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Abstract

Simple concepts from statistical physics are discussed to describe the transduction of chemical energy of a fuel to

mechanical work on the molecular level. Such approaches can characterize general physical features of motor proteins that

generate forces in the cell cytoskeleton. In integrated cellular systems such as cilia and hair bundles, cytoskeletal filaments

and motors form complex structures and interact in large numbers. In such systems the interplay of filaments and motors

can lead to emergent dynamic behaviors such as oscillating collective modes or to wave-like patterns. We discuss general

aspects of such dynamic states and relate them to the dynamics of cytoskeletal structures in cells.

r 2006 Elsevier B.V. All rights reserved.
1. Introduction

One of the most striking features of life and living cells is their ability to move and exhibit active behaviors.
Cells are extraordinarily dynamic and are able to generate motion and forces [1,2]. Prominent examples for
dynamic processes in cells are cell motility, muscle contraction and active processes that take place inside cells
such as cell division and material and organelle transport in the cell. Other examples involve proteins that
move along DNA in order to copy, read or repair the information stored in the base pair sequence. Motion
and forces are generated on the molecular level by protein molecules that use the hydrolysis of a fuel, typically
of adenosinetriphosphase (ATP), as energy source. Typical examples are highly specialized motor proteins
which operate in all eucaryotic cells. Eucaryotic cells possess a nucleus and include the cells of all higher
organisms (animals and plants) and some single celled organisms. These cells possess a cytoskeleton which is a
complex three-dimensional network of rod-like filaments which are built of proteins subunits [2]. This filament
network provides the cell with mechanical stability and integrity and can be viewed as a viscoelastic gel-like
material.

The cytoskeleton is a prototype system for the study of force and motion generation in cells. The dynamical
properties of the cytoskeleton and its associated proteins are governed by phenomena on different scales. On
the molecular level, motor proteins transduce chemical energy of ATP hydrolysis to generate motion and
forces [3–5]. These forces are stochastic in nature. On larger scales, the cytoskeleton forms complex structures
and dynamical behaviors emerge from an interplay of many active processes. Certain types of such behaviors
can be described as arising via self-organization phenomena. This can be illustrated by focussing on simple
e front matter r 2006 Elsevier B.V. All rights reserved.
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examples, where complex patterns in space and time can be understood to be generated by molecular motors
interacting with cytoskeletal filaments [6–8].

A large number of active elements such as motors working together in groups can give rise to new
types of mechanical behaviors. In general, dynamic instabilities and bifurcations can occur in this case via
collective effects. A simple situation where the self-organization of motors and filaments occurs are
bundles of filaments in the presence of motors and cross-linkers. Such bundles occur in cells as the so-called
stress fibers or they form a contractile ring to constrict a dividing cell. Theoretical analysis shows that
such bundle can exhibit active properties if motor molecules or aggregates of motors form mobile cross-linkers
[9–11]. These motors slide filament pairs with respect to each other which introduces a rich dynamics
in the system and active mechanic properties. With the presence of motors, the passive filament bundle
has been transformed in a nonlinear dynamic system. In this system, dynamic patterns and complex
mechanical properties can occur. Filaments can be cross-linked and form gel-like materiela with viscoelastic
properties. In the presence of motor-aggregates, these gels become active and exhibit new material properties
[12,13].

Collective behaviors of many active elements can also lead to the generation of mechanical oscillations
[14,15]. Motor-induces mechanical oscillations of cells occur in a number of different situations. Oscillatory
motion is important for the periodic beating of cilia and flagella which some microorganisms use to swim [1].
These cilia are elastic hair-like appendages which move periodically and generate wave-like bending patterns
which are used for swimming and propulsion. Here, oscillations have been suggested to result from the self-
organization of many motor proteins which induce the bending of elastic filaments in the cilia [16]. Oscillations
can also result as unavoidable side effect of the underlying dynamics in a cell. An example is cell divisions
which are asymmetric. In this case, oscillations of the mitotic spindle are observed. The spindle is built of
cytoskeletal filaments and plays the role to physically separate the duplicated chromosomes. It is a dynamic
structure, stabilized by motor proteins. It has been shown that the interplay of many motors at the outer cell
membrane which exert forces on the mitotic spindle undergo an oscillating instability as the number of active
motors is increased by the cell [15].

Mechanical oscillations also play a role for the detection of mechanical stimuli by mechanosensory cells
[17,18]. Mechanosensory cells of the ears of vertebrates exhibit complex cytoskeletal structures which form
bundles of rod-like stereocilia [19]. These hair bundles have been shown to generate spontaneous mechanical
oscillations [20,21] which result from the interplay of motor proteins, ion channels and a feedback regulation
of motor forces by Ca-ions [21,22].

In the subsequent sections, we discuss approaches of physics to describe general features of active
phenomena in cells. Starting with the statistical physics of motor proteins, we discuss how complex
dynamic behaviors emerge via collective effects in groups of cooperating motors and more complex cellular
structures.

2. Motors of the cytoskeleton

A motor protein of the cytoskeleton interacts specifically with a certain type of filament along which it
moves in presence of ATP [3]. The filaments serve as guides or tracks for the motion. Two types of filaments
play this role: microtubules and actin filaments. Both are formed by a polymerization process from identical
monomers (actin and tubulin monomers, respectively), leading to a regular and periodic structure. An
important feature is their structural polarity: the filaments are asymmetric with respect to their two ends. This
symmetry has its origin in the asymmetry of the monomers which polymerize in a regular periodic structure to
form a polar filament. The two different ends of the filament are denoted as ‘‘plus end’’ and ‘‘minus end’’. This
polar symmetry is essential for motor operation as it defines the direction of motion. A given motor molecules
moves in a particular direction along a filament. Motor proteins are classified into several families: myosins,
kinesins and dyneins. Myosins move always along actin filaments while kinesins and dyneins move along
microtubules, see Fig. 1.

