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1 Introduction

Active processes play a crucial role in the hearing organs of all vertebrates,
where they amplify sound stimuli in a level-dependent and frequency-selective
manner (Dallos 1992, Hudspeth 1997, Manley 2001). The most readily ob-
servable signature of active processes – oto-acoustic emissions – have been
found in all classes of vertebrate (Kemp Chapter 1, Manley and van Dijk
Chapter 6, Probst 1990, Manley and Köppl 1998, Manley 2000) and sponta-
neous movements have even been reported in the hearing apparatus of some
insects (Göpfert Chapter 5, Göpfert et al. 2005) In different animal species,
the physiology of the hearing organs and the molecular basis of active pro-
cesses varies in significant ways. Despite this biological diversity, vertebrate
ears share many features that characterize the active amplifier. These include
oto-acoustic emissions (Probst 1990), a compressive nonlinearity (Robles and
Ruggero 2001, Martin and Hudspeth 2001), high frequency selectivity and
the physiological vulnerability of all these phenomena. The generality of this
observed behavior suggests that a common physical principle may underlie
active amplification in all auditory systems (Camalet et al. 2000, Eguiluz et
al. 2000). We propose that the physics of dynamical systems provides an
appropriate framework for identifying this principle and argue that the basic
element of the active amplifier is a ‘critical oscillator’ – an active dynamical
system that is on the verge of an oscillatory instability. In this Chapter, we
discuss how the concept of critical oscillators provides a unifying description
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of the general characteristics of the active process in hearing. Different phys-
iological realizations of critical oscillators in different species, and the various
ways in which these oscillators can be coupled together, can lead to diverse
properties of certain aspects of auditory systems, while the generic features
are conserved.

The importance of active processes in the ear was first noted by Gold
(Gold 1948). He estimated the viscous damping of vibrating structures within
the basilar membrane, which limits the sharpness of passive resonances, and
concluded that a purely passive system could not provide the observed qual-
ity of resonance. He formulated his regenerative hypothesis: If active pro-
cesses would overcome the viscous friction, resonances of high quality could
be achieved. He thus proposed an amplifier based on a positive feedback.
Because such an active system might become self-oscillatory, he realized that
a mechanism of self-regulation would be required for it to operate reliably,
and predicted the occurrence of oto-acoustic emissions. All these ideas are
important in the framework of critical oscillators.

In order to cover a large dynamic range, it is important to amplify weak
signals but not strong ones. This dependence of amplification on signal
level corresponds to a compressive nonlinearity. Such a nonlinearity is well
known to exist in the cochlear response, where it permits operation over a
dynamic range of 120 dB of sound pressure levels (Rhode 1971, Ruggero et
al. 1997, Robles and Ruggero 2001). Goldstein pointed out that this non-
linearity is ‘essential’: nonlinear effects do not disappear for small stimuli
(Goldstein 1967). He also discussed the properties of combination tones that
occur in the presence of two stimulus frequencies, which are an intrinsically
nonlinear phenomenon. He argued that combination tones correspond to me-
chanical vibrations on the basilar membrane and suggested that they result
from nonlinearities in the basilar membrane mechanics. Consequently, he
suggested that the basilar membrane itself possesses an essential nonlinear-
ity. These ideas are also closely related to the concept of critical oscillators.
While nonlinearities can become important at large vibration amplitudes in a
passive mechanical system, passive systems cannot be essentially nonlinear in
response to periodic stimulation. Essential nonlinearities are thus a signature
of active processes and can be directly linked to the cochlear amplifier.

This Chapter is organized as follows: In Section 2, we discuss general
aspects of sound detection and amplification by nonlinear dynamic oscilla-
tors. This framework allows us to describe the characteristic properties of a
broad class of active systems which respond to vibrations. We can formulate
the ideas of Gold and Goldstein in a common framework which allows us to
distinguish general properties from properties that are related to the specific
architecture of a given auditory system. In Section 3, various different ways
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to build active oscillators are discussed. We also show how a mechanism of
self-regulation can maintain the active oscillators on the verge of an oscilla-
tory instability. In Section 4, we weigh the evidence for the actual physical
basis of critical oscillators in the auditory systems of insects, non-mammalian
vertebrates and mammals. The mammalian cochlea is distinguished by the
propagation of a traveling wave along the basilar membrane. In Section 5,
we present a description of the cochlear traveling wave, based on the idea
that critical oscillators with a range of characteristic frequencies drive the
basilar membrane, and are coupled together through the cochlear fluid.

2 Generic response of critical oscillators

2.1 Active and passive oscillators

It is important to distinguish active oscillators from passive harmonic or
anharmonic oscillators. Active oscillators are dynamical systems that are
powered by a source of energy. Consequently, they can generate spontaneous
oscillations that persist even in the presence of damping; they settle to a
steady state of oscillation in which the heat dissipated by the damping is
compensated by energy input from the source (Strogatz 2001). This con-
trasts with passive oscillators, for which the amplitude of oscillation always
eventually decays. The amplitude of spontaneous oscillation of an active
oscillator evidently depends on the internal state of the dynamical system,
which can usually be summarized by a parameter C known as the ‘control
parameter’. For one range of values of the control parameter, oscillations
are absent and the system remains quiescent; in another region of parame-
ter space, the system oscillates with a particular amplitude and a particular
frequency, both of which vary smoothly as C varies. There is one partic-
ular value of the control parameter – the critical value Cc – which marks
the boundary between these two regions (see Fig. 6). This is the precise
point at which the system becomes unstable and spontaneous oscillations of
vanishing amplitude, but with a well-defined characteristic frequency ωc are
generated. It corresponds mathematically to a ‘supercritical Hopf bifurca-
tion’ of the dynamical system: i.e. the bifurcation of a fixed point to a limit
cycle (Strogatz 2001). We call a dynamical system that is poised exactly at
this critical point a ‘critical oscillator’.

In practice, spontaneous oscillations usually occur in complex systems
consisting of many components. In this case, the variations of a large num-
ber of rapidly changing degrees of freedom result in fluctuations, which can
be described as background noise acting on the more slowly oscillating dis-
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placement of the system (van Kampen 1992). The oscillation frequency is
then not perfectly fixed, because the noise causes the phase of the oscillation
to wander over time. Indeed, there is typically a finite coherence time, after
which the phase of oscillations is randomized (Stratonovich 1981). But in
the limit where the number of interacting degrees of freedom is very large,
the coherence time can become infinite. Then the system has a persistent,
perfectly periodic output. Such coherent oscillations are characterized by
a power spectrum that exhibits delta peaks, due to the coherent periodic
motion, together with a broader spectrum reflecting fluctuations and noise.
Note that coherent oscillations cannot occur in a passive system, but only in
active systems. The occurrence of phase coherence in a multi-component dy-
namical system is related to the appearance of order in large thermodynamic
systems, where collective effects give rise to abrupt transitions in behavior.
The Hopf bifurcation of a complex dynamical system is thus a generalization
of the concept of equilibrium phase transitions, applied in this case to an
active, non-equilibrium system (Risler et al. 2004 and 2005).

Extensive studies of thermodynamic phase transitions have revealed one
remarkable feature: When a system is close to a critical point, the way that
it responds to external influences is universal and independent of the many
microscopic details of the system (Ma 2000). How a liquid turns into a
gas with rising temperature is the same for all materials, for example, and
the mathematics that describes this transition also accounts for the onset of
magnetism in ferromagnetic substances. The same universality of behavior
applies to complex dynamical systems close to a Hopf bifurcation. Thus
many of the characteristic properties of critical oscillators are generic. In
particular, their response to an oscillatory stimulus can be discussed quite
generally, irrespective of the specific components from which they are built.

