
DOI 10.1140/epje/i2006-10036-x

Eur. Phys. J. E 20, 459–465 (2006) THE EUROPEAN

PHYSICAL JOURNAL E

Dynamics and mechanics of motor-filament systems

K. Krusea and F. Jülicher
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Abstract. Motivated by the cytoskeleton of eukaryotic cells, we develop a general framework for describing
the large-scale dynamics of an active filament network. In the cytoskeleton, active cross-links are formed
by motor proteins that are able to induce relative motion between filaments. Starting from pair-wise
interactions of filaments via such active processes, our framework is based on momentum conservation and
an analysis of the momentum flux. This allows us to calculate the stresses in the filament network generated
by the action of motor proteins. We derive effective theories for the filament dynamics which can be related
to continuum theories of active polar gels. As an example, we discuss the stability of homogenous isotropic
filament distributions in two spatial dimensions.

PACS. 87.16.Ka Filaments, microtubules, their networks, and supramolecular assemblies – 87.16.Nn Motor
proteins (myosin, kinesin dynein) – 87.16.-b Subcellular structure and processes

1 Introduction

The cytoskeleton is a subsystem of living cells that plays
an essential role in various cellular processes such as cell
locomotion and cell division [1–3]. The principal compo-
nents of the cytoskeleton are actin and tubulin. These
proteins can aggregate into filamentous structures, re-
spectively called actin-filaments and microtubules. The
two filament ends have different properties and define an
orientation for a filament that can be characterized by
a vector. Interactions with a large number of proteins
make the network of actin-filaments and microtubules
highly dynamic. There are proteins that nucleate fila-
ments, regulate their lengths in various ways, and form
cross-links between filament pairs. Many of these processes
involve the release of chemical energy during the hydrol-
ysis of nucleotide triphosphates, in particular adenosine
tri-phosphate (ATP). In a living cell, differences in the
chemical potentials of ATP and its hydrolysis products
are maintained, which keeps the cytoskeleton out of ther-
modynamic equilibrium. The hydrolysis of ATP drives in
particular motor proteins, e.g., myosins or kinesins. These
molecules can use the filaments as tracks along which they
transport cargo into a direction that is determined by the
filament’s orientation. Connecting two filaments, motor
proteins or complexes thereof can induce relative displace-
ments of the two filaments and generate stresses in the
filament network.

a Present address: Institut für Theoretische Physik, Univer-
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Summarizing these features from a physical point of
view, the cytoskeleton is an example of an active polar
gel [4]. In recent years phenomenological continuum the-
ories describing various aspects of the dynamics of active
polar gels have been developed [4–11]. Using these descrip-
tions, the dynamics of filament networks has been studied
in different situations such as topological point defects [4–
6,9,10] as well as the formation of contractile rings [11].

Experimental works on active polar gels outside liv-
ing cells have focused on purified systems containing fila-
ments and a few associated proteins [12–18]. In particular,
collective effects in motor-filament systems were studied.
Through the action of motors, bundles of filaments were
found to contract and to separate filaments according to
their polarity [12,18]. In two dimensions, initially homoge-
nous isotropic distributions of filaments formed vortices
and asters as the motor density was increased [13,14,16].
These experiments called for more microscopic descrip-
tions of filament-motor systems. Such descriptions were
applied to study the dynamics of bundles of motors and
filaments as well as the stability of homogenous isotropic
distributions and the formation of asters in two dimen-
sions [13,16,19–27].

A general framework for the description of the dynam-
ics of bundles of polar filaments induced by active cross-
linkers based on microscopic rules for the interaction of
filament pairs via active cross-linkers was presented in ref-
erence [22]. This framework is based on the momentum
balance in the system and can describe the stresses gen-
erated. In the present work we extend this formalism to
higher dimensions. Expression for the currents of filaments
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and motors will be introduced in Section 2. In Section 3,
the stresses in the system are expressed in terms of the
forces exerted by motors. As an example, we apply the for-
malism to study the stability of two-dimensional isotropic
homogenous filament distributions in the presence of mo-
tor proteins in Section 4.