The motor protein (or more precisely, the head domain containing the ATP-binding site) undergoes a
chemical cycle. It binds ATP, hydrolyzes the bound ATP and releases the products of the hydrolysis reaction
ADP and P (phosphate). After completion of the cycle the motor is unchanged. The different conformations
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Fig. 1. Schematic representation of molecular motors and track filaments. (a) Myosin molecules often interacting in large groups with an

actin filament. (b) Kinesin with two identical ‘‘heads’’ moving along a microtubule. Actin filaments and microtubules exhibit structural

polarity and result from periodic arrangements of monomers. Their two different ends are denoted as ‘‘plus’’ and ‘‘minus’’.
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which occur during the chemical cycle have different structural conformations and can in particular have
different interaction characteristics with respect to the filament. As a result, the motor protein periodically
undergoes chemistry-driven changes between different conformations. This coupling between chemistry and
binding permits the creation of motion along a polar filament [3–5,23–27].
3. Isothermal ratchets

How can directed motion be generated from a chemical reaction? First, let us state very general
requirements. Motion can occur if two separate symmetries are broken. (i) The filaments must be polar and
distinguish motion in opposite directions. (ii) Invariance with respect to time reversal must be broken. This
implies an irreversal or nonequilibrium process. If either of the two symmetries is present, on average no
motion can possibly occur. Any displacement that is generated can in this case be undone by an equally likely
process acting in the opposite direction.

For motor proteins both symmetries are broken and directed motion is expected to occur. However, in
order to characterize the physics of motion generation, we need explicit models. Firstly, it is important to note
that an irreversible situation cannot be achieved by temperature differences, since at the molecular scale
temperature gradients relax on time scales much faster than the characteristic times of milliseconds for motor
molecules. Since the filaments provide periodic sets of binding sites and considering their polar structure, it is
convenient to think of these systems as generalized ratchets which rectify the chemical reaction to generate
directed motion under isothermal conditions.

A simple physical representation of such an isothermal ratchet can be formulated as follows [4,5,28–30]: if
we consider a motor in conformation i, we can define a potential or interaction energy profile along
the filament. Suppose that one small region of the motor, e.g. in the tail, is used to transmit forces or to
attach a cargo. We imagine this point to be held at a position x along the filament. We can now define W iðxÞ

to be the energy of the motor, including possibly bound ATP, ADP or P, and including the energy of the
filament as the motor is held at position x. This total energy is in fact an effective free energy defined formally
by integrating over all rapidly relaxing microscopic degrees of freedom but keeping the enzyme in its chemical
state. The conformation of the system motor-filament is then fully characterized by the pair fi;xg of internal
state and position with respect to the filament, where i ¼ 1; . . . ;m and m is the number of states. Note that
the potentials reflect the symmetry properties of the filament. If the filament is polar and a periodic array
of identical monomers, the potentials are periodic with period l, W iðxÞ ¼W iðxþ lÞ and asymmetric,
W iðxÞaW ið�xÞ.

In order to describe the dynamics of the system fi;xgðtÞ, we use a stochastic overdamped dynamics at
constant temperature T within a given state i

Zi

d

dt
x ¼ �qxW iðxÞ þ ziðtÞ. (1)
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F. Jülicher / Physica A 369 (2006) 185–200188
Here, Zi is a protein friction and zðtÞ is a Gaussian white noise in state i with hziðtÞzjð0Þi ¼ 2ZidðtÞ. The chemical
reactions between states fi; xg and fj; xg

fi;xg Ð
oij ðxÞ

ojiðxÞ
fj; xg (2)

occur with Poisson statistics with reaction rates oijðxÞ. Since the position variable x is also a conformational
degree of freedom (the motor, in general, changes its shape while displacing), transition rates are, in general, x-
dependent. Note that for simplicity in Eq. (2) we have assumed that transitions between states happen
instantaneously and without displacement. Furthermore, we have used the fact that thermal relaxation is very
fast compared to the chemical cycle and all rapid degrees of freedom are equilibrated at constant temperature
T. In fact, the typical relaxation time of temperature gradients which have developed on a length scale l can be
estimated as t ¼ Cl2=k, where C is the specific heat of the material per volume and k the thermal conductivity.
Using typical values for water and length scales of the order of 10 nm we find t ’ 10�6 � 10�8 s, which is fast
compared to typical cycle times of several ms. This argument shows that the motor operates isothermally, i.e.,
temperature gradients are not created and cannot be used to generate motion as e.g. in the case of Feynman’s
ratchet [31].

It is now convenient to use a description based on probability distributions and to introduce distribution
functions Piðx; tÞ for the probability to find within an ensemble of identical systems the motor at time t at
position x in state i. These distributions then obey the equations

qtPi þ qxJi ¼
X
jai

ðojiðxÞPiðxÞ � oijðxÞPjðxÞÞ, (3)

Ji ¼ Z�1i ð�kBTqxPi � PiqxW i þ Pif extÞ (4)

which are Smoluchowsky equations [32] with source and sink terms. The total density and total current

Pðx; tÞ ¼
Xm

i¼1

Pi, (5)

Jðx; tÞ ¼
Xm

i¼1

Ji (6)

obey the conservation law qtPþ qxJ ¼ 0. The average velocity in the steady state with stationary and periodic
distribution function PiðxÞ ¼ Piðxþ lÞ, qtPi ¼ 0 is given by

v ¼

Z l

0

J dx

�Z l

0

Pdx. (7)

