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We develop a theoretical description of sperm chemotaxis. Sperm
cells of many species are guided to the egg by chemoattractants,
a process called chemotaxis. Motor proteins in the flagellum of the
sperm generate a regular beat of the flagellum, which propels the
sperm in a fluid. In the absence of a chemoattractant, sperm swim
in circles in two dimensions and along helical paths in three
dimensions. Chemoattractants stimulate a signaling system in the
flagellum, which regulates the motors to control sperm swimming.
Our theoretical description of sperm chemotaxis in two and three
dimensions is based on a generic signaling module that regulates
the curvature and torsion of the swimming path. In the presence
of a chemoattractant, swimming paths are drifting circles in two
dimensions and deformed helices in three dimensions. The swim-
ming paths can be described by a dynamical system that exhibits
different dynamic regimes, which correspond to different chemo-
tactic behaviours. We conclude that sampling a concentration field
of chemoattractant along circular and helical swimming paths is a
robust strategy for chemotaxis that works reliably for a vast range
of parameters.

helical klinotaxis ! sperm swimming ! flagellar propulsion !
signaling systems ! adaptation

Sperm chemotaxis plays an important role for fertilization. It
implies that a swimming sperm cell steers upwards a gradient

of a chemoattractant that is released by the egg. Sperm chemo-
taxis is well established in marine invertebrates with external
fertilization (e.g., sea urchins) (1) and has been demonstrated in
mammals (e.g., humans) (2).

In bacteria, chemotaxis is well understood both experimen-
tally and theoretically. It has been shown that bacteria undergo
a biased random walk toward the source of a chemoattractant.
This is achieved by stochastic switching between running and
tumbling modes of motion which is controlled by a chemotactic
signaling system in a way that depends on the history of the
chemotactic stimulus (3–5). This chemotactic system provides a
general mechanism for chemotaxis of microorganisms (3, 5).

The swimming of sperm is very different from bacterial
swimming. Sperm possess a single eukaryotic f lagellum of !50
!m length. Dynein motors in the microtubule based axonem of
this f lagellum generate a bending wave with a frequency of !50
Hz that propels the sperm forward at a speed of !200 !m/s (6,
7). Sperm of many species do not swim on straight trajectories
but instead move in circles or helical paths (1, 6, 8–10). The
differences of the swimming motion of sperm cells as compared
to bacteria suggest that fundamentally different principles of
chemotaxis are at work in sperm.

Here, we will focus on the chemotaxis of sea urchin sperm
because of the large amount of experimental data available for
this system. Chemotaxis of sea urchin sperm is usually observed
under experimental conditions where sperm swim in a small
observation chamber under the microscope. In this situation,
sperm become localized near the surfaces of the chamber where
they swim on circular paths (1, 9–12). The curvature of their
swimming path is a consequence of the asymmetry of the
flagellar beat (9). In a concentration gradient of a chemoattrac-
tant, the circular swimming path drifts toward positions with
higher concentration (1, 10). It has also been possible to track
sperm swimming far from surfaces in three-dimensional space.

In this case, sperm swim on helical paths. In the presence of a
chemoattractant concentration gradient, the helices bend, even-
tually leading to alignment of the helix axis with the gradient (8).

Chemotaxis is mediated by a signaling system that is located
in the sperm flagellum (10). Specific receptors in the flagellar
membrane are activated upon binding of chemoattractant mol-
ecules and start the production of cyclic guanine monophosphate
(cGMP). A rise in cGMP gates the opening of potassium
channels and causes a hyperpolarization of the flagellar mem-
brane. This hyperpolarization triggers the opening of voltage-
gated calcium channels and the membrane depolarizes again.
The overall effect of this signaling cascade is the generation of
a transient increase of the internal calcium concentration along
the flagellar length (9, 10, 13). This calcium signal is thought to
regulate the activity of dynein motor proteins in the flagellum,
thus affecting the geometry of the swimming path (14). Inter-
estingly, this signaling system operates over a vast range of
chemoattractant concentrations ranging from picomolar to
micromolar concentrations (13). This observation suggests
that adaptation plays an important role in sperm chemotactic
signaling.

