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We study the stochastic kinetics of a signaling module consisting of a two-state stochastic point process with
negative feedback. In the active state, a product is synthesized which increases the active-to-inactive transition
rate of the process. We analyze this simple autoregulatory module using a path-integral technique based on the
temporal statistics of state flips of the process. We develop a systematic framework to calculate averages,
autocorrelations, and response functions by treating the feedback as a weak perturbation. Explicit analytical
results are obtained to first order in the feedback strength. Monte Carlo simulations are performed to test the
analytical results in the weak feedback limit and to investigate the strong feedback regime. We conclude by
relating some of our results to experimental observations in the olfactory and visual sensory systems.
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I. INTRODUCTION

Signal transduction in biological cells refers to the set of
processes by which the cells receive and process information
from the environment. From the realization of the extra-
cellular stimulus to its final recognition by the cell or organ-
ism, there is, in general, a complex biochemical reaction net-
work, commonly referred to as the signal transduction
pathway. Faithful transmission of information through the
pathway may require amplification and adaptation, which is
often accomplished through positive �amplification� and
negative �adaptation� feedback mechanisms built into the
reaction network.

External and intrinsic noise can potentially limit the faith-
ful transduction of a “signal” �information encoded in the
intensity of the external stimulus and its spatiotemporal
variation� �1,2�. Since cellular biochemical networks often
function with a limited number of reacting molecules, noise
is always present, and an important question is how the cell
physiology maintains its robustness in spite of the random-
ness in the underlying molecular events �3�. In the context of
signal transduction, external noise refers to the randomness
in the signal �fluctuations in the local concentration of the
extracellular ligand, etc.�, whereas intrinsic noise is a collec-
tive effect produced by the inherent stochasticity of the trans-
duction mechanisms itself, such as random opening and clos-
ing of the ion channels, fluctuations in reaction rates, and so
on �4–11�. Although randomness and noise are beneficial in
some instances �population heterogeneity being a well-
known example �12��, by and large, cells have evolved the
means to control biochemical noise through regulatory
mechanisms �such as negative feedback� to ensure the ro-
bustness of biochemical networks �13�. Indeed, in the con-
text of electrical circuits, negative feedback is a well-known
noise-reduction mechanism used in devices such as amplifi-

ers and oscillators �see �14� for a review and important
references�.

Complex signaling pathways can often be productively
viewed as consisting of recurring modules �15,16�. A module
is typically made up of multiple species of interacting mol-
ecules acting together with a specific function. A signal
transduction pathway may thus be described in terms of a
series of modules, interacting with each other �17�. In very
general terms, a module receives a signal �from the extracel-
lular environment, or from another module� and transmits it,
possibly in a different form �e.g., chemical signals converted
to electrical pulses�. Each module can function to a certain
extent in isolation, but interaction among modules and their
coordination are crucial for carrying out all the complex
functions of the cell.

In this paper, we analyze a signaling module based on a
single protein that switches between active �A*� and inactive
�A� states. In the active state, a certain molecular species C is
produced with a fixed rate. The accumulation of C increases
the A*→A transition rate �Fig. 1�, leading to negative feed-
back on the production of C. In addition, C is removed at a
fixed rate independent of the activation state. As an example,
Fig. 2 illustrates the modularity of signal transduction and
the occurrence of the module defined in Fig. 1, for the spe-
cific case of vertebrate olfactory sensory neurons �reviewed
in �18,19��. �A closely related pathway also operates in cone
photoreceptors in the retina.�
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FIG. 1. The simple two-component autoregulatory signaling
module with negative feedback studied in this paper. The product C
�with concentration c�, generated with rate J in the active state A*,

enhances the deactivation rate R−. C is removed with a rate �̄ inde-
pendent of the activation state of A. An input signal encoded in a
temporal change R+�t� is transduced into an output signal c�t�.
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In the work presented, we develop a systematic analytical
framework to study the dynamics of the simple auto-
regulatory module shown in Fig. 1. Without the feedback,
the activation and deactivation kinetics would be described
by a two-state Poisson process. In the presence of feedback,
the deactivation rate, at any given time, becomes dependent
on the history of transitions, and makes the effective two-
state kinetics non-Markovian. We use a path-integral tech-
nique to evaluate the effects of feedback perturbatively,
which enables us to derive the noise from the dynamics of
the system. This is in contrast to stochastic analysis of bio-
chemical networks based on Langevin equations �20� with
additive white noise �see, e.g., �17,21��.

We obtain explicit analytical expressions for the different
statistical averages as well as correlation and response func-
tions of the module in the limit of weak feedback. We also
perform Monte Carlo simulations to test the analytical results
in the weak feedback limit and to investigate the strong feed-
back regime. The path-integral formalism we develop is
similar to the one described in �22�, and the system consid-
ered is the same as in �9�. The calculations in �9�, however,
focus on steady state probability distributions rather than
temporal correlations.

The paper is arranged into four sections. Section II pro-
vides a brief description of our simple model of a stochastic

signaling module with feedback. All important quantities are
introduced and the notation is defined. In Sec. III, we present
and develop the path-integral formalism. In Sec. IV, we com-
pute the different Green’s functions using this formalism to
first order in feedback strength. Section V is devoted to the
calculation of the averages and correlation functions, and
Sec. VI contains the calculation of the response functions.
Section VII presents the results of Monte Carlo simulations
and their comparison to analytical results. Our conclusions
and outlook for further extensions are presented in Sec. VIII.
Four appendices detail some of the analytical calculations.

II. TWO-STATE MODEL: GENERAL SETUP

We describe our model of a two-state signaling module
using the example of an ion channel connected to a small
cellular compartment �Fig. 3�. The channel on the cell mem-
brane exists in one of two conformational states: open, when
the ions enter through the channel, and closed when this is
not allowed. The state of the channel at time t is represented
by S�t�, with S=1 being the open state and S=0, the closed
state. The 0→1 transition takes place with a rate R+, and the
reverse transition 1→0 occurs with a rate R−. Let us denote
by c̄�t̄�, the ion �which in the case of the olfactory signaling
pathway is Ca2+� concentration inside the compartment at
time t̄. The kinetics of c̄ is described by the equation

dc̄

dt̄
=

J

V
S�t̄� − �̄c̄�t̄� . �1�

In the above equation, J represents the molar current of

ions entering the cell through the channel in the open state, �̄
represents the total rate of removal of ions by membrane
pumps, and V is the volume of the compartment. The chan-
nel kinetics is specified by the opening rate R+ and closing
rate R−. We assume the existence of a negative feedback
corresponding to a rate R− that increases with increasing ion
concentration. If the effect of the feedback is weak, one may
expand to linear order and write

R−�c̄� � R−
0 + �̄c̄�t̄� , �2�

where R−
0 is the closing rate of the channel when no ions are

present in the compartment and the coupling parameter �̄
specifies the feedback strength. We further assume that, in

Ca
2+

AC AC*

R*

cAMP

R

odorant

CNG CNG*

FIG. 2. A schematic representation of the modularity of signal
transduction in olfactory sensory neurons. �The arrows with a �
sign indicate enhancement of the reaction rates; arrows without
signs indicate the direction of the reactions in the conventional
sense.� After binding of an odorant �external stimulus� to the recep-
tor R, the enzyme adenylate cyclase �AC� is activated and produces
the “second messenger” cAMP, leading in turn to the opening of
cyclic-nucleotide-gated �CNG� ion channels and to the depolariza-
tion of the cell membrane. Two negative feedback mechanisms �re-
viewed in �23�� are shown in the figure: �i� cAMP-activated kinase
phosphorylates �and therefore deactivates� the receptor R, and �ii�
Ca2+ ions bound to calmodulin inhibit the Ca2+ channels, which is
crucial for adaptation to repeated odorant stimuli �24,25�. The sig-
nal transduction pathway can be viewed as consisting of two mod-
ules of the type shown in Fig. 1, connected in series.
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FIG. 3. A channel in the open state permits the entry of ions
�rate J� into a small compartment of volume V. The ions, once
inside, increase the closing rate of the channel, and are also re-

moved from the compartment at a constant rate �̄.
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general, an external signal is received by the module as a
change in the opening rate �due, e.g., to the binding of ex-
tracellular ligands to the channel�. We may write

R+��̄� = R+
0 + �̄�t̄� , �3�

where R+
0 is the intrinsic opening rate of the channel in the

absence of external stimulus, and �̄�t̄� defines the stimulus.
Eqs. �1�–�3� specify the dynamics of the problem.