In order to characterize the chemical rates, we first introduce the chemical potentials of the fuel and hydrolysis
products in bulk solution. We denote mATP, mADP and mP the free energy per ATP, ADP or P molecule,
respectively. As an illustrative example, we first consider the four chemical states ðm ¼ 4Þ: the motor M ði ¼ 1Þ,
M–ATP ði ¼ 2Þ, M–ADP–P ði ¼ 3Þ and M–ADP ði ¼ 4Þ, often encountered for biological motor proteins.
A general reaction kinetics for all eight reaction rates which is consistent with the ATP hydrolysis reaction can
be written as

o12 ¼ a1 exp½ðW 1 þ mATPÞ=kBT � o21 ¼ a1 exp½W 2=kBT �,

o23 ¼ a2 exp½W 2=kBT � o32 ¼ a2 exp½W 3=kBT �,

o34 ¼ a3 exp½W 3=kBT � o43 ¼ a3 exp½ðW 4 þ mPÞ=kBT �,

o41 ¼ a4 exp½ðW 4 þ mPÞ=kBT � o14 ¼ a4 exp½ðW 1 þ mADP þ mPÞ=kBT �. ð8Þ

Here, we have used the condition of detailed balance of the rates. The functions aiðxÞ characterize the kinetic
rates of the reactions. Note that since transitions are fast and therefore occur for fixed x, the chemical rates do
not depend on the external force f ext or local stresses. Only displacements described by Eq. (1) are force-
dependent. The present modelization differs in this respect from models which use discrete transitions also to
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describe displacements. In this case chemical rates are strain-dependent [25,33–36]. From a physical point of
view, all models are of course equivalent.

It is useful to further simplify the generic description introduced above. The m-state model allows in
principle to describe many details of the chemical cycle and the various conformations of the motor. However,
it contains a large number of free parameters which are unknown. In order to describe physical aspects of
motion generation and force generation, it is sufficient to keep only two different states ðm ¼ 2Þ [27–29,37].

We rewrite the Fokker–Planck equations (4) for two states i ¼ 1; 2:

qtP1 þ qxJ1 ¼ �o1ðxÞP1 þ o2ðxÞP2,

qtP2 þ qxJ2 ¼ o1ðxÞP1 � o2ðxÞP2, (9)

where we have introduced o1 ¼ o12 and o2 ¼ o21 and the currents are the same as introduced in Eq. (4). This
system is sketched in Fig. 2 for an example of shifted periodic and asymmetric potentials.

This two-state model is still very flexible and allows to describe situations which capture many of the
physical aspects of biological protein motors. Fig. 3 shows choice of potentials W 1 and W 2 adapted to the
classical picture of myosin II function [26]: a myosin head detaches from the actin filament after binding ATP.
In the unbound state ATP is hydrolyzed ðM2ATP!M2ADP2PÞ. The head (M–ADP–P) is now again able
to bind actin. As it encounters a binding site along the filament, it re-attaches under phosphate release. After
re-attachment, a force-generating step occurs and ADP is released, which completes the chemical cycle. As
x

W

W2

W1

ω1 ω2

Fig. 2. Two-state model defined by two polar and periodic potentials W 1 and W 2 as well as periodic transition rates o1 and o2. Pumping

between the two states induces average motion.
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Fig. 3. Two-state model representing a situation motivated by nonprocessive motors such as myosin II. (1) Binding an ATP molecule, the

motor detaches from the filament (2). After hydrolysis (3), it rebinds and generates a force (4) and a displacement. In a two-state model,

two potentials W 1 and W 2 characterize attached and detached states with the tail at position x. The shaded areas are ‘‘active sites’’ where

ATP-driven transitions occur.
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illustrated in Fig. 3 this process can be captured by two different potentials, W 1 and W 2 representing the
unbound state (a flat potential) and the bound state (a potential with periodic structure), respectively. After
the force-generating step (power-stroke), the x variable has reached a potential minimum. Here, the system
can be actively excited to the unbound state under ATP-binding. As it re-attaches to the filament, the slope of
the potential reflects the mechanical force generated at this point. A displacement is generated as the system
slides downhill along the energy profile to reach the potential minimum. Note that microscopically this
displacement could correspond either to a tilt of the head domain as sketched in the figure or to other more
complex processes. The microscopic structure associated with this displacement is not characterized by this
description.

In a two-state picture, the chemical reaction cycle as described by the kinetic equations (8) has to be divided
into two substeps. One possibility is to introduce the forward and backward rates a1 and a2 for the combined
process of ATP-binding and hydrolysis

MþATPÐ
a1

a2
M2ADP2P, (10)

and the rates b1 and b2 which describe the process of product release and binding:

MþADPþ PÐ
b1

b2
M2ADP2P. (11)

The complete chemical cycle is now the subsequent transitions a1 and b2. As long as a2 and b1 are nonzero,
there is a nonvanishing probability for an inversion of the cycle (i.e., ATP generation) by following the steps a2
and b1. We define W 1 to be the energy of a free motor together with the product molecules ðMþADPþ PÞ
and W 2 to be the energy of the complex M–ADP–P. Detailed balance of the chemical reactions then implies

a1
a2
¼ eðW 1�W 2þDmÞ=kBT , (12)

b1
b2
¼ eðW 1�W 2Þ=kBT , (13)

where we have introduced the chemical driving force

Dm � mATP � mADP � mP. (14)

The transition rates of the two-state model are the superpositions oi ¼ ai þ bi. Introducing two unknown
functions aðxÞ and bðxÞ which describe conformation-dependent energy barriers, we can therefore write

o1ðxÞ ¼ aðxÞeðW 1þDmÞ=kBT þ bðxÞeW 1=kBT ,

o2ðxÞ ¼ ½aðxÞ þ bðxÞ�eW 2=kBT . (15)

Note that other choices to divide the reaction cycle in two relevant substeps leads to the same result, but
redefines the arbitrary functions a and b and shifts the potential W 2 by a constant value.