In this article, we develop a theoretical description of sperm
chemotaxis. We characterize a simple and general mechanism
for chemotaxis in two dimensions that is motivated by recent
experiments (9–11, 13). Sperm swimming on circular paths in a
concentration gradient of a chemoattractant sample a periodic
concentration stimulus. The signaling system transfers this stim-
ulus into a periodic modulation of the curvature of the swimming
path. As a result, the circular path drifts in a direction that
depends on the internal dynamics of the signaling system. We
show that this principle is more general and also works for helical
trajectories in three dimensions. We discuss conditions under
which a swimming sperm reaches the egg, in both two and three
dimensions. Our work characterizes a principle for the chemo-
taxis of microorganisms that is based on the idea of helical
klinotaxis introduced by the earlier work of Crenshaw (15–17).

Theoretical Description of Sperm Chemotaxis
Chemotaxis in a Plane. Chemotaxis can be studied in two dimen-
sions for sperm swimming near a surface along a path r(t). The
swimming path is defined as the position of the head averaged
over one cycle of the flagellar beat as a function of time. This
average eliminates rapid periodic movements of the head at the
frequency of the flagellar beat. The swimming velocity is char-
acterized by the speed v " !ṙ! and the tangent vector t " ṙ/v of
the swimming path. Dots denote time derivatives. The geometry
of the swimming path is described by the Frenet–Serret equa-
tions in two dimensions
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ṙ " vt, ṫ " v#n, ṅ " #v#t, [1]

where the normal n is orthogonal to t, and # is the local curvature
of the swimming path. If the curvature is constant, # " #0, the
swimming path is a circle with radius r0 " 1/#0. The angular
frequency of swimming in circles is $0 " v0#0 if the speed v "
v0 is constant.

We consider a swimming path in a concentration field c(x) of
chemoattractant, where x " (x, y) denotes a position in two-
dimensional space. The swimming sperm perceives a temporal
concentration stimulus s(t)

s$t% " c$r$t%%. [2]

This stimulus s(t) triggers a response of the chemotactic
signaling network. In general, the signaling network is a dynamic
system that generates a time-dependent output that depends on
the history of the stimulus. We characterize this response by a
dimensionless output variable a(t) with a " 1 in steady state. We
assume that this output variable directly affects the curvature #
of the swimming path by

#$t% " #0 % #1$a$t% & 1%. [3]

The variable a(t) plays a similar role as the internal calcium
concentration within the flagellum. The calcium concentration
is controlled by the chemotactic signaling network and influ-
ences the activity of dynein motors, thereby modulating the
flagellar beat pattern and the curvature of the swimming path.
For simplicity, we assume that the swimming speed is constant
v " v0 and not affected by chemotactic signaling.

We can capture the essential properties of the chemotactic
signaling network, namely its ability to adapt and its relaxation
dynamics by a simple dynamical system (18, 19)

' ȧ " ps & a
! ṗ " 1 & a. [4]

Here, p(t) is an internal variable that governs adaptation, ' is a
relaxation time, and ! has units of time per volume. For a
time-independent stimulus s(t) " s0, the system reaches a steady
state with a " 1 and p " 1/s0. The system is adaptive because the
steady-state output is independent of the stimulus level s0. Eqs.
1–4 determine a unique swimming path r(t) in a self-consistent
manner for given initial conditions and the concentration field.
Examples of swimming paths for linear and radial concentration
fields are shown in Fig. 1. These paths can be described as circles

whose centers drift along well defined trajectories.
Small periodic variations of the stimulus s(t) " s0 & s1 cos $0t

evoke a periodic response of the curvature #(t) " #0 &
(#s1 cos ($0t & )#) & !(s1

2) with amplitude gain (# and phase
shift )#. For the signaling system (Eq. 4), the linear response
coefficient *# " (#exp(i)#) reads

*# "
#1

s0

& i$0

'$0
2 & s0 /! & i$0

. [5]

This linear response will play a key role to characterize swim-
ming paths.

