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Abstract. We develop a generic hydrodynamic theory of active fluids with
several components. We take into account polar order and consider the case
when one component is viscoelastic. Our theory is motivated by the cytoskeleton
which is a network of elastic filaments that are coupled to active processes
such as the action of motor proteins which can generate relative forces between
filaments as they hydrolyze a fuel (ATP). In addition to the filament gel, the
system is embedded in a solvent component and free monomers constitute a
third component. We derive constitutive material equations for the combined
system which include reactive and dissipative couplings as well as the chemical
driving by ATP hydrolysis and a possible chiral symmetry of the filaments. As
an illustration of these equations, we discuss an active liquid in a simple shear
gradient.
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1. Introduction

The cytoskeleton is a network of filaments present in all eukaryotic cells [1, 2]. It is largely
responsible for the mechanical and material properties of cells [3]. The most important
filaments are actin filaments and microtubules which form by assembly of actin and tubulin
proteins, respectively. In the presence of cross-linking proteins such as filamin, fascin or
α-actinin the polymer network turns into a viscoelastic physical gel [4]. In the presence of
filamin, for example, an actin network displays on short timescales smaller than 10–100 s a shear
modulus of the order of 103–104 Pa. At long times, the gel behaves as a fluid with a viscosity of
the order of 104–105 Pa s. A key property of actin filaments and microtubules is their structural
polarity, which results from differences between the two ends of such a filament, commonly
referred to as plus- and minus-end, respectively. On a larger scale, the filament network can
therefore be structurally polar if filaments are oriented on an average along a certain direction.

In order to describe the dynamics and mechanics of the cytoskeleton in cells, it is essential
to take into account the inherent activity of the system. This activity results, for example, from
specialized motor proteins which specifically bind to filaments [2, 3]. Motor proteins transduce
the chemical energy liberated during the hydrolysis of adenosine triphosphate (ATP) yielding
adenosine diphosphate (ADP) and inorganic phosphate (Pi) to generate motion and forces along
the filaments in a direction imposed by the filaments’ polarity. Small aggregates of motors can
form mobile cross-linkers in the gel which generate filament flows and active stresses in the
system [5]. In a gel with net polarity, motors can generate net transport. Another important
process driven by ATP hydrolysis is filament treadmilling. In this case, filaments turn over by
being polymerized at the plus-end while depolymerizing at the minus-end.

In addition to transport by motor proteins, the cytoskeleton can induce transport in an
indirect way by inducing flows in the cytosol, i.e. the solvent surrounding the filament network.
Such a situation occurs, for example, at the leading edge of a cell crawling on a substrate
[6, 7]. The front part of such a cell is called lamellipodium. It is a thin layer of cytoskeletal
gel which protrudes forward by polymerizing and cross-linking new actin filaments. This
process is promoted by proteins like Wiskott–Aldrich syndrome protein (WASP) located in
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the cell membrane at the tip. The actin network density is controlled by the density of proteins
which promote gel polymerization. Subsequently, though, the polymerized gel must reach its
equilibrium swelling, which requires a flux of the cytosol with respect to the gel.

Physical descriptions of cytoskeletal dynamics have included different aspects of this
dynamics. In microscopic descriptions of the dynamics of filaments induced by molecular
motors, relative movements of filaments and solvent are described, but the solvent is assumed
to be immobile [8]–[16]. This assumption is justified in situations where the cytoskeletal gel
is close to a solid substrate. Macroscopic, phenomenological descriptions were either based
on the same assumption or described the cytoskeletal gel together with the surrounding fluid
as a single effective component [17]–[20]. In [18], we proposed a systematic approach to the
dynamics of one-component active polar gels, based on the hydrodynamic theories of liquid
crystals initiated by Martin et al [21]. It considers only macroscopic variables such as the
stress or the rate of change of the polarization. The most general linear relations between
fluxes and forces and consistent with the symmetries of the system are expressed. Both reactive
and dissipative terms are considered and geometric nonlinearities and convective as well as
co-rotational terms are included. Because of the general nature of this approach, this theory
also captures the large length and long timescale dynamics of other systems with the same
symmetries. An example is provided by suspensions of self-propelling bacteria, discussed for
example in [22]. Here, the polarity results from the direction of motion of single bacteria.
However, since the dominant interactions between bacteria are hydrodynamic and mediated by
the solvent, a two-component phenomenological theory has been proposed for the long time and
large length scale behavior [23, 24]. In comparison to our hydrodynamic theory of active polar
gels, the theory developed by Ramaswamy and Simha takes viscoelastic effects into account via
the relaxation time of the orientational order parameter, and does not consider explicitly the role
of ATP hydrolysis.

In the present work, we extend our one-component hydrodynamic description of the
cytoskeleton to that of a three-component fluid which distinguishes between the viscoelastic
polar filament network, the surrounding solvent as well as the filament subunits dissolved
in the solvent. In addition to permeation effects, this theory also allows us to account for
the gel compressibility. These features are important for a physical description of filament
polymerization and depolymerization in the bulk.