The functions aðxÞ and bðxÞ define the coupling of the chemical reaction to conformation. Very important is
the concept of localized or conformation-dependent transitions where the functions are peaked within a
narrow x-interval but negligible outside this interval. An example is the ATP-binding step which in Fig. 3 is
restricted to occur within an ‘‘active region’’ of conformation space corresponding to the potential minimum
while the conformations at the beginning of a force-generating power stroke are not supposed to bind ATP.
As we will describe in the subsequent sections, the localization of transitions via the functions a and b plays an
important role for many interesting cases.

Similar to the case of myosin, the two-state model can also be adapted to other situations such as the motion
of conventional kinesin molecules which are homodimers consisting of two identical heads both of which
contain an ATP-binding site. In principle, a general description would require at least eight internal states and
a complex reaction scenario. A possible simplification arises from the idea of a coordinated binding and
unbinding of the two heads in a hand-over-hand fashion as shown schematically in Fig. 4 [38]. Such a coupling
would reduce the number of relevant degrees of freedom [27]. In a two-state model, this feature can be
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Fig. 4. Hand-over-hand motion suggested for double-headed conventional kinesins. At any time, one head is bound and the second head

moves towards the next binding site. This situation can be represented by describing both heads by identical but shifted energy landscapes

W 1ðxÞ and W 2ðxÞ.
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captured in a simplified way by associating each state with one of the heads being bound to the filament.
Denoting the motor with head 1 or head 2 bound to the filament by M1 and M2, respectively, we define the
energies of these situations W̄ 1 and W̄ 2. Because the two heads forming a kinesin motor are identical, the
energy landscapes of both states are two identical potential profiles which are shifted with respect to each
other by one monomer period l=2 on the filament: W̄ 1ðxÞ ¼ W̄ 1ðxþ lÞ; W̄ 2ðxÞ ¼ W̄ 1ðxþ l=2Þ, see Fig. 4.
However, the characteristic step-size of an individual head l in this picture corresponds to two monomer sizes.
Therefore, the potentials W̄ i are l-periodic, while the total system is invariant under x! xþ l=2 if at the
same time the two states are exchanged. Therefore, the transition rates also obey o1ðxÞ ¼ o1ðxþ lÞ and
o2ðxÞ ¼ o1ðxþ l=2Þ. Again, the idea of active regions and localized transitions is important. Assuming that all
transitions occur at conformations which correspond to the potential minimum, we obtain a system which
operates in an almost deterministic way where the chemical cycle is closely correlated to a particular
displacement. In this case, forward stepping of the motor can for small external forces be tightly coupled to
ATP hydrolysis events as is observed for conventional kinesins. In the case of nonlocalized transitions, the
chemical cycle is related to motion in a more irregular way.

A useful representation of the transition rates in the hand-over-hand picture is to assume that a full ATP
hydrolysis cycle changes M1 to M2:

M1 þATPÐM2 þADPþ P. (16)

Because of the symmetry between the two heads, the reaction M2 þATPÐM1 þADPþ P occurs with the
same rates. This leads to the total transition rates

o1ðxÞ ¼ eW̄ 1ðxÞ=kBT ½āðxÞeD̄m=kBT þ āðxþ l=2Þ�,

o2ðxÞ ¼ eW̄ 2ðxÞ=kBT ½āðxÞ þ āðxþ l=2ÞeD̄m=kBT �. (17)

The unknown function āðxÞ ¼ āðxþ l=2Þ is l-periodic. Note that the choice given in Eq. (17) is a special case of
Eq. (15) if we identity Dm ¼ 2D̄m, aðxÞ ¼ āðxÞe�D̄m=kBT , bðxÞ ¼ āðxþ lÞ, W 2 ¼ W̄ 2 þ D̄m and W 1 ¼ W̄ 1. This
example demonstrates that Eq. (15) is a general choice which can describe very different types of couplings of
an ATP hydrolysis cycle to a two-state model.

4. Single motors

We will now discuss general properties of the two-state model for a single motor introduced above
[28,39,40]. Two generalized forces act on the system leading to an out-of equilibrium situation. These are the
chemical ‘‘force’’ Dm introduced in Eq. (14) and the mechanical force f ext. If both generalized forces are kept
constant, the system eventually attains a steady state with qtPi ¼ 0. The steady state distribution functions
satisfy two coupled differential equations of second order

kBTq2xP1 þ ðqxP1ÞðqxW 1 � f extÞ � P1q
2
xW 1 ¼ Zðo1P1 � o2P2Þ,

kBTq2xP2 þ ðqxP2ÞðqxW 2 � f extÞ � P2q
2
xW 2 ¼ �Zðo1P1 � o2P2Þ, (18)

where we have for simplicity assumed that the friction Z is the same for both states. This set of equations
together with periodic boundary conditions PiðxÞ ¼ Piðxþ lÞ defines the steady state distributions. They can
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be calculated in special cases analytically, but, in general, numerical integration techniques are used. For each
pair ðDm; f extÞ, there is a uniquely defined average velocity

v ¼
1

Z

Z l

0

dx½P1ðf ext � qxW 1Þ þ P2ðf ext � qxW 2Þ�, (19)

where the Pi satisfy the normalization conditionZ l

0

dx½P1 þ P2� ¼ 1. (20)

The properties of this two-state models have been discussed in Refs. [4,37,39,40]. Calculating the average
velocity v as a function of the externally applied force f ext often leads to a behavior which is roughly
approximated by a linear dependence

v ’ v0ð1� ðf ext=f sÞÞ (21)

for many different choices of the potential shapes and the transition rates. Here, v0 is the spontaneous velocity
at zero force f ext ¼ 0 and f s the stalling force, i.e., the force for which the system stops moving. Deviations
from this linear behavior mainly occur for forces larger than the stalling force jf extj4jf sj or for forces parallel
to its natural direction of motion f ext=f so0.