Chemotaxis in Three-Dimensional Space. Far from any surface,
sperm cells swim along helical paths if no chemoattractant is
present (8). The geometry of the swimming path r(t) is char-
acterized by the tangent t " ṙ/v, the normal n " ṫ/!ṫ! and the
binormal b " t ' n. The time evolution of these vectors is given
by the Frenet–Serret equations in three dimensions

ṙ " vt, ṫ " v#n, ṅ " #v#t % v+b, ḃ " #v+n. [6]

For constant curvature #(t) " #0 and torsion +(t) " +0, the
swimming path is a perfect helix with radius r0 " #0/(#0

2 & +0
2) and

pitch 2,h0 " 2, +0/(#0
2 & +0

2). The angular frequency of helical
swimming is $0 " v0 (#0

2 & +0
2)1/2.

Swimming along such a helical path in a chemoattractant
concentration field leads again to a time-dependent stimulus s(t)
of the signaling system as in the two-dimensional case. In our
three-dimensional description, we assume that the output vari-
able a(t) of this system modulates both the curvature #(t) and the
torsion +(t) of the swimming path

#$t% " #0 % #1$a$t% & 1%
+$t% " +0 % +1$a$t% & 1%. [7]

The system of Eqs. 2, 4, 6, and 7 uniquely determines the
swimming path r(t) for given concentration field and initial
conditions. Fig. 2a shows an example of a swimming path in a
radial concentration field, which leads toward the origin of the
concentration field. The swimming path r(t) is superhelical: It is
a perturbed helix that winds around a curved centerline R(t) (see
Fig. 2b).

The response of the torsion to weak stimuli is characterized by
a linear response coefficient *+ " (+ exp(i)+), which is defined
analogously to the linear response coefficient *# of the curvature
(Eq. 5).

Properties of Swimming Paths
Motion in a Plane. Eqs. 1–4 for the swimming path r(t) can be
solved numerically. For a linear concentration field c(x) " c0 &
c1 ! x, the swimming paths are drifting circles. The overall motion
of these circling paths is captured by the trajectory of the circle
centers, which defines the centerline R(t). The centerline R(t) is
oriented approximately at constant angle - with respect to the
direction of the concentration gradient c1 (see Fig. 1a). In a
radial concentration field with c(x) " c0 /!x!, the centerline R(t)
is a spiral that circles toward the origin at x " (0, 0) (see Fig. 1b).
This choice of the radial decay is is motivated by the steady-state
concentration field established in three dimensions by diffusion
from a source. Note that the spiral shape of the centerline does
not depend on the precise form of the radial decay.

To understand these results, we consider the limit of weak
gradients. We determine the swimming path in a linear concen-
tration field c(x, y) " c0 & c1 x by a perturbation calculation in
the small parameter . " (#r0

2c1, which describes the strength of
the perturbation of the swimming path by chemotactic signaling.
Here we explain the logic of the calculation, a detailed deviation

r(t)

R(t)

r(t)