In the following section, we introduce the general framework by discussing a standard two-
component fluid which is passive, viscous and non-polar. This illustrative example introduces
the basic concepts and notations. In the same section, we also discuss the passive permeation of
a liquid through an elastic gel. In section 3, we turn to the case of a three-component viscous
polar fluid which is driven by inherent active processes and derive general constitutive equations.
The following section discusses the shear flow of an active gel between two plates as a simple
example. In section 5, we extend our theory to viscoelastic gels and consider the effects of
filament chirality. The paper closes with a discussion and relates the present work to earlier
descriptions.

2. Passive two-component fluids

We first consider a passive fluid consisting of two components to illustrate the general
hydrodynamic approach and we follow closely the lines of arguments given by De Groot and
Mazur [25]. In a two-component fluid, there are three conserved quantities, namely the masses
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of the two components and the total momentum. The corresponding conservation laws for the
masses are

∂tρi +∇ · ρivi = 0, (1)
where ρi , i = 1, 2 are the respective mass densities of the two components and ρivi the
corresponding currents. Momentum conservation can be written as

∂tg− ∇ · σ = fext, (2)
where g is the total momentum density, and where the momentum flux density is equal to the
negative of the total stress tensor σ . The external force density is denoted by fext. Introducing
the total mass density ρ = ρ1 + ρ2 and the center-of-mass velocity v= (ρ1v1 + ρ2v2)/ρ of small
volume elements, the total momentum density can be expressed as g= ρv. Note that since
molecular masses mi are constant, conservation of mass is equivalent to conservation of particle
numbers for each component. The continuity equations for the particle number densities ni ,
where ρi = mini , are

∂tni +∇ · Ji = 0 (3)
with particle currents Ji = ρivi/mi . It is helpful to split the particle currents into a convective
part moving with the center-of-mass velocity v and a diffusive part associated to the relative flux
between the two components:

Ji = niv+
ji
mi

, (4)

where j1 = −j2 ≡ j.
In order to derive the constitutive equations, space is divided into volume elements that are

small compared to the length scales of the spatial structures under study. The central assumption
is that each volume element is in a state of local thermodynamic equilibrium. The total free
energy of such a volume element can then be written as

F = 1
2Mv2 + F0(N1, N2, V ). (5)

The first term is the kinetic energy associated with the volume element that moves in space with
center-of-mass velocity v and that contains particles of total mass M . The second term on the
left-hand side describes the free energy of the system in the volume element, which depends
on the numbers N1 and N2 of particles of the respective two components as well as on the
volume V . The local particle number densities are ni = Ni/V . As usual, the pressure in the
volume element is given by P = −∂F0/∂V while the respective chemical potentials of the two
components are given by µi = ∂F0/∂Ni , i = 1, 2. These intensive quantities are related by the
Gibbs–Duhem relation

dP = n1dµ1 + n2dµ2. (6)
The energy of the full system is obtained by summing over the contributions of all volume
elements. In the continuum limit this yields

F =
∫
d3r

{1
2ρv2 + f0(n1, n2)

}
, (7)

where f0 = F0/V is the free energy density that only depends on the densities of the two
components.
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We consider now the rate of change of the full free energy of the system
d
dt
F =

∫
d3r

{
∂t
1
2ρv2 + ∂t f0

}
=

∫
d3r

{
vα∂t gα − 1

2v
2
α∂tρ +µ1∂tn1 +µ2∂tn2

}
. (8)

Using the conservation laws for the two components, this can be rearranged as

d
dt
F =

∫
d3r

{
vα∂βσαβ + 1

2v
2
α∂β(ρvβ) − µ1∂α

[
n1vα +

jα
m1

]
− µ2∂α

[
n2vα − jα

m1

]}
. (9)

Partial integration, use of the Gibbs–Duhem relation and taking into account the symmetry of
the stress tensor for an isotropic liquid finally yields

d
dt
F =

∫
d3r

{
−σ dαβvαβ + jα∂αµ̄

}
, (10)

where we have introduced the strain rate tensor vαβ = (∂αvβ + ∂βvα)/2. The dissipative stress is
defined as σ dαβ = σαβ + ρvαvβ + Pδαβ and the relative chemical potential µ̄ = µ1

m1
− µ2

m2
. The rate

of change of the total free energy is thus a sum of products of generalized fluxes, σ and j, and
generalized forces, vαβ and −∂αµ̄ .

The constitutive equations of the fluid are obtained by expanding the fluxes as functions of
the forces. At linear order we obtain

σ dαβ = 2η
[
vαβ − 1

3vγγ δαβ

]
+ η̄vγ γ δαβ, (11)

jα = −γ ∂αµ̄. (12)

The phenomenological parameters (the Onsager transport coefficients) η and η̄ are, respectively,
the shear and bulk viscosity and γ > 0 is a mobility. Note that there is no coupling to linear
order between the two pairs of conjugate fluxes and forces. This is due to the different tensorial
order of the fluxes and to the isotropy of the fluid. Furthermore, the dissipative stress tensor
is symmetric. An asymmetric component would yield a surface term corresponding to an
externally applied torque.