The observed force–velocity curves for kinesin motors show an almost linear behavior which can be
characterized by v0 and f s defined in (21). While f s ’ 5 pN does not depend much on experimental conditions,
the no-load velocity v0 depends on ATP concentration and attached viscous loads and is of the order of 1mm=s
or smaller [41–43].

The orders of magnitude observed for kinesin can be reproduced by the two-state model. Using e.g. a choice of
potentials as shown in Fig. 4 with transitions localized at the potential minimum, the stall force is approximatively
given by the potential slope. Choosing a potential amplitude of U ’ 20kBT which is of the order of the available
chemical energy of Dm ’ 15220kBT and a period of l=2 ’ 8 nm of microtubules, this force is f s ’ U=l ¼ 5 pN
consistent with the observed value. The spontaneous velocity of the two-state model can be estimated by
v0 ’ l=ðtc þ tsÞ, where tc is the time of the chemical steps and ts ’ l2Z=U is the sliding time in the potential.
Therefore, the observation of v0 alone does not fix both the chemical rate and the value of Z corresponding to
protein friction. If we assume that for large ATP concentration tc ’ o�12 O�1 is negligible and the friction Z
determines the sliding velocity v0�U=lZ. Using a value of vmax�10

�5 m=s, for the maximal velocity at high ATP
concentration, we estimate Z�10�7 which can be seen as an upper bound since chemical steps which, in general,
also contribute to friction are neglected. Note that the mechanical properties of a motor depend, in general, both
on ATP concentration and of the concentrations of the hydrolysis products [44].

A key parameter characterizing the conditions of operation of the two-state model is the dimensionless
value U=xl2Oo2 which compares the typical chemical transition time with sliding times in the potential slope.
With the arguments given above we estimate U=xl2Oo2 ’ 0:121, where we have used Oo2 ’ 103 s�1 which is
a typical transition rate [45]. However, different values are also consistent with the observed force–velocity
relation as the spontaneous velocity v0 is determined by the longest of the two time scales mentioned above.
Additional information such as velocity fluctuations would be required to determine this value from
experimental observations and to fix the orders of magnitude of all parameters of the model.

The two-state model is consistent with the observed behaviors for biological motor molecules and
reproduces typical velocities and forces and the force–velocity relation. Other types of models which use
different representations of states and transitions have also be used to consistently describe the force–velocity
relation of kinesin [3,27,34–36,46].

5. Energy transduction and efficiency

In the presence of an external force f ext, the system can perform mechanical work, i.e., it operates as a
motor. The work performed per unit time against the external force is

W ¼ �f extv. (22)
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The chemical energy consumed per unit time is given by

Q ¼ rDm. (23)

Here, we have introduced the ATP hydrolysis rate r which denotes the number of chemical cycles performed
per unit time [4]. Using the rates introduced in Eqs. (10) and (11),

r ¼

Z l

0

dx½a1P1 � a2P2� ¼

Z l

0

dx½b2P2 � b1P1�. (24)

We can therefore define the efficiency of energy transduction

Z ¼ �
f extv

rDm
. (25)

This quantity is useful for forces applied opposite to the direction of motion where 0pZp1. Note that this
definition relies on the fact that a bulk solution exists which plays the role of a thermodynamic reservoir and
allows to define the chemical potentials of fuel and products. In practical situations, the reservoirs may be
small and not in local equilibrium. In such a case the efficiency would be more difficult to define.

If Dm ¼ 0, the transition rates defined by Eq. (15) satisfy

o1=o2 ¼ e�DW=kBT , (26)

where

DW ðxÞ ¼W 2ðxÞ �W 1ðxÞ. (27)

The condition of detailed balance for the total transition rates indicates that transitions are just thermal
fluctuations and that the system is not driven chemically. If the external force also vanishes, the steady state is
a thermal equilibrium with Pi ¼ Ne�W iðxÞ=kBT for which v ¼ 0 and r ¼ 0. For Dm40, the system is chemically
driven. If no external force is applied spontaneous motion with va0 can occur, however, only if the system is
polar. For a symmetric system with W iðxÞ ¼W ið�xÞ and oiðxÞ ¼ oið�xÞ the steady state distributions are
also symmetric PiðxÞ ¼ Pið�xÞ. Since qxW i is antisymmetric in this case, v ¼ 0 by symmetry according to
Eq. (19). On the other hand, r is, in general, nonzero in this case (the functions ai are symmetric). For
spontaneous motion to occur two requirements have to be fulfilled: detailed balance of the transition has to be
broken, which corresponds to Dma0 and the system must have polar symmetry. In the case of motor proteins
the filament polarity plays this role.

For a discussion of physical aspects of motion, it is useful to write

o1ðxÞ ¼ o2ðxÞðOðxÞ þ e�DW=kBT Þ, (28)

where

OðxÞ ¼ e�DW=kBT ðeDm=kBT � 1Þa=ðaþ bÞ (29)

which characterizes locally the rate of those transitions which violate detailed balance. Using the dependence
of the chemical potential on particle concentration, mi ¼ m0i þ kBT lnCi, we observe that

O�
CATP

CADPCP

� k0

� �
, (30)

where k0
¼ eðm

0
ATP
�m0

ADP
�m0

P
Þ=kBT is the equilibrium constant of the hydrolysis reaction. O therefore is a direct

measure of the distance from chemical equilibrium. From Eqs. (29) and (30) we find

O�
Dm for Dm=kBT51;

CATP=CADPCP for Dm=kBTb1:

(
(31)

For our discussion of the two-state model it is useful to characterize the system by the functions o2 and O
instead of a and b which allows us to discuss motion generation without the need to introduce chemistry. This
choice is more general and can be used also for cases where transitions between states are triggered by other
processes than chemistry such as in artificially constructed systems [47–49].