It is now convenient to adopt a dimensionless formulation
of the problem. The inverse of the intrinsic closing rate R−

0 is

chosen as the unit of time and the ratio J / ��̄V� �i.e., the
maximum achievable ion concentration� is the unit of c̄. Us-
ing these two quantities, we scale all the other parameters,
and the complete list of dimensionless parameters is then as
follows:

c =
�̄V

J
c̄, � =

�̄J/V

�̄R−
0

, � =
�̄

R−
0 , � =

�̄

R−
0 ,

r+ =
R+

R−
0 , r− =

R−

R−
0 = 1 + �c, t = R−

0 t̄ . �4�

The dynamical equation for c�t� is then simplified to
dc
dt =��S�t�−c�t��, with the solution

c�t� = ��
−�

t

e−��t−t��S�t��dt�. �5�

Figure 4 shows two typical time evolution curves of S�t� and
c�t�. Note, from Eq. �5�, that in the limit �→�, c�t��S�t�,
which is illustrated in Fig. 4. In this limit, the Ca2+ is drained
from the compartment as soon as the channel closes, and
consequently, the time evolution of c�t� closely follows the
channel state. In this sense, � is an important control param-
eter in our model, and determines how much the dynamic
characteristics of c�t� �including fluctuations and response

functions� are tied to the corresponding quantities for the
channel state. These aspects will be discussed more in Sec. V
and later.

The combined set of Eqs. �1�–�3� describe the kinetics of
S�t�, which may be characterized using, for instance, the
n-point functions �n=1,2 , ¯ �: �S�t0� . . .S�tn−1��. The corre-
sponding functions for c�t� are then easily computed from
these using Eq. �5� as follows:

�c�t0� ¯ c�tn−1�� = �ne−��t0+¯+tn−1�

� �
−�

t0

dt0� ¯ �
−�

tn−1

dtn−1� e��t0�+¯+tn−1� �

��S�t0�� ¯ S�tn−1� �� . �6�

The angular brackets �¯� represent statistical averaging over
the different temporal histories of the process. In particular,
when the external signal is time independent, the system
reaches a steady state, where the one-point functions �S� and
�c� are constants, while the autocorrelation and crosscorrela-
tion functions

CS�t� = lim
t0→�

�S�t0�S�t0 + t�� − �S�2,

Cc�t� = lim
t0→�

�c�t0�c�t0 + t�� − �c�2,

CSc�t� = lim
t0→�

�S�t0�c�t0 + t�� − �S��c� , �7�

are stationary in time. In particular, it also follows from Eq.
�5� that

�c� = �S� �8�

in the steady state. We may also define the power spectral
densities for the fluctuations in S and c from the stationary
autocorrelation functions, for example,

Pc��� = 2�
0

�

Cc�t�cos��t�dt =
�2

�2 + �2 PS��� , �9�

where the relation between Pc and PS follows from Eq. �5�.
Note that for �	�, Pc	 PS, whereas when �
�, Pc

�−2PS. This has an interesting physical interpretation:
when � is small over the time scales of interest, Ca2+ kinetics
is slow, and this effectively suppresses the power-spectrum at
larger frequencies compared to the case of large �.

The response of the system to a time-dependent external
perturbation ��t� is �S�t���− �S� and �c�t���− �c�, where the
superscript � indicates that the function needs to be evalu-
ated in the presence of the perturbation. When the external
signal is weak, i.e., ��t�	r+, the response is characterized
using the linear response functions �S�t� and �c�t� defined
through the following relations:

�S�t� =
d

dt
lim
�→0

1

�
��S�� − �S�� ,

0
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FIG. 4. The figure illustrates the kinetics of channel openings
and Ca2+ concentration for two typical runs, with r+=0.5 and �
=5 �top and middle� and �=0.5 �top and bottom� in the absence of
feedback ��=0�. Note that for larger �, c�t� almost follows the
steplike kinetics of S�t�.
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�c�t� =
d

dt
lim
�→0

1

�
��c�� − �c�� . �10�

Using Eq. �5�, the following relation between the response
functions is also easily proved:

�c�t� = ��
0

t

�S�t��e−��t−t��dt�. �11�

In the following sections, we present explicit calculations
of the correlation and linear response functions of the model
in the presence of feedback. Most of the specific results in
this paper are derived for a constant r+.

III. PATH-INTEGRAL FORMULATION

We start by introducing the propagator �ij�t0 ,c0 ; t ,c� with
i , j= �0,1� that gives the probability density to find S�t�= j
and c�t�=c given that S�t0�= i and c�t0�=c0. The mean open
fraction of the channel in steady state can be written as

�S� = �
0

1

�i1�− �,c0;0,c�dc , �12�

and is independent of i and c0. We define two different mean
values of the concentration c, namely, the mean concentra-
tions during periods when the channel is closed and open,
respectively, starting from a special initial state S�t=0�=0,
c�t=0�=0 as follows:

�c�t��0 = �
0

1

�i0�0,0;t,c�cdc ,

�c�t��1 = �
0

1

�i1�0,0;t,c�cdc . �13�

The autocorrelation function of S in steady state is

�S�0�S�t�� = �
0

1

dc�
0

1

dc1�i1�− �,c0;0,c1��11�0,c1;t,c� .

�14�

The linear response function can be written using a step
function r+→r++��t� �with ��t�=�0�t�, where �t� is the
Heaviside function� as a stimulus, as follows:

�S�t� =
�

�t
 �

��0


�0=0
�

j
�

0

1

dc�
0

1

dc1�ij�− �,c0;0,c1�

� � j1
�0�0,c1;t,c� . �15�

In order to formulate a path-integral representation of the
propagator, we define the functional Pij�t0 , t ; ��k�k=1

N ;c0 ;N� of
S�t� with t� t0. It represents the probability that a certain
time evolution of the system from S�t0�= i and c�t0�=c0 to
S�t�= j is realized. This time evolution is characterized by the
set of times ��k�k=1

N at which the state switches from S=0 to 1
or from S=1 to 0. The number N represents the total number
of such state changes in the time interval �t0 , t� and is even if

i= j and odd otherwise. The propagator �ij�t0 ,c0 ; t ,c� can be
expressed as a sum over all possible realizations of S�t� as

�ij�t0,c0;t,c� = �
N
� D�Pij�t0,t;��k�k=1

N ;c0;N�� �c�t� − c� ,

�16�

where �D���t0
t d�1��1

t d�2¯��N−1

t d�N.
It is convenient to introduce the reduced propagator or

Green’s function

Gij�t0,c0;t� � �
0

1

�ij�t0,c0;t,c�dc , �17�

which can be written as

Gij�t0,c0;t� = �
N
� D�Pij�t0,t;��k�k=1

N ;c0;N� . �18�

By definition the following relations hold:

G01 + G00 = 1 = G10 + G11. �19�

Note that in the absence of feedback, the functionals P01
and P11 do not depend on c, and the history dependence is
thus absent. In this case, the expression for the n-point func-
tions reduces to the product of Green’s functions:
�S�t0�¯S�tn−1��=G01

�0��−� , t0�G11
�0��t0 , t1�¯G11

�0��tn−2 , tn−1�,
where the superscript �0� denotes the absence of feedback
�valid for the rest of the paper and all quantities� �26�. As
special cases, the one- and two-point functions in the ab-
sence of feedback are given by

�S�t0�� = �S� = G01
�0��− �,t0� ,

�S�t0�S�t�� = G01
�0��− �,t0�G11

�0��t0,t� , �20�

when �=0.
We now write down the functionals Pij in the explicit

form. The expressions are presented only for P00; extensions
to the other cases are straightforward. Furthermore, since the
different Green’s functions are related �Eq. �19� and Eq. �37�
later�, it is enough to compute one of them. It is instructive to
start with �=0, where the transitions 0→1 and 1→0 are
characterized by the �time-invariant� rates r+ and r−=r−

0 �1,
respectively �in terms of scaled time�. Let us consider a cer-
tain history of the process such that the channel is closed at
t=0 and t, but changes state an even number N times in
between, at times �1 ,�2 , . . . ,�N. First consider the interval
�0,�1�. The probability that the channel remains in state 0
until time �1 has the form P0�0,�1�=e−r+�1. Similarly, the
probability of the channel to remain in state 1 during the time
interval ��1 ,�2� is P1��1 ,�2�=e−��2−�1�. The �differential�
probability for the whole process is

P00
�0��0,t;��i�i=1

N ;N�d�1d�2 ¯ d�N = r+
N/2

� �
i=1

N

d�iP0�0,�1�P1��1,�2�P0��2,�3� ¯ P0��N,t� .