The mobility γ is related to the usual diffusion constant. Indeed, expressing µ̄ in terms of
the mass fraction φ = ρ1/(ρ1 + ρ2) and the pressure P we find

∂αµ̄ = ∂µ̄

∂φ
∂αφ +

∂µ̄

∂P
∂αP, (13)

= ∂µ̄

∂φ
∂αφ +

(
ω1

m1
− ω2

m2

)
∂αP, (14)

where ωi = ∂µi
∂P is the molecular partial volume of component i ; we therefore obtain

jα = −ρD∂αφ − γ̃ ∂αP, (15)
where D = (γ /ρ)∂µ̄/∂φ is the diffusion constant and γ̃ = [ω1/m1 − ω2/m2]γ .

As mentioned in the introduction, the cytoskeleton is a physical gel with elastic behavior
on short timescales. Its dynamics thus involves permeation by the cytosol, the fluid component
of the cell interior in which the cytoskeleton gel is immersed. The permeation flow is driven
by fluid pressure and by elastic forces present in the gel. We will now briefly consider the
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hydrodynamics of a two-component system consisting of an elastic gel and a fluid. Let nf denote
the density of the fluid and xα the displacement field of the gel component. The free energy of
the system depends on the fluid density nf and on the strain tensor xαβ = 1

2(∂αxβ + ∂βxα) . It can
be written as

F =
∫
d3r

{1
2ρv2 + f (nf, xαβ)

}
, (16)

where vα is again the center-of-mass velocity of the system. Using the same logic as described
above, we find for the rate of change of the free energy

d
dt
F =

∫
d3r

{
−σ d

αβvαβ − (uα − vα)

(
∂βσ

el
αβ +

φg

φf
∂αPf

)}
, (17)

where φg and φf are the mass fractions of fluid and gel, σ elαβ = δF/δxαβ is the elastic stress
tensor of the gel and uα = ẋα is the gel velocity. The fluid pressure is defined as Pf = nfµf − f ,
where the fluid chemical potential is µf = δF/δnf. It is related to the total pressure by P =
Pf − 1

3σ
el
γ γ . The dissipative stress tensor given by σ dαβ = σαβ − σ elαβ + Pfδαβ + ρvαvβ . The force

balance condition is

∂β(σ
d
αβ + σ elαβ − Pf δαβ) = 0, (18)

where inertial forces have been neglected. Identifying (uα − vα) and σ dαβ as fluxes and vαβ and
∂β(σ

el
αβ +

φg
φf
Pfδαβ) as forces, we write the constitutive equations as

σ dαβ = 2ηs(vαβ − 1
3vγγ δαβ)+ η̄svγγ δαβ, (19)

λp(uα − vα) = ∂β

(
σ elαβ +

φg

φf
Pf δαβ

)
, (20)

here ηs and η̄s are the viscosities of the solvent and λp is a permeation coefficient. According
to equation (20), permeation flows of the fluid through the gel are driven by elastic stresses
and fluid pressure gradients. These are the classical equations obtained for gel permeation in a
so-called two-fluid model [26].

3. Active polar three-component fluids

We now apply the approach of the previous section to derive the hydrodynamic equations
for a fluid sharing essential features with the cytoskeleton. The fluid is composed of three
components: the first component describes a polar polymer network with a number density n0 of
monomeric subunits. The second component represents the monomeric subunits with number
density n1, while the third component describes the solvent which has a number density n2 of
solvent molecules. Furthermore, we also take into account the effects of active processes driven
by the hydrolysis of ATP. In a first step, we identify the conserved quantities and the broken
continuous symmetries in the system and then calculate the change in free energy per unit time.
We identify the fluxes and forces and express the phenomenological constitutive equations. This
is done for a viscous response. The viscoelastic case is discussed later in section 5.
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3.1. Conservation laws and order parameters

Key quantities which satisfy conservation laws are the particle densities n0, n1 and n2 of the
three components. They satisfy the conservation equations

∂tn0 +∇ · J0 = S, (21)

∂tn1 +∇ · J1 = −S, (22)

∂tn2 +∇ · J2 = 0. (23)

The source term S accounts for the polymerization and depolymerization reactions which lead
to an exchange of monomers between the gel and the solvent. The particle currents Ji can be
expressed by the center-of-mass velocity v and the diffusion currents j0 and j1:

J0 = n0v+
j0
m0

, (24)

J1 = n1v+
j1
m1

, (25)

J2 = n2v− j0
m2

− j1
m2

. (26)

Here, mi , i = 0, 1, 2 are the respective molecular masses of monomers in the gel, dissociated
monomers in solution as well as of the solvent molecules. The dynamics of the concentrations of
ATP and its hydrolysis products (ADP and Pi) will not be considered explicitly. For simplicity,
we assume them to be homogeneous in space and constant in time.