2.2 Nonlinear response function

In the context of hearing, we are interested in knowing the displacement x(t)
of an active oscillator in response to a stimulus which is periodic in time,
with angular frequency ω. The external force acting on the system may then
be written as a Fourier series, f(t) =

∑
fne

inωt, where fn denote complex
Fourier coefficients with fn = f ∗

−n.
We first consider a simpler, passive system that does not generate spon-

taneous motion, so that x = 0 in the absence of external forcing. The
response contains the same Fourier modes as the stimulus and is expressed
as x(t) =

∑
xne

inωt, where the xn = x∗
−n are the complex Fourier compo-

nents of the displacements. If fluctuations are present, x(t) is defined as the
average displacement observed after time t when the stimulus is repeated
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many times. For sufficiently small stimulus amplitudes we can express the
response to a periodic stimulus as an expansion:

xn = G(1)
n fn +

∑
k

G
(2)
nk fn−kfk +

∑
kl

G
(3)
nklfn−k−lfkfl + O(f 4) . (1)

This expression is the most general form of the nonlinear response that sat-
isfies time-translation invariance, ensuring that the properties of the sys-
tem are independent of its history. Note that in the absence of a stimulus
(fn = 0,∀n), the response vanishes, xn = 0, as expected for a passive system.
In Eq. (1), the complex quantity G(1)

n (ω) is the frequency-dependent linear
response function. The effects of nonlinearities are captured by the higher
order coefficients G(k) with k > 1, which are also complex numbers.

Consider now an active system that is capable of generating spontaneous
oscillations. In the region of phase-space where the system is quiescent,
Eq. (1) remains valid. But what happens if the control parameter C is varied
so that the system moves towards the Hopf bifurcation? As the oscillating in-
stability is approached, the linear response function G

(1)
1 (ω) increases. Right

at the critical point, C = Cc, where the system becomes unstable, G
(1)
1 (ω)

formally diverges for the specific frequency ω = ωc. Here, ωc is the charac-
teristic frequency of the spontaneous oscillations that emerge in the absence
of a stimulus. As a consequence of this divergence, the validity of Eq. (1) is
restricted to smaller and smaller amplitudes of force as the Hopf bifurcation
is approached: it can be used only as long as |G(1)

1 f1| remains finite.
There is however a related description of the response which is valid near

the instability. Before reaching the bifurcation point, we can formally invert
Eq. (1) for small |fk| within the radius of convergence of the expansion, and
re-express it as an expansion of fn in terms of xn

fn = F (1)
n xn +

∑
k

F
(2)
nk xn−kxk +

∑
kl

F
(3)
nklxn−k−lxkxl + O(x4) , (2)

where xn are assumed to be small. All coefficients F (n) can be related to
the coefficients G(n) of Eq. (1). In particular, F (1)

n = 1/G(1)
n is simply the

inverse of the linear response function, while the nonlinear terms are related
in a more complicated way. As the Hopf bifurcation is approached from
the quiescent side, G

(1)
1 (ω) diverges for the characteristic frequency, ω = ωc,

which implies that F
(1)
1 (ω) becomes zero at this frequency. Therefore Eq. (2)

is the appropriate expansion, valid for small amplitudes, in the vicinity of
the instability and can even be used once the instabilty has been traversed
and spontaneous oscillations occur Note that all expansion coefficients F (n)

are, in general, functions of frequency ω.
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2.3 Hopf bifurcation

We shall now examine the response of a critical oscillator to a simple sinu-
soidal stimulus of small amplitude f1, with fk = 0 for k > 1. The response
is principally at the same frequency, but higher harmonics xk with k > 1 are
also present and have amplitudes xk ∼ O(xk

1). Focussing on x1 and x2, we
find (Jülicher et al. 1997, Camalet et al. 2000)

f1 ' F
(1)
1 x1 + (F

(2)
1,2 + F

(2)
1,−1)x−1x2 + (F

(3)
1,1,1 + 2F

(3)
1,−1,1)x

2
1x−1 , (3)

0 ' F
(1)
2 x2 + F

(2)
2,1 x2

1 , (4)

where we have assumed, without loss of generality, that F
(3)
nkl = F

(3)
nlk. Equa-

tion (4) determines x2 ' −(F
(2)
2,1 /F

(1)
2 )x2

1 as a function of x1. Inserting this
relation in Eq. (3), we obtain a simple expression for the response amplitude
x1 in the presence of a sinusoidal stimulus:

f1 ' Ax1 + B|x1|2x1 . (5)

Here, we have defined the effective linear and cubic response functions A ≡
F

(1)
1 and B ≡ −(F

(2)
2,1 /F

(1)
2 )(F

(2)
1,2 +F

(2)
1,−1)+(F

(3)
1,1,1 +2F

(3)
1,−1,1). Note that while

the linear coefficient A is directly given by the linear response function, the
structure of nonlinearities is more subtle. Significantly, Eq. (5) does not
contain quadratic terms; the dominant nonlinearity is cubic. However, the
coefficient B of the cubic term contains linear, quadratic and cubic coefficients
of the expansion (2). This derivation is valid for any complex system near a
Hopf bifurcation, so Eq. (5) is the generic form of the response of a critical
oscillator, independent of the physical details of the system.

The above description also accounts for spontaneous oscillations in the
absence of a stimulus. In this case, Eq. (5) with f1 = 0 has a nontrivial
solution with amplitude

|x1|2 ' −A
B

. (6)

The frequency ωc of these oscillations is determined by the criterion that
−A/B is real and positive. The critical point occurs for the particular case
where A(ωc) = 0 for the critical frequency. As discussed above, the distance
of the system from the critical point is controlled by the parameter C. We
can therefore express the linear coefficient A for small frequency difference
ω − ωc and small deviation of the control parameter from its critical value
C − Cc as

A(ω,C) ' α(ω − ωc) + β(C − Cc) , (7)

where α and β are complex coefficients, the values of which depend on the
particular system. Equations (5) and (7) together characterize the generic
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behavior of a critical oscillator, describing both how oscillations are gener-
ated, and how the system responds to a stimulus.

2.4 Generic mechanical response

Although the frequency dependence of the coefficients A and B in Eq. (5)
varies from one system to another, Eq. (7) holds for any system that is close
to a Hopf bifurcation (Camalet et al. 2000). Consequently the response of
a critical oscillator exhibits some very general features. Most importantly,
if the oscillator is poised exactly at the critical point with C = Cc, and is
stimulated at its characteristic frequency, ω = ωc, the linear coefficient A
vanishes and the amplitude of the response varies as

|x1| ' |B|−1/3|f1|1/3 (8)

This power law is formally satisfied for arbitrarily small f1, so the response
displays an ‘essential nonlinearity’.

It is easy to see why an active oscillator is ideally suited to act as a
mechanosensor in the auditory system. First, the compressive nonlinearity
permits the detection of a wide range of signals. Forces that vary by a factor
of one million cause displacements of the detection apparatus that vary by
a factor of only one hundred – a physically reasonable range. Second, the
critical oscillator acts as an active amplifier that boosts faint signals. Defin-
ing the signal gain as the ratio |x1|/|f1| of output and stimulus amplitudes,
Eq. (8) implies that this gain diverges with a power law

|x1|
|f1|

∼ |f1|−2/3 , (9)

so the weakest stimuli are infinitely amplified. Third, the response is highly
frequency selective. If the critical oscillator is stimulated at a frequency that
differs from the characteristic frequency, ω 6= ωc, the nonlinear response can
be lost: Equations (5) and (7) indicate that the response becomes linear if
|ω − ωc| � ∆ωa where

∆ωa =
|B1/3|
|α|

|f 2/3
1 | . (10)

This therefore defines an ‘active bandwidth’, ∆ωa, within which active ampli-
fication occurs. Note that the bandwidth depends on the stimulus amplitude,
and the tuning becomes very sharp at low levels.