2 Forces and currents

We describe the system consisting of polar filaments and
motors by the filament density Ψ and the densities mb

of bound and mu of unbound motors. The filaments are
taken to be thin, rigid rods, such that filament bending
and rotation around the rod axis can be ignored. The func-
tion Ψ(x,u) denotes the density of filaments with their
center at position x having an orientation described by the
unit vector u with u2 = 1. For simplicity, we assume that
the distribution of the filament lengths is the same for all
points in space and that it is constant in time. Motors are
assumed to be small as compared to the linear extension
of the filaments and are therefore treated as point parti-
cles. We will focus on the case of only one motor species,
but the extension to several species possibly moving into
different directions on a filament is straightforward.

The time evolution of the filament and motor densities
can be written in the form of continuity equations,

∂tΨ −∇ ·
[

D‖uu +D⊥(1− uu)
]

· ∇Ψ
−DrR ·RΨ +∇ · Ja + R · Jr = S, (1)

∂tmb −Db∆mb +∇ · Jb = Sm, (2)

∂tmu −Du∆mu = −Sm, (3)

where R = u×∂/∂u is the rotation operator. The param-
eters D‖, D⊥, Dr, and Db are effective diffusion constants
and account for fluctuations in the system. They, respec-
tively, describe fluctuations in the position of filaments
along and perpendicular to their axis, fluctuations in the
filament orientation [28], as well as fluctuations in the po-
sition of bound motors. A major source for fluctuations
is the randomness inherent in the motor-filament interac-
tions. This implies in particular, that the effective diffusion
constants do not fulfill the Einstein relation. In contrast,
unbound motors are assumed to simply diffuse thermally
with diffusion constant Du. The translational and the ro-
tational filament currents, Ja and Jr, as well as the motor
current Jb are generated by active interactions between
motors and filaments and will be specified below. Finally,
we have introduced the source terms S and Sm. They,
respectively, capture the effects of nucleation and disap-
pearance of filaments as well as the exchange of motors
bound to filaments for unbound motors in the surround-
ing fluid. Note, that we have neglected excluded-volume ef-
fects, which can be included in a standard way [23,26,28].

We will now derive explicit expressions for the active
filament and motor currents for the special situation where
filaments slide relative to each other in a resting fluid. This
situation corresponds in particular to a filament network
close to a solid surface or the cell cortex in cells. We con-
sider the flux of momentum in the system. Momentum

x

su

Fig. 1. Illustration of the quantities used to characterize the
position and orientation of a filament. The filament’s center is
located at a point x, its orientation given by u with u2 = 1.
The length of the filament is ` and s is a linear coordinate along
the filament with s = 0 in the center and with s increasing in
the direction of u.

f int
flf

s

σ

Fig. 2. Illustration of the forces acting on a filament. The
(blue on-line) dot indicates a motor that cross-links the fila-
ments to another and exerts a force. The density of these forces
is denoted by fint. The filament moves in a solvent represented
by the horizontal lines, which results in friction forces ffl. Due
to these forces, a line tension σ builds up in the filament as
indicated in the graph. For simplicity, external forces and fric-
tion forces of motors connected to a single filament are not
indicated.

conservation corresponds to the conditions of force bal-
ance at each point x+ su along every filament. Here, s is
a linear coordinate along a filament which is zero in the
center and increases in the direction of u, see Figure 1.
The forces acting on a filament create stresses in the fila-
ment that can be expressed as a line tension σ. The line
tension has units of a force.

The forces acting on a filament are generated by motor
proteins, result from friction with the surrounding solvent,
or are external forces applied to the system, see Figure 2
for an illustration. As a result, the force balance at each
point along a filament can be expressed as

u∂sσ(x,u, s)− fint(x,u, s) = ffl(x,u, s) + fm(x,u, s)

+fext(x,u, s). (4)

Here, the density of internal forces is denoted by fint and
describes the forces generated by motor proteins cross-
linking filaments. The action of motors moving on a single
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filament generates friction forces of density fm. Forces re-
sulting from friction of the filaments with the surrounding
fluid are captured by the density ffl. Finally, the density
of external forces is denoted by fext.

We start our discussion of the force densities with the
friction forces. We will assume friction to be local, which is
the case for an immobile solvent. Then friction forces along
a filament depend only on the motion of this filament. The
density of friction forces is thus related to the filament
currents by

ffl(x,u, s) =
[

η‖uu + η⊥(1− uu)
]

· Ja(x,u)R(s)
−η0su× Jr(x,u)R(s). (5)

Here, η‖ and η⊥ are friction coefficients per unit length for
motion in the direction longitudinal and perpendicular to
the filament axis, respectively. The coefficient η0 describes
the friction of a filament subunit, see [28]. Finally, the
function R describes dissipation along the filament and
reflects the distribution of filament lengths. In the case
when all filaments are of the same length `, a simple choice
is R(s) = 1 for |s| ≤ `/2 and R(s) = 0 otherwise.

