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Nöthnitzer Straße 38, 01187 Dresden, Germany

I. PERTURBATION CALCULATION OF SWIMMING PATHS IN TWO DIMEN-

SIONS

We study the chemotactic feedback loop for two space dimensions (1), (2), (3) and (4)

in the limit of weak chemoattractant gradients. For weak gradients, the dimensionless

parameter ν = ρκr
2
0|∇c|, which describes the strength of the perturbation of the swimming

path by chemotactic signaling, is small. We determine the swimming path in a linear

concentration field by a perturbation calculation in ν. We anticipate that the swimming

path r(t) = (x(t), y(t)) is perfect circle whose shape is perturbed to first order in ν

r(t) = r0(cosω0t, sinω0t) + O(ν) . (S1)

The chemoattracant concentration field is linear with the the gradient chosen to point in

x-direction for simplicity

c(x, y) = c0 + c1x . (S2)

A sperm moving along r(t) samples according to equation (2) a time-dependent stimulus

s(t) = c0 + r0 c1 cosω0t+ O(ν2) . (S3)

The stimulus contains a monotonically increasing or decreasing contribution ∼ c1vd cos(α)t

which is of second order in ν. The chemotactic signaling network responds with an output

that to linear order in ν evokes curvature oscillations

κ(t) = κ0 + ρκc1r0 cos(ω0t+ φκ) + O(ν2) . (S4)

Integrating equation (1) with this time dependence of the curvature gives the swimming

path

r(t) = r0 (cos θ(t), sin θ(t)) + vd (cosα, sinα) t+ O(ν2) , (S5)
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with rotation rate θ̇ = Ω3 = ω0 + vdκ0 cos(ω0t+ φκ) and drift velocity vd = δκ ρκ c1 + O(ν2)

where δκ = 1
2
v0r

2
0. For the angle with respect to the gradient we obtain

α = 3π/2 − φκ + O(ν) , (S6)

where φκ is the phase of the linear response coefficient χκ at the angular frequency ω0.

II. PERTURBATION CALCULATION OF SWIMMING PATHS IN THREE DI-

MENSIONS

As in the planar case, the chemotactic feedback loop for three space dimensions (2), (4),

(6) and (7) can be studied in the limit of weak gradients by a perturbation calculation in

the small parameter ν = (ρκ/κ0 + ρτ/τ0)r0|∇c|. Again we assume that the nonlinearities of

the concentration field c(x) are small on the length-scale r0, |∇2c| � |∇c|/r0, which implies

that during a few helical turns of the swimming path we approximate the concentration

field linearly. In the presence of a chemoattractant stimulus, the swimming path will be a

deformed helix that winds around a centerline R(t). Recall that such a helical swimming

path can be described as the trajectory of a point on the circumference of an imagined solid

disk of radius r0 that rotates in its plane with rotation rate Ω3 and whose center moves along

the centerline R(t). The orientation of the disk is characterized by the unit vector h normal

to the disk, which we call the helix vector. Note, that h is not necessarily parallel to Ṙ,

see Fig. 5. We introduce the material frame of the imagined disk consisting of orthogonal

unit vectors e1 and e2, in the plane of the disk and h = e3 = e1 × e2. The deformed helical

swimming path can now be written as

r(t) = R(t) + r e1(t) , (S7)

where the radius r may change only on a slow time-scale. The time dependence of the frame

ei is given by pure rotations ėi = εjik Ωj ek, where Ωj denote rotation rates. In the absence

of a chemotactic stimulus, the swimming path is a perfect helix with Ṙ = ω0h0h, r = r0,

Ω1 = Ω2 = 0 and Ω3 = ω0. We also define the complex gradient vector

g = ∇⊥c+ ih× ∇⊥c , (S8)

where ∇⊥c denotes the concentration gradient projected on the disk plane which is perpen-

dicular to h. The real and imaginary parts of g form a basis for the plane of the disk.
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These notions will allow us to present results in a concise form. For the calculation we use

cartesian coordinates with R(t = 0) = (0, 0, 0), e1(t = 0) = (1, 0, 0), e2(t = 0) = (0, 1, 0),

h(t = 0) = (0, 0, 1) and a concentration field with a gradient in the x-z plane at (0, 0, 0):

c(x, y, z) = c0 + cxx+ czz . (S9)