Due to the polar nature of the cytoskeletal filaments, the system can be locally anisotropic.
This introduces a hierarchy of order parameters, the most important ones are polar and nematic
order. They result from breaking a continuous symmetry (rotational invariance) and thus
contribute to the hydrodynamic modes. Here, for simplicity, we consider only the polar order
described by a vector field p. Note that a generalization to nematic order and order parameters
of higher order is straightforward.

3.2. Fluxes and forces

The free energy associated with a volume element depends on the numbers of the three kinds
of particles contained in the element, but also on the polarization and the numbers of ATP, ADP
and Pi. The field h conjugate to the local polarization is given by the functional derivative of the
free energy density with respect to the local polarization as hα = − δ f

δpα
. The rate of change of

the full free energy of the system can be written as
dF
dt

=
∫
d3r

{
∂t
1
2ρv2 +

∑2
i=0 µi∂tni − hα∂t pα − r,µ

}

=
∫
d3r

{

−
[
σαβ − ρvαvβ

]
∂αvβ +

2∑

i=0
nivα∂αµi + j0,α∂αµ̄0 + j1,α∂αµ̄1 − (∂t pα)hα − r,µ

}

.

(27)
Here, we have used the conservation equations and introduced the effective chemical potentials
µ̄i = (µi/mi − µ2/m2) for i = 0, 1. Furthermore, we have included the contribution of ATP
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hydrolysis to the change in free energy given by the term r,µ. Here, r is the rate at which ATP
molecules are hydrolyzed and ,µ = µATP − µADP − µP is the difference in chemical potentials
of ATP and the product molecules ADP and Pi, respectively.

The gradients of the chemical potentials can be eliminated by using the Gibbs–Duhem
relation for a multi-component polar fluid

∂βσ
e
αβ = −

2∑

i=0
ni∂αµi − hγ ∂α pγ . (28)

It involves the Ericksen stress σ e which in this system generalizes the pressure as the variable
conjugate to the volume. It is given by

σ eαβ =
(

f −
2∑

i=0
µi ni

)

δαβ − ∂ f
∂(∂β pγ )

∂α pγ . (29)

This expression is derived in appendix A.
Using the Gibbs–Duhem relation (28) we can rewrite the rate of change of the free energy

(27) as
dF
dt

=
∫
d3r

{
−σ sαβvαβ + j0,α∂αµ̄0 + j1,α∂αµ̄1 − Pαhα − r,µ

}
. (30)

Here, we have introduced the symmetric part of the deviatory stress
σ sαβ = σαβ + ρvαvβ − σ aαβ − σ e,sαβ , (31)

where σ e,s is the symmetric part of the Ericksen stress and σ a the antisymmetric part of the
total stress. The antisymmetric part of the stress tensor can be determined independently using
angular momentum conservation. It is given by the torque density that is generated by the
molecular field h on the polarization vector p [27]

σ aαβ =
(
pαhβ − pβhα

)
/2. (32)

In equation (30), P denotes the convected co-rotational derivative of the polarization vector

Pα = D
Dt

pα = ∂t pα + vβ∂β pα +ωαβ pβ, (33)

where ωαβ = (∂αvβ − ∂βvα)/2 is the vorticity of the velocity field v.
From expression (30) for the rate of change of the free energy change we find the following

pairs of conjugated fluxes and forces:
flux↔ force
σ sαβ ↔ vαβ

ji,α ↔ −∂αµ̄i

Pα ↔ hα

r ↔ ,µ. (34)

3.3. Phenomenological constitutive equations—viscous response

The phenomenological constitutive equations are obtained by expressing the fluxes to linear
order in terms of the forces. In contrast to the case of two fluids discussed in the previous
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section, a coupling between quantities of different tensorial ranks is now possible, because the
fluid can be polarized which locally leads to anisotropies characterized by the vector p. The
corresponding coupling constants are tensors that are constructed using the polarization
vector p. For simplicity, we neglect here the chirality of the filaments. For completeness, we
give in appendix B the generalization of the constitutive equation for a polar chiral material.
Note, that the generalized forces have different signatures under time inversion. While vαβ

changes sign, the other forces do not. Therefore we distinguish between the components of
the fluxes that show the same behavior under time inversion as the conjugated force, called
dissipative, and those that show the opposite behavior called reactive. We denote the various
components by superscripts ‘d’ and ‘r’, respectively.

The phenomenological equations for the dissipative currents can then be written as
σ s,dαβ = 2η

(
vαβ − 1

3vγγ δαβ

)
+ η̄vγ γ δαβ, (35)

jdi,α = −
1∑

j=0
γi j∂αµ̄ j + λ̄i hα + κi pα,µ, (36)

Pdα = −λ̄i∂αµ̄i +
1
γ1
hα + λ1 pα,µ, (37)

r d = −
1∑

i=0
κi pα∂αµ̄i + λ1 pαhα +.,µ. (38)

These equations are very similar to the constitutive equations of the one component active
polar gel that we have derived previously. In the absence of activity, ,µ = 0, they include a
non-diagonal mobility matrix γi j as in all multicomponent systems and a dissipative coupling
between the currents and the polarization field (characterized by λ̄i ). There are two types of
active terms: an active orientational field λ1,µ which also exists for a single component active
fluid, but also active currents κi pα,µ. These currents could for example result from interactions
between motors walking on filaments and the surrounding fluids. Hydrodynamic couplings can
induce such relative motions between the various components and the solvent as shown in [28].

