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Abstract

This review presents some of our recent results on active polar gels. Active polar gels are viscoelastic materials formed by
polar filaments which are maintained in a non-equilibrium state by constant consumption of energy. This non-equilibrium state is
characterized by the existence of internal stresses and spontaneous flows. A defining example of an active polar gel is provided by
the acto-myosin cytoskeleton of eukaryotic cells. It is formed by actin filaments interacting with myosin molecular motors which
are driven by the hydrolysis of adenosine-tri-phosphate (ATP).

We first present a hydrodynamic theory of active polar gels. The hydrodynamic equations are generic as they only rely on symmetry
arguments. We then use the hydrodynamic approach to study the spontaneous generation of flow in an active polar film and the
formation of vortex defects. The last part of this review is devoted to an analysis of the active gel theory in situations which are
reminiscent of structures formed by the cytoskeleton in living cells.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The mechanical properties of cells play an important role in many fundamental cellular processes such as adhesion,
motility and division [1–3]. From a mechanical point of view, the cell is a soft elastic material with an elastic modulus
in the range of 103 Pa. In a first approximation, these mechanical properties are determined by the cytoskeleton, a
network of filamentous proteins. There are three different kinds of cytoskeletal filaments, microtubules, actin filaments,
and intermediate filaments. As long as the cell is only weakly deformed, though, its response is mostly determined by
the actin cytoskeleton alone. A description of the cellular processes mentioned before thus requires a physical theory
of the actin cytoskeleton.

Actin is a globular protein that can assemble into a filamentous structure [1]. In these actin filaments two proto-
filaments wind around each other and form a right-handed helix. Due to the structural properties of globular actin,
actin filaments are endowed with a polar structure. The two different ends are, respectively, referred to as plus- (or
barbed) and as minus- (or pointed) end. Under usual physiological conditions, actin filaments are out of equilibrium
as they are treadmilling: globular actin is added at the plus- and dissociates from the minus-end. This process is
driven by the hydrolysis of adenosine-tri-phosphate (ATP) during which chemical energy is released while ATP splits
up into adenosine-di-phosphate (ADP) and inorganic phosphate Pi . In fact, actin associates with the plus-end of a
filament when bound to ATP, while dissociation from the minus-end occurs after ATP-hydrolysis when actin is bound
to ADP.

In a cell, actin filaments interact with a whole range of proteins [4]. In particular, some proteins cross-link actin
filaments. Proteins like fascin or vilin, lead to the formation of filament bundles, for example, in microvili or stereocilia.
Other proteins like filamin cross-link actin filaments without imposing a relative orientation on the linked filaments.
This leads to an actin gel, the actin structure that is dominant in a living cell.

Generally, polymer gels are cross-linked networks formed by linear or branched polymers [5]. One distinguishes
between chemical and physical gels. In a chemical gel, cross-links are established by covalent bonds. For all practical
purposes they have an infinite lifetime, such that a chemical gel is a solid with a finite shear modulus at long times
in the range of 103–106 Pa. On the contrary, in physical gels, cross-links are formed by physical interactions such as
dipolar interactions, ionic bonds or by a local crystallization. These cross-links have a short lifetime (typically minutes,
seconds, or still shorter). Consequently, a physical gel is viscoelastic. On short time scales it behaves like a solid with
a finite shear modulus, but on long time scales it behaves like a liquid with a finite viscosity. Polymer physics provides
good microscopic models to study the elasticity or the viscoelasticity of both, physical and chemical gels [6,7].

It is thus tempting to consider the actin cytoskeleton as a classical physical gel. However, this ignores the fact that the
actin cytoskeleton is an active material: it is not an equilibrium system but it continuously consumes energy in the form
of ATP. As we have already mentioned, ATP hydrolysis is involved in actin treadmilling. In addition, it is responsible for
the activity of myosin II. Myosin II is a non-processive motor protein which transforms the chemical energy released
in the course of ATP hydrolysis into mechanical work [3]. Small myosin II aggregates (mini-filaments) can cross-link
several actin filaments and thereby generate stresses in the actin network [8]. Experimentally, these internal stresses
are found to contract the actin gel [9,10]. A physical description of the cell cytoskeleton must thus take into account the
viscoelasticity of the actin gel, the polar nature of the filaments, the treadmilling process, and the actively generated
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stress due to ATP consumption. The aim of this review is to describe our recent work on a hydrodynamic theory of
active polar gels and to present some applications of this theory to cellular problems.

Many theoretical works on the cytoskeleton start from microscopic considerations at the molecular level and show how
the interactions between actin filaments and molecular motors can lead to the active behavior observed on macroscopic
scales. This, of course, requires a good knowledge at the molecular level of both actin filaments and myosin motors.
Kruse and Jülicher [11–13] have proposed a model for the dynamics of actin bundles which leads to an expression for
the tension inside the bundle and to a prediction of bundle instabilities. Marchetti and Liverpool [14,15] as well as others
have extended this approach to higher dimensions and studied in particular instabilities of the isotropic homogenous
filament distribution. To this end effective descriptions on macroscopic scales were derived from the microscopic
equations. In contrast to this approach, the hydrodynamic theory which we present here, starts on macroscopic scales.

As for classical hydrodynamics, our description is independent of many of the microscopic details governing the
evolution of the system. Instead it depends on a number of phenomenological parameters analogous to the viscosity
of simple fluids. The physical behavior of the system essentially depends on the values of these parameters, which
have to be determined experimentally or which might be obtained from microscopic theories. The structure of the
hydrodynamic equations is imposed by the symmetries of the system studied and is therefore universal [16,17]. This
approach has been successfully applied to many systems, e.g., biological membranes [18], vibrated sand piles [19],
self-propelled colloidal objects [20,21], bacterial colonies [22] as well as bird flocks [23]. These theories have, in
particular, revealed the existence of propagative waves with finite propagation velocity in active systems which we call
Ramaswamy waves [24]. The main limitation of the hydrodynamic theory is that it considers only large length scales
and long time scales. In an actin gel, for example the hydrodynamic theory can only describe the properties of the gel
at length scales larger than the mesh size.

The review is organized as follows. In the next section we give two simple examples, which illustrate the two
original properties of the cytoskeleton, treadmilling and active stresses. We first discuss the growth of an actin gel in the
absence of myosin motors on a curved surface. In this situation, which is relevant for recent bio-mimetic experiments
on the bacterium Listeria Monocytogenes, only treadmilling and viscoelasticity of the actin gel play a role. The second
example is that of thin active gel of constant thickness. This essentially one-dimensional geometry allows for a simple
introduction of active stresses in the theory. In Section 3, we give the general equations of the hydrodynamic theory
of active polar gels. Here, we do not give the systematic derivation of these equations, which can be found in Refs.
[25,26]. Rather, we point to the differences between active polar gels and other hydrodynamic systems such as nematic
liquid crystals, gels, or passive viscoelastic materials (physical gels). We also discuss the limits of this approach and
possible improvements of the theory. In Section 4, we show that an active gel can spontaneously flow in the presence
of a polarization gradient. A passive liquid or elastic gel would not flow in such a situation. Section 5 is devoted to
topological defects of the polarization field and their possible biological relevance. We first discuss a single defect that
can be a vortex, an aster or a spiral and then the stability of a thin active film, in particular, with respect to the appearance
of defects. In Section 6, we give some applications of the theory of active gels to cellular processes. Finally, the last
section presents some concluding remarks and discusses some further issues.

2. Simple examples of active gels

In this section, we illustrate some of the important features of the hydrodynamics of active gels: treadmilling,
viscoelasticity and active contraction. We do not refer to the general hydrodynamic equations, which will be presented
in the next section, but discuss two examples that allow for a simpler treatment. First, we treat the growth of an actin
gel in a curved geometry. This process plays a major role in problems related to Listeria-like motility, for which
treadmilling and viscoelasticity of the cytoskeleton are important. The second example illustrates the importance of
active contractions. Here, we discuss the motion of a thin gel layer of constant thickness, which is an extremely
simplified model for lamellipodium motion.

2.1. Passive actin gel growing on a curved surface: treadmilling and viscoelasticity

The bacterium Listeria Monocytogenes provides one of the simplest examples of cell motility [27]: On its surface,
the bacterium polymerizes actin of the host cell, which eventually leads to the formation of a comet. As a consequence
of adding new material at the bacterial surface, the previously formed actin gel is deformed, which results in elastic
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forces propelling the bacterium within the host cell. No molecular motors like myosin are involved in this process and
the gel can be considered as passive (although, as mentioned above, ATP hydrolysis is required for treadmilling of
actin). Furthermore, the polarity of actin does not seem to play a major role and one can consider the actin comet as an
isotropic gel. Depolymerization occurs in the bulk of the comet and at its rear.

Many bio-mimetic experiments have been devised to study quantitatively Listeria-like motility [28]. In these ex-
periments, colloidal objects of various shapes (spherical and cylindrical or planar solid objects [29], oil drops [30],
vesicles [31,32]) are coated with proteins promoting actin polymerization and are immersed either in a cell extract or
in a solution of a few (as low as 5) purified proteins. At first, a gel grows uniformly around the object. Then, there is
a spontaneous symmetry breaking in the gel which leads to the formation of a comet [33,34]. The comet grows at a
velocity similar to that of Listeria motion which is of the order of micrometers per minute.