R(t)

 c
Δ

a b

Fig. 1. Swimming paths r(t) in two dimensions for two different chemoat-
tractant concentration fields. (a) In a linear concentration field c(x) " c0 & c1 !
x with constant gradient vector (blue arrow), the swimming path (black line)
is a drifting circle. This drift can be described by the motion of the center of the
circle R(t) (red line). This centerline encloses an angle of - with the gradient
direction. (b) In a radial concentration field c(x) " c0/!x!, the swimming path is
a circle that drifts along a spiral to the center of the radial distribution (blue
dot). The paths shown are numerical solutions to Eqs. 1–4 with parameters in
(a) !c1! " 0.1 c0/r0, #1 " 1/r0, !"5 c0/', v0 " 0.5 r0/', and in (b) #1 " 1/r0, ! " 0.5
c0/', v0 " 0.5 r0/', where c0, r0, ' set the concentration, length and time scales
of the problem, respectively. In both cases, initial conditions were r(0) " (10,
#1) r0, a(0) " 1, and p(0) " 1/c(r(0)).
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is provided in supporting information (SI) Text. When swimming
along a perturbed circular path, the sperm cell perceives a
concentration stimulus that is periodically modulated. This
periodic stimulus elicits periodic modulations of the curvature of
the swimming path. The resulting swimming path is thus a
drifting circle with corresponding centerline

R$ t% " vd$cos - , sin -% t % !$.2% [8]

and drift velocity vd " /# (# c1 & !(.2) where /# " 1/2 v0r0
2. For

the angle with respect to the gradient, we obtain

- " 3,/2 & )# % !$.%. [9]

These results can be generalized to a nonlinear concentration
field provided that the gradient is weak, . (( 1, and the
nonlinearities are small on the length-scale r0, !)2c! (( !)c!/r0. Eq.
8 for the centerline can then be generalized as

Ṙ " vdM$-%)c / !)c ! % !$.2% [10]

where the operator M(-) rotates the vector )c in the plane by
the angle - in a counterclockwise sense. Eq. 10 represents a
differential equation for the centerline R(t) if the gradient )c of
the concentration field is evaluated at any time at position R(t).

This equation for the centerline can be illustrated for the case
of a radial concentration field c(x) " C(!x!). In this case,
according to Eq. 10, the centerline R(t) winds around the origin
in a logarithmic spiral, R(0) " R0 exp(#cot(-)0), where 0 is the
polar angle and R " !R! (see Fig. 3). It spirals inwards for #,/2 (
- ( ,/2, which corresponds to a phase shift of the signaling
system of , ( ) ( 2,. Otherwise, it spirals outwards.

We have compared solutions to the dynamic equations (Eqs.
1–4) for the swimming path to solutions of Eq. 10 for the center
line in our perturbation calculation and found good quantitative
agreement for . 1 0.1. Furthermore, Eq. 10 could predict
perfectly whether the path reached the egg.

Motion in Three-Dimensional Space. Our numerical solutions for
swimming paths in three dimensions shown in Fig. 2a demon-
strate that the modulation of curvature and torsion of the path
by the signaling system lead to chemotactic behavior. In the
absence of a gradient, the swimming path is a perfect helix with
a straight centerline. If this trajectory encounters a linear
concentration field, the helix bends until its axis is parallel or
antiparallel to the concentration gradient. In a radial concen-
tration field, swimming paths are deformed helices that wind
toward the origin of the concentration field. To understand these
numerical observations, we generalize the ideas developed in the
previous section to three dimensions.

R
θ

r(t)R(t)

Fig. 3. Schematic representation of a swimming path in two dimensions in a
radial concentration field of chemoattractant. The swimming path r(t) (black
line) is a drifting circle whose center moves along the centerline R(t) (red line).
In the limit of weak concentration gradients with the parameter . small (see
text) this centerline is a logarithmic spiral whose tangent encloses a constant
angle of - with the gradient direction at every point. The distance R"!R! of the
centerline to the source and the polar angle 0 are used in the formula of the
logarithmic spiral (see text).