The reactive terms in turn can be written as

σ s,rαβ = −
1∑

j=0

ε j

2
(pα∂βµ̄ j + pβ∂αµ̄ j) −

1∑

j=0
ε̄ j pγ ∂γ µ̄ jδαβ +

ν1

2
(pαhβ + pβhα)

+ν̄1 pγ hγ δαβ − ζ̄ δαβ,µ − ζ pα pβ,µ − ζ ′ pγ pγ δαβ,µ, (39)

j ri,α = −εi pβvαβ − ε̄i pαvββ, (40)

P rα = −ν1 pβvαβ − ν̄1 pαvββ, (41)

r r = ζ pα pβvαβ + ζ̄ vαα + ζ ′ pα pαvββ. (42)

The only active term is the active stress characterized by the activity coefficient ζ and there
is no new active contribution compared to a one component polar active fluid. The main new
passive effect is the coupling between the composition gradient and the mechanical variables
characterized by the transport coefficients εi .
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Figure 1. Illustration of the shear flow geometry and the corresponding solution
for the center-of-mass velocity v. The polarization p points into the x-direction,
the upper plate moves at velocity u, the lower at velocity −u in the x-direction.

4. Shear flow

As an illustration of the multicomponent active gel equations, we consider a flow confined
between two parallel plates, see figure 1. The plates are placed at z = −h and z = h and are
sheared with a relative velocity 2u in the x-direction. For the sake of simplicity, we do not
consider filament polymerization and depolymerization and we do not consider explicitly the
free actin monomers which are included in an effective solvent. The polarization vector is
assumed to be fixed with px = 1 and pz = 0. The fluid is incompressible, such that ∂xvx + ∂zvz =
0, where v is the center-of-mass velocity. The system is invariant with respect to translations in
the x-direction and vz = 0. In the following vx is denoted by v.

According to equations (31), (35) and (39), the transverse component of the stress tensor
σ can be written as

σxz = η
d
dz

v − ε

2
d
dz

µ̄. (43)

In the expression for σxz, µ̄ denotes the exchange chemical potential given by µ̄ = (µg/mg −
µs/ms) , where the subscripts ‘g’ and ‘s’ refer to quantities related to the gel and the solvent,
respectively. In a two-component fluid, there is only one independent particle flux and we omit
here the subscript ‘i’ corresponding to the various independent fluxes ji . The components of the
diffusive current j are given by equations (36) and (40).

jx = κ ,µ, (44)

jz = −γ
d
dz

µ̄ − ε

2
d
dz

v. (45)
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We now use the conservation laws for the particle numbers and the momentum to obtain the
flow field in the fluid. In a steady state, the diffusive current in the z-direction must be constant.
Since filaments are assumed not to polymerize or depolymerize in the system, the conservation
of the gel mass implies jz = 0, so that

µ̄+
ε

2γ
v = µ0, (46)

where µ0 is an integration constant.
Cytoskeletal dynamics occurs at low Reynolds numbers and we therefore neglect in the

following inertial terms. Consequently, momentum conservation reduces to the force balance
∂βσαβ = 0. The force balance in the x-direction implies

ηv(z) − εµ̄/2= σ0z + b (47)
with two integration constants σ0 and b. The constants σ0 and b are fixed by the boundary
conditions on the shear stress σxz at the plates, z = ±h. Several slip conditions are possible. We
consider here the case where the stress is imposed by the friction of the gel at the plates. In
the reference system, where the upper plate moves with velocity u and the lower plate with a
velocity −u, we get

σxz(h) = −ξ(vg(h) − u), (48)

σxz(−h) = −ξ(vg(−h)+ u). (49)

We have defined here the gel velocity vg from the number current Jg = ngvg so that vg = v+ j/ρg.
As σxz(h) = −σxz(−h), we obtain for the gel velocity at the upper and lower plates vg(−h) =
−vg(h). Hence, the center-of-mass velocity obeys v(−h) = −v(h) − 2κ,µ/ρg. This allows for
the calculation of the two integration constants. The center-of-mass velocity then reads

v(z) = ξu
ξh + η + ε2/(4γ )

z− κ

ρg
,µ. (50)

The exchange potential is

µ̄ = µ0 +
εκ,µ

2γρg
− ε

2γ
ξu

ξh + η + ε2/(4γ )
z. (51)

For a passive non-polar system (,µ = 0, ε = 0), we find the classical results for a sheared
incompressible homogeneous fluid. The exchange chemical potential µ̄ is constant and therefore
the mass fraction φ is constant. There is no macroscopic flux of liquid. If, however, the system
is active, ,µ &= 0, a macroscopic flux of liquid is generated. Due to the actin polarity there is
also a gradient of exchange potential and therefore a gradient of mass fraction. The integration
constant µ0 is fixed by the average mass fraction in the slab φ0. If we assume that the exchange
potential varies linearly with the mass fraction,µ0 + εκ,µ

2γρg
= µ̄(φ0) and φ(z = 0) = φ0. The mass

fraction φ − φ0 is antisymmetric around the center of the liquid slab z = 0.