To profit best from the active response, the system should be poised ex-
actly at the Hopf bifurcation. As we discuss later, adjustment of mechanosen-
sors to the proximity of the critical point is likely to be automatically achieved
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by a feedback control mechanism. The adjustment cannot be perfect, how-
ever. When the system is close to, but not exactly at the critical point,
C 6= Cc, the linear term A is non-zero for all frequencies. Therefore, the
power-law response is only apparent for |f1| � |A/B|1/2 when the nonlinear-
ity dominates; for smaller |f1|, the response is linear. The generic response
of a dynamic oscillator to periodic stimulation is displayed in Fig. 6

The concept of critical oscillators provides a natural explanation for the
mechanical responses observed in auditory systems, where there is consider-
able evidence of an essential compressive nonlinearity. The above analysis
shows that an essential nonlinearity is only possible in an active system. In-
deed, the vanishing of A(ωc) for non-zero ωc is impossible in a passive system,
because the unavoidable damping necessarily leads to a non-zero imaginary
part of A. Conversely, the vanishing of A, which leads to an essential sin-
gularity, is necessarily linked to the existence of spontaneously oscillating
solutions at neighboring parameter values, since the functions A and B are
continuous and differentiable on general physical grounds. Thus an essen-
tial nonlinearity in the response of a complex system to a periodic stimulus
provides direct evidence that the system is on the verge of an oscillating
instability.

2.5 Normal form

The preceding generic description of a critical oscillator is closely related
to the so-called ‘normal form’ of a dynamical system in the proximity of a
Hopf bifurcation (Strogatz 2001, Wiggins 2003). The normal form describes
the long time relaxation of an active oscillator to its limit cycle. Usually,
the normal form is defined in the absence of an external stimulus and in the
absence of fluctuations. A nonlinear variable transformation is used to define
a complex variable Z. Expressed in this variable, the limit cycle corresponds
to motion along a circle on the complex plane. The normal form can be linked
to the generic expansion (5) together with the expression (7). We define the
complex variable Z(t) = x1(t)e

iωt and describe the relaxation to the limit
cycle as a slow variation of the amplitude x1 of the unstable mode with time.
This implies that near the bifurcation x(t) ' x1(t)e

iωt +x−1(t)e
−iωt and that

dZ/dt = (dx1/dt + iωx1)e
iωt ' iωx1e

iωt. Here, we assume that relaxation is
slow compared to the oscillation frequency. Rapid variations of x(t) due to
the presence of higher harmonics are ignored; they simply lead to nonlinear
corrections to the linear relation x ' 2Re(Z). Eq. (5) together with Eq. (7),
in the time domain, can be expressed by the dynamic equation

dZ

dt
= −(r + iω0)Z + B|Z|2Z +

eiθ

Λ
f(t) . (11)
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This is the normal form of a system close to a Hopf bifurcation, in the pres-
ence of a force f(t). The real parameter r = (C − Cc)Im(β/α) characterizes
the proximity to the bifurcation, which is situated at r = 0. For r < 0 there
is a limit-cycle solution, representing spontaneous oscillations at frequency
ω0 = ωc + (C − Cc)Re(β/α), whose amplitude is governed by the complex
nonlinear coefficient B = −B/α. The external force is multiplied by a com-
plex factor eiθ/Λ = i/α. The real coefficient Λ is an effective friction, and
the phase θ characterizes the phase shift at which the external force acts on
the variable Z.

The essential nonlinearity of a critical oscillator is clear from Eq. (11).
When the system is precisely at the bifurcation, r = 0, and f(t) is a sinusoidal
force at the characteristic frequency ω = ωc, the solution is Z = x1e

iωt with
|x1| ∼ |f |1/3/|ΛB|1/3. The normal form is also convenient for characterizing
the linear response that occurs at small forces in the case where the active
oscillator is not exactly critical. For a real stimulus force with f−1 = f ∗

1 ,
and for small ω− ω0, the response is x1 ' χ(ω)f1, where the linear response
function χ = A−1 is

χ ' 1

Λ

[
eiθ

i(ω0 − ω) + r
+

e−iθ

−i(ω0 + ω) + r

]
. (12)

2.6 Effects of fluctuations

From the point of view of complex systems, a Hopf bifurcation is an idealiza-
tion that can only strictly be realized in the thermodynamic limit: only an
infinite number of interacting degrees of freedom can generate spontaneous
oscillations which are truly coherent (Risler et al. 2004 and 2005). In small
systems, such as single cells, an oscillatory state is subject to fluctuations
caused by the irregular movements of many molecular or microscopic com-
ponents. These fluctuations destroy the precision of the oscillation period.
As a result, the phase coherence of the oscillations is limited to a coher-
ence time τ (Stratonovich 1981). Fluctuations therefore conceal the Hopf
bifurcation that occurs in the equivalent deterministic system.

Even so, a noisy active oscillator can function effectively as a detector
of perodic mechanical stimuli. Suppose that an active dynamical system is
close to the point where a Hopf bifurcation would occur in the absence of
fluctations. It would then spontaneously oscillate at low amplitude and in
an irregular fashion, with a short coherence time. If the system is then stim-
ulated by a sinusoidal force f(t) = f1e

iωt + c.c. at its characteristic frequency
ω = ωc, the response at that frequency x1 varies with the level of the stimu-
lus according to Eq. 5. The augmentation of this Fourier component of the
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displacement is equivalent to an increase of phase coherence in the response
(see Fig. 6), even though the overall amplitude of the noisy oscillations does
not necessarily increase (Camalet et al. 2000). This entrainment, or ‘phase-
locking’ of the dynamical system can be detected, to infer the presence of
the stimulus. In the case of hearing, low-level sounds could be detected by
analysing the timings of spike trains elicited in the auditory nerve.

The effect of noise on a dynamical system that is close to a Hopf bi-
furcation is most readily discussed using the normal form. Fluctuations
can be modelled by adding to Eq. (11) a stochastic force η(t) with zero
average 〈η〉 = 0. Assuming for simplicity Gaussian white noise we use
〈η(t)η(0)〉 = 2D(t) and 〈η(t)η∗(0)〉 = 0. The spectral density C̃(ω), which is
the Fourier transform of the auto-correlation function C(t) = 〈x(τ + t)x(τ)〉,
is of the form (Martin et al. 2001)

C(ω) ' 1

Λ2

[
D̃(ω)

r2 + (ω − ω0)2
+

D̃(−ω)

r2 + (ω + ω0)2

]
, (13)

where the effect of nonlinearities has been neglected. This spectrum, which
exhibits a peak at the characteristic frequency ω0, is characteristic of noisy
active oscillators. The coherence time τ ' r−1 characterizes the width of the
peak.

The observation of noisy oscillations with a finite coherence time τ is in-
sufficient to determine whether a given system is a passive damped oscillator
subject to thermal fluctuations, or whether it is an active nonlinear system
that oscillates spontaneously. Comparison of the spectral density with the
response to mechanical stimuli, however, provides key information about the
passive or active nature of the system. In the case of a passive system in ther-
modynamic equilibrium at temperature T , fluctuations result from Brownian
motion and satisfy a fluctuation-dissipation theorem. This relates the auto-
correlation function to the linear response function χ̃(ω) = χ̃′(ω) + iχ̃′′(ω),
where χ̃′ and χ̃′′ denote the real and the imaginary part, respectively. It can
be written as (Forster 1990):

C̃(ω) =
2kBT

ω
χ̃(ω)′′ . (14)

Therefore, for a passive system the linear response function is completely
determined by a knowledge of the auto-correlation function C(t). For an
active oscillator, on the other hand, the fluctuation-dissipation theorem does
not apply and the linear response function is not so constrained. So by
measuring both the auto-correlation function and the linear response function
of a noisy oscillator, and seeing whether the fluctuation-dissipation theorem
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is obeyed or violated, it is possible to determine whether a system is passive
or active (Martin et al. 2001).