�21�
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We now substitute for P0 and P1, and make the transfor-
mation from flip times ��i�i=1

N to time-interval variables
�tj , tj�� j=1

m with m=N /2, where the �tj� denote the times when
the channel is closed and the �tj�� when it is open �see Fig. 5�.
The relation between the flip times and the time intervals is
summarized below:

�1 = t1,

�i = �
l=1

i/2

tl + �
l=1

i/2

tl� even i � 2,

� j = �
l=1

�j+1�/2

tl + �
l=1

�j−1�/2

tl� odd j � 1. �22�

The Jacobian for the transformation is J=1, as follows
from Eq. �22�. The probability functional thus has the form

P00
�0��0,t;�ti�,�ti��;2m� = r+

me−F00�0,t;�ti��;m�, �23�

with the weight factor F00 given by

F00�0,t;�ti��;m� = r+t + �1 − r+��
i=1

m

ti�. �24�

In the presence of the feedback coupling to c�t�, the
expression for P00 is modified to

P00�0,t;�ti�,�ti��;c0;2m� = r+
m�

i=2

2m

��1 + �c��i��

�e−F00−��j=1�2m−1�� j

� j+1d�c���, �25�

where the prime �double prime� on the product or sum sym-
bol indicates that the running index is always even �odd�.
The above expression may be expanded in powers of the
dimensionless feedback strength � as follows:

P00�0,t;�ti�,�ti��;c0;2m� = r+
me−F00�1 + ���

i=2

2m

�c��i�

− �
j=1

2m−1

��
�j

�j+1

d�c����� + O��2� .

�26�

Equation �26� is the basis for more specific and detailed cal-
culations to follow in the next sections.

IV. COMPUTATION OF GREEN’S FUNCTIONS

A. Computation of G00

For instructive purposes, we first show how the Green’s
function G00

�0��0, t� in the absence of feedback is computed
using our formalism. In this case the exact answer is easily
found by solving its rate equation

�tG00
�0� = r− − �r− + r+�G00

�0�, �27�

with r−=r−
0 =1 and the initial condition G00

�0��0,0�=1. The so-
lution is

G00
�0��0,t� =

1

1 + r+
�1 + r+e−�1+r+�t� . �28�

This Green’s function can also be computed using the
path-integral technique outlined previously, more specifically
from Eq. �18� using Eqs. �23� and �24�. For simplicity, let us
put t0=0, and define the Laplace transform of the Green’s

function G̃00
�0��s�=�0

�G00
�0��0, t�e−stdt. The calculation is most

easily done using the generalized convolution theorem pre-
sented in Appendix A �Eq. �A1��. Using this technique, the
path integral in Eq. �18� becomes a product in the s space,
and the result is

G̃00
�0��s� = g�s + r+� ,

with

g�s� =
1

s
�
m=0

� �1

s
�m� r+

s + 1 − r+
�m

. �29�

After summing the geometric series in Eq. �29�, we find that

G̃00
�0��s�= �s+1� / �s�s+1+r+��, which, upon inversion, gives

Eq. �28�.
Let us now extend the previous calculation to include

feedback, and compute G00�0,c0 ; t� to first order in �:

G00�0,c0;t� = G00
�0��0,t� + �G00

�1��0,c0;t� + O��2� . �30�

From Eqs. �26� and �18�, we find that G00
�1��0,c0 ; t� depends

only linearly on c0: G00
�1��0,c0 ; t�=G00

�1��0,c0=0; t�+c0f�t�.
Putting together the c0 independent terms, we write

G00�0,c0;t� = G00�0,c0 = 0;t� + �c0f�t� + O��2� , �31�

where c0f�t� is simply the O��� term in G00�0,c0 ; t�, when
the channel evolves in a situation with J�0 so that r−�t�
=1+�c0e−�t. Using this r−�t�, the function f�t� is easily de-
termined by solving the rate equation �Eq. �27�� with the

τ1 τ2 τ3 τ4 τ2m−1 τ2m

t1 t2 tm

t′1 t′2 t′m

t

S

1

0
0

FIG. 5. A schematic diagram of time evolution of S�t�, showing the time flip-variables �i versus the interval variables ti and ti�.
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initial condition G00�0,c0 ;0�=1. The result is

f�t� =
r+

�
� − 1

1 + r+ − �
e−�1+r+�t +

1

1 + r+
e−�1+r++��t

+
�

�1 + r+��1 + r+ − ��
e−�t� . �32�

The function G00�0,c0=0; t� itself may be expressed in
terms of three integrals as follows:

G00�0,c0 = 0;t� = e−r+t�1 + �
m=1

�

r+
m�I0�t;m� + �„I1�t;m�

− I2�t;m�…�� + O��2� , �33�

where

I0�t;m� =� DTe−�1−r+��i=1
m ti�,

I1�t;m� =� DTe−�1−r+��i=1
m ti��

i=2

2m

�c��i� ,

I2�t;m� =� DTe−�1−r+��i=1
m ti� �

j=1

2m−1

��
�j

�j+1

d�c��� . �34�

Note that we have introduced the compact notation �DT

��0
t dt1�0

t−t1dt1��0
t−t1−t1�dt2¯�0

t−¯−tmdtm� for the integration
measure. The explicit calculations are done most conve-
niently in terms of Laplace-transformed variables, defined in

the standard way: f̃�s�=�0
�f�t�e−stdt. The previous Eq. �33�

becomes, in this notation,

G̃00�c0 = 0;s� = �s + r+�−1 + �
m=1

�

r+
m�Ĩ0�s + r+;m� + �„Ĩ1�s

+ r+;m� − Ĩ2�s + r+;m�…� + O��2� . �35�

The calculation of the integrals I0̃, I1̃, and I2̃ is done in Ap-
pendix A. We omit further details, and present only the final
result to obtain:

G00�0,c0 = 0;t� � G00
�0��0,t� + �G00

�1��0,c0 = 0;t� = G00
�0��0,t�

+ �
r+

�1 + r+�2� r+ + �

1 + r+ + �
− e−�t r+�1 + r+�

�1 + r+ − ��2

− e−�1+r++��t 1 + r+

��1 + r+ + ��

+ e−�1+r+�t� �1 + r+��� − 1�t
1 + r+ − �

+
r+

2 − �� − 1�3 + r+�2 − 3� + 2�2�
��1 + r+ − ��2 �� + O��2� .

�36�

B. Relation between G11 and G00

We will now show that there is a nontrivial relation be-
tween G11�0,c0=0; t� and G00�0,c0=0; t�, as follows:

G11�0,c0 = 0;t� = G01�0,c0 = 0;t� +
�tG00�0,c0 = 0;t�

�tG00��0,c0 = 0;t��t=0
,

�37�

which will be shown to be true up to O���. To prove this, let
us start with the case �=0. Then, the following relation is
true for any arbitrary 0� t�� t:

G01
�0��0,t� = G00

�0��0,t��G01
�0��t�,t� + G01

�0��0,t��G11
�0��t�,t� .

�38�

Let us now take the limit of t�→0, and use the Taylor

expansions G00
�0��0, t��= �1+ t�

�G00
�0��0,t�

�t �t=0+¯, Gij
�0��t� , t�

=Gij
�0��t− t��=Gij

�0��0, t�− t�
�Gij

�0��0,t�

�t +¯ as well as the condi-

tion G01
�0�=1−G00

�0�. After substituting these back into Eq. �38�,
we arrive at Eq. �37�.

In the presence of feedback, Eq. �38� is not true anymore
because of the explicit history dependence. However, using
expansions of the two Green’s functions G01�t� ,c� ; t� and
G11�t� ,c� ; t� similar to Eq. �31�,

G01�t�,c�;t� = G01�t�,c� = 0;t� + �c�f1�t − t�� + O��2� ,

G11�t�,c�;t� = G11�t�,c� = 0;t� + �c�f2�t − t�� + O��2� ,

�39�

Eq. �37� can be shown to be valid also for ��0 �to O����.
The proof as well as the functions f1�t� and f2�t� are given in
Appendix B.