5. Multicomponent chiral viscoelastic gels

As was mentioned in the introduction, the cytoskeleton shows viscoelastic behavior. The
filaments are passively and actively cross-linked yielding elastic behavior on timescales that
are short compared to the average life-time of a cross-link, while it exhibits viscous behavior on
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longer time-scales. The hydrodynamic theory of a multicomponent active polar fluid presented
in the previous section, neglects the elastic behavior on short timescales.

We will capture viscoelastic effects by making use of the Maxwell model for viscoelastic
materials with an elastic response on short and a viscous response on long timescales. It is given
by the linear constitutive equation

(
1 + τ

D
Dt

)
σαβ = 2η

(
vαβ − 1

3δαβvγγ

)
+ η̄δαβvγγ , (52)

here, τ = E/η, is the viscoelastic relaxation time and E denotes the elastic modulus observed
on short timescales. We use the simplifying assumption of only one relaxation time, but note
that there is experimental evidence for a power law distribution of relaxation times in the
cytoskeleton [29, 30]. The Maxwell model can be rewritten as Onsager relations for the reactive
and dissipative component of the stress, with σαβ = σ dαβ + σ rαβ and the relations:

(
1− τ 2

D2

Dt2

)
σ dαβ = 2η

(
vαβ − 1

3δαβvγγ

)
+ η̄δαβvγγ , (53)

σ rαβ = −τ
D
Dt

σ dαβ. (54)

Based on this Maxwell model, we can generalize the expansion of the dissipative fluxes
given by equations (35)–(38) and of the reactive fluxes given by equations (39)–(42). These
generalized relations are presented in appendix B in equations (B.1)–(B.8). As in [19], we have
assumed here that there is a single relaxation time for the stress relaxation and for the rate of
change of the polarization. The resulting constitutive material equations for a viscoelastic active
gel are presented in equations (B.9)–(B.12). Note that in the limits of long times, these equations
simplify and become those discussed in the previous section. In the limit of short times, they
contain the elastic properties of the Maxwell model.

However, for short times we do not recover the full physics of permeation of an elastic gel
immersed in a fluid discussed in section 2. In order to capture this physics described by equation
(20), we modify equation (B.10) by assuming that there is a single relaxation time. The correct
asymptotic behaviors in both the liquid and the solid limit are found if the currents ji satisfy
(
1− τ 2

D2

Dt2

) 

 ji,α +
1∑

j=0
γi j∂αµ̄ j − λ̄i hα − κi pα,µ+ εi pβvαβ + ε̄i pαvββ





= −τ 2φg

λp

D
Dt

∂β

(
2η

(
vαβ − 1

3vγγ δαβ

)
+ η̄vγ γ δαβ

)
. (55)

This equation introduces new crossed terms between the diffusive currents and the stress. Note
that the constitutive equation for the stress should also be modified accordingly in order to
satisfy the Onsager relations.

Actin filaments and microtubules are helical objects. This symmetry allows for chiral terms
which can be included in the theory as additional terms in the constitutive equations which
involve the totally antisymmetric tensor εαβγ . The chiral terms permitted to linear order in the
forces are included in the constitutive relations (B.1)–(B.12). Note that all the chiral terms have
a passive character.
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6. Discussion

Motivated by the description of the actin cytoskeleton, we have presented in this paper a
hydrodynamic theory of three component active fluids, one of which is active and polar
and represents the filamentous actin phase, while the other two represent monomeric actin
and the cytosol (the solvent). Built on conservation laws and symmetry relations, the theory
captures the essential features of the cytoskeleton and allows to address physical aspects of
cytoskeletal dynamics. The description extends our earlier work [18], where the cytoskeleton
was approximated by a one component active polar gel. This description thus ignored the
relative permeation motion of the cytosol through the network of actin filaments.

Although in some cases this permeation motion does not seem to be essential it is clearly
important for example for the motion of a lamellipodium discussed in [31]. In the front part of
the lamellipodium, the actin network displays retrograde motion into the direction opposite to
that of the lamellipodium leading edge. The cytosolic flow, though, follows the leading edge,
implying a permeation flow through the actin gel. As the active gel is in general dilute, the
center-of-mass velocity is then in the direction of the cytosol velocity and thus in the direction
of the global lamellipodium motion. Note that in the one component description of [18] the
cytosol is entirely ignored and the center-of-mass velocity coincides with the actin velocity.