Equation (5) can be used to express the active trans-
lational and rotational currents, Ja and Jr, in terms of
the internal, the motor and the external force densities.
We will illustrate this in the case of no external forces and
neglecting the force density of motors connected to sin-
gle filaments. Since the friction of motors is very small as
compared to the filament friction, the contribution of the
latter to the filament current is indeed negligible. This is,
however, no longer true if these motors transport large car-
gos1. For fext = 0 and fm = 0, integration of equation (4)
with respect to s yields

−
∫

ds fint(x,u, s)=

∫

ds ffl(x,u, s) (6)

= `
[

η‖uu+η⊥(1−uu)
]

· Ja(x,u). (7)

Here ` =
∫

dsR(s) and we have used R(s) = R(−s).
Therefore,

Ja(x,u) = −
1

`

[

1

η‖
uu +

1

η⊥
(1− uu)

]

·
∫

ds fint(x,u, s).

(8)
Integrating equation (4) as

∫

ds su× yields

Jr(x,u) = −
1

η0χ2

∫

ds su× fint(x,u, s). (9)

Here, we have introduced χ2 =
∫

ds s2R(s) and used
Jr(x,u) ⊥ u. It is important to note that the rotational
current is thus not independent of the translational cur-
rent. Consequently, the description of the dynamics of ac-
tive motor-filament systems is completed by specifying the
internal force density fint. This density sums up all the
forces exerted by motors connecting two or more filaments
and hence depends on the filament and motor densities.

1 If the density fm is taken into account, then the friction of
motors ηmJm, where ηm is an effective friction coefficient of a
motor, must be added in equation (5).
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Fig. 3. Illustration of the constraints imposed on the force F

exerted by an active cross-link on a filament. Left: original con-
figuration. Translation of the filament pair does not change F

implying equation (11). Rotation of the filament pair implies
rotation of the vector F by the same angle, yielding condi-
tion (12). Right: the same filament pair after reflection with
respect to the vertical dashed line implying conditions (13)
and (14).

In the following we will assume that the dominant
contribution to the internal forces results from interac-
tions between filament pairs. We assume that filaments
are cross-linked by motors only when they have an overlap.
The force exerted by motors on a filament pair depends
on the relative orientation and separation of filaments [20,
24,25]. The density of internal forces acting at a point s
on a filament with center at x and orientation u can then
be expressed as

fint(x,u, s) =

∫

dx′

∫

du′

∫

ds′ Ψ(x,u)Ψ(x′,u′)Cx
′,u′,s′

x,u,s

×m(x + su)F(x,u, s,x′,u′, s′). (10)

In this expression Cx
′,u′,s′

x,u,s = R(s)R(s′)δ(x+su−x′−s′u′)
restricts the integration to those filaments that cross each
other.

The function F denotes the average force between two
filaments at the specified locations and orientations. It
has to satisfy several constraints imposed by symmetry,
as illustrated in Figure 3. We will assume in the following
that the internal forces between filament pairs are covari-
ant under translations, rotations and reflections. Due to
translation invariance, F can only depend on relative po-
sitions of the filament centers

F(x,u, s,x′,u′, s′) ≡ F(x− x′,u, s,u′, s′). (11)

Covariance under rotations imposes

F(R(ϕ)x,R(ϕ)u, s,R(ϕ)u′, s′) = R(ϕ)F(x,u, s,u′, s′),
(12)

for any ϕ, where R(ϕ) denotes the rotation operator for
a rotation by an angle ϕ. Furthermore, covariance with
respect to reflections requires

F‖(x‖ + x⊥,u‖ + u⊥, s,u
′
‖ + u′

⊥, s
′) =

F‖(x‖ − x⊥,u‖ − u⊥, s,u
′
‖ − u′

⊥, s
′), (13)

F⊥(x‖ + x⊥,u‖ + u⊥, s,u
′
‖ + u′

⊥, s
′) =

−F⊥(x‖ − x⊥,u‖ − u⊥, s,u
′
‖ − u′

⊥, s
′), (14)
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where the subscripts ‖ and ⊥ denote vector components
along and perpendicular to the reflection axis, respec-
tively. Finally, the principle of actio = reactio implies

F(x,u, s,u′, s′) = −F(−x,u′, s′,u, s). (15)

For completeness, let us specify the force density of
motors bound to one filament only. We take it to be pro-
portional to the motor and the filament density and write

fm(x,u, s) = ηmΓu mb(x + su)Ψ(x,u)R(s). (16)

Here, Γ is the average velocity of motors moving on a fila-
ment and ηm the motor friction coefficient. The coefficient
Γ depends on the fraction of bound motors that do not
cross-link filaments.