V. AVERAGES AND CORRELATORS

A. Averages and comparison to mean-field analysis

The mean fraction of open channels in the steady state is
now easily found as �S�=limt→��1−G00�0,c0=0; t��, and the
result is

�S� = �c� =
r+

1 + r+
�1 − �

r+ + �

�1 + r+��1 + r+ + ��� + O��2� .

�40�

For comparison, we may also compute the same quantity
using the mean-field approach. In general, the steady state
obeys the relation

r+�1 − �S�� = �r−S� = �S� + ��cS� . �41�

In the spirit of mean-field analysis, we now assume that the
fluctuations in S and c are independent, �cS�= �c��S�. Making
use of the equality �c�= �S� in Eq. �41� �valid in the steady
state�, one obtains a quadratic equation for �S�. The solution
is
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�S�MF =
��1 + r+�2 + 4�r+ − �1 + r+�

2�
. �42�

A small-� expansion of the square root gives

�S�MF =
r+

1 + r+
− �

r+
2

�1 + r+�3 + O��2� . �43�

The mean-field treatment can be expected to be valid if
the calcium dynamics is slow compared to the channel dy-
namics, as in this case the calcium concentration exhibits
only small fluctuations around its mean value and can be
replaced by a constant �as will be seen explicitly in Eq. �52��.
Indeed, the full result in Eq. �40� reduces to the mean-field
result in Eq. �43� when �	r+ and �	1. For all other values
of �, the mean-field analysis underestimates the effect of
feedback.

A second limiting case of interest is the situation where
the pump rate is large: �→�, in which case, from Eq. �5�,
we find that c�t��S�t� at all times t. In this case the closing
rate may be approximated as r−�1+� since c	1 in the
open state of the channel. The mean open fraction, therefore,
is given by

�S� 	
r+

1 + r+ + �
�

r+

1 + r+
− �

r+

�1 + r+�2 + O��2� . �44�

It is easily verified that this expression is the limit of the one
given in Eq. �40� to O��� for �
r+ and �
1.

Our perturbative result for the mean fraction of open
channels �Eq. �40�� is contained in the results of �9�.

B. Autocorrelation functions

To compute the two-point function of S, we put the defi-
nition of the reduced propagator �Eq. �17�� into Eq. �14� to
obtain:

�S�0�S�t�� = �
0

1

dc1�i1�− �,c0;0,c1�G11�0,c1;t� . �45�

Using Eq. �39� together with Eqs. �12� and �13�, we arrive at

�S�0�S�t�� = �S�G11�0,c0 = 0;t� + ��c�1f2�t� + O��2� ,

�46�

where G11�0,c0=0; t� is given by Eq. �37�, G00�0,c0=0; t� is
given by Eq. �36�, f2�t� is given by Eq. �B1�, and �c�1 is the
steady state value of the restricted average �c�t��1 �Eq. �13��
and calculated in Appendix C. Using Eq. �46� and the steady
state average in Eq. �40�, we find the autocorrelation function
of S �Eq. �7�� to be

CS�t� =
r+

�1 + r+�2e−�1+r+�t + ��B1e−�1+r+�t + C1e−�t

+ D1e−�1+r++��t + E1te−�1+r+�t� + O��2� . �47�

The coefficients B1 ,C1 ,D1 ,E1 are given in Appendix D. We
observe that the first order correction term introduces two
new time scales. Furthermore, the feedback introduces a term
nonmonotonic in time, whose sign depends on the relative

values of � and r+. For ��1 and ��1+r+, E1�0, whereas
for intermediate values 1���1+r+, E1�0. This term is the
first indication that the feedback term introduces qualitative
differences in the decay of the autocorrelation function.

The corresponding correlator for c�t� is computed from
Eq. �6� using the two-point function in Eq. �46�. The result is

Cc�t� =
r+�

�1 + r+�2��1 + r+�2 − �2�
�e−�t�1 + r+� − �e−�1+r+�t�

+ ��B2e−�1+r+�t + C2e−�t + D2e−�1+r++��t + E2te−�1+r+�t

+ F2te−�t� + O��2� . �48�

The coefficients B2 ,C2 ,D2 ,E2 ,F2 are given in Appendix
D. Similar to the previous case, the first order correction
term has introduced two new time scales, and unlike the
previous case, there are two nonmonotonic terms in time.
From Eq. �48� and using Eq. �9�, we now find the power
spectrum for c fluctuations to O��� as follows:

Pc��� = 2
r+�2

�1 + r+���2 + �2���2 + �1 + r+�2�

+ 2�� B2�1 + r+�
�2 + �1 + r+�2 +

C2�

�2 + �2 +
D2�1 + r+ + ��

�2 + �1 + r+ + ��2

+
E2��1 + r+�2 − �2�
��1 + r+�2 + �2�2 +

F2��2 − �2�
��2 + �2�2 � + O��2� . �49�

For large �, Pc���
�−4, which is true with and without
feedback �27�. However, for small frequencies, i.e., �	� in
particular, the power spectrum for c effectively decays as �−2

because large � attenuates the high frequency �but still less
than �� noise.

From Appendix D, we see that F2�0 always, whereas
E2�0 for 1���1+r+ and E2�0 for ��1 and ��1+r+.
The interplay of the time scales � and 1+r+ gives rise to
nontrivial time dependence in the autocorrelation function.
This results in a variety of possible time courses, examples
of which can be observed in numerical simulations presented
in Sec. VII.

From the correlators Eqs. �47� and �48�, the fluctuations
are also determined easily. We define the mean-squared fluc-
tuations through

��S�2 = �S2� − �S�2 = �S��1 − �S�� = CS�0� ,

��c�2 = �c2� − �c�2 = Cc�0� . �50�

The channel state fluctuation has the following character-
istic: Since ��S�2= �S��1− �S��, its maximum is always 1

4 ,
which is reached when �S�= 1

2 , independent of feedback. The
RMS fluctuations, to first order in � are given by
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�S =
�r+

1 + r+
�1 −

�

2

�1 − r+��r+ + ��
�1 + r+��1 + r+ + ��� + O��2� ,

�c =� r+�

�1 + r+�2�1 + r+ + ��
�1 +

�

2
�

r+
3 + r+

2�3� − 2� + r+�2�2 − 4� − 3� − ��2� + 3�
�1 + r+��1 + r+ + ���1 + r+ + 2��

� + O��2� . �51�

For the channel state, we see that the first order correction
term simply reverses sign at the point r+=1 �when the intrin-
sic opening and closing rates are the same�. The fluctuations
are enhanced by feedback when r+�1 and suppressed when
r+�1.

The calcium fluctuation can likewise be increased or de-
creased by feedback, depending on the values of � and r+.
The precision of output of the signaling module is given by
the relative fluctuation �normalized standard deviation� in
Ca2+. Using Eqs. �40� and �51� we obtain

�c

�c�
=� �

r+�1 + r+ + ��
�1 + �

�r+ + ���− 1 + r+ + 2��
2�1 + r+ + 2���1 + r+ + ���

+ O��2� . �52�

Clearly for ��
1
2 the relative fluctuation is increased for

any value of r+, while for sufficiently small � it is increased
when r+ is large and decreased when r+�1. The precision of
output can thus be improved by feedback when the input is
weak �r+ is small�.

VI. RESPONSE FUNCTIONS

A. Computation of �S and �c

When a step stimulus r++�0�t� is applied to the system,
the response function �Eq. �15�� in S can be written using the
definition of the Green’s function �Eq. �17�� together with
Eq. �39�, as

�S�t� =
�

�t
 �

��0


�0=0
��S�G11

�0�0,0;t� + �1 − �S��G01
�0�0,0;t�

+ ��f1
�0�t��c�0 + f2

�0�t��c�1�� + O��2� , �53�

where �0 appearing as a superscript indicates that r+ is to be
replaced by r++�0. Putting in the two Green’s functions
�Eqs. �36� and �37�� together with Eqs. �B1� and the re-
stricted calcium averages �computed in Appendix C�, the fi-
nal result is

�S�t � 0� =
1

1 + r+
e−�1+r+�t + ��B3e−�1+r+�t + C3e−�t

+ D3e−�1+r++��t + E3te−�1+r+�t� + O��2� , �54�

where B3 ,C3 ,D3 ,E3 are given in Appendix D. The coeffi-
cient E3 of the nonmonotonic term is negative for ��1 and
��1+r+, and positive for 1���1+r+. The contribution
from these terms makes the decay of the response function
faster �relative to �=0� for small and large � and slower for
intermediate �.