ARTICLE IN PRESS
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6. Cooperative action of motors and collective effects

In many interesting situations, a large number of motor molecules operate collectively. Generalizing the
simple two-state model to situations where many motors are coupled rigidly, new types of behaviors of the
system can occur. This situation can be described by a simple two-state model for the probability density
Piðx; tÞ to find a motor at position x in state i ¼ 1; 2, which is normalized to P1 þ P2 ¼ ‘

�1. It satisfies the
dynamic equations

qtP1 ¼ �vqxP1 � o1P1 þ o2P2,

qtP2 ¼ �vqxP2 þ o1P1 � o2P2, (32)

where the convective terms vqxPi describes rigidly coupled motors. Again, o1 and o2 are the rates of chemical
transition between the two conformations of the motors. The velocity v ¼ l�1ðf ext þ f motÞ is generated by the
sum of the externally applied force per motor f ext and the average force

f mot ¼ �

Z ‘

0

dxðP1qxW 1 þ P2qxW 2Þ (33)

generated per motor.The friction coefficient per motor is denoted as l. If the transition rates o1ðxÞ are
localized in the potential minima, a dynamic instability in the force–velocity curve appears beyond a critical
value of the transition rates [4,50] see Fig. 5. Such a dynamic instability resembles a first order phase transition
and implies that in a certain range of forces two distinct stationary states are stable with different velocities.

An interesting result is that even if the potentials are symmetric, motion can occur via spontaneous
symmetry breaking. In this case, two spontaneously moving states with opposite velocities coexist in the
absence of external forces. In practice, this dynamic symmetry breaking transition is concealed by noise. If the
number of collectively operating motors is finite, they generate fluctuations which induce transitions between
the two oppositely moving states. As a consequence, the system exhibits bidirectional motion where it moves a
certain time in one direction before it switches stochastically to motion in the opposite direction.

Recently, such bidirectional motion has been observed in the so-called motility assays [51]. Motor molecules
are attached to a glass surface at high density and in the presence of ATP drive the motion of microtubules
which adhere to the motor-coated substrate. Usually, the generated motion occurs with one particular end of
the microtubule in front as the microtubule is moved by forces generated towards one end. For a particular
mutant of a kinesin motor, the observed behavior is significantly different. It was observed that microtubules
switched their direction of motion after times of several seconds up to a minute and the overall motion is
bidirectional. At the same time, individual motors of this type are not able to generate motion. This suggests
that the individual motors have lost their directionality as a result of the mutation. At the same time,
collections of these motors are still able to generate motion via a symmetry breaking dynamic instability. We
have shown that this interpretation provides a natural explanation of the experimental observations [52].
Interesting collective effects can also occur due to crowding of many motors on a filament along which they
advance [53,54].

A natural consequence of a dynamic instability in the force–velocity relationship of a collection of
motor proteins is the possibility to generate spontaneous oscillations [14,15]. In the presence of an additional
Fig. 5. Collective effects of many motors which interact rigidly. (a) Ratchet model for cooperative motors. For large number of motors

this system can exhibit dynamic instabilities in its active mechanical properties. (b) Force–velocity relationship which exhibits a dynamic

instability. In a range of forces f, two steady states coexist with different velocity v.
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titin

myosinactin

(a)

(b)

Fig. 6. Collective motors coupled with elastic elements can generate spontaneous oscillations. (a) Motor collection working against an

elastic spring. If the motor collection has a dynamic instability in its force–velocity relationship (see Fig. 5), the system can become self-

oscillatory. (b) Schematic structure of sarcomeres in muscles. Many myosin motors work on actin filaments. Molecules such as titin

represent elastic elements. Muscles therefore, in general, could become unstable with respect to spontaneous oscillations.
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elastic element of modulus k against which the motor collection works, the velocity becomes v ¼ l�1ðf extþ

f mot � kxÞ, see Fig. 6. If the chemical rates are varied, the system can change its behavior from a stationary
state without net motion to periodic oscillatory movements. These oscillations emerge at an instability called
Hopf bifurcation. Changing the chemical rates to bring the system to an oscillatory regime could be achieved
by varying the ATP concentration or alternatively the concentration of regulatory agents such as the
concentration of Caþþ. The oscillation frequency at the bifurcation point can be estimated as

oc ’
ak

l

� �1=2

, (34)

where a ¼ o1 þ o2 is a characteristic rate of the ATP hydrolysis cycle of the motors. If the stiffness k becomes
large, frequencies can become high. The highest frequency omax ’ ðaKcb=lÞ

1=2 the system can attain at the
bifurcation is limited by the cross-bridge elasticity Kcb and can exceed a. Far from the bifurcation, relaxation
oscillations occur where the motor collection switches periodically between two coexisting states with opposite
directionality.