Let us describe uniform growth of a gel [35]. We consider the gel as a viscoelastic material with a single viscoelastic
relaxation time ! and a short time shear modulus E [36,37]. The simplest mechanical model to describe viscoelasticity
is the so-called Maxwell model. In this model, the deviatory stress "#$ is related to the strain rate tensor (the velocity
gradient) v#$ = 1

2 (!#v$ + !$v#), where v# is the velocity field in the gel, by

!"#$

!t
+ "#$

!
= 2Ev#$. (1)

At times smaller than the viscoelastic relaxation time !, the gel behaves as an elastic solid with shear modulus E, while
at long times it behaves as a liquid with finite viscosity %=E!. Typical orders of magnitude are E=103 Pa, !=10 s and
% = 104 Pa s [38]. This constitutive equation is not invariant under Galilean transformations. However, in the growing
gel of the comet, each material element is convected by treadmilling due to the polymerization on the surface of the
cylinder. It is therefore essential to have a Galilean invariant form in order to take into account treadmilling. This can be
achieved by replacing in Eq. (1) the partial derivative with respect to time by a convected derivative d/dt =!/!t +v ·∇,
where v is the local velocity in the gel. Note, that the constitutive equation is still not rotationally invariant. Other
terms are added in Section 3 to ensure invariance under rotations. They play no role here and can be ignored. Note
furthermore, that the convected derivative introduces geometric non-linearities. There could also exist other non-linear
terms in the constitutive equation involving, for example, the square of the strain or of the stress tensors. In the rest
of this paper, though, we ignore these non-linearities of the material and, in exactly the same spirit as in liquid crystal
physics, we retain the geometrical non-linearities (associated here to the convected derivative, which describes the
treadmilling process).

The limit of a purely elastic comet, which is usually used to describe the Listeria comet, is obtained with an infinite
relaxation time !. Note, however, that even the dynamics of an elastic comet is not a classical continuum elasticity
problem: the boundary condition on the surface does not give neither the strain nor the stress on the surface. Instead,
the velocity is imposed by polymerization. This is a hydrodynamic boundary condition for an elasticity problem. An
alternative way to study this problem is to come back to the definition of the strain in the gel by defining locally a
metric tensor (called the Finger tensor in rheology) and consider its variation in space. The viscoelastic formulation
that we discuss here turns out to be much simpler.

In the following, we consider the uniform growth of a gel around a cylinder1 of radius R, see Fig. 1.
The gel thickness is h and we use cylindrical coordinates (r, &), while there is no dependence on the z coordinate

along the cylinder axis. Furthermore, we ignore the depolymerization in the bulk of the gel [27] and we consider the
gel as incompressible so that ∇ ·v =0. This is a reasonable approximation for actin gels which have a Poisson modulus
close to 0.5. The trace of the stress tensor "ii = "rr + "&& then vanishes and the pressure field P in the gel ensures
incompressibility. In a cylindrical geometry, only two components of the stress tensor, the radial component "rr and the
ortho-radial component "&&, do not vanish and the velocity v only depends on the distance r to the axis of the cylinder.
The local force balance in the radial direction is written as

d"rr

dr
+ "rr − "&&

r
= dP

dr
. (2)

1 Very similar results are obtained for spherical growths, only numerical prefactors are different.
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 h

R

actin gel

Fig. 1. Sketch of an actin gel growing around a cylinder of radius R. The equilibrium thickness of the gel h is reached when polymerization on the
cylinder surface exactly compensates depolymerization on the outer surface.

In a steady state, the two constitutive equations of the convected Maxwell model are

v
d"rr

dr
+ "rr

!
= 2E

dv

dr
, (3)

v
d"&&

dr
+ "&&

!
= 2E

v

r
. (4)

The incompressibility condition imposes the variation of the velocity as a function of r, v=vpR/r , where we have used
the fact that, on the surface of the cylinder, the velocity is equal to the polymerization velocity vp. The two components
of the stress can then be calculated from the Maxwell constitutive equations and the pressure field from the force
balance equation. At the free surface of the gel, r =R+h, the normal stress is continuous and ["rr −P ](R+h)=0. On
the surface of the cylinder, the stress is fixed by the polymerization conditions. For simplicity, we suppose that when
actin is polymerized, there is no tensile stress and that ["&& − P ](R) = 0.

At lowest order in 1/R we obtain the components of the total stress as a function of the distance u from the cylinder
surface (r = R + u):

"&& − P = 4%vp

R
(1 − e−u/vp!), (5)

"rr − P = 4%(vp!)2

R2

(
u − h

vp!
+ e−u/vp! − e−h/vp!

)
. (6)

As expected, at short distance u < 'e = vp! from the surface, the stress is purely elastic and depends only on the elastic
shear modulus E. At larger distances, the stress is mostly viscous.

If we assume that depolymerization occurs only at the surface of the growing gel with a depolymerization velocity
vd the variation of the gel thickness with time is such that

dh

dt
= v(R + h) − vd $ vp − vd. (7)

The depolymerization velocity increases with the ortho-radial stress on the gel surface ["&& −P ](R +h). Kramers rate
theory [39,40] suggest an exponential increase vd = v0

d exp {["&& − P ](R + h)/"0}. As the thickness h increases, the
depolymerization velocity increases and becomes equal to the polymerization velocity at the steady-state thickness

h = −vp! log
(

1 − "0gR

4E!vp

)
, (8)

where g = log vp/v
0
d is a dimensionless polymerization free energy.

In the purely elastic regime where #="0gR/4E!vd>1, the gel thickness is proportional to the radius and increases
as h/R = "0g/4E . This is the result already found in Ref. [40] in a spherical geometry (where the only difference is
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h L Uactive layer
z

x

Fig. 2. Thin gel layer in a slab. The layer advances at a velocity U. It polymerizes at the front and depolymerizes at the back. The adhesion on the
lower surface is described by a viscous friction law. There is no adhesion on the upper surface.

that the numerical prefactor 4 is replaced by 6). The thickness increases strongly with # when viscous effects become
important and diverges for # = 1. A more detailed study of the gel growth including the diffusion of actin monomers
and a comparison to the experimental results can be found in Ref. [27].

2.2. Thin active gel layer: active stress

In contrast to Listeria-like motility, the locomotion of most other cells requires the presence of motor proteins. An
example is provided by crawling cells that adhere to a solid substrate. In this case, the cell body is pulled forward by
forces generated in a sheet-like protrusion in the front of the cell. This protrusion, called lamellipodium, is filled with
actin cytoskeleton. Using a drug to isolate fragments from lamellipodia of fish keratocytes, Euteneuer and Schliwa [41]
have shown that fragments by themselves are motile. These fragments are essentially sheets of actin filaments, molecular
motors and proteins, which regulate actin assembly and disassembly, surrounded by a membrane. Subsequent studies by
Verkhovsky et al. [8] on fragments have yielded spectacular results on cell motility, e.g., the ability of the cytoskeleton
to self-organize into a moving state. In order to show effects of actively generated stresses in the cytoskeleton, we now
discuss a very simple model of fragment locomotion [26].

Consider a thin sheet of active gel of constant height h and length L moving on a solid substrate in the (x, y)-plane
(see Fig. 2). The velocity is oriented in the x-direction and has a magnitude U. For simplicity, we assume that the
gel properties are invariant in the direction y. Cell or fragment motion is only possible if momentum is transfered to
the environment, for example, through adhesion to a substrate. Adhesion of a cell or a fragment on a solid substrate
is known to occur via adhesion protein links which are continuously broken and rebuilt [42]. This complex adhesion
process can be described by a friction stress proportional to the local velocity "xz = (v [43], where ( is an effective
friction coefficient and z denotes the direction perpendicular to the substrate, see Fig. 2. Here, as in the following, all
velocities are expressed in the reference frame of the substrate.

We consider a small slice of gel of length dx and thickness h. For simplicity, we only consider adhesion on the lower
surface of the gel and we assume a free boundary condition on the upper surface of the gel. The gel on the right and
on the left of this section exerts a force "h along the x-axis, where " = (1/h)

∫ h
0 dz"xx is the average of the tensile

stress over the gel thickness. The substrate exerts a friction force "xz dx. The force balance on this small slice of gel
can therefore be written as

d
dx

h" = (v. (9)

The stress "xx and the velocity v in x-direction do not vary much over the gel thickness. We thus employ a thin film
approximation and neglect their dependence on z. This reduces the study of the thin gel motion to a one dimensional
problem. Note, that the assumption of a constant thickness implies that we consider the gel as fully compressible. A
more realistic description in given in Section 6. We now need a constitutive equation relating the stress " to the velocity
gradient.

As in the case of Listeria-like motility, we describe the actin gel as a viscoelastic material with an elastic modulus
E and a viscoelastic relaxation time !. Myosin II transform chemical energy derived from the hydrolysis of ATP into
mechanical work which generates contractile stresses in the actin network. On a phenomenological level, we take this
active effect into account by adding a constant “active” stress. In a linear theory, the active stress is proportional to the
energy produced by ATP or to !), the chemical potential difference between ATP and its hydrolysis products. We thus
write the active stress as *!), where * is a material parameter of the cytoskeleton characterizing motor activity. For a
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systematic justification of this expression we refer to the next section. The constitutive equation for the active gel in
the reference frame of the substrate is then written as

2%
!v

!x
= " + !

(
!"
!t

+ v
!"
!x

)
+ *!). (10)

Here, we use * as a phenomenological parameter, which must be obtained from experiments. Though its value has
not been measured, it was shown that motor activity leads to contractility such that * < 0 [9,10]. Alternatively, its
value might be obtained from single molecule properties by using a microscopic model, such as those described in
[11–15]. In a keratocyte, Myosin II forms small aggregates [8]. A simple guess then is that the motors generate active
stress by forming active cross-links between different filaments. For small motor concentrations cm, this idea leads to
* ∼ −cmc2

f , where cf is the density of actin monomers in the gel.
We now discuss the steady state of a cell layer of length L advancing along the x-direction at constant velocity U.

Combining the force balance equation (9) with the constitutive equation (10), we obtain an equation for the stress inside
the gel layer. In the laboratory reference frame, the stress is a function of (x − Ut) and

'2 d2"
dx2 = " + !