3 The stress tensor

The formalism developed in the previous section can
be used to calculate the stresses generated in a motor-
filament system. The total stress tensor Σtot is defined
through the relation

fext = ∇ · Σtot, (17)

where fext is the density of external forces. The total stress
tensor can be split up into two parts, one accounting for
the stress in the filament-motor network, Σ, the other ac-
counting for the stress in the solvent surrounding the net-
work, Σfl, i.e.

Σtot = Σ+ Σfl. (18)

As before, we will assume that the solvent is immobile
such that the stress Σfl is merely due to the motion of the
filaments and the motors with respect to the fluid.

The stress in the filament network at a point y can be
obtained from the fact that the divergence of the corre-
sponding stress tensor must equal the sum of the forces
u∂sσ acting on all filaments overlapping with y, i.e.,
∫

dx
∫

du
∫

ds u∂sσδ(y−x−su). Integrating once by parts
we find

Σαβ(y) =

∫

dx

∫

du

∫

ds uαuβσ(x,u, s)δ(y−x−su). (19)

This relation expresses the stress in the filament network
through the line tension in the individual filaments. Note
that the tensor Σ is symmetric by definition, indicating
that line tensions along filaments cannot generate torques
in the system.

The line tension σ in turn can be expressed in terms of
the internal force density. Consider again the case fext = 0
and fm = 0. Expressing the density of friction forces
through the density of internal forces by inserting equa-
tions (8) and (9) in equation (5) we find using equation (4)

u∂sσ(x,u, s) = fint(x,u, s)−
1

`

∫

ds′ fint(x,u, s
′)R(s)

− 1

χ2
(1− uu) ·

∫

ds′ ss′fint(x,u, s
′)R(s). (20)

The stress in the solvent is generated by two processes,
filaments and motors that slide with respect to the fluid.
If as before we neglect for simplicity the effects of the force
fm of motors interacting with single filaments, we have

∇ ·Σfl(y) = −
∫

dx

∫

du

∫

ds ffl(x,u, s)δ(y−x−su). (21)

Using equation (5) one can write the force balance

∇ · Σfl = −η‖j‖ − η⊥j⊥ − η0j0. (22)

Here, we have defined the mass currents parallel and per-
pendicular to the local filament orientation j‖ and j⊥, as
well as the mass current resulting from filament rotations
j0. They are given by

j‖(y)=

∫

dx

∫

du

∫

ds uu · Ja(x,u)R(s)δ(y−x−su), (23)

j⊥(y)=

∫

dx

∫

du

∫

ds (1−uu) · Ja(x,u)R(s)

×δ(y−x−su), (24)

j0(y)=−
∫

dx

∫

du

∫

ds su× Jr(x,u)R(s)

×δ(y−x−su). (25)

The total mass current at y given by

j(y) =

∫

dx

∫

du

∫

ds [Ja(x,u)R(s)

−su× Jr(x,u)R(s)] δ(y − x− su) (26)

obeys j = j‖ + j⊥ + j0.
In the absence of external forces, fext = 0, equa-

tions (17) and (18) imply ∇ · Σ = −∇ · Σfl. Using this
together with equations (19) and (20), the total mass cur-
rent can be expressed in terms of the internal force den-
sity. This relation bridges the gap between the more micro-
scopic approach developed here and the phenomenological
description of reference [8].

Note that while the stress which results from pair-wise
filament interactions σ is always symmetric, Σfl can have
in general an asymmetric part, in particular if fm 6= 0.
Such an asymmetric part corresponds to a net torque in
the system and would occur in situations with rotating
currents [10].