In addition to the actin gel and the cytosol, our description explicitly accounts for the
density of actin monomers. This is relevant for the description of processes, in which the effects
of actin polymerization and depolymerization play an important role. The cytosol still contains
other components, which in some situations should be described explicitly. This holds notably
for molecular motors, as the active stress generated by these proteins depends on their density.
In fact, two concentrations of motors attached and not attached to actin filaments, respectively,
should be considered. However, in the linear theory, which we consider here, the active stress
ζ,µ remains constant. Therefore, to linear order, it is appropriate not to consider the motor
concentration explicitly. This is no longer true in nonlinear theories, where the dependence of
the active stress on the motor density might lead to interesting effects.

Another important difference between the one component active gel theory and the
multicomponent theory of this paper is the role played by polarity. The one component theory
of [18] is in fact not a polar theory. All the equations are invariant by change of the polarization
vector p to −p. It can therefore be applied also to systems with a nematic symmetry. The
multicomponent theory that we propose is indeed polar. Both the dissipative and the reactive
components of the diffusive currents ji contain polar terms proportional to the polarization
vector pα. The role of these polar terms is well illustrated by the example of a two-component
active liquid under shear treated in section 4. The passive reactive component of the diffusive
current proportional to ε drives the composition gradient in the fluid layer (the mass fraction
is not constant) and the active dissipative current creates the global flux of the total fluid along
the slab. Note that the boundary conditions are very important here. If we choose different
boundary conditions with the tangential stress on the surface being proportional to the center-
of-mass velocity and not to the gel velocity, there is no fluid flux (the average center-of-mass
velocity over the thickness vanishes) but there is a flux of the active gel in one direction and an
opposite flux of the other fluid in the other direction.

Finally, it is appropriate to compare our active gel theory to other active theories proposed
for very different systems. In [23, 24], Simha et al propose a generalized hydrodynamic theory
for suspensions of self-propelled particles. Even though they do not use a systematic derivation
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of the constitutive equations based on Onsager relations, their theory to linear order and for
large wavelengths is equivalent to the equations that we propose here.

Continuum equations were proposed by Toner and Tu [32] to describe flocks of birds by
a one-component theory not including the hydrodynamics of the solvent. There, the dynamic
equations are expanded with respect to a non-equilibrium reference state. The differences
between the physical systems considered in these works and the similarity between macroscopic
descriptions of them emphasize the generic character of our equations.

Appendix A. The Ericksen stress tensor

In the following, we derive the expression for the Ericksen stress σ e for a multi-component polar
fluid as well as the corresponding Gibbs–Duhem relation. The free energy density f of a three
component active gel depends on the number densities ni of the N components, i = 1, . . . , N
as well as on the polarization vector p and its derivatives ∂α pβ . If the volume of the system is
changed by an amount δV , the free energy changes as

δF =
∫

V+δV
d3r f ({ni + δni} , pα + δpα, ∂α pβ + δ∂α pβ) −

∫

V
d3r f ({ni} , pα, ∂α pβ)

=
∫

δV
d3r f ({ni} , pα, ∂α pβ)+

∫

V
d3r

[
∑

i

µiδni +
∂ f
∂pα

δpα +
∂ f

∂(∂β pα)
δ∂β pα

]

=
∫

δV
d3r f ({ni} , pα, ∂α pβ)+

∫

V
d3r

[
∑

i

µiδni − hαδpα

]

+
∫

S
dSβ

∂ f
∂(∂β pα)

δpα

=−
∫

V
d3r hαδpα +

∫

S
dSβ uβ

[

f −
∑

i

µi ni

]

−
∫

S
dSβ

∂ f
∂(∂β pα)

uγ (∂γ pα). (A.1)

Here, we have made use of δpα = −(∂β pα)uβ , where u is the change from V to V + δV in the
direction normal of the original volume V , and

∫

V+δV
d3r (ni + δni) −

∫

V
d3r ni =

∫

V
d3r δni −

∫

δV
d3r ni . (A.2)

Furthermore, we have introduced the conjugated field h to the polarization p and the chemical
potentials µi = ∂ f/∂ni of the different components i = 1, . . . , N . From equation (A.1), we
deduce the expression of the Ericksen stress tensor σ e

σ eαβ =
(

f −
∑

i

µi ni

)

δαβ − ∂ f
∂(∂β pγ )

∂α pγ . (A.3)

Note that we include here the pressure (given by the first term in equation (A.3)) in the Ericksen
stress tensor.

In order to derive the corresponding Gibbs–Duhem relation, we first calculate the total
differential of the free energy

d f = −hαdpα +
∑

i

µidni + ∂α

∂ f
∂(∂α pβ)

dpβ. (A.4)

New Journal of Physics 9 (2007) 422 (http://www.njp.org/)

http://www.njp.org/


15

Using this result we get for the total differential of the Ericksen stress

dσ eαβ =
[

−hγdpγ +
∑

i

µidni

]

δαβ −
∑

i

[µidni + nidµi ] δαβ − ∂ f
∂(∂β pγ )

∂αdpγ

−(∂α pγ )d
∂ f

∂(∂β pγ )
+ ∂γ

∂ f
∂(∂γ pδ)

dpγ δαβ, (A.5)

and therefore

∂βσ
e
αβ = −

∑

i

ni∂αµi − hγ ∂α pγ − ∂ f
∂(∂β pγ )

∂α∂β pγ − (∂α pγ )∂β

∂ f
∂(∂β pγ )

+ ∂γ

∂ f
∂(∂γ pδ)

∂α pδ

= −
∑

i

ni∂αµi − hγ ∂α pγ , (A.6)

which is the sought-for Gibbs–Duhem relation (28).