(
h

(
d"
dx

− U

)
d"
dx

+ *!), (11)

where the friction length ' is defined as '2 = 2h%/(. It is useful to measure the stress in units of −*!), defining
" = −"̃*!) and the velocities in units (|*!)|h)/'( defining U = Ũ (|*!)|h)/'(. In addition to the advancing velocity
Ũ , the stress equation (11) is thus seen to depend on a second dimensionless parameter $ = !|*!)|/2%. Elastic terms
can be ignored if $>1 and become dominant if $?1. In the following, we suppose in agreement with the existing data
that $>1 and that the gel is not submitted to any external force. Therefore, at the front, x = L, and at the rear, x = 0,
the stress vanishes " = 0. The stress and velocity distributions are then given by

" = −*!)
(

1 − cosh((2x − L)/2')

cosh L/2'

)
, (12)

v = *!)h

'(
sinh((2x − L)/2')

cosh(L/2')
. (13)

Because of the contractile effect of the gel, the stress is positive. If L?' it is approximately constant in the center of
the gel and decays to zero over a length '. The velocity field is symmetric. The velocity vanishes in the center of the
gel, it is negative over a length ' at the front, x = L, and the flow is retrograde; it is positive over a length ' at the back
and the flow is anterograde. Note that in this scenario, the velocity of the material elements in the reference frame of
the substrate is independent of the polymerization and depolymerization conditions and that it is only driven by the
active stress. An essential assumption of this very simple model is that the gel is perfectly compressible so that there is
no pressure gradient in the force balance equation. A more realistic description of an incompressible gel is given below
in Section 6.1.

The average velocity U of the gel layer is determined by filament polymerization and depolymerization. In the
simplest model, the gel polymerizes at the front with a polymerization velocity vp and depolymerizes at the back with a
depolymerization velocity vd. The boundary conditions for the velocity are thus U =v(L)+vp =v(0)+vd. These two
conditions fix the gel advancing velocity U =(vp+vd)/2 and the length of the gel such that −(2*!)h/'() tanh(L/2')=
vp − vd.

As the velocity is positive at the back and negative at the front, mass conservation imposes that the density of the
gels grows towards the rear. For a gel with a finite compressibility the thickness does not remain constant and increases
towards the rear.

The main message of this simple example is that the existence of an active stress is sufficient to induce a velocity
field inside the gel that tends to contract the gel. We have considered here the limit of a purely viscous gel, but, as in the
previous section, at the front of the gel, where polymerization occurs, there exists a region of size 'e ∼ −!*!)h/'(,
where the gel has a solid-like behavior and the velocity is nearly constant. Note that the viscous behavior that we
discussed is observed if 'e < '. In the opposite limit, the gel has a solid-like behavior.
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3. Constitutive equations of active polar gels

We now turn to the general constitutive equations for the hydrodynamics of an active polar gel [25,26]. In the examples
treated in the previous section, the polar nature of actin filaments entered only through the boundary conditions. In
general, though, it will also affect the dynamics in the bulk of the material. We therefore start our presentation with a
discussion of the polar order.

3.1. Polar order in active gels

On each actin filament, we define locally a unit vector in the direction from the minus end to the plus end. The local
polarization field p is defined as the average of the unit vectors in a small volume around each point. The thermodynamics
of the polarization field can be studied from the standard free energy of polar nematic liquid crystals or ferro-electric
liquids [44]:

F =
∫

dr

[
K1

2
(∇ · p)2 + K2

2
(p · (∇ × p))2 + K3

2
(p × (∇ × p))2 + k∇ · p −

h0
‖

2
p2

]

. (14)

The three Franck constants Ki for splay, twist, and bend are positive. The coefficient k describes the spontaneous splay
allowed by the vector symmetry of the polarization field. This term does not exist for a non-polar nematic liquid crystal,
which in our case corresponds to parallel actin filaments with a random orientation.

The field conjugate to the polarization field is defined as h = −+F/+p. It has a component h‖ parallel to the
local polarization p, which controls the amplitude of the local polarization, i.e., the local degree of orientation of the
actin filaments. The parallel component of the field includes the field h0

‖ in Eq. (14) but it also eventually includes a
contribution from the Franck elastic free energy. In the following, we consider the limit where orientation fluctuations
dominate and amplitude fluctuations as small. This implies that the modulus p of the polarization is constant and can
be chosen equal to 1 without loss of generality. The parallel field can in this case be regarded as a Lagrange multiplier
which ensures this constraint. The field also has a transverse component h⊥. According to the free energy given in
Eq. (14), the transverse field creates a torque that tends to align the polarization field.

In the following we are mostly interested in the thin active gels that form the cell cytoskeleton, for example, in a
lamellipodium. This is a quasi-two-dimensional system and in most cases, the polarization field can be considered
as two dimensional in the plane of the film. For a two-dimensional polarization field, the twist deformations are not
possible and there are only two Frank constants K1 =K and K3 =K ++K . A simple approximation is the one-constant
approximation where the anisotropy +K vanishes. This simplifies the theoretical description, but it is probably not
justified for actin filaments.

3.2. Linear hydrodynamic description of active polar gels

In order to build up a linear hydrodynamic theory of the cytoskeleton, we follow closely the lines proposed by
Martin, Parodi and Pershan for the hydrodynamic theory of nematic liquid crystals [16]. We identify the fluxes and
forces and we write the most general linear relation between them, which respects the symmetry of the problem. The
hydrodynamic description is a macroscopic theory in the sense that it applies to length and time scales much larger
than any molecular scale. On these scales, we do not need to consider the precise mechanisms of energy consumption,
i.e., we do not need to take into account the details of the mechanisms underlying the action of molecular motors.
They are captured by the values of the phenomenological parameters, called Onsager coefficients, present in the
theory. Here, we consider them as given material properties of the cytoskeletal system, which must be measured
separately.

As a first approximation, we consider the active polar gel as an effective one component system. The quantities that
we take as fluxes are the mechanical stress "̃#$, which is associated with the mechanical properties of the gel, the rate
of change of the polarization Ṗ, and the rate of consumption of ATP per unit volume r.

The generalized force conjugate to the ATP consumption rate is the chemical potential difference !) between ATP
and its hydrolysis products, i.e., the free energy gained per hydrolyzed ATP molecule. The force conjugate to the rate of
change in the polarization is the field h and the force conjugate to the stress tensor is the velocity gradient tensor !#v$.
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We define locally the velocity v of the center of mass of each volume element that we consider to define the velocity
field. The velocity gradient tensor at a point r can be decomposed into a symmetric part ṽ#$ = 1

2 (!v#/!r$ + !v$/!r#)

and an antisymmetric part ,#$ = 1
2 (!v#/!r$ − !v$/!r#) which describes the vorticity of the flow. For the following,

it is useful to separate the traceless part of the tensor and to define v#$ = ṽ#$ − 1
3 ṽ--+#$.

Similarly, we decompose the total deviatory stress tensor "̃#$ into an isotropic part −p= 1
3 "̃--, which is a contribution

to the pressure in the gel, and a traceless part "t
#$ = "̃#$ − 1

3 "̃--+#$. For a non-isotropic material, the stress tensor is not
symmetric and can be decomposed into a symmetric part and an antisymmetric part. We write the traceless component
of the stress tensor as "t

#$ = "a
#$ + "#$. The antisymmetric part of the stress tensor describes the torque acting on each

volume element. As for a nematic liquid crystal, it is given by [44]

"a
#$ = 1

2 (p#h$ − p$h#). (15)

The phenomenological linear dynamic equation relating the stress to the velocity gradient and all the other forces must
respect all the symmetries of the polar gel. First, there is only one vector in the problem, the polarization p, and one
traceless second-order tensor, namely the quadrupolar or nematic tensor. If locally all actin filaments are parallel, its
components are q#$ =p#p$ − 1

3p2+#$. Note, that if the actin gel is not polar but has nematic order, the average value of
the polarization vanishes but the average value of the quadrupolar tensor does not vanish. A second important symmetry
is the time-reversal symmetry. It allows to distinguish between the dissipative component of a flux, which is associated
with energy dissipation, and its reactive or elastic component. Taking all symmetries into account, the general equation
for the traceless part of the stress then reads [25,26]

2%v#$ =
(

1 + !
D
Dt

) {
"#$ + *!)q#$ + !A#$ − .1

2

(
p#h$ + p$h# − 2

3
h-p-+#$

)}
. (16)

As in the previous section, we use the dynamics of the convected Maxwell model with a single viscoelastic relaxation
time ! [36,37]. In order to ensure the invariance with respect to translation and rotation, the convected time derivative
must be replaced by the co-rotational derivative (D/Dt)"#$ = (!/!t + v-!/!r-)"#$ + [,#-"-$ + ,$-"-#]. Recent
experiments show that the rheological properties of the cytoskeleton are not captured by a single viscoelastic relaxation
time, but require a broad distribution of relaxation times (a power law distribution) [45,46]. As the theory is linear, the
distribution of relaxation times could be introduced by considering Maxwell models with different relaxation times in
parallel. This makes the theory more complex and it has not been considered yet. In the following, we only consider
the Maxwell model with a single relaxation time !, which represents the longest relaxation time in the system, and a
shear viscosity %. The tensor A#$ describes geometrical nonlinearities, which we do not wish to discuss here. These
non-linearities are included in the so-called “Oldroyd eight constant model”, which is a classical generalization of the
convected Maxwell model for the properties of viscoelastic fluids.

In addition to the viscosity, the stress equation involves two other reactive parameters. The coefficient .1 describes
the coupling between the mechanical stress and the polarization field. This is a well-known parameter in liquid crystal
hydrodynamics and several experiments have been built to measure it for classical liquid crystals. We are not aware,
though, of any measurements of its value for actin. An important result from liquid crystal hydrodynamics is that
instabilities occur if |.1| < 1.

The important new parameter is the coefficient of active stress generation * that we have already introduced phe-
nomenologically in the previous section. It couples the activity in the system, measured by the difference in chemical
potential !), to the stress. The active coefficient can be positive corresponding to a dilational stress or negative corre-
sponding to a contractile stress.All experimental results point into the direction that the internal stress in the cytoskeleton
is contractile; we therefore use a negative value of * in the following. It is important to note the quadrupolar symmetry
of the active stress. This symmetry is associated with a normal stress difference, i.e., with a different value of the normal
stress acting on planes oriented in different directions.

