For
other parameter values, rotating spirals occur via a symmetry
breaking dynamic instability. Here, 0K = 6K/K is ‘a dimen-
sionless ratio of two elastic moduli and CAu = R *CAp/K a
dimensionless measure of active stresses. Note that both rota-
tion senses occur with equal probability on symmetry grounds.
The diagram was evaluated for the choice /y1 =1 and v, = 2
of Onsager coefficients of the system.

with boundary conditions §i(R) = 0 that kR = z,,, where
zn, denotes the first positive root of J,(z). Therefore, the
critical value for the instability of asters is given by

(Z_”>2 An+7i(n — 1)
R 2"}/1(1/1 — ].)

In the case of vortices with g = +7/2 and JK < 0,
we find

CApt = — (K +6K).  (67)

71 851/) /
PP _ '
T+ 2 or CY
2 1d m?
L=K(-— — +& 68
(dr2+rdr r? +q), (68)
where m? = —6K/K and ¢ = —m%. Follow-

ing the same analysis as for asters, the instability of vor-
tices occurs for

~ 2 2
CapY = — (Z_m) dntnm+1)”

The resulting stability diagram in the (5 Ap, 0K)-plane
is displayed in Figure 2. We have assumed on this diagram
that 11 > 1. There are three regions on this diagram, a re-
gion with positive § K and positive 5Au where the asters
are stable, a region with negative d K and positive 5Au
where vortices are stable and a region with large nega-
tive (Au where spiral defects are stable. Along the line
0K = 0, spirals are always stable as studied in the previ-
ous paragraph. We do not give here a general description
of the spiral defects, as in the case where K = 0, we ex-
pect that there is a dynamic selection of the orientational
angle and that the defect is rotating.
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5.4 Effects of friction with the substrate

So far we have considered the point defect in a real two-
dimensional space. A real active gel interacts with both
the surrounding solvent and the substrate. We do not dis-
cuss the hydrodynamic interactions between the gel and
the solvent here. We now consider a thin quasi-two di-
mensional gel layer and introduce a friction force at the
substrate proportional to the local velocity. Taking into
account the rotational symmetry, the friction force mod-
ifies the ortho-radial (6) component of the force balance

that becomes 5 )
% + —or0 = Evg.

r r
This equation, which is a balance between the friction
force and the tangential stress can be integrated for a ro-
tating spiral defect, yielding the following expression for

the tangential stress as a function of the velocity

(70)

Org = %/ dr' vy (r"). (71)
™ Jo

In the absence of elastic constant anisotropy, 6K = 0,
we can derive the velocity profile vg(r) in an infinite sys-
tem from equation (71) as follows: We look for a solution
of equation (53) with hy = 0 and ¢ =const. As in the
absence of friction, the polarization angle can have one of
the 4 possible values satisfying cos 21g = 1/v1. The veloc-
ity field is then obtained from equation (56) that can be
transformed into the following ordinary differential equa-
tion for wvy:

d 3 Vo 1d’l)9 2
%Z (; + ;E) = 2%vg + 2>\fWOZ, (72)

where z = r/A; and the the friction length is given by
A = (41 + y1v1 sin? 2¢00) /2 /(2¢€1/2). The velocity is then

given by
r A
’Ua(’l‘) = 2w0)\f {Kl (}\_f) — 7f} 5

where K, is the modified Bessel function of the second
kind defined in reference [35],

At short distances (r < Ay), the dissipation is domi-
nated by the viscosity 17 and the velocity field is the same
as in the absence of friction. At large distances, the dis-
sipation is dominated by the friction on the substrate &
and the velocity vy decays to zero. The stability diagram
of the defect in the presence of substrate friction is very
similar to the diagram of Figure 2, where the finite size R
would be replaced by the friction length Ay.

(73)

6 Discussion

We have introduced in this manuscript equations which
describe the long wavelength and low frequency behav-
ior of active gels. Although we have written the equations

specifically in the case where the activity is due to mo-
tor proteins, they should apply, in their principles, to all
gels in which a permanent source of dissipation is at work.
Such gels define a new class of materials. For instance, a
conventional “physical” polar gel, absorbing a high fre-
quency ultrasonic wave should obey, in the low frequency,
long wavelength limit, the set of equations proposed here.
Our main motivation however, is the construction of a
generic theory for characterizing quantitatively the prop-
erties of eukaryotic biological gels. One could object that
generalized hydrodynamic theories involve a large number
of parameters and are thus not very useful. Their merit
is to involve the smallest number of parameters required
for a relevant description of the systems under consid-
eration and to describe in a unified way all long length
scale and long time scale situations which are otherwise
seemingly unconnected. The nature of most parameters
is already well-known for gel or polymer rheology or for
liquid crystal physics, and their measurement techniques
can straightforwardly be transfered to active gels. This is
transparent for translational, orientational elastic moduli
and viscosities. Coefficients linking shear flow and polar
orientation are less familiar to the general public but are
well known to liquid crystal physicists, and their measure-
ments are not difficult a priori. There are eight bulk and
two surface additional parameters, compared to a passive
polar gel. Among the bulk quantities one is equivalent
to the motor velocity on the actin filaments (A = \(®)),
and another one is the depolymerization rate k4 of the gel
in the bulk. Both quantities are directly accessible to ex-
periment. Surface polymerization terms can be extracted
independently from biochemical data and although they
generate a new interesting physics ([3,36]), they do not
introduce uncertainties in the description.