2.7 Response to multiple frequencies

While a critical oscillator provides the benefit of active amplification, the
nonlinearity of its response means that different frequencies interfere with
one another, so that the spectrum of the response differs from the spectrum
of the stimulus. The nonlinearities naturally lead to the generation of new
frequencies or ‘distortion products’, and also to ‘two-tone suppression’.

To illustrate the basic interference phenomena that arise from nonlinear-
ities, we consider how a critical oscillator responds to a signal containing two
frequency components ω1 and ω2,

f(t) = f10e
iω1t + f01e

iω2t + c.c. , (15)

where c.c. denotes the complex conjugate and f10 and f01 are the Fourier
amplitudes of frequency component ω1 and ω2, respectively. For a dynamical
system in the vicinity of a Hopf bifurcation, we can generalize the arguments
which lead to Eq. (2) (Jülicher et al. 2001, Stoop and Kern 2004). The
nonlinearities in the system lead to many more frequency components in the
response, which can be generally written as

x(t) =
∑
kl

xkle
i(kω1+lω2)t . (16)

In the vicinity of a Hopf bifurcation, we can generalize Eq. (5) and write

f10 ' A(ω1)x10 + B|x10|2x10 + B̄|x01|2x10 (17)

f01 ' A(ω2)x01 + B|x01|2x01 + B̄|x10|2x01 (18)

This expression reveals the basic features of the response to two tones. We
assume that ω1 is the critical frequency of the oscillator. If a stimulus com-
ponent at this frequency is present, f10 6= 0, but the second frequency com-
ponent is absent, f01 = 0, then x01 = 0 and we recover the general response
to a single stimulus, Eq. (5). But if the second frequency component is in-
troduced, f01 6= 0, a corresponding frequency component is generated in the
response, x01 6= 0. This frequency component x01 changes the response to
the first stimulus, which now satisfies

f10 ' A′x10 + B|x10|x10 , (19)

where A′ = A + B̄|x01|2. The presence of the second frequency component
thus changes the linear response. The critical oscillator consequently re-
sponds to the stimulus at the characteristic frequency as if it were not at the

11



critical point. This implies that the nonlinear amplification is reduced in the
presence of a second frequency, and the threshold of detection is increased
(Ruggero et al. 1992). This feature is thus similar to the general phenomenon
of two-tone suppression in hearing – reduced sensitivity to a sound stimulus
when a second nearby frequency is simultaneously present (Zwicker 1999).
This two-tone suppression is most important when the frequency difference
∆ω = ω1 − ω2 is small, because x01 ∼ f01/∆ω then becomes large.

In addition to two-tone suppression, new frequencies are generated by
nonlinearities in the response (see Fig. 6). In general, and according to
Eq. (16), these frequency components are given by

ωkl = kω1 + lω2 , (20)

where k and l are integers. Particular examples are the frequencies ω2,−1 =
2ω1 − ω2 and ω−1,2 = 2ω2 − ω1 which are the most prominent frequencies of
distortion products in hearing. For small ∆ω there is a particularly strong
response at these frequencies, because they are directly generated by the two
frequency components in the stimulus. These new frequencies mix with the
original ones to create further distortion products, so a whole hierarchy of
frequencies is generated:

ωk+1,−k = ω1 + (k − 1)∆ω . (21)

The amplitude of these distortion products decays exponentially as

xk+1,−k ∼ e−λ|k−3/2| . (22)

The number of strongly excited distortion products is given by λ−1 ∼ ∆ω−1,
and so the response contains many components when the two stimuli are
close in frequency.

This exponential decay of the spectrum of distortion products is char-
acteristic of dynamical oscillators that are close to a Hopf bifurcation. A
general nonlinear system (or a system far from a Hopf bifurcation) does not
generate this response (Jülicher et al. 2001). The observation of an exponen-
tial spectrum in the two-tone response of the basilar membrane (Robles et
al. 1997) therefore indicates that critical oscillators might be an important
part of the active process in the mammalian cochlea.
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3 Building critical oscillators

3.1 Physical realizations of active mechanical oscilla-
tors

Any active mechanical system that is close to a supercritical Hopf bifurcation
behaves in the general way described in the previous section. Because the su-
percritical Hopf bifurcation is the simplest type of transition from a quiescent
to an oscillatory regime, such dynamical systems are easy to manufacture.
Here, we consider a variety of physical realizations of critical oscillators which
might be relevant in hearing.

Inertial oscillator with negative damping. One of the simplest ac-
tive oscillators to envisage is a damped inertial oscillator, supplemented by an
internal driving force that counteracts the friction. The equation of motion,
when the system is under the influence of an external force f , is

mẍ = −λẋ− kx + fa + f , (23)

where m is a mass, λ is a coefficient of damping, k is the modulus of an elastic
spring, and fa is the internally generated active force. If the active force is
in phase with the velocity of the oscillator, it acts as a negative friction and,
if it overcomes the damping, spontaneous oscillations are generated. Some
kind of nonlinearity is essential to stabilize the oscillations. One way of doing
this is for the active force to diminish with amplitude, fa = (C − Bx2)ẋ, so
that the total friction becomes positive for large oscillations. The system is
then known as a van der Pol oscillator (van der Pol 1926, Strogatz 2001),
and obeys

mẍ = −(λ− C + Bx2)ẋ− kx + f . (24)

If the driving force is periodic with frequency ω, the response at the same
frequency satisfies Eq. (5) with

A = k −mω2 + iω(λ− C) , (25)

B = iωB . (26)

The coefficient C plays the role of a control parameter, and the Hopf bi-
furcation occurs at C = Cc = λ. The system then generates spontanous
oscillations with characteristic frequency ωc = (k/m)1/2. Note that it is
necessary for B to be purely imaginary to stabilize the system. It is also
important that the nonlinearity is in the damping; the combination of an ac-
tive force that is simply proportional to the velocity, and a nonlinear spring
k(x) = k′x+B′x3, for example, would not create a stable oscillator. Alterna-
tive stabilizing nonlinearities in the damping are possible, however, such as
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an active force which decreases with velocity fa = (C−Bẋ2)ẋ. In this case A
is unchanged but B = 3iω3B. This oscillator thus has the same critical point
and characteristic frequency, but the frequency-dependence of the oscillation
amplitude is different.