Considering the active gel as incompressible, which seems to be a good approximation for actin gels, the isotropic
part p of the stress tensor plays no role; it can be incorporated in the pressure and only the total pressure is meaningful
as a Lagrange multiplier ensuring incompressibility of the system. For a compressible system, the pressure p must
be added to the thermodynamic pressure. It satisfies an equation very similar to the traceless part of the stress tensor
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that we give here for completeness

%̄ṽ## =
(

1 + !
D
Dt

)
{−p + *̄!) + !A − .̄1h-p-}. (17)

We have introduced here longitudinal Onsager coefficients, which play the same role as the transverse coefficients
introduced in the equation for the traceless part of the stress tensor.

Let us now turn to the second flux. The rate of change of the polarization is defined as Ṗ = Dp/Dt . As for the stress,
we must use the co-rotational convected time derivative of the polarization vector given by (D/Dt)p# = !p#/!t +
(v-!-)p# + ,#$p$. The Onsager relation for the polarization reads

D
Dt

p# = 1
-1

h# + '1p#!) − .1v#$p$ − .̄1v$$p#. (18)

In this equation, the rotational viscosity -1 characterizes dissipation due to rotation of the polarization. It has units of a
standard viscosity and is always positive. The rotational viscosity has been measured for classical liquid crystals and
for polymeric liquid crystals, but we do not know of any results for actin gels or semi-dilute solutions. The coupling
between the polarization and the mechanical stress is described by the same coefficients .1 and .̄1 as in the stress
equations (16) and (17). The signs of the associated terms in Eq. (18) are imposed by the Onsager symmetry relations.
The only new coefficient associated with the activity is the coefficient '1. It corresponds to an active field which tends
to drive the actin filaments parallel (if '1 is positive, which is not imposed by thermodynamics, though). Several models
[47–50] for this effect have been built based on the torques exerted by molecular motor aggregates on the actin filaments.

The final Onsager relation gives the rate of consumption of ATP:

r = /!) + *p#p$v#$ + *̄v## + '1p#h#. (19)

The diagonal coefficient / measures the rate of consumption of ATP in the absence of velocity gradient and polarization
field. The non-diagonal coefficients account for the coupling between ATP consumption and, respectively, mechanical
stress and polarization changes. As for the polarization equation, they are imposed by the Onsager symmetry relations.

In Eqs. (16) and (18) for the stress and the polarization, there are only two terms that depend on the activity. They are
proportional to !) with corresponding material parameters * and '1, respectively. Note, however, that if the polarization
has a fixed modulus, the parallel field is a Lagrange multiplier which is determined by imposing the modulus of the
polarization. In this case, one can define an effective longitudinal field h̃# = h# + -1'1p#. This effective field has the
same perpendicular component as the original field and a modified parallel component which is itself determined by
the modulus of the polarization. Using this effective field, there remains only one active term in the stress equation,
where * is replaced by the effective parameter *̃ = * + '1.1-1.

The constitutive equations (16), (18), and (19) are generic equations respecting the vectorial symmetry of the
polarization and of time-reversal symmetry. Note, that we have ignored here the chirality of the actin filaments, which
would introduce additional terms with a chiral asymmetry. The choice of the constitutive equation for the stress in
absence of activity and polarization, i.e., the convected Maxwell model, however, is not imposed by the symmetries
of the problem, but guided by physical results: this is the simplest viscoelastic model with liquid-like behavior at
long and solid-like behavior at short times. A natural generalization of the Maxwell model would be to introduce a
distribution of relaxation times [45,46]. As mentioned above this is necessary to describe some recent experiments. We
have also assumed that the rotation of the polarization is only associated with viscous dissipation. This is certainly a
good approximation at long times when the active gel flows. In this limit, our equations reduce to the hydrodynamic
equations off polar nematic liquid crystals. At short times, one expects an elastic response of the polarization, which is
not captured by Eq. (18). We now discuss this rotational viscoelasticity.

3.3. Rotational viscoelasticity

In this section, we introduce viscoelasticity of the polarization dynamics using the same level of description that
we have used for the flow equation. There are no constraints on the viscoelastic behavior imposed by the symmetries
and we must rely on a phenomenological description. We use a model with a single relaxation time similar to the
Maxwell model or the Debye model of dielectrics. Moreover, we choose the same relaxation time for the rotational and
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translational motion of the filaments. In the cytoskeleton, actin filaments are strongly entangled and the local rotations
of the polarization are hindered by the entanglement constraints. Therefore, relaxation can only occur by a reptational
worm-like motion of the filaments. The longest relaxation time both for rotational and translational motion is thus the
disengagement or rotation time. We use it here as a parameter and refer to the book of Doi and Edwards for a more
precise discussion [51].

As for the stress, we want to impose the behavior of the polarization in the absence of activity and in the limits of
short and long times. For long times, the gel flows and has the same hydrodynamics as polar nematic liquids, see above.
At short times, we expect an elastic behavior and the rheological equations must reduce to that of a nematic (polar) gel.
The elasticity of nematic gels and the coupling between the deformation field and the director field have been studied
in details both experimentally and theoretically. General references are the book of Warner and Terentjev [52] or the
work of Finkelman and coworkers [53]. We do not discuss this complex problem here, we only give the viscoelastic
polarization equation obtained in Ref. [54] which has the correct short time behavior. Note that this equation

Dp#

Dt
= 1

-1

(
1 + !

D
Dt

)
h# + '1p#!) − .1v#$p$ + .̄1v$$p# (20)

is different from the one proposed in Refs. [25,26].

3.4. Beyond the simple linear one fluid description

3.4.1. Permeation effects
In a first step, we have modeled the acto-myosin system as a single component active polar gel. This is a strong

approximation as the cytoskeleton is clearly a multi-component system including both polymerized and monomeric
actin, both, free motors and motors bound to actin, and the cytosol, which is itself composed by the solvent water and
a large number of proteins.

A systematic derivation of the linear hydrodynamic equations for a multi-component active polar gel will be given
in the forthcoming reference [55]. The theory, however, is more complex and involves a large number of Onsager
coefficients. This goes beyond the scope of the present review and we only wish to describe here the main qualitative
features that do not exist in the one-component description.

The most important qualitative effect which is neglected in the one-component fluid description is permeation. The
multi-component hydrodynamic theory essentially reduces to the one-component theory presented above if there is
no relative motion between the gel and the cytosol. The permeation through the gel can be an important source of
dissipation that is not always negligible.

A typical example where permeation plays a role is given by the simple thin gel model discussed in Section 2.2. As
polymerization occurs only at the front of the gel, new gel is formed ahead of the advancing gel fragment. This new
gel is swollen by the cytosol which requires a permeation flow of the cytosol through the already existing gel.

In a multi-component system, the relevant velocity is the center of mass velocity and one must also introduce the
relative fluxes ji of all the components with respect to the center-of-mass of each volume element. The flux ji of a
component i of concentration ci and chemical potential )i contains a convective part, a diffusion part and couples to
both, the active terms and the polarization. If we ignore the coupling to polarization, we can write

j i
# = civ# − /ij!#)j + 0ip#!). (21)

The mobility tensor /ij is not diagonal because of the hydrodynamic coupling between components in a rather dense
solution. The diagonal mobility /ii is proportional to the diffusion constant of component i. The mobility tensor can
also be anisotropic and contain terms proportional p#p$ leading to different diffusion constants in different directions.

The active term of the bound motors is related to their velocity vm along actin filaments 0m!) = cmvm. Note, that
this is a polar term that does not exist for a system with nematic symmetry. The other currents are also coupled to the
activity. The origin and the importance of these couplings are discussed in Ref. [55].

3.4.2. Non-linear couplings
A second limitation of the simplest active gel hydrodynamic theory is the restriction to linear terms in the constitutive

equations. The only non-linearities are of a geometrical origin. The linear approach is systematic: once the choice of
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fluxes and forces has been made, the symmetries impose the structure of the theory and relations between the Onsager
coefficients. The only freedom of the theory is the rheological model for which we have chosen here the Maxwell
model with a single relaxation time.

This linear approach is valid only in the vicinity of thermodynamic equilibrium. Biological systems are rarely close to
equilibrium and the linear theory is in most instances not sufficient. In a second step, the expansion could be extended to
second order, that is, to use relations between the fluxes and the forces including quadratic terms in !), in the field h, or
in the velocity gradient. This approach, although systematic, would be impractical because it requires the introduction
of a too large number of non-linear terms.

We favor here a different approach, where we use the generic linear approach and we introduce some non-linearity
only when new physics is needed. The choice of these non-linearities must, of course, be guided by experimental
results. In doing so, we lose part of the general and systematic character of the theory. Let us illustrate this approach
by two examples.

In Section 2.1, we have studied the formation of a passive active gel around a spherical colloidal object. One of the
essential ingredients of our approach is the fact that the depolymerization velocity rapidly increases with the tensile
stress in the gel. A linear theory would assume that the depolymerization velocity increases linearly with the tensile
stress. Bio-mimetic systems for Listeria show that this would be in strong disagreement with experiments. Kramers
theory [39,56] of chemical reactions, as well as recent experiments with the so-called Bio-membrane force probe [57]
support the exponential variation with stress that we use.

A second example concerns the active stress. The strict linear theory imposes that the active coefficient * is a constant
as the active stress is already first order in !). Any comparison with a molecular theory will lead to an active coefficient
depending on both, the gel density cf and the bound motor density cm. As we have argued above, a naive guess is
* ∼ −cmc2

f . In the linear theory, the concentrations must be replaced by their average values in the active gel. The
linear theory therefore neglects gradients of activity in the gel. Experimentally, however, it is known that the density
of molecular motors in cells is not homogeneous. Molecular motors are for example known to accumulate at the
rear of lamellipodia [8]. The ensuing gradient of activity can control some important physical properties such as the
propagation of waves or the thickness of cortical actin discussed below. In order to describe these phenomena, one
must go beyond the linear theory.