Appendix B. Phenomenological equations—viscoelastic response and chirality

In the following, we provide the full expressions of the reactive and dissipative fluxes, including
the viscoelastic properties and also all chiral terms permitted by symmetry. The full constitutive
relations for the reactive fluxes read:

σ s,rαβ = −τ

[
D
Dt

σ s,dαβ + Aαβ

]
− ζ̄ δαβ,µ − ζ pα pβ,µ − ζ ′ pγ pγ δαβ,µ+

ν1

2
(pαhβ + pβhα)

+ ν̄1 pγ hγ δαβ +
41

2
(
εαγ δ pβ pγ hδ + εβγ δ pα pγ hδ

)
−

1∑

j=0

ε j

2
(pα∂βµ̄ j + pβ∂αµ̄ j)

−
1∑

j=0
ε̄ j pγ ∂γ µ̄ jδαβ +

1∑

j=0

4
j
2

2
(
εαγ δ pβ pγ ∂δµ̄ j + εβγ δ pα pγ ∂δµ̄ j

)
, (B.1)

j ri,α = −εi pβvαβ − ε̄i pαvββ − 4i
2εβγαvβδ pγ pδ, (B.2)

D
Dt

prα = τ
D
Dt

hα

γ1
− ν1 pβvαβ − ν̄1 pαvββ − 41εβγαvβδ pγ pδ, (B.3)

r r = ζ pα pβvαβ + ζ̄ vαα + ζ ′ pα pαvββ. (B.4)

Here, we have introduced the coefficients 41 and 42 of chiral terms. These terms involve the
totally antisymmetric tensor εαβγ with ε123 = 1. The tensor

Aαβ = ν2(vαγ σ s,dγβ + σ s,dαγ vγβ)+ ν3vγγ σ s,dαβ + ν4vγγ σ s,dδδ δαβ + ν5σ
s,d
γ γ vαβ + ν6vγ δσ

s,d
δγ δαβ

contains nonlinear reactive terms to lowest order, resulting from the geometry of the flow field
with corresponding phenomenological coefficients νi . The full constitutive relations for the
dissipative fluxes are given by:

(
1− τ 2

D2

Dt2

)
σ s,dαβ = 2η

(
vαβ − 1

3vγγ δαβ

)
+ η̄vγ γ δαβ (B.5)
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jdi,α = −
1∑

j=0
γi j∂αµ̄ j + λ̄i hα + κi pα,µ+4i

3εαβγ pβhγ (B.6)

D
Dt

pdα = hα

γ1
+ λ1 pα,µ − λ̄i∂αµ̄i −

1∑

j=0
4

j
3εαβγ pβ∂γ µ̄ j (B.7)

r d = −
1∑

i=0
κi pα∂αµ̄i + λ1 pαhα +.,µ, (B.8)

where 43 denotes a coefficient of chiral terms. The full dynamic equations then read:

2η
(
vαβ − 1

3vγγ δαβ

)
+ η̄vγ γ δαβ =

(
1 + τ

D
Dt

) {
σ sαβ + ζ̄ δαβ,µ+ ζ pα pβ,µ+ ζ ′ pγ pγ δαβ,µ

−ν1

2
(pαhβ + pβhα) − ν̄1 pγ hγ δαβ − 41

2
(
εαγ δ pβ pγ hδ + εβγ δ pα pγ hδ

)

−
1∑

j=0

4
j
2

2
(
εαγ δ pβ pγ ∂δµ̄ j + εβγ δ pα pγ ∂δµ̄ j

)
+

1∑

j=0

ε j

2
(pα∂βµ̄ j + pβ∂αµ̄ j)

+
1∑

j=0
ε̄ j pγ ∂γ µ̄ jδαβ + τ Aαβ

}
, (B.9)

ji,α = −
1∑

j=0
γi j∂αµ̄ j + λ̄i hα + κi pα,µ − εi pβvαβ − ε̄i pαvββ − 4i

2εβγαvβδ pγ pδ +4i
3εαβγ pβhγ ,

(B.10)

D
Dt

pα =
(
1 + τ

D
Dt

)
1
γ1
hα + λ1 pα,µ − λ̄i∂αµ̄i − ν1 pβvαβ − ν̄1 pαvββ − 41εβγαvβδ pγ pδ

−
1∑

j=0
4

j
3εαβγ pβ∂γ µ̄ j , (B.11)

r d = −
1∑

i=0
κi pα∂αµ̄i + λ1 pαhα +.,µ+ ζ pα pβvαβ + ζ̄ vαα + ζ ′ pα pαvββ. (B.12)
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