Time-delayed feedback. It is easy to understand how the above kind
of active undamping works, but it is less obvious how a feedback mechanism
could be constructed to ensure that the active force is precisely in phase
with the velocity. An alternative is to use a feedback proportional to the
displacement, but with a time delay τ , so that fa = Cx(t− τ) (Boukas and
Liu 2002). In the case where the mechanical system has a simple nonlinear
drag and a nonlinear elasticity, its equation of motion is then

mẍ = −(λ + Bx2)ẋ + (k + B′x2)x + Cx(t− τ) + f (27)

The coefficients of Eq. (5) for this system are

A = k −mω2 + iωλ + Ce−iωτ , (28)

B = 3B′ + iωB . (29)

The strength of the feedback C acts as the control parameter. The critical
point Cc and characteristic frequency ωc are given by the solutions of the two
equations k − mω2

c = −Cc cos(ωcτ) and ωcλ = Cc sin(ωcτ). If the feedback
is rapid compared to the period of oscillation, these expressions reduce to
Cc ≈ λ/τ and ω2

c ≈ k/m + λ/τm.
Two first-order systems. On the cellular scale, inertial effects are

negligible in most cases and the dynamics of an active mechanical system is
described by a first-order differential equation

λẋ = −k(x)x + fa + f , (30)

where k(x) is the nonlinear stiffness of the system. In this case, oscilla-
tions can be generated if the active force fa also evolves in time according
to a first-order differential equation, which is coupled to Eq. (30). The sim-
plest conceivable situation is akin to ‘stretch-activation’ in muscle, i.e. we
consider an active process that generates a restoring force when the system
is displaced, but which relaxes with a time constant τ when the system is
stationary (Vilfan and Duke 2003). To obtain oscillations, it is also impor-
tant for the mechanical system to display a regime of negative elasticity,
k(x) = k − C + Bx2; here, k is the bare stiffness and C is a control param-
eter characterizing a reduction of the stiffness. When C > k, the stiffness
becomes negative at small displacements.
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The combination of negative stiffness and an internal, dynamically-regulated
active force is represented by the pair of equations

λẋ = −(k − C + Bx2)x + fa + f , (31)

τ ḟa = −fa − k̄x . (32)

The coefficients of Eq. (5) for this system are

A =
k + k̄ − C − τλω2 + iω(λ + τ(k − C))

1 + iωτ
, (33)

B = 3B
1 + 3iωτ

1 + iωτ
. (34)

Inspection of Eq. (33) reveals that the Hopf bifurcation occurs at C = Cc =
k + λ/τ and that the characteristic frequency is given by ω2

c = k̄/λτ − 1/τ 2.
Thus in this case, the frequency of oscillation is determined by the prop-
erties of the active force-generating system, rather than by the mechanical
properties of the system.

3.2 Self-adjustment to the critical point

While the properties of critical oscillators can account for many general fea-
tures of sound detection in hearing, it remains to be explained how a dy-
namical system could operate sufficiently close to a Hopf bifurcation for the
generic behavior of critical oscillators to be apparent. The necessary fine-
tuning of parameters raises doubts as to whether a living system can profit
from the special properties at a critical point in a reliable way. These con-
cerns have been allayed, however, by the proposition of a mechanism which
enables an oscillator to adjust automatically to its critical point.

Feedback regulation of the control parameter (Camalet et al. 2000, Coul-
let et al 1989, Moreau et al. 2003) is a simple and general mechanism to
maintain a dynamical system at a point of operation close to the bifurcation
point. This kind of automatic self-adjustment ensures that when the system
is quiescent, the control parameter gradually changes so that the system ap-
proaches the instability; but as soon as oscillations are detected, the control
parameter is stabilized. Self-adjustment works best in the absence of exter-
nal stimuli, when the highest sensitivity is needed, by adapting the control
parameter according to the detected amplitude of vibrations.

Consider a system for which the control parameter can vary in the range
from zero to Cmax, and which oscillates for C > Cc. Self-adjustment can be
described by the dynamic equation for the control parameter

dC

dt
= (1− x2

δ2
)(Cmax − C)/τa . (35)
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Here, δ characterizes the threshold amplitude at which the feedback becomes
effective. If the system is quiescent (x = 0), the control parameter rises
towards its maximum value with a characteristic adaptation time τa. When
C exceeds Cc, the system starts to oscillate and the amplitude near the
critical point varies as

|x1|2 ' ∆2(C − Cc)/Cc , (36)

where ∆ denotes a characteristic amplitude of spontaneous oscillations. The
feedback control, Eq. (35), thus brings the system to an operating point
C = C0, close to the critical point, for which x2

1 ' δ2 and (Camalet et
al. 2000)

C0 − Cc

Cc

' δ2

∆2
. (37)

This quantity describes the relative distance to the critical point achieved by
self-regulation. Because the threshold of detection δ can be much less than
the typical amplitude of spontaneous oscillations ∆, the self-regulation can
ensure that the system operates sufficiently close to the critical point for the
generic nonlinear behavior to dominate.

Thus in the absence of a stimulus, a self-adjusted active oscillator will be
poised very close to the point where it is most sensitive. When stimulated by
a weak signal, such that the amplitude of the response only slightly exceeds
δ, Eq. (35) indicates that the control parameter is not significantly perturbed
by the stimulus; thus the oscillator remains in the immediate vicinity of the
critical point and active amplification can be maintained. If the stimulus is
stronger, however, and elicits a large response, Eq. (35) indicates that the
control parameter gradually decreases so that the system drifts away from
the critical point, into the quiescent regime. As a consequence, the amount
of active amplification diminishes with time – a feature which does not pose
a problem because a strong stimulus can be detected without the aid of am-
plification. After the termination of a sustained, high-level stimulus, it takes
a typical time τa for the system to readjust and return to the vicinity of the
critical point, where it is most sensitive. Thus this mechanism of detection
naturally accounts for a period of adaptation, following a strong stimulus,
before the weakest signals can be detected. Note that the adaptation time τa

must be long compared to the characteristic period of the oscillator, so that
the variations in the control parameter caused by the feedback mechanism
do not interfere with the limit cycle.
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4 Critical oscillators in the auditory system

4.1 Variations on a theme

The main signature of active amplification in the auditory system is oto-
acoustic emissions. Such emissions have been detected in all classes of
vertebrates (Manley and van Dijk Chapter 6, Probst 1990, Manley and
Köppl 1998, Manley 2000), and more recently an active process has been
discovered in the hearing of some insects (Göpfert Chapter 5,Göpfert and
Robert 2003, Göpfert et al. 2005) The wide range of animal species that
benefit from active audition suggests that a variety of realizations of active
oscillators may have evolved. The way that oscillators of different frequency
are coupled to one another in the auditory system might also be expected to
vary according to the inner ear physiology.

While the existence of oto-acoustic emissions is well established, the iden-
tification of the cellular processes that are at the origin of these emissions has
proved difficult. There thus remains controversy about the nature of the ac-
tive elements in hearing and their relation to nonlinear oscillators. Evidence
from many sources links active amplification to the biophysics of mechanosen-
sory cells and strongly suggests that it is these cells themselves that host the
active process. In vertebrates, hair cells are thus the prime candidates for the
generation of mechanical oscillations (Dallos 1992, Hudspeth 1997). Active
oscillations of the hair bundle have been directly observed in amphibians and
reptiles (Martin and Hudspeth 1999, Crawford and Fettiplace 1985, Howard
and Hudspeth 1987, Denk and Webb 1992, Benser et al. 1996, Martin et
al. 2000). In the mammalian cochlea, inner and outer hair cells can be
distinguished (Dallos et al. 1996). Because of their electromotility, outer
hair cells have been the focus of the search for active elements (Brownell et
al. 1985, Kachar et al. 1986, Ashmore 1987). However, the hair bundles of
both inner and outer hair cells could act as active amplifiers, as they do in
other vertebrates.

From an evolutionary standpoint, it seems probable that the first active
mechanosensors would have been based on a motile system that naturally
produces vibrations. An oscillating axoneme, coupled to a mechanosensi-
tive channel, is a possible candidate. Natural selection could have refined a
simple feedback system to provide a self-adjustment mechanism that keeps
the oscillator close to its critical point. The ions that enter through the
channel might bind to the motor proteins that drive the axoneme, for exam-
ple, thereby affecting the quality of the oscillations. The auditory system of
some insects, which is based on mechanosensory neurons, has been shown to
employ dynamic oscillators (Göpfert Chapter 5). The anatomy of their sen-
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sory apparatus (Eberl 1999) suggests that a structure related to an axoneme
might be the mechanical basis of the active oscillator.