3.4.3. Active and passive noise
The active gel theory of Section 3.2 only considers the average values of the physical quantities and ignores their

fluctuations. The noise in active gels has in general a non-thermal nature. Close to thermal equilibrium, thermal noise
can also play a role.

Thermal noise is related to the linear response of the gel to external perturbations by the fluctuation dissipation
theorem. Its effects can therefore be calculated directly from the equations of the linear hydrodynamic theory. A
detailed study of the effects the effects of thermal noise in active gels will be given in Ref. [58]. It leads to results very
similar to those obtained in the theory of active nematic liquid crystals: the fluctuations in the polarization field strongly
influence the diffusion of a small particle in the active gel and can lead to a renormalization of both, the viscosity and
the elastic modulus of the gel.

Active noise in the gel can be due to the stochasticity in the polymerization, due to the stochastic motor activity or
due to active processes for example in the cell membrane. The study of active noise represents a big challenge because
of the lack of systematic approaches. Active noise has been discussed for so-called active membranes [18,59] for which
it strongly modifies the fluctuation spectrum and for mechano-sensory hair cells of the ear [60].

4. Spontaneous flow of active gels

In this section, we give two examples where the spontaneous flow of a thin active polar film is driven by a polar-
ization gradient. In the first example the polarization gradient is externally imposed while in the second example, it
spontaneously appears above a certain film thickness.

4.1. Flow induced by boundary conditions

Consider a film of thickness L on a solid substrate. The film is parallel to the (x, y)-plane and we assume that
the properties of the film are translationally invariant in the (x, y)-plane along the y-direction so that the problem is
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Fig. 3. Active film on a substrate with mixed anchoring conditions. The actin filaments are parallel to the free surface of the film but they are
perpendicular to the solid surface.

essentially two-dimensional as shown in Fig. 3. The free surface of the film is at z=L and the solid surface at z=0. The
orientation of the polarization is measured by the angle & with the z-axis perpendicular to the film surface. We consider
the case where at z = L the polarization is parallel to the free surface (&(L) = 1/2) while at z = 0 it is perpendicular
to the solid surface (&(0) = 0).

In the case of an incompressible film, the velocity vz in the direction perpendicular to the film vanishes. Under
these conditions, both, the polarization angle & and the velocity v in the x-direction, depend only on z. The constitutive
equations for the stress (16) lead to [61]

"xz + *!)
2

sin 2& − .1

2
(h‖ sin 2& + h⊥ cos 2&) = 2%u, (22)

"a
zx + h⊥

2
= 0, (23)

where u = 1
2 dv/dz is the velocity gradient. In a steady state, the equations for the polarization (18) read

u.1 sin 2& = h‖
-1

+ '1!), (24)

u(.1 cos 2& − 1) = h⊥
-1

. (25)

The equation of force balance !$"#$ − !#P = 0 along the z direction imposes that "zx is independent of z. Therefore, it
vanishes everywhere as it vanishes on the free surface. The constitutive equations can be combined to a single equation
for the polarization angle:

!2
z& = *̃!) sin 2&(.1 cos 2& − 1)

K[4(%/-1) + .2
1 − 2.1 cos 2& + 1] . (26)

This equation can be integrated once leading to 1
2 (!z&)2 = −E(&), where E(&) is an effective potential energy. This

energy has minima for & = 0, 1/2 and a maximum at the angle &0 such that cos 2&0 = 1/.1.
In the case of a thick film, the polarization angle is close to &0 except in the vicinities of the surfaces. We can then

expand the effective energy around &0: E(&) = E(0) − (1/2(2)(& − &0)
2, where the decay length of the polarization is

defined as (−2 =(−2*̃!)/.1K)(.2
1 −1)/(4(%/-1)+.2

1 −1). In the limit, where the film thickness is large compared to (,
there are two boundary layers of thickness ( on each side of the film where the polarization angle relaxes exponentially
to the value &0. In the center of the film, the polarization angle is constant and equal to &0. Over most of the film the
velocity gradient, Eq. (25), is constant and equal to u = *̃!) sin 2&0/-1[4(%/-1) + .2

1 − 1]. For *̃!) < 0, u is negative.
Because the velocity vanishes on the solid surface z = 0, the velocity is everywhere directed towards negative values
of x. There is therefore a finite flux of liquid

Q =
∫ L

0
dzv(z) = *̃!) sin 2&0

-1[4(%/-1) + .2
1 − 1]L

2/2. (27)
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Fig. 4. Gel on a solid substrate and the associated flow. The gel thickness L is larger than the Frederiks transition threshold Lc.

4.2. Spontaneous Frederiks transition

As in the previous section, we consider again a thin film, but now with a boundary condition, such that the polarization
is parallel to the x-direction on both surfaces. Then, there is a static steady state of the film with v = 0, and a constant
polarization parallel to the x-direction. Here, we study the stability of this steady-state solution [61].

As in the previous section, we consider a free surface at z=L and a solid substrate at z=0. The constitutive equations
are thus the same as in the previous section and the total transverse stress "̃zx vanishes on the surfaces of the film.

We consider a perturbation of the static state, where the polarization angle is slightly tilted and & only weakly deviates
from 1/2; we write & = 1/2 − ε. Expanding Eq. (26), the tilt ε is a solution of

!2
zε + 12

L2
c
ε = 0, (28)

where L2
c =−12K(4%/-1 +(.1 +1)2)/2*̃!)(.1 +1). If the active stress is contractile (*̃ < 0), then L2

c is indeed positive
and Lc is a well-defined length.

If the thickness L of the active film is smaller than Lc, then the only solution to Eq. (28) which satisfies the boundary
conditions ε(0) = ε(L) = 0 is ε = 0. The polarization thus remains parallel to the x-direction and there is no flow in the
film. At the critical value of the thickness L=Lc, there is a bifurcation and the tilt of the polarization becomes finite. If L
is close to the critical value, the polarization angle behaves as ε= εm sin(1z/L). The amplitude εm cannot be calculated
from the linear theory proposed here and requires the calculation of the non-linear terms. Beyond the bifurcation, the
amplitude varies as εm ∼ ±(L−Lc)

1/2. Note, that there are two possible tilts of the polarization in opposite directions,
and the symmetry is spontaneously broken. This transition is similar to the classical Frederiks transition of nematic
liquid crystals, where a tilt of the director orientation imposed by surfaces is due to an external magnetic field [44].
There is no magnetic field here and the tilt results from the active stresses. The new feature of the active film is that
above the transition, the velocity field does not vanish. It is given by v =[4L*̃!)εm/1(4%+-(.+1)2](cos(x1/L)−1).
The velocity has everywhere the same sign and there is a finite flux of liquid in the x-direction. Note, that the flux can
occur either in the positive or in the negative direction depending on the sign of the polarization tilt even though the
film is polar. The polarization field in the gel and the associated flow are displayed in Fig. 4.

A similar Frederiks transition occurs with different hydrodynamic boundary conditions. For a film confined between
two solid surfaces, the velocity vanishes on both surfaces of the film. The transition between a static and a flowing state
occurs at a thickness L = 2Lc and there is no net flux of liquid in the x-direction.

We have supposed here that the free surface of the film remains flat corresponding to a high surface tension and we
have only considered distortion of the polarization in the (x, z)-plane. Distortions in the (x, y)-plane are also possible
and lead to another type of instability that has been recently studied by Ramaswamy [62].

5. Vortices in active gels

Actin filaments have a persistence length of the order of 15 "m and tend to align at least locally to form a phase
with polar order or in some cases a nematic phase [3]. In most instances, the polarization varies smoothly in space
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Fig. 5. Possible point defects of topological charge one in two dimensions. (a) Illustration of the definition of the angles & and 2. (b–d) The orientations
of the polarization vectors are displayed as arrows for an aster (a), a vortex (b) and a spiral (c).

under the influence of external fields. However, the polarization can have a very strong variation, around a so-called
topological defect of the polarization field. At this point, the polarization is not well-defined. In this section, we discuss
the properties of such defects in thin active polar gels. We only consider polar gels in two dimensions, having in mind
the very thin films formed by the actin network in cells. We first discuss an isolated defect of topological charge 1. We
then discuss the stability of a thin film with respect to the formation of such defects.

5.1. Topological defect of charge one in active films

Before studying a topological defect of charge 1 in an active polar gel, it is useful to recall the properties of such
defects in a passive system corresponding to a ferroelectric liquid or a polar nematic [44].

5.1.1. Topological defects in a passive system
We first use the one-constant approximation for the orientation free energy (14), K1 =K3, and impose a polarization

of modulus p = 1. In a two-dimensional system, the polarization at point r can then be characterized by its polar angle
3(r). The transverse field conjugate to the polarization is then h⊥ =K∇23. In equilibrium, the transverse field vanishes
and the polarization angle is such that

∇23 = 0. (29)

The solution of this equation that corresponds to topological defects, that is, which is singular at the origin, can be
written as 3 = m& + 20, where we have used polar coordinates, (r = (r, &)), and where 20 is a constant, see Fig. 5a.
The topological charge of the defect m is an integer; which counts the number of turns of the polarization while turning
once around the defect. Note, that in contrast to nematic liquid crystals half-integer values of m are not allowed for
polar systems. In the following, we focus on topological defects of charge m = 1. The possible defects are shown in
Fig. 5b–d.

If 20 = 0, 1, then the defect is an aster with the polarization pointing either towards the origin or away from it. If
20 = 1/2, −1/2, then the defect is a vortex. For defects with any other value of 20, the polarization spirals around the
origin. The equation of the spirals in polar coordinates is

r(&) = r0 exp[& cot 20]. (30)
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In the limit of isotropic Franck constants, K3 − K1 = +K = 0, all these defects have the same free energy and occur
with the same probability. In the more realistic case with +K )= 0, spirals are never stable. Asters are stable if +K > 0,
when splay deformation is favored, and vortices are stable if +K < 0, when bend deformation is favored.