Among the six remaining parameters, two (A" and
M) have yet to be investigated, three (¢, ¢ and ¢’) bear
essentially the same physics (i.e. the activity implies either
spontaneous motion or spontaneous stress), and the last
one A\; measures the active rate of change of polarization.
Hence, there are only two important additional parame-
ters, namely A\; and ¢ with respect to a passive polar gel.
We show, in the two examples developed here, that they
change profoundly the behavior of gels: behaviors which
in the absence of energy input would be static, become dy-
namic. The structure of the relaxation modes which would
be entirely over-damped in the long wavelength limit, now
can support propagative waves [34,25], spiral disclinations
rotate permanently. Many other consequences have to be
unraveled. Knowing that it has taken more than ten years
to investigate the properties of generalized hydrodynam-
ical equations relevant to liquid crystals, it is likely that
a similar number of years will be necessary in this case
as well. Our bet is that it will help us understand the
complex behavior of the slow dynamics of the eukaryotic
cytoskeleton in a robust way, not depending on the details
of the involved proteins.

Our theory can be extended in several ways. First
we have ignored the permeation process of the bulk fluid
through the gel. This is legitimate in the long time limit
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in most geometries but not all. The inclusion of perme-
ation in our equations involves a two-fluid description
and will be discussed elsewhere. This description provides
for a clear physical interpretation of the coefficients A\(™)
and M%), and solves the paradox of non-rotating vortices
discussed here. Similarly, the inclusion of chiral terms is
straightforward and although probably unimportant at
equilibrium, they could lead to interesting new out-of equi-
librium physics. We have also used the simplest visco-
elastic gel theory: experiments performed on cells sug-
gest the existence of scale invariant visco-elastic behavior
which could also be included in the theory [37]. Finally, we
have assumed that the driving force was “small” and con-
stant both in space and time. The spatial and temporal
invariance make sense in a cell since the AT P production
centers seem to be abundant and evenly distributed. In
vitro experiments may mimic these conditions on a lim-
ited time scale, yet large compared to most phenomena of
interest. Furthermore there is no a priori difficulty in in-
troducing AT P production and consumption in the equa-
tions. More severe is the last limitation: our equations are
valid for Ap small compared to thermal energy, whereas
it is of the order of ten time that value in real life. The
extension of our theory to large Ay is a real challenge and
will probably require some feedback from experiments. A
brute force expansion in higher powers of forces and fluxes
is just totally impractical and would leave out the known
and probably leading exponential dependences of poly-
merization/depolymerization rates on stress. Other chal-
lenging questions concern the nature of noise which will
pick up strong out of equilibrium contributions, and possi-
ble dynamical transitions for instance in the motor behav-
ior [38]. For these reasons, we think that is it wise to start
with the well controlled approach that we propose here
and to develop the corresponding experiments. This will
help us familiarize with this new physics before getting to
regions of phase space were we lack guiding principles.

An important application of active gels is the problem
of cell locomotion on a substrate [39]. In a forthcoming
publication, we will discuss how the interplay of polymer-
ization and activity can induce the motion of a thin layer
of an active gel on a solid surface. The physics of this gel
motion coupled to the properties of bio-adhesion provides
a basis for an understanding of the locomotion of cells
such as keratocytes [40].

We thank Sriram Ramaswamy and Madan Rao for useful com-
ments on this work.
Appendix A: Cylindrical coordinates

In polar coordinates, the rate of strain tensor for a rota-
tionally symmetric velocity profile is given by

d
rr — 5 Ur A].
“ drv (A1)
ugy = -~ (A.2)
660 r .

rd /v
Furthermore,
1 d
= —— . A4
Wro o dr (T'UQ) ( )

If the system is invariant by rotation, the local force
balance in cylindrical coordinates is written as

1d tot 1 tot __ diI

rd’]" (T.O—TT ) — ’]"0—66 = dr (A5)
1d 2 _tot
7’_2% (’I" UT@ ) = O7 (A6)

In an incompressible system, the pressure I is a Lagrange
multiplier necessary to impose the incompressibility con-
straint.

Appendix B: Viscoelastic polar gel

The form of equations (17), (18), (23) and (25) can be
understood by discussing the general dynamics of the po-
larization field p, in frequency space. As a function of
frequency, we write to linear order

(V1Pglias + V1Datlips) -

(B.1)
where the tilde denotes a Fourier amplitude at fre-
quency w. The first two terms of the right hand side cor-
respond to a straightforward linear response theory of a
ferroelectric liquid crystal. Similarly, the last term pro-
vides for w = 0 the reactive linear coupling term allowed
by symmetry. For finite frequency furthermore, this term
takes into account that the gel is elastic on short time
scales or large w. This can be seen as follows: in the case
of an elastic gel, the free energy F' of the polarization field
contains elastic terms of the form

ha
) D = — )\ D A _——
WP - + A1 pa Al 1T ior

1%
Fel = ’7;7-1 /ddx PaapPps

(B.2)

where €,3 is the strain tensor characterizing deforma-
tions of the gel. This leads to a modification of h, by
hel = —§F,/dps. Since in frequency space, fiag = iwéag,
equation (B.1) does describe the correct elastic limit for
large w. Separating equation (B.1) in reactive and dissi-
pative parts, using the opposite signatures with respect to
time reversal (or equivalently w — —w) allows us to iden-
tify P4 and P!. Using 1/(1+iwT) = 1—iwt/(14+w?r?) and
replacing iw by D/Dt, we can write the reactive and dis-
sipative parts of P, as given by equations (18) and (25).
Symmetry relations now impose the correct equations for
ols and o7, 5 as given by equations (17) and (23).
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