4.2 Vertebrate hair bundles

The hair bundles of vertebrate hair cells consist of about 50 stereocilia –
stiff, rod-like extensions of the cell with a length of several microns and a
diameter of about 300 nm. The stereocilia are arranged in rows of increasing
height and each stereocilium is connected, at its tip, to a stereocilium in the
adjacent row. The fine filament that forms this bridge is known as a ‘tip
link’ (Pickles et al. 1984, Kachar et al. 2000). Shear deformation of the hair
bundle stretches the tip links and triggers the opening of mechanosensitive
transduction channels to which they are joined (Hudspeth 1989). This leads
to a transduction current – an influx of K+ and Ca2+ ions into the cell. Active
internal forces, generated internally within the stereocilia by myosin motor
proteins, can also modulate the tension in the tip links and thereby affect
the transduction current (Hudspeth and Gillespie 1994).

The micromechanical properties of hair bundles in living hair cells range
from adaptive movements in response to abrupt force steps (which have both
fast and slow components (Howard and Hudspeth 1988, Benser et al. 1996,
Ricci et al. 2000)), to spontaneous oscillations (Crawford and Fettiplace 1985,
Howard and Hudspeth 1987, Denk and Webb 1992, Benser et al. 1996, Martin
and Hudspeth 1999, Martin et al. 2000, Martin et al. 2003). These are dis-
cussed in detail in (Martin Chapter 4). Micromanipulation experiments per-
formed on spontaneously oscillating hair bundles have revealed a frequency
selectivity and a compressive nonlinear response that are compatible with the
general properties of critical oscillators (Martin and Hudspeth 1999, Martin
and Hudspeth 2001, Martin et al. 2001). In the case of hair bundles in the
bullfrog sacculus, the violation of the fluctuation-dissipation theorem, Eq. 14,
has been shown experimentally (Martin et al. 2001). Thus Brownian motion
has been ruled out as the source of fluctuations, and the hair bundle has been
proved to be a noisy, active oscillator. Direct evidence of active amplifica-
tion by hair bundles in the intact reptilian cochlea has also been presented
(Manley et al. 2001).

Spontaneous oscillations of the hair bundle could be generated by several
different mechanisms which can be characterized by two or more coupled first-
order equations, as described in Section 3. In the absence of active processes,
the hair bundle mechanics is well characterized by Eq. (30) with fa = 0, where
x denotes the hair bundle displacement and f the applied external force.
The hair bundle stiffness k(x) is nonlinear and depends on displacement
because the transduction channels contribute a gating compliance to the
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bundle stiffness (Howard and Hudspeth 1988). Measurements of the stiffness
of hair bundles from the bullfrog sacculus show that k(x) can become negative
(Martin and Hudspeth 1999, Kennedy et al. 2005) .

The generation of spontaneous oscillations requires an active force fa,
generated inside the hair bundle. The observed properties of hair bundle
oscillations in the bullfrog sacculus are best described by assuming that the
active force fa is generated by myosin-Ic adaptation motors in the stere-
ocilia which are themselves regulated by the intracellular Ca concentration
(Hudspeth and Gillespie 1994, Holt et al. 2002, Kros et al. 2002). Using
the hair bundle deflection x, the motor force fa and the Ca concentration
c, this dynamical system is described by three coupled first-order systems
(Martin et al. 2003, Nadrowski et al. 2004). For low frequency oscillations
such as those observed in the bullfrog, the Ca concentration changes almost
instantaneously compared to the other variables, and the dynamical system
then reduces to two coupled first-order systems. It can be represented by
equations of the form (30) and (32). Here, Eq. (32) captures the combined
effects of the force-velocity relationship of the motors and the regulation of
motors by a changing Ca concentration, in a simplified linear description.
The existence of spontaneous oscillations requires both negative hair bun-
dle stiffness (C > k) and sufficiently strong Ca-feedback of the motor force
k̄ > λ/τ . The full state diagram of the system is discussed in (Nadrowski et
al. 2004).

The interplay of nonlinear hair-bundle stiffness, myosin motors and cal-
cium dynamics in the hair bundle can also lead to spontaneous oscillations by
other mechanisms (Choe et al. 1998, Vilfan and Duke 2003a). If the reclosure
of transduction channels can be triggered by an increase of the intracellular
Ca concentration (Howard and Hudspeth 1988, Benser et al. 1996, Wu et
al. 1999, Ricci et al. 2000), this also generates an active force which depends
on the Ca concentration and can also be described by Eqns. (30) and (32).
In such a scenario, the dynamics of adaptation motors is slow and could be
used for self-regulation to the critical regime (Vilfan and Duke 2003a).

Finally, a sufficiently large number of motor proteins which operate col-
lectively could become self-oscillatory, even without being coupled to the
calcium dynamics. This possibility is based on a general physical mecha-
nism that could operate over a large frequency range (Jülicher et al. 1997).
Such motor-induced mechanical oscillations might be relevant to axonemal
vibrations and beating (Camalet et al. 2000).
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4.3 Mammalian cochlea

The physical basis of the active amplifier in the mammalian cochlea remains
controversial. There is much evidence that the specialized outer hair cells
can pump energy into the basilar membrane (Fakler Chapter 7, Dallos et
al. 1996). The somatic electromotility of outer hair cells can certainly pro-
duce large, rapidly changing forces, but there is currently no indication that
it can generate spontaneous oscillations. It is possible that it acts as a linear
amplifier which boosts nonlinear oscillations generated by another source. In-
deed, the hair bundles of outer hair cells have recently been found to generate
active forces which could contribute to the amplifier (Kennedy et al. 2005),
and an in vitro preparation has provided direct evidence for a characteristic
resonance in the mammalian cochlea, linked to a compressively nonlinear
amplifier that depends on the flow of Ca2+ ions through hair-bundle trans-
duction channels (Chan and Hudspeth 2005).

Despite the uncertainty about the physical basis of the mechanism, there
have been numerous propositions that active oscillators play a crucial role
in the mammalian cochlea. Undamping of an inertial oscillator is the active
mechanism that Gold proposed to exist in the mammalian cochlea (Gold
1948) . He reasoned that the motion of individual elements of the basi-
lar membrane is damped by the cochlear fluid, and that a resonant re-
sponse could occur only if an internally-generated active force, in phase
with the velocity, counteracted the damping. Following this lead, nonlin-
ear active models of the cochlear response have been constructed (Neely
and Kim Chapte 10, Duifhuis et al. 1985 Kolston et al. 1990, deBoer 1996).
Based on an analysis of the basilar membrane response, Zweig has argued
that the active amplifier consists of a set of time-delayed feedback oscillators
(Zweig 1991). In the following Section, we will discuss a more general model
of the cochlear response based on the generic response of critical oscillators
(Duke and Jülicher 2003, Magnasco 2003). We argue that this model should
be valid whatever the underlying physical basis of the mammalian cochlear
amplifier, and that it provides a framework for discussing energy flow and
nonlinear effects in cochlear traveling waves.
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5 Traveling waves powered by critical oscil-

lators

5.1 Traveling waves in the cochlea

The basic physics of cochlear traveling waves may succinctly be described us-
ing a simplified, one-dimensional model (Zwislocki 1948, Zweig 1976, deBoer
1980, Lighthill 1981, Zweig 1991). In this approach, the propagation of a
pressure wave in the cochlear fluid and the propagation of an associated dis-
turbance of the basilar membrane, is analogous to the propagation of voltage
and current in an electromagnetic transmission line.