Such oscillations are relevant for some cellular systems. Muscles contain large collections of myosin motors.
In addition molecules such as titin can play the role of elastic elements (see Fig. 6). Therefore, muscles, in
general, can become self-oscillatory. Spontaneous oscillations of ordinary muscles have been observed
under un-physiological conditions [55,56]. Some muscles can oscillate spontaneously as a part of their
normal function. The flight muscles of many insects which drive the wing-beat spontaneously generate
periodic contractions [57]. Collective motor behavior is a general physical mechanism which can explain such
behaviors [58].
7. Self-organization of motors and filaments

If motors form small aggregates, they can interact with two or more filaments at the same time. Such
aggregates then play the role of cross-linkers of a filament network. Since a motor can move along a given
filament, these cross-links are mobile and the resulting polymer network intrinsically dynamic [59–61].
Experimentally, such filament systems in the presence of mobile cross-linkers can be studied using artificial
constructs linking motors together. It has been shown that such systems self-organize and generate
spatiotemporal patterns such as asters and vortices [7,8,62,63].
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A case of particular importance is the situation where filaments are aligned and form a bundle [9–11]. The
dynamic and mechanic properties of active bundles can be discussed in very simplified physical models. Using
a one-dimensional description of the bundle, we denote by cþðxÞ and c�ðxÞ the densities of filaments pointing
their plus ends to the right and left, respectively. Assuming that mobile cross-links induce interactions
predominantly of filament pairs, we can write nonlinear dynamic equations for the filament densities. In this
description, filament currents are resulting from active behaviors of motors, which induce the relative sliding
of filament pairs. The densities obey dynamic equations based on conservation laws:

qtc
þ ¼ Dq2xcþ � qxJþþ � qxJþ�,

qtc
� ¼ Dq2xc� � qxJ�þ � qxJ��. (35)

Here, the diffusion terms with coefficient D result from fluctuations both thermal and nonthermal and the
active currents J�� are induced by motors which slide filaments relative to each other. They can be written as

J��ðxÞ ¼ a
Z ‘

0

dx½c�ðxþ xÞ � c�ðx� xÞ�c�ðxÞ,

J��ðxÞ ¼ �b
Z ‘

�‘
dxc�ðxþ xÞc�ðxÞ, (36)

where ‘ denotes the filament length.
The form of these interaction terms can be obtained from symmetry arguments. We have to distinguish

between two types of interactions. Interactions between filaments of equal orientation, characterized by an
interaction strength a and interactions between filaments of opposite orientation with strength b. We find that
interaction between equally oriented filaments can generate a contractile tension and induces the shortening of
a bundle. For sufficiently large values of a, a homogeneous density profile becomes unstable and contracts to
become a localized distribution. If furthermore the interaction between oppositely oriented filaments is acting,
described by a finite value of b, a dynamic instability again occurs. The homogeneous state now becomes
unstable with respect to propagating modes if periodic boundary conditions are imposed. These solitary waves
can upon further increase of a turn into more complex oscillating wave patterns.

This simplified description, which is based on basic rules of filament sliding, already leads to a rich scenario
of bifurcations and dynamic instabilities. Higher-dimensional systems and highly cross-linked gels with active
properties due to the action motor proteins present an additional challenge. Generalized hydrodynamic
approaches which take into account active stresses generated by motors as well as the average orientation of
polar filaments can capture general features of the material properties and the dynamic of such systems on
large scales [12,13].

8. Dynamics of cilia

Complex dynamic patterns generated by the action of motor proteins are used by many microorganisms to
swim in a viscous fluid. Cilia and flagella are hair-like appendages of many cells which contain microtubules
arranged in a cylindrical geometry together with a large number of dynein motors [1]. These structures of
motors and microtubules are called axonemes, see Fig. 7(a). They are able to generate bending waves as a
result of motor action which propagate along these long elastic structures.

Bending deformations of the axoneme are induced by internal forces which slide neighboring microtubules
relative to each other. If global sliding is blocked by a rigid connection between microtubules at one
end, the system bends in response to sliding. Mechanical oscillations occur if the system undergoes an
oscillating instability or Hopf bifurcation. Collectively operating motors can undergo in such a geometry
an oscillating instabilities which lead to bending waves [16,64]. This is a generalization of the spontaneous
oscillations of a motor collection which works against an elastic element described above. In the case
of the axoneme, it is the bending elasticity of the microtubules which plays the role of an elastic spring. The
bending deformations induced by the motors lead to the generation of bending waves. In the vicinity of a
Hopf bifurcation, the linearly unstable bending waves are solutions to the linear wave equation. For planar
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Fig. 7. (a) Schematic cross-section of an axoneme which is the motile element in cilia and eucaryotic flagella. Nine doublets of

microtubules are arranged in a cylindrical geometry. A central pair of microtubules is located in the center. Dynein motor proteins are

attached in large numbers on the outer microtubules and exert forces on neighboring microtubules. (b) Bendin wave patterns of an active

cilium calculated near an oscillating instability for different boundary conditions at the head. (A—clamped head, B—pivoting head, C—

free head with viscous load corresponding to a swimming sperm.) The arrows indicate the direction of wave propagation (from Ref. [16]).
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waves it reads

�iox ~c ¼ �kq4s ~cþ a2wq2s ~c. (37)

Here, the shape of the cilium is described by the local angle cðs; tÞ ¼ ~cðsÞe�iot þ c:c: of the cilium with respect
to the beat axis, s is the arclength along the cilium and o the angular frequency of the beat. The total bending
rigidity of all the microtubules in the axoneme is denoted as k and x denotes the coefficient of hydrodynamic
friction per unit length. The active properties of the collection of motors together with passive linkers between
the microtubule doublets inside the cilium are described by the linear response function wðoÞ which is complex
valued. These planar waveforms can be calculated if boundary conditions are specified, see Fig. 7. Indeed,
many simple waves such as for example the waves generated by many sperm to swim are planar and can be
compared.

9. Mechanosensory cells and critical oscillators

In the previous sections, we have demonstrated that cytoskeletal structures which contain motor molecules
can exhibit rich dynamic behaviors and can undergo dynamic instabilities. Such phenomena are also relevant
for mechanosensory cells of the inner ears of vertebrates where oscillatory instabilities and spontaneous
oscillations play an important role [17,18,20,65]. Hair cells are specialized sensory cells which possess at their
surface a bundle of rod-like structures mainly formed by densely packed actin filaments. This hair bundle is a
mechano-electrical transducer, capable of detecting bundle deflections of a few nm and generating an electrical
membrane potential in response [19].