hr(t)

 cψ Δ

R

R
Fig. 4. A deformed helical path r(t) can be generated by the motion of a point
on an imagined solid disk that spins around the helix axis given by the vector
h normal to the disk. The center of the disk moves along a curved centerline
R(t) with tangent Ṙ. The gradient direction )c and the helix vector h enclose
an angle 2.
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Fig. 2. Three-dimensional swimming path of a sperm cell in a radial concentration field c(x) " c0 /!x!. (a) The swimming path r(t) is superhelical and leads to the
chemoattractant source (blue dot). (b) The centerline R(t) of the full swimming path. (c) Dynamics of the coarse-grained quantities R " !R! and alignment angle
2 between helix vector and gradient direction (red curve). Temporal information is provided by dot marks along the (R, 2)-trajectory, which are seperated by
a time interval of 100 '. For comparison, the (R, 2)-trajectory as obtained by our perturbation calculation for the small pertubation parameter . (see Eq. 12) is
shown in black. Although the value of the perturbation parameter . rises from 0.1 to 1 along the trajectories, qualitative agreement between both trajectories
persists. Numerical integration of Eqs. 2, 4, 6, and 7 was done for #1 " #0.1/r0, +0 " 0.2/r0, +1 " 1/r0, ! " 10 c0 /', v0 " r0 /', and initial conditions r (0) " (15, 25,#10)r0,
t(0)"(1,0,0), n(0)"(0,1,0), b(0) " (0,0,1), a(0) " 1, and p(0) " 1/c(r(0)). The size of the box in (a) and (b) is approximately 25r0 ' 40r0 ' 40r0.
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The net motion resulting from swimming along a deformed
helical path r(t) is captured by the trajectory of the centerline
R(t). For given centerline, the helical path can be described by
tracing the trajectory of a point on the circumference of an
imagined solid disk with radius r0, rotating in its plane with a
rotation rate *3 and with its center moving along R(t). The
orientation of the disk is characterized by the unit vector h
normal to the disk, which we call the helix vector (see Fig. 4). For
a comparison of the full swimming path r(t) and its centerline
R(t), see Fig. 2 a and b.

As in the planar case, the chemotactic feedback loop for three
space dimensions (Eqs. 2, 4, 6, and 7) can be studied in the limit
of weak gradients by a perturbation calculation in the small
parameter . " ((#/#0&(+/+0) r0 !)c!, see SI Text for details. In the
limit of a weak gradient, the swimming path is a perturbed helix.
In a concentration field, this helical swimming path samples a
time-dependent chemotactic stimulus that has a periodic com-
ponent that is governed by the projection )!c " (1 # h h!) )c
of the three-dimensional gradient on the plane of the disk. This
periodic component of the stimulus generates an output signal
that periodically modulates both curvature and torsion of the

path with phase shift )# and )+, respectively. These fast modu-
lations result in slow variations of Ṙ and h. Also, helix frequency
$ " $ 0 & !(.) and helix pitch 2,h " 2,h0 & !(.) are shifted
to first order in ..

In a linear concentration field, we obtain a dynamic equation
for the alignment angle 2 between h and the gradient vector )c
(see Fig. 5) which reads

2̇ " & 3 sin 2 % !$.2% , [11]

where 3 " !)c! (4+ Re *+ # 4# Re *#) with 4# " $ 0 r0 h 0/2, 4+ "
$0 r0

2/2. This equation has two fixed points at 2 " 0 and 2 " ,,
which correspond to helical paths whose helix vectors are parallel
and antiparallel to the gradient vector, respectively. The sign of
3 determines which of the fixed points is stable. The rate at which
the helix aligns with the gradient direction is !3!. Therefore, for
almost all initial conditions, the system exhibits chemotaxis
upwards the gradient if 3 + 0. This behavior is therefore robust
and does not depend on fine-tuning of parameters.