5.1.2. Spiral defects in an active system
We now consider a topological defect of charge 1 in an active incompressible system in the liquid limit where ! → 0

[25,26]. As above, we use polar coordinates and look for a rotationally invariant steady-state solution. The polarization
angle is written as 3(r, &) = & + 2(r). The incompressibility condition ∇ · v = 0 and the fact that the velocity must
not have any singularity impose that the radial velocity vanishes, vr = 0. The velocity field is thus ortho-radial and the
only non-vanishing component of the strain rate tensor is vr& = 1

2!v&/!r .
In steady state, the constitutive equation (18) for the rate of change of the polarization relates the components of the

field h to the strain rate tensor by

.1vr& sin 22 − '1!) = h‖
-1

, (31)

(.1 cos 22 − 1)vr& = h⊥
-1

. (32)

The three components of the stress tensor "̃rr , "̃&&, "̃r& depend only on the radius r. The force balance equation projected
on the &-direction reads (1/r2)(d/dr)(r2"̃r&) = 0. It implies "̃r& = 0, because the stress cannot have a singularity at
the origin. The symmetric part of the stress tensor is then

"r& = h‖/2. (33)

Combining Eqs. (33), (32) and the (r&)-component of the constitutive equation (16) for the stress, we obtain an equation
for the polarization angle

h⊥(4% + -1.1(.1 − cos 22)) = -1 sin 22(.1 cos 22 − 1)*̃!). (34)

As above, we have introduced here the effective active stress coefficient *̃ = * + .1-1'1.
We now look for solutions of Eq. (16) to describe topological defects of charge one in an active system. If we first

ignore the anisotropy of the Franck constants, +K = 0, then the only solutions of Eq. (16) with h⊥ = 0 are spirals with
a constant angle 2 = 20 such that

cos 220 = 1/.1. (35)

There is therefore a dynamic selection of the spirals. The selected angle is the same as the steady state angle of a nematic
liquid crystal in a shear flow, relative to the shear axis. Note, that quite similarly to nematics in a shear flow, there is no
steady state if |.1| < 1. If |.1|!1, then the transverse component of the velocity gradient is vr& =,/2=[sin 220/(4%+
-1.

2
1 sin2 220)]*̃!). The determination of the velocity field requires a boundary condition at large distances. Here, we

choose the simple condition, that the velocity v& vanishes at a distance R from the center such that

v& = ,r log r/R. (36)

The whole spiral is thus rotating at a slowly varying angular velocity , log r/R. Rotating spiral defects have been
observed by Nédélec and coworkers in solutions of microtubules interacting with kinesin molecular motors. The theory
that we describe here is generic and can be applied also to kinesin–microtubule mixtures [63–66].

So far, the actin gel has been considered as purely two dimensional. In many cases, though, the active film interacts
with a substrate. As in Section 2.2, an interaction with the substrate can be described by a friction coefficient per unit
area (, so that the force per unit area exerted by the substrate on the gel is −(v. The effect of the friction force has
been calculated in detail in Refs. [25,26]. It is characterized by a friction length 'f = ((4% + -1.1sin2220)/2()1/2. At
distances from the center of the defect smaller than 'f , the effect of the substrate friction is negligible and the velocity is
given by Eq. (36), where the friction length plays the role of the large length scale R. At larger distances, the dissipation
is dominated by the substrate friction and the velocity decreases exponentially to zero.
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Fig. 6. Stability diagram of asters, vortices and spirals which are topological defects in an active gel of polar filaments. Asters are stable for +K > 0 in
the region with actively generated stresses *̃!) larger than a critical value *̃!)A

c . This critical value is negative, corresponding to contractile stresses
in the gel. Vortices are stable for +K < 0 and *̃!)> *̃!)V

c . For other parameter values, rotating spirals occur via a symmetry breaking dynamic
instability. Here, +K = +K/K is a dimensionless ratio of two elastic moduli and *!) = R2*̃!)/K a dimensionless measure of active stresses.
Note that both rotation senses occur with equal probability on symmetry grounds. The diagram was evaluated for the choice %/-1 = 1 and .1 = 2 of
Onsager coefficients of the system.

In the general case, the anisotropy of the Franck constants cannot be ignored. In the absence of activity, we have
shown above that either vortices or asters are stable depending on the sign of the anisotropy +K . The stability of
these defects has been studied in Refs. [25,26] as a function of the activity coefficient *. The stability diagram in the
absence of substrate friction is displayed in Fig. 6. It shows the range of stability of the various defects in the plane
(+K, *!)) and reveals, that for a given value of +K , both, asters and vortices, are unstable if the activity is negative and
large enough. This suggests that the stable defects are (rotating) spirals. In the system of microtubules and kinesins,
a transition between asters and rotating spirals has been observed as the density of motors is increased [63–66]. This
is in qualitative agreement with the phase diagram of Fig. 6 if we assume that both, the absolute value of the activity
coefficient * and the Franck constant anisotropy +K , increase with the number of motors.

The role of topological defects in the actin polarization field has not been assessed fully for in vivo systems. In
Ref. [25] it was proposed that the flow field of the cytoskeleton in moving keratocyte cells could be discussed based on
a pair of point defects which rotate in opposite directions and are located on the two sides of the lamellipodium. In this
scenario, each spiral defect creates a velocity field on the other spiral that transports the defect at a constant velocity
forward. This drives the overall translational motion in a way similar to the motion of smoke rings. So far, there is no
quantitative experimental evidence to support this simple picture. In vitro, as mentioned above, rotating spirals have
been observed for microtubules interacting with kinesin motors. Recent experiments of the group of J. Käs on active
actin films show the spontaneous appearance of complex structures [67,94]. Some of these structures look like aster or
spiral defects. In the next section, we discuss the stability of active films and the appearance of defect structures.

5.2. Dynamic phase diagram of compressible active films

The aim of this section is to study the stability of thin active polar films. In the following, we average all properties
over the thickness of the film and therefore discuss the film properties in two dimensions. Although the film itself is
in general incompressible, the two-dimensional density c(r) is not constant due to variations in the film thickness. We
thus consider the film as a two-dimensional compressible system. Here, we only study small density fluctuations of the
film around the average density c0, and write the local density as c = c0 + 4. The total free energy of the system Ft is
the sum the polarization free energy, Eq. (14), and a density-dependent contribution Fd. For simplicity, we consider
again the case of isotropic Franck constants and set K1 =K3 =K . The density-dependent contribution can be expanded
up to second order in powers of 4, Fd =

∫
dr[w4∇ · p + ($/2)(∇4)2 + (#/2)42]. The compressibility # is positive

and, together with the positive coefficient $, defines the correlation length (4 = ($/#)1/2 of density fluctuations. The
coefficient w characterizes the coupling between density fluctuations and splay. Finally, the surface pressure in the film
is 5 = c0+Fd/+4.

The equations of motion of the film have two types of homogeneous steady states: static state where the ve-
locity vanishes and the polarization is constant and dynamic steady states with a constant velocity gradient and a
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Fig. 7. Dynamic stability diagram of an active polar film. The various regions of the diagram are discussed in the text. We also show a sketch of the
possible periodic structures.

constant polarization. In the dynamic steady state, the angle between the polarization and the velocity must satisfy
Eq. (35).

In Ref. [68], we have studied the stability of the two types of steady states with respect to periodic perturbations
with wave vector k using both analytical and numerical calculations. We have constructed a stability diagram in a
(K, *!))-plane. The diagram is displayed in Fig. 7 in the limit of a vanishing active coefficient, '1 = 0.

Three regions can be distinguished in this diagram. In region A either the static or the dynamic homogenous steady
state is macroscopically stable. In region A−, the film spontaneously flows, quite similarly to what has been discussed
in the previous section. In region C−, both the static and the dynamic steady states are unstable with respect to a
macroscopic perturbation (with a wave vector kc = 0). In this range of parameters the activity coefficient * is negative
and large, which corresponds to a strong contractility. The (renormalized) compressibility is then negative and one
expects a macroscopic phase separation. This could correspond to the super-precipitation observed in actin–myosin
systems [9,10,69,70] or to the formation of bundles by microtubules when the density of kinesin motors is increased.

In regions B and C+, at least one of the steady states is unstable with respect to periodic perturbations of finite
wave vectors kc. This instability is very similar to the instability described in Refs. [71,72] for passive nematics. In
that case, the instability corresponds to the appearance of a periodic lattice of defects, which favors the apparition of
splay. For the active system, this suggests a similar lattice of defects. Because of the existence of polarization gradients
in this phase, the velocity gradient cannot vanish and the system flows locally. The symmetry of the phase cannot be
inferred from the linear stability analysis and requires a non-linear analysis. One could expect either a lamellar phase
or a hexagonal phase. The hexagonal phase, for example, corresponds to an ordered array of rotating spirals similar to
those described in the previous paragraph. Finally, in region C+ there are two independent unstable modes and this
could correspond to an oblique phase of defects. Note, that the existence of an instability at a finite wave vector is not
a proof of the existence of a periodic phase (as illustrated for example in the case of spinodal decomposition).

To date there exist no systematic studies of the dynamic phase diagram of actin–myosin films. However, both,
simulations and some experiments, show the existence of phase separation and of disordered vortex phases with flow.
We suggest here the existence of a flowing phase of ordered vortices. A disordered or glassy vortex phase could also
exist as a metastable state and be stabilized by the intrinsic noise of the system.