Here we have distinguished the components of the gradient perpendicular cx = |(∇⊥c)|t=0|
and parallel cz = |(∇‖c)|t=0| to the helix axis at t = 0. Thus, at time t = 0, ∇⊥c is parallel to

e1. We anticipate that the swimming path r(t) is a perfect helix whose shape is perturbed

to first order in ν

r(t) = (r cos θ(t), r sin θ(t), ωh0t) + O(ν) , (S10)

with an angular frequency ω = ω0+O(ν), a radius r = r0+O(ν), a pitch 2πh = 2πh0+O(ν),

and a rotation rate θ̇ = Ω3 = ω+O(ν). The swimming path r(t) samples a temporal stimulus

from the locally linear concentration field which to first order in ν and for t� (νω0)
−1 reads

s(t) = c(r(t)) = c0 + ω0h0czt+ r0cx cosω0t+ O(ν2) . (S11)

It combines a linear ramp and a periodic component. To first order in ν the signaling network

generates the output a(t) = 1 + a1 + ρr0cx cos(ωt+ φ) + O(ν2) where a1 = μω0h0cz/c
2
0 and

χ = ρ exp(iφ) is the linear response coefficient of equation (4) at the helix frequency ω0.

This output elicits curvature and torsion oscillations

κ(t) = κ0 + κ1a1 + ρκcxr0 cos(ωt+ φκ) + O(ν2)

τ(t) = τ0 + τ1a1 + ρτcxr0 cos(ωt+ φτ ) + O(ν2) .

Curvature κ(t) and torsion τ(t) determine the swimming path by the Frenet-Serret equations

(6). If we express the swimming path in the form of equation (S7), the centerline R(t) and

the vectors ei(t) have to change according to

Ṙ =ωhh− δκ Im (χκ g) + δτ Im (χτ g) + O(ν2)

ḣ = − εκ Re (χκ g) + ετ Re (χτ g) + O(ν2)

ė1 = Ω3 e2 − ḣ · e1

ė2 = − Ω3 e1 − ḣ · e2

(S12)

for the time dependent curvature and torsion to satisfy equation (S12). Here the coefficients

read δκ = ω0r0(2r
2
0 + 3h2

0)/4, δτ = ω0r
2
0h0/4, εκ = ω0r0h0/2, and ετ = ω0r

2
0/2. The helix
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frequency ω = ω0 + ω0(r0κ1 + h0τ1)a1 + O(ν2), the helix radius r = r0 + ((h2
0 − r2

0)κ1 −
2r0h0τ1)a1 + O(ν2), and the helix pitch 2πh = 2πh0 + (−2r0h0κ1 + (r2

0 − h2
0)τ1)a1 + O(ν2)

are perturbed to first order in ν. The rotation rate is given by the helix frequency ω plus a

periodic modulation Ω3 = ω+ω0|∇⊥c|/4[(2r2
0 +h2

0)ρκ cos(ω0t+φκ)+ r0h0ρτ cos(ω0t+φτ )]+

O(ν2).

From equation (S12), we see that two fundamental perturbations of a perfect helix are

important in the presence of a gradient. The helix can bend for ḣ �= 0 or it can tilt if Ṙ

and h do not align. In the limit of τ0 = τ1 = 0 with δτ = 0, εκ = ετ = 0 and h0 = 0,

we recover chemotaxis in a plane as discussed above. Note that this calculation is general

and applies to any signaling system which shows adaptation and is characterized by linear

response coefficients χκ and χτ for curvature and torsion.

III. RADIAL CONCENTRATION FIELDS IN THREE DIMENSIONS

In a radial concentration field c(x) = C(|x|), we can simplify equation (S12) by exploiting

rotational symmetry. We can express the centerline position R and the helix vector h by

five parameters, the distance to the origin R = |R|, the angle ψ between the helix vector h

vector and the radial direction of the gradient ∇c, as well as three Euler angles θ, ξ, η, as

R = R er

h = − cosψ er − sinψ (cos η eθ + sin η eξ)
(S13)

where er = (cos θ, cos ξ sin θ, sin ξ sin θ), eθ = ∂
∂θ

er, eξ = er × eθ. Inserting equation (S13)

into equation (S12) yields

Ṙ = − Λ cosψ − γ

ψ̇ = − sinψ

(
β − Λ

R

)

θ̇ = − sinψ

R
(γ′ sin η + Λ cos η)

ξ̇ = − sinψ

R sin θ
(γ′ cos η − Λ sin η)

η̇ = − β ′ − γ′
cosψ

R
− cot θ sinψ

R
(γ′ cos η − Λ sin η)

(S14)

where Λ = ωh − γ cosψ, β − iβ ′ = |∇c|(ετχτ − εκχκ), and γ′ + iγ = |∇c|(δτχτ − δκχκ).

From this we obtain equation (12) with Ṙ, ψ̇ independent of θ, ξ, η.
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