The response function �c�t� is now calculated from Eq.
�54� using Eq. �11�, yielding to first order in feedback

�c�t � 0� =
�

�1 + r+��1 + r+ − ��
�e−�t − e−�1+r+�t�

+ ��B4e−�1+r+�t + C4e−�t + D4e−�1+r++��t

+ E4te−�1+r+�t + F4te−�t� + O��2� , �55�

where F4�0, while E4�0 for ��1 and ��1+r+ and E4
�0 for 1���1+r+.

B. Violation of the fluctuation-dissipation theorem

Having computed both the correlation and response func-
tions for S�t� and c�t� separately, we will now show that
these quantities violate the fluctuation-dissipation theorem
�FDT� which holds for systems in thermal equilibrium. In
Fourier space, the FDT reads �with the Boltzmann constant
kB and the temperature T� �28�

�̄C̃��̄� = 2kBT Im �̃��̄� , �56�

if the correlation function C̃��̄� and the response function
�̃��̄� refer to conjugate stimulus and response variables.

To relate to the system considered in this paper, an energy
scale �U is introduced by writing the ratio of the transition
rates �with c=0� as R+ /R−

0 �r+=exp�−��U�, where � is the
inverse temperature and �U is the energy difference between
open and closed channel states. Let us now introduce a
“field” h which changes the energy gap �analogous to an
external magnetic field in the context of magnetic models�:
�U→�U+h, so that the dimensionless rate r+ is changed to
r+�=r+e−�h�r+�1−�h� �where we have assumed that h is
small�. The relation between the energy change h and the
�dimensionless� change in the flipping rate � �which we
defined earlier as the stimulus, see Eq. �3�� is therefore,
�=−�r+h. Using this to transform our �dimensionless� re-
sponse function �S�t�, Eq. �56� can be written dimensionless
as

�C̃S��� = − 2r+ Im �̃S��� , �57�

and analogously for c.
In the absence of feedback, we have

C̃S��� =
2r+

�1 + r+���1 + r+�2 + �2�
,
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�̃S��� =
1

�1 + r+��1 + r+ + i��
, �58�

from which we find �unsurprisingly� that the FDT holds for
S�t�. However, for c�t� the analogous results are �with �=0�

C̃c��� =
2�2r+

�1 + r+���1 + r+�2 + �2���2 + �2�
,

�̃c��� =
�

�1 + r+�
1

�� + i���1 + r+ + i��
, �59�

implying that FDT is violated for c�t�, i.e., the dynamics of c
cannot be represented by an equilibrium system with the
same temperature T that governs the dynamics of S.

In order to characterize this violation quantitatively, it is
convenient to introduce an “effective temperature” Teff, de-
fined as the ratio between the left and right hand sides of Eq.
�57�, multiplied by T �29�, as follows:

TS
eff���

T
= −

�C̃S���

2r+ Im �̃S���
�60�

�analogously for c�. T is the real temperature as introduced
above. For �=0, from Eqs. �58� and �59�, we then find that
TS

eff /T=1 for S �i.e., FDT is fulfilled�, while
Tc

eff /T=� / �1+�+r+��1 for calcium �i.e., FDT is violated�.
FDT is, however, asymptotically recovered in the limit �

1+r+ �which is the limit where c�t� follows S�t� closely,
see Sec. V�.

The ratio of effective-to-real temperature, Teff��� /T, is
shown in Fig. 6 as a function of � for both S and c. We see
that while the ratio for the channel state approaches unity as
�→�, the corresponding curve for calcium has a different
asymptotic limit. The system as a whole is therefore out of

equilibrium already if no feedback is present. With feedback,
at least the S variable becomes equilibrated in the limit of
high frequencies.

VII. NUMERICAL RESULTS AND DISCUSSION

We carried out numerical simulations in order to verify
our analytical results in the weak feedback limit, as well
as to study the behavior of the system in the intermediate
��	1� and strong ��
1� feedback cases. The dimension-
less version of the system described by Eqs. �1�–�3� was
simulated using a fixed discrete time step �t �30,31�.

In general, the feedback effects were found to increase in
significance with larger �. However, very high values of �
also tend to make the kinetics of c too closely tied to that of
S �see Fig. 4�, and for this reason, we performed most of our
simulations with the intermediate value �=5 �unless other-
wise indicated�. The weak-feedback ��=0.1� case was used
for detailed comparison with the analytical results. We ob-
served from the data that the first order perturbation theory
works well up to ��0.2. Since the difference between the
curves for �=0 and �=0.1 is small, in the following, the
�=0.1 curve is not shown in the main figures. Instead, the
comparison between numerically obtained data points �sym-
bols� and the analytical expressions �lines� is shown in the
insets of the figures as differences between the cases with
�=0.1 and �=0. The lines in the main figures connect nu-
merically obtained data points �32�.

In Fig. 7, the steady state open fraction �S� �which is the
same as �c�� is plotted as a function of the opening rate r+,
for various values of �. This is analogous to a dose-response
curve, if the open channel fraction �or, equivalently, the
mean Ca2+� is interpreted as the response of the system to an
external stimulus that modifies the opening rate of the chan-
nels. We observe that feedback shifts the response towards
higher r+ values by closing the channels more often. How-
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FIG. 6. The ratio Teff /T �defined in Eq. �60�; with the Fourier
transforms of Eqs. �47�, �48�, �54�, and �55�� of effective and real
temperature for the channel state and calcium �inset� is plotted as a
function of the frequency � with and without feedback for r+=6
and �=5. Note that the asymptotic limit in the case of calcium is
different for the two cases and differs from 1.

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000 10000

α=0
α=1

α=10
α=100

0

-0.01

-0.02

100010.01

r+

〈S
〉

FIG. 7. The numerically obtained open channel fraction �S� in
the steady state plotted as a function of the opening rate r+. Inset:
Difference between the cases �=0.1 and �=0. The line represents
the term linear in � from the analytical expression in Eq. �40�. For
the high r+ values as well as for �=100, a smaller time step of
�t=10−4 was used.
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ever, the “dynamic range” of sensitivity �e.g., the range of r+
covered between 5% and 95% of the response� is found to be
increased with feedback: the curves become less steep for
large �.

In Fig. 8 we show the variances ��S�2 and ��c�2 of S and
c, respectively, in steady state as a function of r+ for various
feedback strengths. The fluctuations follow a bell-shaped
curve as a function of r+, but the maximum shifts towards
larger r+ with increasing feedback. As we remarked in Sec.
V, the maximum of the mean squared fluctuations ��S�2 is
always 1

4 irrespective of the feedback strength �and occurs
when r+ is comparable to the average closing rate 1+��c��.
For the c fluctuations, however, we find that the fluctuations
are generally suppressed by feedback �except at very high
r+�. The fluctuations again follow an approximate bell-
shaped curve, but the maximum sharply comes down with
increasing � and its position shifts to larger r+. Note also that
for ��0, the position of the peak for c fluctuations always
trails the corresponding point for the channel state.

To investigate how fluctuations affect the precision of sig-
nal transduction, we looked at the ratio of the standard de-

viation to the mean �i.e., the noise-to-signal ratio in the
steady state or the coefficient of variation� for c�t�. In Fig. 9
we show �c / �c� plotted against r+. For �=5, we find that this
ratio is a monotonically decreasing function of r+, indepen-
dently of feedback. More surprisingly, the ratio itself is en-
hanced by increasing feedback. Note that for r+�0.1, this
ratio is of the order of 10 and is reduced to “acceptable”
levels ��c / �c�
1� only for high r+
1–10 depending on the
feedback strength. However, the reverse effect is observed
when the pumping rate is reduced to �=0.05. In this case, for
small r+, the noise-to-signal ratio is reduced by feedback
�Fig. 10�.