4 Coarse-grained description in 2 dimensions

On length scales large compared to the filament length,
the filament dynamics and force generation described
above can be captured by an effective local continuum de-
scription. This can be illustrated by specifying the internal
forces in a simple example based on a two-dimensional ge-
ometry. Such a two-dimensional description is motivated
by in vitro experiments with stabilized microtubules and
kinesin motor complexes [13,16] and by the cell cortex [1,
11]. For simplicity, we set the source term S in equation (1)
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equal to zero, which corresponds to the case of stabilized
filaments. Furthermore, we suppose all filaments to be of
the same length ` and choose R(s) = 1 for |s| ≤ `/2 and
0 otherwise. In order to keep the discussion simple, we
focus on the case of a homogenous motor distribution. It
remains to fix the form of the local force density F. The
simple and elegant form introduced in [23]

F(x,u, s,u′, s′) =
α

2

x

`

1 + u · u′

√
1− u · u′

+
β

2

u′ − u√
1− u · u′

, (27)

satisfies all symmetry requirements. Again for simplicity,
we will consider in the following the case β = 0.

Putting everything together, the active translational
and rotational currents Ja and Jr can be calculated. From
these expressions the dynamics on large length scales are
obtained by performing a moment and gradient expan-
sion [23,26]. The moment expansion consists of replacing
the full filament distribution Ψ by its moments with the
first ones being the filament density c(x) =

∫

duΨ(x,u)
and the average polarization p(x) =

∫

duuΨ(x,u). The
next higher moment would involve the nematic order pa-
rameter [11], but we will focus in the following on the
density and the polarization. From the gradient expan-
sion we will only retain terms containing up to fourth-
order derivatives. Then, all the integrals appearing in the
current can be carried out and we are left with a system
of coupled partial differential equations describing the dy-
namics. In order to study the effect of η⊥ 6= η‖ we will now
analyze the linear stability of the homogenous isotropic
distribution. An analysis of the non-linear regime in the
case η⊥ = η‖ has been presented in reference [26].

The homogenous isotropic distribution with c(x) = c0
and p(x) = 0 is a stationary state. Linearization of the
dynamic equations with respect to this state gives

∂tc =
1

2
(D‖ +D⊥)∆c− ᾱ

[

∆c+
19

480
`2∆∆c

]

−ᾱ
(

1− η‖

η⊥

)[

3

4
∆c+

31

960
`2∆∆c

]

, (28)

∂tp = D⊥∆p + (D‖ −D⊥)

(

1

2
∇(∇ · p)+ 1

4
∆p

)

−Drp

−ᾱ
[

1

2
∇(∇·p)+ 1

4
∆p+

1

30
`2∇∆(∇·p)+ 11

1920
`2∆∆p

]

−ᾱ
(

1− η‖

η⊥

)[

1

2
∇(∇ · p) + 3

16
∆p +

1

32
`2∇∆(∇ · p)

+
13

3840
`2∆∆p

]

, (29)

where ᾱ = α`2c0/(24η‖). In linear order, the dynamics
of the density thus decouples from the dynamics of the
polarization vector.

We will now analyze the stability of the homogenous
isotropic state with respect to perturbations in the density
and the polarization. Perturbations in the density will de-
cay as long as the interaction strength α is below a critical

value αc with

αc =
48η⊥η‖

7η⊥ − 3η‖

D‖ +D⊥

c0`2
. (30)

While qualitatively this critical value shows a similar de-
pendence on the density c0, the filament length ` and
the diffusion constants D‖ and D⊥ as in one dimension,
see [20], a new effect occurs due to differences between
the longitudinal and transverse friction coefficients. For a
bare microtubule or actin-filament one might expect η‖ to
be smaller than η⊥. As these two values approach each
other, the stability of the homogenous state increases. By
adding appropriate proteins to the surface of a cytoskele-
tal filament, friction in the longitudinal direction might
be larger than in the perpendicular direction2. If η‖ ex-
ceeds 7η⊥/3, then fluctuations in the density will be un-
stable for negative values of α. These correspond to motors
pushing filaments apart rather than pulling them together.
Changing the relative values of longitudinal and perpen-
dicular friction of the filaments thus provides the possi-
bility of switching between different states of the system.
Note that αc is independent of the coefficient of rotational
diffusion Dr.

There is also a critical value αp such that perturbations
in the polarization grow if α > αp. The general expression
for αp is somewhat more complicated than the one for αc
and will not be given here. For the special case Dr = 0 we
find

αp =
96η⊥η‖

23η⊥ − 11η‖

D⊥ + 3D‖

c0`2
. (31)

The corresponding unstable mode is a plane wave with
the polarization longitudinal to the wave vector [23,26].
The transverse mode is always stable. Comparing αc and
αp we see, that as long as η‖ < 23η⊥/11 an instability of
the homogenous isotropic state will occur first in the po-
larization. In the general case with Dr 6= 0, the instability
occurs first in the density if the average density is below
a certain critical value.