The cochlear duct is separated into two channels by the basilar membrane,
but these are connected at the apex of the cochlea by a small aperture, the
helicotrema (see Fig. 6). A sound stimulus impinging on the oval window, at
the base of the cochlea, causes changes in the pressures P1(x, t) and P2(x, t)
in both channels. Here t is the time and x is the position along the cochlea,
with the oval window at x = 0 and the helicotrema at x = L. The pres-
sure gradients induce longitudinal currents J1(x, t) and J2(x, t), which flow
in opposite directions in the two channels. We define the relative current
j ≡ J1 − J2 and the pressure difference p ≡ P1 − P2. The balance of pres-
sure gradients with inertial and viscous forces in the fluid, together with the
incompressibility of the fluid, leads to the equation

2ρb∂2
t h + η∂th = ∂x [bl∂xp] , (38)

which relates the height profile h(x, t) of the basilar membrane to the pressure
difference across it. Here, b and l denote the width and height of the cochlear
channels, respectively. The damping coefficient η is proportional to the fluid
viscosity, and ρ is the fluid density.

The pressure difference p acts to deform the basilar membrane, and the
resultant wave propagation depends crucially on the way the cochlear parti-
tion responds. If the partition is simply a passive element (e.g. in the dead
cochlea), the response relation close to the basal end, where the stiffness K(x)
of the basilar membrane is high, takes the simple form p = K(x)h. Then
Eq. (38) becomes a damped, linear wave equation, the speed of propagation
of the membrane disturbance is c = (K(x)l/2ρ)1/2, and the distance that
the wave travels before it gradually gets dissipated depends on a balance
between damping and elastic forces. If the cochlear partition is an active
system, however, the wave can be regenerated as it progresses. We will see
that this provides a way of transporting the incident energy to a localized
region of the cochlea.
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5.2 Active traveling waves

We describe the amplifier in the active cochlea as a set of critical oscilla-
tors which are located on the cochlear partition, and which are positioned
in such a way that they can drive the motion of the basilar membrane. Mo-
tivated by the observed variation of the characteristic frequency with place
in the cochlea (von Bekesi 1960, Greenwood 1990), we describe the position
dependence of characteristic frequencies as

ωr(x) = ω0e
−x/d , (39)

so that the oscillators near the base have the highest frequencies, and those
near the apex the lowest.

When a sound stimulus with a single frequency component enters the ear,
the local pressure changes periodically in time, p(t) = p̃e−iωt + c.c., where
c.c. denote the complex conjugate. If the response of the cochlear partition
is governed by the critical oscillators, the local displacement at frequency ω
can be written

p̃ ' A(ω)h̃ + B|h̃|2h̃ . (40)

Here, h̃ is the Fourier amplitude of the resulting periodic vibration h(x, t) '
h̃(x)e−iωt + c.c. and A and B denote the complex coefficients introduced in
Eq. (5).

Combining Eq. (38) describing the wave mechanics with Eq. (40) for the
local amplifier, we obtain a nonlinear wave equation for the deformation
of the basilar membrane. In frequency representation, it reads (Duke and
Jülicher 2003)

−2ρbω2h̃− iωηh̃ = ∂x

[
bl∂x

(
A(x, ω)h̃ + B|h̃|2h̃

)]
. (41)

Here, the complex linear response coefficient A(x, ω) depends on both posi-
tion and frequency. There are, however, a number of constraints on its func-
tional form. Most importantly, because each of the oscillators is assumed to
be critical, the linear response vanishes at the local characteristic frequency
ωr(x): A(x, ω) ' α(ω − ωr(x)) for small ω − ωr. In addition, decomposing
A = A′+iA′′ into a real and an imaginary part, we note that A′(ω) is an even
function, while A′′(ω) is odd. Both vanish at the characteristic frequency ωr.
Finally, the response of the cochlear partition at zero frequency should re-
flect a simple, passive elastic response, so that A(x, 0) ' K(x). The typical
functional form of A(ω) is shown in Fig. 6.

Whatever the precise choice of A(ω), Eq. (41) can be solved for the am-
plitude h̃(x) of the basilar membrane displacement. The appropriate bound-
ary conditions are |p̃(0)| = pin, where pin is the amplitude of the incom-
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ing pressure, and p̃(L) = 0 because the channels are connected at the heli-
cotrema. The traveling wave patterns which correspond to these solutions
are h(x, t) = Re(h̃(x)eiωt). Examples of these waveforms are shown in Fig. 6.

There is a characteristic place x = xr in the cochlea where the frequency
of the wave is matched by the frequency of the critical oscillators, ω = ωr(xr).
Far from this resonance point, the wave equation Eq. (41) describes traveling
waves which are linear for small vibration amplitudes. A wave that enters
at x = 0, first encounters active oscillators which have a high characteristic
frequency, compared to the wave frequency, ω < ωr. At this point, the
response is dominated by the real part of the linear response A′, which differs
little from the passive stiffness of the membrane. But the imaginary part is
negative, A′′(ω) < 0, indicating that energy is pumped into the wave by the
critical oscillators. This pumping can negate, or even overcome the effects of
viscous friction and thus maintain or enhance the amount of energy carried
by the wave. As the wave continues, it passes regions with smaller values of
A′, and its speed of propagation c ≈ (A′l/ρ)1/2 declines. Because the energy
flux is undiminished (or has even increased, due to the active pumping), the
fall in wave velocity implies an increase in the amplitude of the wave. The
displacement of the basilar membrane therefore grows as the wave approaches
the place of resonance. In the immediate vicinity of the characteristic place,
|A| becomes small while h̃ increases. Thus the cubic term in Eq. (41) rapidly
becomes more important than the linear term. This leads to a strongly
nonlinear response of the basilar membrane in this region. The wave slows
to a halt as it approaches the characteristic place and, as it does so, the
energy that it carries is absorbed by the active oscillators (the imaginary
part of the cubic term in the response is positive). At positions beyond the
characteristic place, x > xr, A′ becomes negative and consequently the wave
number q ∼ ω/(A′)1/2 becomes imaginary, indicating the breakdown of wave
propagation. Any small amount of energy that remains in the wave is thus
reflected from the characteristic place and the displacement of the basilar
membrane decays very sharply for x > xr.

A cochlear partition activated by critical oscillators thus provides a nat-
ural mechanism for the phenomenon known as ‘critical layer absorption’,
whereby a wave comes to a stop at a particular place, but takes sufficiently
long to do so that practically all of the energy that it carries can be absorbed
there (Lighthill 1981). The traveling wave attains a peak amplitude before it
reaches the resonant point, at a location x = xp < xr which is very close to
the characteristic place at low amplitudes, but which moves towards the base
as the level of the stimulus increases. The peak response displays the char-
acteristic nonlinearity of critical oscillators, h̃(xp) ∼ p̃(xp)

1/3. However, the
vibration amplitude as a function of sound pressure level at a fixed position
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can exhibit responses which are not simple power laws. Direct obervations
of the motion of the basilar membrane (Rhode 1971, Sellick et al. 1982, Rug-
gero et al. 1997, Nilsen and Russell 2000, Robles and Ruggero 2001) reveal
many features of the cochlear response that are consistent with the general
properties of an active traveling wave that is driven by critical oscillators
(Duke and Jülicher 2003).