The active gel theory can be applied to any type of active system sharing the same symmetries as the cytoskeletal gel.
An example is bacterial suspensions. Recent experiments on two-dimensional bacterial colonies show flow patterns
consisting of disordered rotating eddies of swimming bacteria [22]. This bacterial turbulence could also be a disordered
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version of the mesophases suggested by our theory. The work of Ramaswamy and coworkers for hydrodynamically
interacting self-propelled particles also predicts a flow instability [20,21]. This instability is different, though, from the
one discussed here since there is no instability threshold. This difference might be due to the fact that our model only
considers a one component compressible gel. A more detailed comparison between the two approaches would require
the determination of the dynamic phase diagram using the multi-component active gel model outlined above.

6. Active gel theory and the cell cytoskeleton

In this section, we discuss applications of the active gel theory to some problems of cell biophysics. First, we discuss
the actin flow in lamellipodia of cells crawling on a substrate and determine the height profile of these protrusions.
It follows a study of propagating waves in active gels. Indeed, waves propagating at constant velocity seem to be a
general feature of active systems and have been observed under various circumstances in the actin cytoskeleton of cells
adhering to a substrate. Finally, we show how the active gel approach can be used to discuss physical properties of the
cortical actin layer present in animal and many other cells.

6.1. Lamellipodium motion

The advancing velocity of a keratocyte cell has been measured to be of the order of 10 "m/ min. In the front region
of the lamellipodium, the actin gel exhibits a retrograde flow with respect to the substrate measured in the reference
frame of the substrate [73]. At the rear of the lamellipodium, close to the cell body the actin velocity changes sign and
the flow is anterograde. On the sides of the cell, the flow field is more complex.

In order to discuss the actin dynamics in a lamellipodium as well as the associated height profile, we extend and
modify the model presented in Section 2.2 [74]. For simplicity, we consider again a two-dimensional geometry. The
motion is assumed to be directed along the x-axis and the height is measured in the z-direction. The velocity u of the
lamellipodium is directed towards negative x-values. In the following, we choose the origin of the x-axis to coincide with
the front of the lamellipodium, see Fig. 8. We furthermore assume that the polarization is fixed inside the lamellipodium
with modulus one and pointing into the direction of motion.

Actin polymerization is promoted by proteins, such as Wiscott Aldrich Syndrom Proteins (WASP) family proteins
which activate the ARP 2/3 complex. This complex generates branching of actin filaments and thus promotes the
formation of new uncapped ends which can polymerize and thus extend the gel [75–78]. We assume here that the
WASPs are located in the vicinity of the front and that their density is 4wa = 40 exp(−x/') where the length scale
' is of the order of 1 "m. We consider that actin polymerization occurs only on the cell surface and in the direction
normal to the surface. The polymerization velocity vp is then given by vp = kp4wa(x)n, where n denotes the local
normal to the cell surface and kp the polymerization rate. In contrast to the treatment in Section 2.2, we consider here
an incompressible actin gel and work in the limit where the slope of the lamellipodium height profile h(x) is small,
|dh/dx|>1.

As above, we describe the effects of adhesion of the lamellipodium to the substrate by a viscous friction law, such
that the transverse stress at the substrate surface is proportional to the local velocity, i.e., "zx = (v(z = 0), where (

Fig. 8. Schematic representation of the two-dimensional geometry of a thin gel layer corresponding to a lamellipodium of a moving cell. The height
profile h(x) of the gel is described as a function of the distance x from the leading end of the lamellipodium. The lamellipodium length is denoted L.
The gel in a lamellipodium is structurally polar with filaments pointing their plus ends towards the leading end of the lamellipodium. This polarization
is described by the vector p. Polymerization of new gel material occurs at the surface of the gel layer in a direction normal to the surface and with
velocity vp(x).
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has dimensions of friction per unit area. The stress distribution below a moving keratocyte has been measured in [79].
Using this result and the velocity field reported in [73], we estimate the value of ( to be ( $ 1010 Pa s/m.

The force balance in the gel is given by

!(h(" − P))

!x
= (v, (37)

where the gel velocity v is measured in the reference frame of the substrate. In the thin film limit, the stress and the
velocity depend only weakly on the transverse coordinate and can thus be considered as constant in the z-direction. The
stress " entering Eq. (37) is the average with respect to the thickness of the gel layer of the longitudinal component of
the stress tensor "xx , " = (1/h)

∫ h
0 dz"xx . Eq. (37) is very similar to Eq. (9), but we have now taken into account, that

the cytoskeleton is incompressible and that its thickness h(x) varies with the distance from the front. By writing the
continuity of the normal stress at the upper surface of the gel, one obtains that "zz(h) = P = −" so that " − P = 2".
We first consider that the cytoskeleton is fluid and take the liquid limit of the constitutive equation (16). The stress
averaged over the thickness of the film is then related to the velocity gradient by 2%!v/!x = " + *!). Combining this
equation with the force balance (37), we obtain a relation between the velocity v and the film thickness h.

In order to obtain both, the height profile of the lamellipodium and the gel velocity, we use the conservation of matter.
In the moving reference frame of the lamellipodium, the flux of actin is ja = h(u + v). If, for simplicity, we neglect
depolymerization in the bulk, then the variation of this flux is due to the polymerization, so that

!h(u + v)

!x
= 4wa(x)kp. (38)

We consider here that the transition between the lamellipodium and the cell body occurs when the thickness of the
lamellipodium is equal to a characteristic thickness of the cell body h0. Denoting the length of the lamellipodium by
L, flux conservation at the transition to the cell body imposes the depolymerization velocity to be vd = u + v(L).

The solution of Eqs. (37) and (38) requires three boundary conditions. At the front of the lamellipodium, x = 0 the
height h vanishes and there is no applied force, F = h(" − P) = 0. At the back of the lamellipodium, x = L, the
cell body exerts a force fb on the lamellipodium. This force includes both the friction force on the cell body and any
eventual external force applied to it. Note, that we ignore here wetting phenomena related to the advancement of the
lamellipodium on the substrate and that we do not consider the surface tension forces acting on the lamellipodium.

In the middle of the lamellipodium the height is approximately constant and of order 1 "m. The velocity decays
then as v(x) $ (−*!)/4%) exp(−x/d) where we have defined the velocity decay length d2 = 4%h/( ∼ 6 "m and
imposed that the stress vanishes at x =0. This velocity is positive, the flow is thus in the positive x-direction and indeed
corresponds to a retrograde flow. Comparing the velocity at the front with the experimental value, we obtain an estimate
of the active stress −*!) ∼ 103 Pa.

A numerical solution for the height profile h(x), the velocity v(x) and the force F(x) is shown in Fig. 9. The flow is
always retrograde at the front. At the back it is anterograde, if the force fb is small. In the middle of the lamellipodium,
the velocity vanishes. The lamellipodium is very flat around this point and we define its thickness as the thickness at
the point where the velocity vanishes h̄ = h0vd/u. If the force exerted by the cell body vanishes, fb = 0, so does the
total force on the lamellipodium. On can then characterize the lamellipodium by a force dipole Q =

∫
dx dy(v. The

explicit calculation gives Q = Ah̄*!), where A is the area of the lamellipodium. The dipole is negative as observed
experimentally for a cell on a soft substrate, which corresponds to a contractile effect of the cytoskeleton [80]. The
order of magnitude of this force dipole Q ∼ −6 × 10−13 J is consistent with the experimental data [79].

The advancing velocity of the cell is obtained from flux conservation at the back of the lamellipodium. We obtain

u $ vd −
(

h0

4%(

)1/2 (
*!) + fb

h0

)
. (39)

Remarkably, the leading term is the depolymerization velocity. The active effect due to the myosins increases the
advancing velocity, but contributes only 10% to the total velocity. The dependence of the velocity as a function of
the force applied at the back is complex. As might have been expected, the explicit dependence in Eq. (39) indicates
a decrease of the velocity as the force increases. However, the depolymerization velocity also varies as a function of
the force; in most cases, it decreases with the force as discussed in Section 2.1. Together, this could lead to a negative
mobility of the cell, i.e., the velocity increases with an opposing force applied at the rear [81].
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Fig. 9. Calculated velocity, force and height profiles of a thin active gel layer corresponding to a lamellipodium which moves on a substrate in the
negative x-direction with velocity u = 10 "m/ min. The position x is measured along the horizontal axis and given in "m. The flow velocity v of
the gel layer relative to the substrate is given in "m/ min, and the gel thickness h is given in "m. The integrated stress across the active gel layer F
is given in units of 0.5 nN/"m. The parameter values are *!)/4% = −0.21min−1, (/4% = 1/(36 "m), and u = 10 "m/ min. Furthermore, we use
( = 3 × 1010 Pa s/m and kp40

wa = 9 "m/ min.

One of the main limitations of this simple model results from our assumption of the cytoskeleton behaving as a
liquid. This is certainly not true close to the front of the cell where the viscoelasticity must be taken into account. One
expects a region with a length of order u! in which the actin has a solid like behavior. The velocity in this region remains
constant but a more detailed theory leads to a modified height profile in the vicinity of the front of the lamellipodium.

6.2. Relaxation modes of the cytoskeleton and wave propagation

One of the general features of active systems is the possible be the existence of propagating waves as has been
pointed out first by Ramaswamy [20,21,24]. This has been shown for instance for active membranes or for active
nematic liquids. Propagating waves have also been observed in the cytoskeleton of dictyostelium cells [82] and of
spreading fibroblasts [83]. During cell spreading, lateral as well as centripetally propagating waves have been detected.

Theoretically, the existence of propagating waves in a medium can be studied by looking at the corresponding
relaxation modes. A systematic study of the relaxation modes has not been performed within the framework of the
linear active polar gel hydrodynamic theory. In Ref. [26], we have studied the relaxation modes of a compressible active
polar gel in one dimension.