Finally, our analysis reveals that we can write the
coarse-grained filament dynamics in the form [8,11]

∂tc = ∇ · j, (32)

∂tp = ω, (33)

where the current j and the rate of change of the polar-
ization ω depend on the density c and orientation p of
filaments. The force balance equation (21) of the micro-
scopic theory suggests, that in the coarse-grained limit the
current is related to the stresses by

∇ · Σ = η · j, (34)

where the mobility tensor is of the form

η = ηeff‖
pp

c2
+ ηeff⊥

(

1− pp

c2

)

. (35)

2 MAP1 microtubule-binding proteins have arms sticking off
the microtubule surface and might have this effect. Flagellates
with mastigonemes, that are hair-like filaments on the flagella
surface, swim in the direction of the wave propagating along
the flagellum as a consequence of η⊥ < η‖, see reference [29].
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Note that coarse-graining of the microscopic currents de-
fined in equations (23–25) leads to the parallel and per-
pendicular mass currents

j‖ =
pp

c2
· j , (36)

j⊥ =
(

1− pp

c2

)

· j (37)

which contain rotational components and obey j = j‖+j⊥.
This procedure also generates effective mobility coeffi-
cients ηeff‖ and ηeff⊥ . They can in principle be calculated

from the microscopic theory by first calculating the stress
tensor as a function of c and p and then using equa-
tions (34) and (35).

5 Conclusions

Based on an analysis of the forces acting on filaments we
have developed a general framework for describing the dy-
namics of networks formed by polar filaments that are
set into relative motion by active cross-links that induce
pair-wise interactions between filaments. The work is most
directly related to in vitro experiments on cytoskeletal fil-
aments where molecular motors provide the active cross-
links [13,16] and generalizes our work on systems in which
filaments form a bundle and are aligned along a com-
mon axis [22]. Compared to the work of reference [22],
the main additional feature introduced here is the effect of
anisotropies in the friction of the filament in the surround-
ing fluid and the resulting tensorial nature of stresses. As
the example treated in Section 4 shows, changes in the
relative values of the respective friction coefficients can be
used to switch between qualitatively different behavior.

Our work is related to earlier works where macro-
scopic equations were derived from microscopic rules [23–
27]. These works focus largely on the aspects of pattern
formation and do not address macroscopic stress tensors.
Furthermore, we have not relied on the Einstein rela-
tion in our microscopic model as it is not expected to be
valid far from thermodynamic equilibrium. In the present
study we have restricted ourselves to the simplest case of
only one kind of motors and a fixed distribution of fil-
ament lengths. Situations, when several types of motors
are present or when the distribution of filament lengths
is dynamic, can be treated within the same framework by
appropriate modifications. This is also true if the effects of
other proteins e.g. depolymerizing or nucleating filaments
are to be taken into account.

The corresponding dynamic equations, however,
quickly become rather cumbersome, such that an anal-
ysis is best carried out for the behavior on large length
scales. Then coarse-graining procedures can be used that
result in systems of coupled partial differential equations.
As mentioned in the introduction, a different approach
towards describing cytoskeletal dynamics on large length
scales consists in the formulation of phenomenological con-
tinuum theories [4,8,10,11], an approach that has also
been used to describe the dynamics of flocks or bacterial

colonies, which share a number of similarities with motor-
filament systems, see references [30,31]. These theories are
based on expressions for the stress in terms of the particle
density and orientational order parameters.

In the presence of filament treadmilling or motor forces
fm which propel filaments in the fluid, interesting phe-
nomena can occur which we have ignored here in order to
keep the discussion simple. An example is the possibility
of rotating flows around point defects which are associ-
ated with net torques acting on the fluid [10]. Finally, we
have neglected chiral terms, which are in principle allowed
since filaments are chiral objects. If interactions between
filaments were chiral, the reflection symmetry which we
assume would be reduced. Chiral interaction terms could
also lead to the generation of torques in the system. Ac-
tive chiral systems have been recently studied both exper-
imentally and theoretically [32,33]. The role of chirality
in active cellular systems provides an interesting topic for
future studies.

K.K. gratefully acknowledges hospitality of the Aspen Center
for Physics where part of this work has been accomplished.
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