Consider the case of a radial concentration field c(x) " C(!x!).
The five degrees of freedom represented by R and h can be
expressed by the distance to the origin R " !R!, the alignment
angle 2 between helix vector and radial concentration gradient,
as well as three Euler angles 0, 5, and 6 (see SI Text). Because
of rotational symmetry, the variables R and 2 decouple from the
other three variables and obey the dynamic equations

Ṙ " #$h cos 2 & 7 sin2 2 and

2̇ " #sin 2 #3 &
1
R $$h & 7 cos 2%$ ,

[12]

where 3 is as above and 7 " !)c!(/+ Im *+ # /# Im *#) with /# " $0 r0
(2r0

2 & 3h0
2)/4, /+ " $0 r0

2h0 /4 (see SI Text). As in the case of a linear
concentration field, we can analyze under what conditions swim-
ming paths find an egg of radius Regg at the origin by discussing
phase space trajectories of this dynamical system. We restrict
ourselves to the case !7! ( $0h0 relevant to our perturbation
calculation and assume for simplicity constant values of 3 and 7, as
well as $ " $0, h " h0. These assumptions correspond to a signaling
network that has constant linear response coefficients *#, *+,
independent of the average stimulus level, and perfectly adapts to
ramp stimuli. However, the following analysis will not change
qualitatively if these assumptions are not imposed, provided that 3
and 7 do not switch sign. Depending on the two parameters 3 and

Fig. 5. In a linear concentration field c(x) " c0&c1 ! x with constant gradient
vector (blue arrow), the swimming path is a deformed helix (black line), which
bends and eventually aligns with the gradient: The angle 2 between the the
gradient direction )c and the helix vector h decreases monotonically, see Eq.
11. The path shown is a numerical solution to Eqs. 2, 4, 6, and 7 with
parameters #1 " #0.5/r0, +0 " 0.1/r0, +1 " 0.5/r0, !"c0 /', v0 " r0 /', and initial
conditions r(0) " (15,25,#10)r0, t(0) " (1,0,0), n(0) " (0,1,0), b(0) " (0,0,1),
a(0) " 1, and p(0) " 1/c(r(0)). The size of the box is approximately
45r0 ' 20r0 ' 25r0.
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Fig. 6. Flow field and typical trajectories in the (R, 2)-phase space for the dynamic system given by Eq. 12, which describes chemotaxis in three dimensions in a radial
concentration field. Here R is the distance of the centerline to the chemoattractant source, and 2 is the angle between the helix vector and the gradient direction.
Distance R is shown relative to h0 where 2,h0 is the pitch of the unperturbed helix. (a), (b), and (c) are examples for the three regimes A, B, and C, respectively (see text
for details). Typical (R, 2)-trajectories (black lines) as well as the gradient vector field (gray arrows) are shown. (a) In regime A, the system possesses two repulsive fixed
points (black dots). The (R, 2)-trajectories are spirals which spiral away from the fixed points. (b) In regime B, the fixed points are attractive and (R, 2)-trajectories spiral
toward the fixed points. (c) In regime C, no fixed points exist, the (R, 2)-trajectories are U-shaped and eventually move away from the chemoattractant source. The
parameter values used were 3 " 0.1 $ 0, 7 " 0.1 $ 0 h0 (a); 3 " 0.2 $ 0, 7 " #0.05 $ 0 h0 (b); and 3 " #0.1 $ 0, 7 " #0.1 $ 0 h0 (c).
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7, the flow of the dynamical system can exhibit three different
regimes: Regime A for 3 + 0, 7 + 0, B for 3 + 0, 7 ( 0, and C for
3 ( 0 (see Fig. 6). In regime A and B with 3 + 0, two symmetric
fixed points (R0, 20) exist, where R0 " $0h0 /3 & !(.), 20 " ,,/2 &
!(.), which correspond to swimming paths for which the centerline
circles around the origin and R is constant. Linear stability analysis
reveals that for regime A, these fixed points are repulsive while for
regime B they are attractive (see Fig. 6 a and b). In both regimes,
(R, 2)-trajectories of the dynamical system are spirals near the fixed
points which correspond to swimming paths that repeatedly (i) align
with the gradient vector, (ii) approach the origin, (iii) loose align-
ment when they come near the origin, and (iv) move away again. As
a consequence, R subsequently decreases and increases, with an
increasing amplitude of R changes in regime A and a decreasing
amplitude in regime B. For regime C with 3 ( 0, no fixed points
exist, the trajectories are U-shaped and move toward large R at long
times (see Fig. 6c).