We now turn to time-dependent quantities. Figures 11�a�
and 11�b� show the autocorrelation functions for the channel
state and calcium, respectively, in the case of strong signal
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=0. The line represents the term linear in � from the analytical
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�r+=6�. In general, one notes that the effect of increasing
feedback is to reduce the characteristic time scale of decay of
the correlations. When the feedback parameter is very large,
the channel autocorrelation function briefly becomes nega-
tive before vanishing at longer times. This anticorrelation in
the channel state may be interpreted physically as the rapid
closing of an open channel by the Ca2+ which enters through
it. In other words, in the presence of feedback, a channel
which is open at any point of time has a reduced open prob-
ability at subsequent times �compared to the unconditioned
mean open probability�. By contrast, the autocorrelation
function for c�t� for the same parameters decays monotoni-
cally with time. In the cases of weak signal �r+=0.5� or high
pump rate ��=50�, both the channel state and calcium auto-
correlation functions decay monotonically �data not shown�.

In Fig. 12, we plot the power spectral density for calcium
and the channel state calculated from the autocorrelation
function using Eq. �9�, in the presence and absence of feed-
back. We observe that irrespective of feedback, Pc���
�−4

and PS���
�−2 as �→�. It may also be noted that PS��� is
nonmonotonic in this plot, and the observed peak is consis-

tent with the dip in the corresponding autocorrelation func-
tion in S �Fig. 11�a��. Notice also that a similar peak is absent
for Pc, which is also consistent with the fact that Cc�t� is
monotonic �Fig. 11�b��. In a different context, the reduction
in noise strength and the shifting of the peak of the power
spectrum from low to high frequencies with increasing feed-
back has also been observed in simulations of a model of an
autoregulated gene circuit �33� with negative feedback. An
instructive discussion of the general conditions under which
feedback can lead to a reduced noise intensity and increased
noise bandwidth is given in the Appendix of Ref. �33�.

Figure 13 shows the time evolution of the open probabil-
ity of the channel �Fig. 13�a�� and the mean calcium concen-
tration �Fig. 13�b�� for different values of the feedback pa-
rameter � when the channel was initially closed and
c�t=0�=0. Note that the relaxation to the steady state is
monotonic for small �, but for higher �, the response in the
channel �Fig. 13�a�� exhibits a maximum, and then settles
into the steady state, while the response of c does not show
this behavior �Fig. 13�b��.

In Fig. 14, we show the linear response function �S�T� for
different values of �. In order to compute the response func-
tion numerically, the system was evolved with r+=0.5 until it
reached the steady state. Then, r+ was increased to 0.6 and
the response function was calculated using Eq. �10�. By defi-
nition, the response function shows how a sharply peaked
input stimulus ���t�
��t�� is “transmitted” across the chan-
nel. We observe that increasing the feedback reduces the
time constant of decay, making the output signal sharper and
more similar to the input, when � is relatively high. This is in
agreement with our assertion that high values of � improve
the short-time scale response characteristics of the system.
We also confirmed this by studying the effect of � on the
response time when feedback is strong: in this case, reducing
� was found to increase the response time appreciably �for
example, when �=10, a 50-fold reduction in � was observed
to almost double the response time�.
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FIG. 11. Autocorrelation function for S�t� �a� and c�t� �b� in the
steady state for �=5 and r+=6. Inset: Difference between the cases
�=0.1 and �=0. The line represents the term linear in � from the
analytical expressions for CS�t� �Eq. �47�� and Cc�t� �Eq. �48��.
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We used the channel linear response function derived in
Sec. VI to compute the response of the system to a periodic
stimulus of the form ��t�=a sin �t for 14 different values of
� �Fig. 15�. An explicit calculation shows that the linear
channel response has the form �S�t���− �S�=A sin��t+�,
where both the amplitude A and the phase lag  are fre-
quency dependent: A���=a / �1+r+���1+r+�2+�2�−1/2+O���
and ���=− �

2 +arctan��1+r+� /��+O���, omitting the O���
terms for the sake of brevity. The complete expressions �in-
cluding the first order corrections �to be found at �34��� for A
and  are checked against numerical simulations in the insets
of Figs. 15�a� and 15�b�. The amplitude is always a decreas-
ing function of the frequency, however, the feedback has the
effect of increasing the amplitude of the response relative to
the no-feedback case at sufficiently high frequencies. At
lower frequencies, the opposite effect is observed: introduc-
ing feedback tends to reduce the amplitude of the output,
however, the decay as a function of the external frequency is

more gradual. In simple terms, the overall effect of the feed-
back here is to widen the range of frequencies effectively
sensed by the system. The increase in response at large fre-
quencies is consistent with the reduction in the time constant
of the linear response function which we noted earlier. At
small frequencies, on the other hand, the overall adaptation
produced by the negative feedback leads to a drop in the
response.

The phase shift of the response decreases monotonically
from 0 to − �

2 as � is increased, although the change is more
gradual when feedback is present. Note that for large �, there
is a significant linear regime in the −� curve, which means
that in this regime, the time delay of the response is effec-
tively independent of the stimulus frequency.

To summarize, numerical simulations provide excellent
support for the analytical predictions from the path-integral
theory in the weak feedback limit. In addition, we observed
qualitatively new features in the autocorrelation function and
in the relaxation of the mean open probability to the steady
state when feedback is strong. In particular, Figs. 9–11 and
15 are the principal results of this paper, and will be dis-
cussed more in the next section in the context of experimen-
tal results.

VIII. CONCLUSIONS

In this paper, we studied the stochastic kinetics of a
simple autoregulatory signaling module with negative feed-
back using path-integral techniques and numerical simula-
tions. Within our formalism, all the statistical averages and
correlation functions that characterize the long-time kinetics
of the system are formally expressed as a power series in the
feedback parameter. Explicit expressions were obtained for
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FIG. 13. Time evolution of the open probability �a� and the
mean calcium concentration �b� when the channel starts in the
closed state �S�t=0�=c�t=0�=0� for different values of the feed-
back parameter �. The opening rate is r+=6 and �=5. Inset: Dif-
ference between the cases �=0.1 and �=0. The line represents the
term linear in � from the analytical expressions Eq. �36�
�G01

�1��0,0 , t�� and Eq. �5�.
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mean values and correlation functions to first order in the
feedback parameter. These analytical results were compared
to numerical simulations. The simulations were also done in
the strong feedback regime beyond the applicability of per-
turbation theory. In particular, we investigated how the sys-
tem responds to temporal variations in an external stimulus,
and how the feedback regulates this response.

Our principal conclusions from this study may be outlined
as follows. We find that, in the context of the ion-channel
model, the rate of removal of Ca2+ ions, �, is the single most
important control parameter of the model. When � is large
�compared to the intrinsic closing rate for the channel�, the
short-time scale dynamic response characteristics of the sys-
tem are improved by negative feedback. In this case, feed-
back reduces the time scale of decay of the autocorrelation
and response functions, and thus extends the response of the
system to higher frequencies of input stimulus.

For all parameter values, the negative feedback shifts the
range of sensitivity of the system �i.e., the range of stimulus

magnitudes for which the response is appreciably nonzero
and not saturated� towards stronger stimuli. At the same
time, the range of sensitivity gets broader �i.e., the dynamic
range is increased� with increasing feedback. While the
steady state response to a fixed stimulus is always reduced
by the negative feedback, a remarkable effect was seen in the
coefficient of variation for the calcium concentration. In-
creasing the feedback was found to increase this quantity in
the large � regime. For small �, however, the opposite was
seen: the coefficient of variation was reduced with feedback,
for sufficiently weak stimuli. In this regime, the negative
feedback therefore improves the precision with which one
can discriminate among stimuli of different magnitudes
based on the system output. Having a small �, however, was
generally found to adversely affect the temporal response
characteristics.

Starting from the experimental literature, we have ob-
tained estimates for the dimensionless parameters in our
model for the specific case of calcium signaling in olfactory
sensory neurons �the corresponding module is shown in the
lower part of Fig. 2�. The rate of opening of the cyclic-
nucleotide-gated channel varies in the range r+�10−5–20
depending on the strength of the odorant stimulus. The pa-
rameter governing the calcium dynamics is ��20 and for
the feedback parameter we find ��1–10 �35�. Note, in par-
ticular, that � is found to have a relatively large value. In the
view of our results, this suggests that the calcium-mediated
feedback in olfactory transduction evolved so as to improve
the temporal response characteristics of the system, rather
than to improve the discriminability of weak stimuli.