It has been shown recently that hair bundles in frog ears exhibit spontaneous oscillatory motion [20,66–68].
It has been shown that these spontaneous movements are the signature of an active process which can amplify
periodic mechanical stimuli in a frequency selective way. If the hair bundle is stimulated by a periodic force
f ðtÞ ¼ ~f e�iot þ c:c:, the sensitivity j ~xj=j ~f j of the oscillating hair bundle increases for small stimuli if the
stimulus frequency is in the vicinity of the spontaneous frequency of oscillation of the cell [66]. Here, ~x is the
phase locked Fourier amplitude of the response.

This signal amplification can be understood if we assume that the hair bundle profits from the nonlinear
properties of an oscillator in the vicinity of a Hopf bifurcation [17,18]. A nonlinear mechanical oscillator has
general properties. At a Hopf bifurcation, the mode ~x ¼ x1 with angular frequency o becomes unstable.
Nonlinearities lead to the generation of higher harmonics xn with jnj41. The spontaneous oscillation
therefore corresponds to a displacement xðtÞ ¼

P
n xne

�iot. The instability of the fundamental mode can be
captured by the general expansion

~f ¼ A ~xþ Bj ~xj2 ~xþOðj ~xj4 ~xÞ, (38)

where A ¼ wðoÞ�1 is a linear response coefficient introduced in the last section and B is a complex coefficient
which describes the dominant nonlinearity. We assume that the behavior of the system can be changed from
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quiescent to spontaneous oscillations by varying a control parameter C. In the absence of a stimulus, ~f ¼ 0,
and the amplitude of the unstable mode is given by

j ~xj2 ¼ �
A

B
. (39)

The Hopf bifurcation occurs at a critical value C ¼ Cc and generates oscillations with frequency oc. It is
characterized by the condition that AðCc;ocÞ ¼ 0. Close to the bifurcation we can therefore express this
coefficient by a systematic expansion of the form

Aðo;CÞ ’ aðo� ocÞ þ bðC � CcÞ. (40)

As a consequence, if the system is operating at the critical point C ¼ Cc, A�ðo� ocÞ vanishes at the
characteristic frequency. If the system is stimulated at this frequency, the linear term vanishes and the
response is

j ~xj�j ~f j1=d (41)

with d ¼ 3. Consequently the sensitivity of the system j ~xj=j ~f j�f �2=3 becomes large for small stimulus
amplitudes. This compressive nonlinear response is ideally suited for frequency selective vibration detection
over a large dynamic range. With our ears we can detect sound over six orders of magnitude of sound pressure.
This requires a compressive nonlinear response to be possible as the range of vibration amplitudes of highly
sensitive mechanosensors is limited. Assuming a compressive nonlinear response of mechanosensors with
d ¼ 3 this corresponds to a range of vibration amplitudes of only two orders of magnitudes in the ear, which is
in the physiologically permissive range.

A Hopf bifurcation of a complex nonlinear dynamic system which consists of a large number of coupled
degrees of freedom can be related to critical points in extended thermodynamic systems [69,70]. Consider a
large number of noisy, oscillating variables which are arranged on a d-dimensional lattice and coupled to their
neighbors. Such a system undergoes beyond a critical coupling strength a sharp synchronization transition in a
thermodynamic limit. At this transition, spontaneous oscillations emerge which are coherent over long times.
This transition is a nonequilibrium critical point with universal properties. In general, the critical exponent d
depends on the space dimension. Above the upper critical dimension d ¼ 4, mean field theory applies which is
described by Eq. (38) and for which d ¼ 3. This relation of Hopf bifurcations to the concepts of universality
and critical points assures that frequency selectivity and the compressive nonlinear response required for
hearing is reliably achieved in the ears of vertebrate animals, even though the underlying cellular structures
and microscopic mechanisms for oscillation generation can differ significantly. An important question which
remains is how dynamic oscillators in the ear could reliably achieve proximity to a critical point. It has been
suggested that a general self-regulation mechanism could bring the system close to the critical point by a
feedback control [17].

10. Outlook

We have seen in the previous sections that many complex dynamic cellular processes in eucaryotic cells
result from the interplay of large numbers of proteins in the cytoskeleton. These processes take place in the cell
at roughly constant temperature but far from thermodynamic equilibrium and are driven by metabolic
chemical energy such as the hydrolysis of ATP. In this situation, the self-organization of the components leads
to the emergence of collective modes which undergo complex spatiotemporal dynamics. Important examples
are oscillations and wave-like modes and the active properties of inherently active materials. In addition, the
stochastic nature of molecular processes leads to fluctuations which play an important role because of the
small scale of cells. The physical description of cellular force generation therefore combines concepts from
statistical physics and nonlinear dynamics.

In the cell, such dynamic phenomena are tightly controlled and related to cellular functions. In particular,
cell division requires an intricate sequence of complex, pattern forming, dynamic events. The reliability of cell
division which is essential for the survival of the cell is achieved by the so-called check-points. At these check-
points, criteria have to be met before the cell continues its cellular cycle of division.
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The self-organization phenomena and the statistical physics of cellular force generation described here can
be studied in in vitro assays where purified components are mixed in a test tube. This provides insight in the
dynamics resulting from the interplay of certain molecules. In the future, it will be important to bring together
studies of the control and regulatory systems of the cell with the statistical physics and biophysics of force
generation. This could allow us to move towards a theoretical understanding of cellular functions and could
stimulate closer interactions of cell biology and cellular biophysics. We expect that this will open a role for
theoretical and quantitative methods in cell biology.
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[69] T. Risler, J. Prost, F. Jülicher, Phys. Rev. Lett. 93 (2005) 175702.
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