In the presence of an egg with radius Regg, the centerline of
swimming paths reaches the egg for almost all initial conditions
in case A (see Fig. 7a). For case B, (R, 2)-trajectories starting in
a finite neighborhood of the fixed points (R0, 20) correspond to
swimming paths that do not reach the egg. Further away from
this neighborhood, trajectories can reach the egg before they
spiral to the fixed point (see Fig. 7b). In case C, swimming paths
are repelled from the egg and chemotaxis acts down the gradient
(see Fig. 7c). Therefore, we find again that chemotaxis is a robust
property that does not require fine-tuning of parameters. It is
most reliably in case A for which a sufficient condition is given
by , ( )# ( 3,/2, 0 ( )+ ( ,/2.

Discussion
We have presented a theoretical description of sperm swimming
paths, taking into account chemotactic signaling. Our main
assumptions are (i) that the curvature and torsion of the
swimming path are modulated by the signaling system, and (ii)
that the signaling system receives a temporal chemoattractant
concentration stimulus implying that concentration differences
along the length of the flagellum are irrelevant. We study
swimming paths both in two and three dimensions and for linear
and radial concentration fields. In all cases, periodic components
occur in the stimulus that elicit periodic variations of curvature
and torsion of the path. Using both numerical and analytical
methods, we show that the resulting swimming paths are drifting

circles in two dimensions and helices that are bent and tilted in
three dimensions. We discuss the geometry of these paths and
determine the conditions under which the system moves to
regions of high chemoattractant concentration. We find that key
parameters for chemotactic success are the phase shifts )# and
)+ between stimulus and modulations of curvature and torsion,
respectively. In both two and three dimensions, there exist large
ranges of these parameters for which chemotaxis is reliable.
There is an extensive overlap of those ranges where chemotaxis
works for the same parameters in two and three dimensions.
Therefore, chemotaxis is a robust property of the system that
does not require fine-tuning of parameters if the signaling system
is adaptive. Our work is related to earlier work by Crenshaw, who
suggested that chemotaxis could be realized for helical paths by
periodically modulating rates of translation and rotation of
swimming sperm (15–17). Several works have studied chemo-
taxis for helical paths using computer simulations (20) or by
experiments with robots (21).

Our results are consistent with experimental observations
both in two and three dimensions. When sperm swims close to
a surface, observed swimming paths in a concentration gra-
dient resembled drifting circles (1, 10). Recent experiments
have shown that, upon periodic stimulation, the signaling
network generates calcium spikes which are phase-locked to
the stimulus with a phase shift of about #0.4 ' 2, (11). This
value is in the range where chemotaxis is successful in two
dimensions. Note, however, that between the calcium spike
and the curvature modulation, there could be an additional
phase shift stemming from the dynamic dependence of the
curvature on the f lagellar beat pattern. In three dimensions,
tracking experiments showed that sperm swim along helices
(8) as had been suggested earlier (6, 22). Furthermore, it was
observed that in a concentration gradient the helix axis aligned
with the gradient vector (8).

From experiments, we can estimate parameter values which
are relevant to our description. Typical values for the swimming
speed, average curvature and torsion are v0 ! 200 !m s#1, #0 !
0.025#0.05 !m#1, and +0 ! #0.025 !m#1, respectively (7, 8, 10).
The radius of the egg is Regg ! 100 !m (23). From the drift speed
vd ! 25–50 !m s#1 of swimming circles reported in ref. 11, we
estimate the perturbation parameter . " vdr0