Our findings are consistent with the results of experimen-
tal studies in a variety of sensory systems with calcium-
mediated negative feedback. The feedback-induced shift of
the range of sensitivity to higher stimulus magnitudes has
been demonstrated in olfactory sensory neurons and in cone
photoreceptor cells �reviewed in Refs. �36,37��. The temporal
characteristic of response was found to be altered in several
studies in which the strength of feedback was experimentally
manipulated. In Ref. �38�, the time course of response to a
pulse stimulus was found to be slowed down when the frog
olfactory cilium was put in lowered external calcium concen-
trations �in such conditions, the ion flux J, and therefore the
dimensionless coupling �, is decreased�. A more pronounced
effect of this type was observed in similar experiments for
Drosophila photoreceptor cells in Ref. �39�. A marked slow-
ing down of the response to a step stimulus was observed for
the newt olfactory cilium in Ref. �40� when the calcium flux
J was decreased by changing the holding potential. Fluctua-
tions in the steady state have received less attention in the
biological literature. The power spectrum of odorant-induced
current fluctuations across the membrane of rat olfactory sen-
sory cilia was studied experimentally by Lowe and Gold
�41�. They observed that the tail of the power spectrum de-
cays with an effective exponent in the range 2.3–2.5, which
is suggestive of a crossover between �−2 and �−4 decay. In
this case, however, the dynamics of the cAMP module
�shown in the upper part of Fig. 2� should be taken into
account in the theoretical treatment, as fluctuations in cAMP
give an important contribution to the variability of the
response �41�.
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FIG. 15. Amplitude �a� and phase �b� of the response �S�t��� to
a sinusoidal signal ��t�=a sin�t with amplitude a=0.1 and baseline
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We are currently in the process of extending this study to
include spatial effects. In particular, in olfactory sensory neu-
rons, the Ca2+ ion channels are spatially distributed along
long and thin cellular compartments called cilia. The feed-
back studied in the present manuscript coupled with calcium
diffusion inside the cilium can give rise to nontrivial spatial
correlations between the channels, and it will be interesting
to study how the spatial coupling affects the overall kinetics
of the system.
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APPENDIX A: CALCULATION OF INTEGRALS
I0, I1, AND I2

1. Generalized convolution theorem

The following general result is very useful in performing
many calculations using the path-integral technique. If g�t�
=�0

t f1�t1��0
t−t1f2�t2�¯�0

t−¯−tn−1fn�tn�, then its Laplace trans-
form g̃�s�=�0

�g�t�e−stdt is given by

g̃�s� =
1

s
�
i=1

n

f̃ i�s� . �A1�

This result is proved in a straightforward way by repeated
application of the standard convolution theorem of Laplace
transforms.

2. Calculation of I0

The integral I0 is relatively easy to compute. The Laplace

transform Ĩ0�s� can be written easily from the definition of
the integral in Eq. �34� and using the above theorem as
follows:

Ĩ0�s;m� = s−�m+1��s + 1 − r+�−m. �A2�

3. Calculation of I1

In order to calculate the integrals I1 and I2, it is necessary
to express c�t� in terms of the time interval variables using
Eq. �5�. The explicit relations are

c��� = 1 − e−���−�1� for �1 � � � �2,

c��� = 1 + e−���e��2 − e��1 + ¯ + e��j−1 − e��j�

for � j � � � � j+1 with odd j � 3. �A3�

From that it follows

c��i� = �
j=1

i−1

��e−���i−�j+1� − e−���i−�j�� for even i � 2.

�A4�

Using Eq. �A4� in Eq. �34�, we write I1=g1−g2, with

g1�0,t;m� = �
i=2

2m

��
j=1

i−1

�� DT

�exp�− ��1 − r+��
k=1

m

tk� + ���i − � j+1��� ,

�A5�

and

g2�0,t;m� = �
i=2

2m

��
j=1

i−1

�� DT

�exp�− ��1 − r+��
k=1

m

tk� + ���i − � j��� .

�A6�

Note that when j� i−3, �i−� j+1=��j+3�/2
i/2 �tk�+ tk� and is

zero when j= i−1. Let us therefore split the second sum, and
treat these cases separately. In order to compute the Laplace
transforms, we use the theorem in Eq. �A1�. It is now
straightforward to write the Laplace transform of g1 in Eq.
�A5� using this theorem. The result is

g̃1�s� = ms−�m+1�

��s + 1 − r+�−m + s−�m+1��s + 1

− r+�−m�
i=4

2m

�yi/2�
j=1

i−3

�y−�j+1�/2, �A7�

where we have defined y=s�s+��−1�s+1−r+��s+1−r+

+��−1�1. The double geometric sum in Eq. �A7� turns out
to be y�1−y�−1�m+ �1−y�−1�ym−1��, which gives

g̃1�s� = s−�m+1��s + 1 − r+�−m 1

1 − y
�m +

y

1 − y
�ym − 1�� .

�A8�

Calculation of g2 also proceeds along similar lines. After
some straightforward algebra, we find that

g̃2�s� = s−�m+1��s + 1 − r+�−m s + 1 − r+

s + 1 − r+ + �

��m + �
i=2

2m

�yi/2 �
l=1

i/2−1

y−l� . �A9�

The double sum is easily shown to be equal to y�1−y�−1�m
+ �1−y�−1�ym−1��, and this gives
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g̃2�s� = s−�m+1��s + 1 − r+�−m s + 1 − r+

s + 1 − r+ + �

�
1

1 − y
�m +

y

1 − y
�ym − 1�� . �A10�

After putting together Eqs. �A8� and �A10�, we arrive at

Ĩ1�s;m� = s−�m+1��s + 1 − r+�−m s + �

2s + 1 − r+ + �

��m +
y

1 − y
�ym − 1�� . �A11�

4. Calculation of I2

For I2, the following integral is needed �obtained using
Eqs. �A3��:

�
�j

�j+1

c���d� = t�j+1�/2� +
1

�
�e−��j − e−��j+1�

���
k=2

j−1

�e��k − �
l=1

j

�e��l� �A12�

for odd j�1.
The integral I2 may be expressed in the form

I2�0,t;m� = h0 + h1 +
1

�
�h2 + h3 − h4 − h5� , �A13�

where

h0 =� DT exp��r+ − 1��
k=1

m

tk���
�1

�2

c���d� ,

h1 = �
j=3

2m−1

�� DT exp��r+ − 1��
k=1

m

tk��t�j+1�/2� ,

h2 = �
j=3

2m−1

��
k=2

j−1

�� DT exp��r+ − 1��
l=1

m

tl� + ��� j − �k�� ,

h3 = �
j=3

2m−1

��
l=1

j

�� DT exp��r+ − 1��
k=1

m

tk� + ��� j+1 − �l�� ,

h4 = �
j=3

2m−1

��
l=1

j

�� DT exp��r+ − 1��
k=1

m

tk� + ��� j − �l�� ,

h5 = �
j=3

2m−1

��
k=2

j−1

�� DT exp��r+ − 1��
l=1

m

tl� + ��� j+1 − �k�� .

�A14�

Obviously, h0 represents j=1 in the sum in Eq. �34�, and
hence includes all possible contributions from m=1. The rest
of the terms therefore always have m�2. The Laplace trans-

forms for h0 and h1 are straightforward, and one may easily
verify that

h̃0�s� = s−�m+1��s + 1 − r+�−m� 1

s + 1 − r+
−

1

s + 1 − r+ + �
� ,

h̃1�s� = s−�m+1��s + 1 − r+�−m m − 1

s + 1 − r+
, m � 2,

�A15�

so that

h̃0 + h̃1 = s−�m+1��s + 1 − r+�−m� m

s + 1 − r+
−

1

s + 1 − r+ + �
�

�A16�

for m�2. We omit further details of computation of h2, h3,
h4, and h5, which involves straightforward, but somewhat
tedious algebra. The results are �for m�2�

h̃2�s� = s−�m+1��s + 1 − r+�−m

��m +
ym − 1

1 − y
� s

�

s + 1 − r+ + �

2s + 1 − r+ + �
,

h̃3�s� = s−�m+1��s + 1 − r+�−m�m +
y�ym − 1�

1 − y
− �1 − y��

�� s

�
+ 1� s + 1 − r+

2s + 1 − r+ + �
,

h̃4�s� = s−�m+1��s + 1 − r+�−m�m +
y�ym − 1�

1 − y
− �1 − y��

�� s

�
+ 1� s + 1 − r+ + �

2s + 1 − r+ + �
,

h̃5�s� = s−�m+1��s + 1 − r+�−m

��m +
ym − 1

1 − y
� s

�

s + 1 − r+

2s + 1 − r+ + �
. �A17�

After putting together all the terms, we show that

Ĩ2�s;1� = s−2�s + 1 − r+�−1� 1

s + 1 − r+
−

1

s + 1 − r+ + �
� ,

�A18�

and for m�2,

Ĩ2�s;m� = s−�m+1��s + 1 − r+�−m

� � m�s + ��
�s + 1 − r+��2s + 1 − r+ + ��

+
ym − 1

1 − y

s

�s + 1 − r+ + ���2s + 1 − r+ + ��� .