5.3 Two-tone interference in active traveling waves

In Section 2, we discussed the nonlinear interference effects that appear in the
response of an individual critical oscillator when it is stimulated by multiple
frequencies. These have their counterparts in an active traveling wave that
is powered by a set of critical oscillators. When a sound stimulus contain-
ing two frequency components ω1 and ω2 (with ω1 < ω2) enters the cochlea,
the critical oscillators on the cochlear partition respond at both those fre-
quencies, but also at the distortion product frequencies. As a result, the
traveling wave contains a whole spectrum of components (as has been ob-
served experimentally (Robles et al. 1991, Rhode and Cooper 1993, Robles
et al. 1997)), and each of these components reaches a peak amplitude at
a different place. In particular, the distortion products that have a lower
frequency than the stimulus tones travel further than them, and peak at
their characteristic place, where the principal components ω1 and ω2 have
already decayed. This localized oscillation of the membrane at distortion
product frequencies explains why these lower frequencies, such as 2ω1 − ω2

and 3ω1 − 2ω2, can be heard (Helmholtz 1954, Zwicker 1999). At the same
time, the peak response to ω1 is diminished by the presence of ω2, and vice
versa. Such two-tone suppression has been directly observed in the response
of the basilar membrane (Ruggero et al. 1992, Rhode and Cooper 1993). For
stimuli with components of equal level, the suppressive effect of the lower
frequency component ω1 is greater, because this component travels through
the characteristic place of the other component ω2, and interferes with the
response of the critical oscillators there. The response of a cochlea in which
the active elements are critical oscillators thus accounts for the main features
of the psychoacoustic phenomenon of two-tone suppression (Zwicker 1999).

6 Discussion

Traditionally, the cochlear amplifier has been modelled using an approach
that starts with a linear harmonic description and adds a positive feedback.
As the feedback strength increases, the gain of the system grows and the
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system eventually becomes unstable. A description of the cochlear amplifier
based on critical oscillators is not inconsistent with such an approach, but
it has several advantages. First, because critical oscillators are inherently
nonlinear systems, the description underlines that nonlinearities are closely
linked to the active mechanism and are, in fact, an unavoidable byproduct
of active amplification. Second, the concept of the active amplifier as a self-
regulated system that automatically adjusts itself to the vicinity of a critical
point solves a difficulty of traditional approaches – namely that unstable be-
havior must be avoided, but at the same time positive feedback is required
to produce an active amplifier. Third, our analysis indicates that the charac-
teristic frequency of oscillation depends on the properties of the underlying
nonlinear dynamical system; instead of depending on the stiffness and mass
of passive harmonic oscillator elements alone, the characteristic frequency is
determined, to a large degree, by the typical time scales of the active cellular
processes which drive the cochlear amplifier.

Previous models of the cochlear traveling wave that have been based on
coupled nonlinear oscillators have encountered the problem that such a sys-
tem can become chaotic. The description presented in Section 5 neatly side-
steps this issue, by basing the analysis on the fundamental Fourier modes, to-
gether with the higher harmonics resulting from nonlinearities. Deterministic
chaotic dynamics is irrelevant in the cochlea because stochastic fluctuations
are important at the cellular scale on which the active amplifier operates.
These fluctuations conceal any chaotic behavior that could result from the
coupling of several nonlinear oscillators, but emphasize the generic behavior
in the critical regime. Even though the Hopf bifurcation is hidden by fluc-
tuations, the general signatures of critical oscillators are typically apparent
over a wider range of parameters for noisy systems than for deterministic
ones.

The noise that occurs in complex dynamical systems due to the rapid,
irregular dynamics of many degrees of freedom might also provide an expla-
nation of oto-acoustic emissions – the prime indicator of active processes in
the cochlea. The spontaneous noisy motion of a critical oscillator, in the ab-
sence of any external stimulus, can exhibit spectral peaks at the oscillation
frequency, because the noise is amplified by the active dynamical system. In
the cochlea, the noisy motion of many critical oscillators, vibrating at differ-
ent frequencies, would lead to the generation of many wave-like excitations
which travel along the basilar membrane and interact via nonlinearities. In
such a situation certain spectral components could be selected as eigenmodes
of the cochlear cavity, and these frequencies would appear in the spectrum
of spontaneous emissions (Shera and Guinan Chapter 8, Shera 2003).

In conclusion, the concept of self-regulated critical oscillators provides a
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unifying description of the principal features of sound detection in auditory
systems. The essential singularity in the response of an individual critical
oscillator provides the frequency selectivity, high sensitivity and a wide dy-
namic range required by hearing organs. Clear experimental evidence that
hair bundles in the bullfrog sacculus operate as critical oscillators has been
presented. As yet, there is no such evidence at the cellular level for critical
oscillators in the mammalian cochlea. But we have shown that critical oscil-
lators that cover a range of frequencies, that are located within the cochlea
partition, and whose dynamics is coupled through the fluid, can account
for the transport of energy to a particular frequency-dependent location in
the cochlea, the nonlinearity of the response at that place, the generation
of distortion products, and the existence of spontaneous oto-acoustic emis-
sions. The close correspondence with the measured features of the cochlear
response provides a compelling argument that critical oscillators are the key
element of the active cochlear amplifier.
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Jülicher F, Prost J (1997) Spontaneous Oscillations of Collective Molecular
Motors. Phys. Rev. Lett. 78, 4510-4513.
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CCc

x1

Figure 1: Schematic representation of the amplitude of spontaneous limit
cycle oscillation |x1| as a function of a control parameter C near a supercrit-
ical Hopf bifurcation. At a critical value C = Cc a quiescent, non-oscillating
state becomes unstable. For C > Cc spontaneous oscillations appear with
an amplitude and frequency that depends on C. The oscillation amplitude
grows continuously as |x1| ∼ (C − Cc)

1/2.
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Figure 2: Typical response of an active oscillator, poised at a Hopf bifurca-
tion, to mechanical stimulation at fixed frequency. A: As the stimulus level
decreases, the gain increases and the bandwidth ∆ωa of active amplifica-
tion decreases. B: A truly critical oscillator, stimulated at its characteristic
frequency, displays an essential singularity, Eq. 8 (black curve). If a criti-
cal oscillator is stimulated at a frequency that differs from its characteristic
frequency, or if a dynamic oscillator is not precisely critical, its response is
linear at low levels (gray curve).
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Figure 3: Role of fluctuations in the response of a critical oscillator. Sponta-
neous oscillations (top line) are noisy and lack phase coherence. A periodic
stimulus at the characteristic frequency of the oscillator (with level indicated
by the shaded curve) causes phase locking, although the overall amplitude of
the response does not necessarily increase. Corresponding to this enhance-
ment of the phase coherence, a peak emerges in the Fourier transform of the
response (right column).
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Figure 4: Two tone-suppression and distortion product generation in the
response of a critical oscillator. A: The response of a critical oscillator to
a stimulus at its characteristic frequency (dashed line) is suppressed (full
line) in the presence of a second, ‘masking’ frequency. B: The response of a
critical oscillator to a stimulus containing two frequencies ω1 and ω2 (arrowed)
displays a characteristic spectrum of distortion products. New components
appear at frequencies nω1 + mω2, where n and m are integers, because of
nonlinear couplings. Most notable are the distortion product frequencies
2ω1−ω2 and 2ω2−ω1, but many other components with frequencies ω1+n∆ω,
where ∆ω = ω1 − ω2 are important.
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Figure 5: Schematic representation of the cochlea. The fluid-filled duct is
divided into two channels by the basilar membrane. Sound enters at the base
and travels towards the apex, where the two channels are connected by the
helicotrema. The system behaves as a transmission line and couples basilar
membrane vibrations hydrodynamically. We assume that critical oscillators
operate along the cochlear partition as local active elements, and that their
characteristic frequency decreases continuously from base to apex.
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Figure 6: Schematic representation of the the linear response function A =
A′ + iA′′ of a critical oscillator. The real (reversible) part A′ is an even
function of ω while the imaginary (irreversible) part is odd. Both functions
vanish for ω = ±ωc, where ωc is the oscillation frequency at the critical point.
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Figure 7: Active traveling waves resulting from the hydrodynamic coupling
of critical oscillators located on the cochlear partition, with characteristic
frequencies decreasing from base to apex. These waves are solutions to the
nonlinear wave equation, Eq. (41).
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