2 //# " 2vd/v0 !
0.25#0.5. In an early experiment with bracken fern spermato-
zoids, Brokaw measured the bending rate of the helix as a
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Fig. 7. Chemotactic success as a function of initial conditions of swimming paths according to the dynamic system given by Eq. 12. The initial condition of a path
is characterized by the initial distance R(0) of the centerline to the chemoattractant source and the initial angle 2 (0) between the helix axis and the gradient
direction. Distance R is shown relative to h0 where 2,h0 is the pitch of the unperturbed helix. For a given initial condition, chemotaxis is unsuccessful if the
correspondent swimming path has a distance R(t) to the chemoattractant source which is always greater than an egg radius Regg, R(t) + Regg. Initial conditions
with unsuccessful chemotaxis are shown as blue dots, blue lines, and blue hatched regions. The radius of the egg Regg is indicated by a dashed line. (a), (b), and
(c) are examples for the three regimes A, B, and C, respectively (see text for details). (a) In regime A, where repulsive fixed points exist (see Fig. 6a), chemotaxis
is robust and fails only at the fixed points and the marginal case 2 (0) " ,,. (b) In regime B, fixed points are attractive (see Fig. 6b). Chemotaxis is successful in
a large range of initial conditions and fails only in a neighborhood of the fixed points as well as in the marginal case 2 (0) " , ,. (c) In regime C, no fixed points
exist and chemotaxis is repulsive with respect to the chemoattractant source (see Fig. 6c). Chemotaxis is unsuccessful except for those initial conditions where
the initial distance to the source is already small and the helix axis is nearly aligned with the gradient direction. The parameter values used were Regg " h0 and
3 " 0.1 $ 0, 7 " 0.1 $ 0h0 (a); 3 " 0.2 $ 0, 7 " #0.05 $ 0 h0 (b); and 3 " #0.1 $ 0, 7 " #0.1 $ 0h0 (c).
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function of the concentration gradient. He suggested Eq. 11 as
a phenomenological description of his observations and could
estimate 3c/!)c! ! 350 !m s#1 (22). Furthermore, he observed
that bending of the helix occurred in the plane spanned by
the helix vector and the gradient, which suggests that 3- "
!)c!(4#Im*##4+ Im *+) ! 0 (see Eq. S14 in SI Text).

We used a simplified description of the signaling network
which captures essential properties such as adaptation and a
simple relaxation dynamics that generates a phase shift between
stimulus and output. Experimental studies of the signaling
system revealed that the flagellar membrane potential exhibits
spikes on a 100-ms time scale with an amplitude that increases
from 2 to 45 mV when stimulus concentration is varied over 5
orders of magnitude from 250 fM to 25 nM. The spike amplitude
saturates for stimulus concentrations as low as !25 pM (13). This
nonlinear response suggests a more complex dynamics than the
simple system described by Eq. 4. If the signaling network
generated spikes of constant amplitude that are phase-locked to
a periodic stimulus, the perturbation parameter . would be
independent of concentration. We speculate that an adaptation
mechanism ensures that . does not change significantly over a
large range of concentrations.

Helical swimming paths are ubiquitous in nature and are a
direct result of an asymmetric propulsion mechanism. In addi-
tion to sperm, it has been observed for ascidian larvae, eukary-
otic f lagellates such as Chlamydomonas, f lagellated plant sper-
matozoids, and even some bacteria such as Thiovulum majus
(24–27). In the case of ascidian larvae, both positive and negative
phototaxis have been observed in different developmental
stages. Such a change in phototactic behavior can be accounted
for by our theory by a simple change of the phase shift between
the stimulus and the response (24).

In summary, we have shown that temporal sampling of a
concentration field along a helical path provides a robust
strategy for chemotaxis if curvature and torsion are modulated
in response to the stimulus. This mechanism can work reliably
over a large concentration range, does not require fine-tuning of
parameters, and depends only on a few generic properties of the
signaling network.

We thank U. B. Kaupp for stimulating discussions and a critical reading
of the manuscript.
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