�A19�
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APPENDIX B: RELATION BETWEEN G11 AND G00

FOR �Å0

In order to prove Eq. �37� to be valid up to O���, we first
calculate the functions f1�t� and f2�t�. As in Eq. �31�, in Eq.
�39� c�f1�t� and c�f2�t� are the O��� terms in G01�0,c� ; t� and
G11�0,c� ; t�, respectively, when the channel does not allow
entry of ions. The solution is obtained by solving the corre-
sponding rate equations with the time-dependent rate r−�t�
=1+�c�e−�t. The results are

f1�t� = − f�t� ,

f2�t� = −
1

�
� 1 − �

1 + r+ − �
e−�1+r+�t −

1

1 + r+
e−�1+r++��t

+
�r+

�1 + r+��1 + r+ − ��
e−�t� . �B1�

Instead of Eq. �38�, we now write a relation between the full
propagators � with 0� t�� t as follows:

G01�0,0;t� = �
j
�

0

1

dc��
0

1

dc�0j�0,0;t�,c��� j1�t�,c�;t,c�

= �
0

1

dc��00�0,0;t�,c��G01�t�,c�;t�

+ �
0

1

dc��01�0,0;t�,c��G11�t�,c�;t� . �B2�

After substituting Eq. �39� into Eq. �B2�, we find that

G01�0,c0 = 0;t� = G00�0,c0 = 0;t��G01�t�,c� = 0;t�

+ G01�0,c0 = 0;t��G11�t�,c� = 0;t�

+ ��f1�t − t���c��t���0

+ f2�t − t���c��t���1� + O��2� , �B3�

where �c��t���0 and �c��t���1 were defined in Eq. �13�. Let us
now take the limit of t�→0 as in the case without feedback,
and express the Green’s function G11 in terms of G00. The
result, to O��� is

G11�0,c0 = 0;t� = 1 − G00�0,0;t�

+
1

��tG00�0,0;t��t=0
��tG00�0,0;t�

− �„f1�t��t���c��t���0�t�=0 + f2�t��t���c��t���1�t�=0…� .

�B4�

It is easy to see now that both the time derivatives of
�c��t���0/1 in the previous equation vanish, simply because
they are defined in Eq. �13� with an initial condition
c�0�=0 by construction. This is easily seen by first solving
Eq. �5� to find �c�t�� to order �=0, and the result is

�c�t�� =
r+

�1 + r+��1 −
1

1 + r+ − �
��1 + r+�e−�t − �e−�1+r+�t��

+ O��� , �B5�

whose time derivative vanishes at t=0. But, since �c�t��
= �c�t��0+ �c�t��1 and since ��t�c�t��0/1�t=0�0, it follows
that ��t�c�t��0/1�t=0=0 in Eq. �B4� and this leads to Eq. �37�.

APPENDIX C: CALCULATION OF Šc‹0 AND Šc‹1

In this appendix, we compute �c�t��0, whose long-time
limit gives �c�0. Note that, in accordance with Eq. �B3�, this
quantity needs to be computed only to the zeroth order in �.
This can be done using the probability functional P00 from
Eq. �23�. We therefore define

�c�t��0 = �
m=0

� � DT P00�0,t;�ti�,�ti��;2m�c�t� , �C1�

where c�t�=e−�t� j=1�2m−1�e��j+1 −e��j� from Eq. �5�. Further cal-
culations are done with the aid of Laplace transforms and
using the generalized convolution theorem �Eq. �A1��. We
omit further details, and simply give the final result for the
Laplace transform �c̃�s��0 as follows:

�c̃�s��0 =
r+�

s�s + ���s + 1 + r+��s + 1 + r+ + ��
. �C2�

The steady state value is obtained after inversion s→ t and
taking the limit t→� and is easily found to be

�c�0 =
r+

1 + r+

1

1 + r+ + �
, �C3�

from which we also find

�c�1 = �c� − �c�0 =
r+

1 + r+

r+ + �

1 + r+ + �
. �C4�

APPENDIX D: LIST OF COEFFICIENTS IN THE FIRST
ORDER TERMS

1. Correlation functions

B1 = −
r+

�1 + r+�3�1 + r+ − ��2��1 + r+ + ��

��− �� − 1�r+
4 − �� − 1��2 − ��r+

3

+ ���2 − 2� − 1�r+
2 + �− �4 + �3 − 3�2

+ 3� − 2�r+ + �� − 1�2�� + 1��� − 1�� ,

C1 = −
2r+

2�

�1 + r+�2�1 + r+ − ��2�1 + r+ + ��
,

D1 =
r+�r+

2 − 1�
�1 + r+�3��1 + r+ + ��

,
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E1 =
r+�� − 1�

�1 + r+�2�1 + r+ − ��
,

B2 = −
r+�

�1 + r+�3�1 + r+ − ��3�1 + r+ + ��2 ��� − 1�r+
4 + �� − 1�

��2 − ��r+
3 − ���2 − 4� + 1�r+

2 + ��4 − �3 + 7�2 − 7�

+ 2�r+ − �� − 1���3 − �2 − 3� + 1�� ,

C2 =
r+�

�1 + r+�3�1 + r+ − ��3�1 + r+ + ��2�1 + r+ + 2��

��r+
6 + �1 + ��r+

5 − �3�2 − 5� + 6�r+
4 + �− �3 + 4�2 + 6�

− 14�r+
3 + �2�4 + �3 + 18�2 − 2� − 11�r+

2 + ��4 + 3�3

+ 12�2 − 7� − 3�r+ + ���3 + �2 + � − 3�� ,

D2 = −
r+��r+ − 1�

�1 + r+�3�1 + r+ + ���1 + r+ + 2��
,

E2 = −
r+�2�� − 1�

�1 + r+�3�1 + r+ − ��3�1 + r+ + ��2

��r+
3 + 3r+

2 + �3 − �2�r+ − ��2 − 1�� ,

F2 = −
r+

2�2

�1 + r+�2�1 + r+ − ��2�1 + r+ + ��
.

2. Response functions

B3 = −
1

��1 + r+�2�1 + r+ − ��2 �− �� − 1�r+
3 + �2�2 − 4�

+ 1�r+
2 + �− �3 + 2�2 − � − 1�r+ − �� − 1�2� ,

C3 = −
r+�

�1 + r+�2�1 + r+ − ��2 ,

D3 =
r+

2 − � − 1

�1 + r+�2��1 + r+ + ��
,

E3 =
� − 1

�1 + r+��1 + r+ − ��
,

B4 = −
1

�1 + r+�2�1 + r+ − ��3 �1 + ��2� − 3� + r+†1 + �2��

− 1�‡ − r+
2�1 + 2��� − 2�� + r+

3�� − 1�� ,

C4 =
�

�1 + r+�3�1 + r+ − ��3�1 + r+ + ��

���3�1 + r+ + r+
2� − �2r+�1 + r+�2 − ��1 + r+�2

�†1 + r+�r+ − 5�‡ + r+�r+ − 1��1 + r+�3� ,

D4 = −
r+

2 − � − 1

�1 + r+�3�1 + r+ + ��
,

E4 = −
��� − 1�

�1 + r+��1 + r+ − ��2 ,

F4 = −
r+�2

�1 + r+�2�1 + r+ − ��2 .
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