In a steady state, the actin density and the actin velocity v are constant. The velocity is imposed by actin treadmilling,
v = vp. Within the strictly linear theory, an active polar gel has no propagating modes. In order to have a more realistic
description, we introduce explicitly two populations of myosins, myosins bound to actin at a concentration cm and free
myosins at a concentration cu. Free myosins diffuse in the cytosol with a diffusion constant D. Bound myosins are
convected by the gel movement with velocity v, but they also generate motion along the actin filaments (towards the
plus-end) at a velocity vm. This motion is due to the activity of the myosins and it is in a linear theory proportional
to !). The flux of bound myosins is therefore jm

# = cm(v# + vmp#). In comparison to the general expression of the
flux given in Eq. (21), we have ignored here the diffusion of bound myosins (which correspond to fluctuations of the
velocity u) and we can identify 0m!) = cmvm. The conservation equations for the two populations of myosins read

!t cu − D!2
xcu = koffcm − konc0c

n
u , (40)

!t cm + !x(cm(v + vm)) = −koffcm + konc0c
n
u . (41)
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The attachment kinetics of the myosins to the active filaments is characterized by on- and off-rates, kon and koff ,
respectively. As bound myosins form mini-filaments, we have used here a non-linear binding kinetics with n of order
3 to 4. The active stress depends on both, the myosin density cm and the actin density c0. We only consider the linear
terms and define *a = !c0

* as well as *m = !cm
*.

Investigating the relaxation of a periodic perturbations +v ∼ eikx with wave vector k around the homogeneous steady
state with v = vp, we obtain three modes. Two overdamped modes correspond to a chemical relaxation mode and to a
chemical mode. The third is a propagating mode with a propagation speed

c = −3
[
v0 + (#c0 + *a!)c0)vm

#c0 + *a!)c0 + *mcm

]
. (42)

As in Section 5.2, # is the compressibility of the actin gel and 3 the fraction of bound motors. In a cell, the total flux
of bound myosins at the edge must vanish and therefore vm + vp = 0. The speed of the propagating mode is then
proportional to the actin polymerization velocity and to the active coefficient *m. Note, that in this polar system the
modes propagate only in one direction.

6.3. Polymerization limited by active stress in a flat geometry

In many cells, actin forms a cortex just below the plasma membrane. The cortical actin controls many of the
mechanical properties of the cell and is about 1 "m thick. In particular, it has recently been shown to play a major role
in cell instabilities and oscillations [84,85], as well as in the transient formation of blebs by the cell membrane [86,87].

We assume here that cortical actin grows from the membrane with the plus-ends of the filaments on the membrane and
the minus-ends pointing inwards. The filaments are probably almost parallel to the membrane surface and randomly
oriented in the plane of the membrane. In the language of liquid crystals this corresponds to a negative nematic
order parameter. Consequently, we choose the active stress to be positive, *̃!) > 0. With this choice and assuming an
incompressible gel, the gel generates contractile stress in the plane of the membrane and under contraction increases
the thickness of the gel layer.

A complete discussion of the actin cortical layer will be given in Ref. [88]. Here, we restrict our discussion to an
actin layer growing from a flat membrane in the (x, y)-plane along the z direction as shown in Fig. 10.

As actin grows from the surface, the newly formed filaments are covered by myosins and the contractile stress
grows. If we call !−1

m the detachment rate of the myosins from the filaments and vp the actin polymerization velocity
perpendicular to the membrane, the active stress grows as *̃!)(z) = *̄!)(1 − exp(−z/(!mvp))), where *̄!) is the
saturation value of the stress that is generated when the myosin density along the actin filaments reaches its equilibrium
value. The total transverse stress "xx − P , where P is the pressure, also grows from the surface. If, for simplicity, we
consider that actin depolymerization occurs only at the surface of the cortical layer, it occurs at a lateral stress "xx −P

at the gel thickness z = h. This increases the depolymerization rate of the gel. In the simplest Kramers approach, the
depolymerization rate increases exponentially with the stress as vd = v0

d exp{["xx − P ](h)/"0}, where "0 is a stress
characterizing the height of the potential barrier against depolymerization. The cortical layer therefore grows until the
stress is large enough such that depolymerization exactly compensate polymerization. The thickness h of the cortical
layer is thus fixed by vd(h) = vp.

If the lateral extension of the membrane is very large, the velocity field in the actin layer is oriented along the z
direction and only depends on z. The incompressibility equation imposes that the velocity vz normal to the membrane is
constant. Continuity of the flux on the membrane then imposes vz = vp. Ignoring variations of the polarization module,

cell membrane

actin cortical layerh

Fig. 10. Sketch of a cortical actin layer in a planar geometry. Actin polymerizes on the membrane surface and depolymerizes on the outer surface of
the layer where the minus ends of the filaments are located. The actin filaments have an orientation almost parallel to the membrane surface.
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the constitutive equations for the stress, Eq. (16), can be written as

(1 + !vp!z)("zz + 2
3 *̃!)) = 0, (43)

(1 + !vp!z)("xx − 1
3 *̃!)) = 0. (44)

In the following we ignore the variation of the modulus p of the polarization vector. We have supposed in Eq. (43)
that this modulus is equal to 1. If it is different from 1, the active stress must be multiplied by p2 according to
Eq. (16). Force balance in the z-direction imposes !z("zz − P) = 0. Taking the boundary condition at the free surface
into account, this implies "zz =P . The boundary condition for the stress "xx on the membrane, at z=0, depends on the
state of the active gel when it polymerizes. The simplest polymerization condition is given by ("xx − P)(z = 0) = 0,
that is the gel is stress free when it polymerizes. In this case, the stress on the surface is ("xx − P)(h) = (*̃!))(h) at
z = h and the steady-state thickness of the cortical actin layer is given by

h = −vp!m log
(

1 − g"0

*̄!)

)
, (45)

where g = log vp/v
0
d is a dimensionless polymerization free energy. If the active stress is very large the cortical actin

layer is very thin. When *̄!) = g"0, the thickness of the actin layer diverges and the cortical layer invades all the
cytoplasm. However, in this case, the actin monomer diffusion through the cortical layer must be taken into account,
which fixes the thickness of the cortical layer.

In a next step, the stability of the cortical actin layer should be studied, see [88], where this analysis is performed for
a cortical layer in a spherical geometry mimicking a cell. For a broad range of parameters, the cortical layer is unstable.
Such cortical instabilities could be related to oscillatory instabilities of cells [85]. Furthermore, cortical instabilities
could be related to the formation of blebs, when the cortical gel fails to stabilize the membrane geometry and membrane
vesicles bud off the cell [87]. Pattern formation in the cortex has also been discussed in cylindrical geometry based on
an effective two-dimensional description of an active gel layer close to a surface [89]. This description is derived from
more microscopic models of filament interactions near a surface and can be viewed as a simplified two-dimensional
projection of the cortical layer discussed here.

7. Concluding remarks

In the preceding sections, we have shown how a macroscopic hydrodynamic theory can account for mechanical
properties of the cytoskeleton in living cells as well as for purified subsystems of the cytoskeleton studied in vitro.
The macroscopic properties of the cytoskeleton essentially follow from its symmetries and its inherent activity. The
symmetries are comprehensively captured by describing the cytoskeleton as a polar physical gel. The activity is due to
processes driven by ATP hydrolysis, like the action of molecular motors or the assembly and disassembly of filaments
in presence of cross-linking proteins. Based on these properties, the hydrodynamic theory is obtained by following the
same approach as Martin, Parodi, and Pershan for describing the dynamics of condensed matter on large length and
time scales [16]. The important new ingredient, which captures the activity of the cytoskeleton, is the generalized force
due to differences !) in the chemical potentials of ATP and its hydrolysis products. As we have seen, the activity not
only modifies the bulk material properties: treadmilling leads to unique boundary conditions in elasticity problems of
the cytoskeleton.

The hydrodynamic equations depend on a set of phenomenological parameters such as viscosities and elastic moduli.
Most of these parameters are known from liquid crystal physics and experiments have been devised to measure them.
For actin gels, however, the values of many of these parameters are unknown, for example, the rotational viscosity -1
or the coupling between polarization and stress .1. The same is true for the new parameters connected to the activity of
the material. As the other Onsager coefficients, they are material parameters and new experimental setups have to be
devised to measure them. Considering the cytoskeleton as being incompressible, there is really only one new parameter,
*̃, coupling the activity measured by !) to the stress in the system. While direct measurements of this value have not
yet been performed, the corresponding active stress can be estimated for lamellipodia of keratocytes. To this end the
results of the analysis presented in Section 6.1 are compared to measurements on keratocytes. This yields a value of
−*!) = 103 Pa. Applying the same approach to neuronal growth cones, the value seems to be slightly smaller [90].
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Since the hydrodynamic theory is based on symmetries only, the theory of active polar gels can be applied to any active
system with polar order. In addition to the acto-myosin system, these include microtubules interacting with kinesin
or dynein motors, but also colonies of swimming bacteria or cellular tissues (in many tissues cells are polarized).
Furthermore, flocks of birds and fish schools fall into this class and an approach similar to the one presented here has
been used for their description. Note that in contrast to the cytoskeleton, inertial effects cannot be neglected in the
latter cases. Being described by the same equations, the values of the phenomenological coefficients differ from system
to system. As stated above, they can be measured directly. Another way is to consider microscopic models which in
simple limits can be related to the hydrodynamic theory [14,15,50,91–93]. Using such models, the phenomenological
parameters can be estimated from single molecule properties.

The physics of active systems is only at its beginning and the introduction of activity in the hydrodynamic equations
leads to many new physical effects. We have given here a few examples of spontaneous flow and instabilities driven
by the activity. There is still a long way to go before the consequences of these effects for cellular behavior have been
fully explored. It is remarkable, though, that already the one-component theory for systems close to thermodynamic
equilibrium analyzed in simple geometries can qualitatively account for phenomena such as the retrograde flow in
crawling cells or the height profile of lamellipodia. A quantitative description of these effects in cellular systems likely
requires to explicitly consider several components and to go beyond the linear theory presented here. Unlike the linear
theory reviewed in this work, however, there is no systematic way to build this more general theory. Therefore an
intense and systematic cross-talk between experiments and theory will be needed.
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